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Abstract 36 

Single cell sequencing has recently allowed the generation of exhaustive root cell atlases. 37 

However, some cell types are elusive and remain underrepresented. Here, we use a second-38 

generation single cell approach, where we zoom in on the root transcriptome sorting with 39 

specific markers to profile the phloem poles at an unprecedented resolution. Our data highlight 40 

the similarities among the developmental trajectories and gene regulatory networks communal 41 

to protophloem sieve element (PSE) adjacent lineages in relation to PSE enucleation, a key 42 

event in phloem biology. 43 

As a signature for early PSE-adjacent lineages, we have identified a set of DNA-binding with 44 

one finger (DOF) transcription factors, the PINEAPPLEs (PAPL), that act downstream of 45 

PHLOEM EARLY DOF (PEAR) genes, and are important to guarantee a proper root nutrition 46 

in the transition to autotrophy. 47 

Our data provide a holistic view of the phloem poles that act as a functional unit in root 48 

development. 49 

Main text 50 

INTRODUCTION 51 

In plants, organs originate from meristems postembrionically and are patterned by mobile 52 

signals and the positional information generated in the individual immobile cell types. 53 

Determining cell type-specific transcriptional programs is key to understanding the positional 54 

cues guiding plant development1. However, despite the importance of phloem in vascular 55 

plants and radial growth pre-patterning2, phloem gene expression is not yet well characterized. 56 

During root development, the term phloem is oftentimes used as a synonym of the 57 

protophloem sieve element (PSE), the cell type that undergoes a unique differentiation 58 

process to specialize in the transport of sap from source photosynthetic organs to distant sink 59 
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tissues. This simplification is probably the result of the extensive knowledge we have about 60 

PSE specification2,3 and differentiation 4–11. However, in the Arabidopsis primary root, the 61 

phloem pole is composed of six cells belonging to four distinct cell types: the central PSE is 62 

flanked by two phloem pole pericycle (PPP) cells to the outside and one metaphloem sieve 63 

element (MSE) cell to the inside, and both SE cells are in direct contact with the two lateral 64 

companion cells (CC)12 (Fig 1a).  65 

In the Arabidopsis root, both conductive elements (MSE and PSE) derive from the same stem 66 

cell13 but MSE differentiates later, when PSE cells are no longer functional. Despite having a 67 

similar function to PSE, MSE ontogeny is less well characterized14 and few factors have been 68 

directly related to MSE development. An exception are the partially redundant homologs 69 

OCTOPUS (OPS, At3g09070) and OCTOPUS-LIKE 2 (OPL2, At2g38070) identified as 70 

important for MSE entry into differentiation15. Despite some commonalities between PSE and 71 

MSE, a recent study highlighted MSE differentiation is independent of adjacent or preceding 72 

PSE14, underlining the peculiarities of this cell type. The conducting cell types and CC originate 73 

from different progenitors in the Arabidopsis root13. CC are believed to be essential to support 74 

enucleated PSE function16 and their intimate relationship has been evidenced by a common 75 

molecular switch controlling SE/CC fate in vitro and in hypocotyls17, while in the primary root 76 

undifferentiated CC and MSE can transdifferentiate to PSE cells if these are misspecified18.  77 

The CC function in leaves consists of loading nutrients into the SE but their role in the root 78 

remains elusive19. Traditionally, it was thought they were involved in phloem unloading20, that 79 

is, the exit of the nutrients from the sieve element pipe so that they reach meristematic cells 80 

for food. However, it was recently demonstrated this process happens through funnel 81 

plasmodesmata connecting PSE to PPP12. 82 

Despite being considered a non-vascular tissue, PPP and the associated vasculature share a 83 

high overlap in gene expression21 and are different in size and ultrastructure to the xylem pole 84 

pericycle (XPP) population22, exhibiting specific gene expression23 from early stages, mirroring 85 

the diarch pattern in the Arabidopsis vasculature24. 86 
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In the last 15 years, transcriptomics has been the stepping stone to learn about plant 87 

organogenesis. However, even if markers for mature CC and PPP were used for 88 

transcriptomics1,25,26, the lack of specific markers for early phloem, combined with the 89 

difficulties to access phloem cells, deeply embedded in the root cylinder, have hampered the 90 

study of these populations, oftentimes masked under the concept “stele”, that groups pericycle 91 

and vasculature 27–29. The more recent root single-cell atlases confer a detailed root panoramic 92 

but even here phloem cells remain underrepresented compared to more accessible root 93 

layers30–32.  94 

Combining fluorescent activated cell sorting (FACS) and SMART-seq single cell technologies 95 

allowed the profiling of 758 PSE cells at an unprecedented resolution, identifying the 96 

bifurcation of MSE and procambium lineages33. In this study, we have generated a phloem 97 

pole cell atlas of 10204 cells by sorting phloem marker lines combined with single cell 98 

sequencing. This allowed us to gain resolution not just in the PSE lineage but in all the 99 

surrounding cells (CC, PPP, MSE) in the phloem poles, all of which are underrepresented in 100 

general root cell atlases. We investigated not only the specificities of each cell type but also 101 

the transcriptional commonalities between them. We additionally identified a second set of 102 

DOF transcription factors (TF) expressed in the PSE adjacent cells, downstream of PEAR TF, 103 

that are important in the transition to autotrophy in young seedlings. 104 

RESULTS 105 

In order to profile phloem cells, we took advantage of new and existing fluorescent markers 106 

expressed in SEs, CC and PPP from early meristematic cells until differentiation (Fig S1a). 107 

This allowed us to enrich our data with cells of interest, by using FACS and preparing single-108 

cell sequencing libraries using the 10x Chromium droplet-based protocol. This resulted in a 109 

total of 10,204 high-quality cells, defined as those having at least 2000 detected genes and 110 

no more than 10% of reads assigned to mitochondrial genes (the resultant sample of cells had 111 

a median of 17,455 reads/cell and a median of 4,564 genes/cell). The raw count data was 112 
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normalised using variance stabilising transformation34 and integrated across batches using 113 

the mutual nearest neighbours algorithm35, although our main conclusions are robust to 114 

normalisation and batch effects. These cells were grouped into 15 clusters using the Louvain 115 

algorithm on a shared-nearest-neighbour cell graph and visualised using uniform manifold 116 

approximation and projection (UMAP)36 (Fig 1b). Using signature marker 117 

genes1,2,5,12,17,19,37(Fig 1c), we identified all the cell types included in the phloem pole. We 118 

manually annotated groups of clusters as: PSE conducting cells (clusters 12, 2, 6), CC 119 

(clusters 5, 3) and a third to PPP (clusters 7, 4, 14, 11), all emerging from a central group of 120 

less mature cells (clusters 8, 9, 10, 13). Clusters 10 and 1 express MSE genes (Fig 2b). In 121 

turn, clusters 13 and 12 contain G2/M cell cycle markers, indicating cells undergoing division. 122 

While it is usually difficult to infer the identity of cycling cells, in the case of cluster 12 most of 123 

the cells express early PSE markers as well as cell division markers, pointing towards PSE-124 

dividing cells. For example, PEAR1 or CVP2 are detected in all of the cells of this cluster and 125 

cell-cycle genes such as KNOLLE, AUR1 or CYCB1 are also detected in over 57% of those 126 

cells. Finally, cluster 15 corresponds to the outer layers of the root, as an apparent 127 

contamination during cell sorting. 128 

Separated from the rest, clusters 7, 4 and 14 were contributed to mainly by pS17::GFP and 129 

pAPL::3xYFP markers (Fig 2a), and expressed genes characteristic of PPP such as S17  130 

(At2g22850) and GLUCAN SYNTHASE-LIKE 4 (CALS8, At3g14570) (Fig 1c). In turn, cluster 131 

11, mainly contributed to by pS17::GFP and the pMAKR5::MAKR5-3xYFP sortings, 132 

represents mature pericycle cells, since in addition to PPP markers it also expresses markers 133 

for XPP (At1g02460, At4g3045038, At2g36120, Fig 2c) and PPP (Fig 1c). This is likely because 134 

MEMBRANE-ASSOCIATED KINASE REGULATOR 5 (MAKR5, At5g52870) is expressed in the 135 

whole pericycle layer high up in the root and pericycle cells come together with PPP cells for 136 

similarity. 137 

Considering genes that were statistically more highly expressed in PPP-specific clusters, we 138 

built reporter lines for two genes, which were confirmed to have PPP-specific expression. One 139 

of these, At3g27030, was expressed in PPP and late PSE, while the other, METHYL 140 
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ESTERASE 7 (MES7, At2g23560), was expressed early in PPP and soon afterwards 141 

becomes more broadly expressed in the vasculature and endodermis (Fig 1d).  142 

In turn, the known CC genes are expressed in cluster 5 (SISTER OF APL, (SAPL, 143 

At3g1273012)), with cluster 3 expressing mature CC genes (ATPase3 (AHA3, At5g573502), 144 

SODIUM POTASSIUM ROOT DEFECTIVE 1 (NAKR1)39, SUCROSE PROTON 145 

SYMPORTER 2 (SUC2, At1g2271040). AHA3 in particular was statistically more highly 146 

expressed in this cluster and allowed the discovery of new CC genes by correlation, which 147 

were validated building reporter lines (Fig 1d). One of these was At2g32210, which is 148 

expressed first in PSE and then switches to a strong CC-MSE expression, with a weak 149 

expression in the epidermis. In turn, METACASPASE 3 (MC3, At5g64240), was expressed in 150 

late PSE and started being expressed in CC after enucleation, first in a patchy way and then 151 

getting continuous and mostly CC-exclusive. Cloning reporter lines for other genes expressed 152 

in these clusters, we found a gene expressed in PSE and CC (PHOSPHATIDYLINOSITOL-153 

SPECIWC PHOSPHOLIPASE C5 (PLC5, At5g58690)), previously described to be expressed 154 

in vascular tissues37 and At2g3864041 mostly specific of mature CC (Fig S1b). Therefore, we 155 

have been able to validate our cell annotation (shown on the UMAP in Fig 1b) in vivo by using 156 

new genes highly expressed in these clusters. 157 

 158 

Spatiotemporal patterns of differentiation in the atlas 159 

From our initial cell annotation, it seemed clear that our data also captured the temporal aspect 160 

of cell differentiation in the phloem. For example, marker genes usually expressed in more 161 

differentiated cells, showed higher expression at the terminal clusters of our UMAP projection 162 

(3, 6, 11, 14, Fig S1c), while those closer to the cycling cells are less mature. To validate this 163 

hypothesis, we compared our data with a  microarray dataset1 of manually microdissected root 164 

longitudinal sections (3 to 5 cells thick), assigning each of our cells to the longitudinal section 165 

with which they had the highest Spearman correlation (Fig S2a). Using this strategy, we 166 

observed that the cells towards the centre of our UMAP matched with the meristematic 167 

https://www.zotero.org/google-docs/?broken=sGKWkB


 

7 

sections of Brady et al., with a temporal progression towards the terminal clusters of our 168 

UMAP, until the more mature cells cap each trajectory. This analysis validates our hypothesis 169 

of a temporal trajectory that is well captured by our UMAP projection and cell clustering.  170 

To further infer developmental trajectories and order our cells along a continuous pseudotime, 171 

we used Slingshot43 (Fig 3a). Setting a unique origin for all in cluster 13 (cycling cells), we 172 

obtained 5 different trajectories (Fig 3a), reflecting the known developmental trajectories in the 173 

root. Furthermore, these trajectories agreed with RNA velocity analysis using scVelo44, with 174 

velocity vectors aligning towards the end of these trajectories (Fig S2c). 175 

Trajectories 1-3 account for PPP, CC and PSE respectively. Trajectory 5 is for outer layers 176 

and we will not focus on it.  177 

While PSE trajectory is independent from all others, PPP and CC have cluster 5 in common. 178 

While other clusters were unequivocally assigned to a single trajectory (see for instance 179 

cluster 3, with slingshot assigning a probability close to  1 of belonging to the CC trajectory, or 180 

cluster 4, with a probability close to 1 of belonging to the PPP trajectory, Fig S2e) or shared 181 

by all trajectories (like early phloem cells in cluster 8, Fig S2e), cluster 5 was not a clear cut, 182 

with a probability of around 0.75% of belonging to trajectory 2 (CC) and around 0.25 of 183 

belonging to trajectory 1 (PPP), Fig S2e. 184 

Regarding gene expression, cluster 5 does not express any canonical CC or PPP marker 185 

strongly. However, these markers (SUC2, NAKR1, AHA3 for CC or S17 for PPP) are only 186 

highly expressed in more mature cells. Cluster 5 has 64% cells expressing the CC marker 187 

SAPL (409/638 cells) and 20% expressing the PPP marker S17 (127/638 cells), with 12% of 188 

the cells in this cluster expressing both genes simultaneously (76/638 cells). This indicates 189 

more cells in cluster 5 express CC markers than PPP markers. This matches our observations 190 

in the root, when SAPL starts to be expressed earlier in development than S17 (Fig S2g). The 191 

fact that a small percentage of cells express both markers at the same time despite being 192 

specific for different cell types would indicate transcriptional reporters are not always 193 

highlighting weak gene expression, so it is possible that our transcriptional data paint broader 194 

expression domains than the ones visible with the specific marker lines (see for example the 195 



 

8 

broader SAPL expression domain compared to the cells sorted using pSAPL::VENUSer 196 

reporter line, Fig 2a,b). 197 

We tried to distinguish incipient PPP from early CC in cluster 5 but there is no known PPP-198 

specific marker expressed earlier in development than S17. However, these intermediate PPP 199 

cells should have been collected in the sorting experiments “pMAKR5:MAKR5-3xYFP whole 200 

root” and “pAPL:3xYFP” (Fig 2a), and should be present in the UMAP. These cells would sit 201 

in between the early PPP cells, sorted using “pMAKR5:MAKR5-3xYFP root tip” enriched in 202 

root tips, and those expressing S17, sorted using pAPL::3xYFP and pS17::GFP markers.  203 

Therefore, cluster 5 gathers CC and PPP cells that exist in the same transcriptional state but 204 

are fated to differentiate into different cell types. 205 

The developmental trajectories obtained reinforce clusters 8, 9 and 10 as early CC, PPP and 206 

SE cells. Given these populations are contributed mainly by cells sorted using MAKR5 and 207 

PEAR1del (Fig 2a), we can conclude that these clusters correspond to the early phloem cells, 208 

containing three different identities (MSE, PPP and CC), still undifferentiated. 209 

There is no gene statistically enriched in cluster 9 and those few in cluster 8 (Table S1) are 210 

broadly expressed in whole root single cell data. Except for PSE, when we detect cycling cells 211 

expressing PSE markers in cluster 12, it is hard to distinguish an early identity in the other 212 

trajectories. However, when early phloem cells are compared to the early cells in general root 213 

cell atlases, phloem early cells cluster together more than expected by chance compared to 214 

other early cells, suggesting early phloem cells have a specific signature (Fig 4f,g). 215 

An important event in phloem development is the enucleation of PSE, since at that moment 216 

this cell type loses the nucleus and stops directing phloem progression, becoming dependent 217 

on neighbouring cells for survival and probably triggering changes in their transcriptomes. In 218 

order to map the enucleation point in the UMAP and know which cells are neighbouring PSE 219 

before and after enucleation, we needed to coordinate trajectories, since each trajectory has 220 

a different pseudotime. To coordinate them we used our knowledge of ALTERED PHLOEM 221 

DEVELOPMENT (APL) expression, which is expressed at different times in all three 222 

trajectories, combined with the enucleation markers NAC DOMAIN CONTAINING PROTEIN 223 
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86 (NAC086, At5g17260) and NAC45/86-DEPENDENT EXONUCLEASE-DOMAIN PROTEIN 224 

4 (NEN4, At4g39810) (Fig 3b, Fig S2f). APL is first expressed in PSE and at the time of 225 

enucleation is transcriptionally activated in CC and MSE4. In reporter lines like pAPL::3xYFP 226 

we perceive a strong signal in PPP as well (Fig S1a), a circumstance that we took advantage 227 

of for sorting, but the phloem pole cell atlas transcriptomics data do not reflect a strong APL 228 

expression in mature PPP (Fig 3b”, Fig S2d). In another reporter line, pAPL::YFPer we also 229 

observe a signal in PPP that gets weaker going shootward (Fig S2d). Based on reporters and 230 

transcriptomics data, the signal in PPP is probably not the product of gene expression in this 231 

cell type but likely caused by direct unloading from PSE that lags and gets diluted in 232 

successive cell divisions.  233 

While APL expression increases in PSE trajectory until enucleation, it starts being detected in 234 

PPP and CC trajectories in the common cluster 5 (Fig 3b), indicating this is the transition zone 235 

when APL starts building up in the neighbouring cell types before enucleation. Therefore, the 236 

PSE trajectory is contemporary to the early phloem cells, cluster 5 coincides with PSE 237 

enucleation preparation and clusters for mature PPP and CC contain cells that are 238 

neighbouring an enucleated PSE (Fig 3b’). 239 

First stages of MSE development identified 240 

MSE is difficult to identify since there are no specific markers available for this cell type. 241 

However, by reducing the diversity of cells in our sample using cell sorting, we were able to 242 

gain some insights about this elusive population of cells. Slingshot identified a trajectory 243 

(trajectory 4, Fig 3a) that is mainly formed by cluster 10 (Fig S2b), which is mostly contributed 244 

by MAKR5 sortings, pointing this could be early MSE cells (Fig 2a). In cluster 10, we find cells 245 

expressing MSE markers like sAPL, APL (Fig 2b), and other genes expressed in MSE and 246 

other cell types but excluded from PSE (At5g47920, PAPL1, Fig 2b, Fig 7).   247 

In addition, we know procambial markers like PIN-FORMED 4 (PIN4, At2g01420) become 248 

excluded from MSE cells early in development42 and we find this marker absent from cluster 249 
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10 (Fig 2b). Out of 31 genes identified as highly expressed in cluster 10 compared to others 250 

(FDR < 1%), 29 were S-phase genes (histones), indicating these are still early cells and 251 

therefore harder to characterise further. 252 

We also know that MSE cells should not display PSE markers in early stages, since these are 253 

no longer expressed in MSE after lineage bifurcation, but will express these signature genes 254 

later in development. For this reason, we interpret that cluster 1 is a more developed MSE, 255 

since we find early SE genes like PEAR1 and S32 (At2g18380) expressed in this cluster, which 256 

is mainly contributed by the APL sorting. Cluster 1 belongs to CC trajectory, possibly because 257 

CC and MSE at this stage share some transcriptional expression, as evidenced by reporters 258 

like At2g32210 (Fig 2b), SAPL and the cases shown in Fig 6b, highlighting how phloem pole 259 

cell fates are intertwined along development.  260 

While we have end points for our PSE, CC and PPP trajectories, we don’t expect to have an 261 

endpoint for MSE, since this cell type differentiates further away from the meristem14. Out of 262 

the 7 genes identified to be expressed in both sieve elements14, we detected all the genes in 263 

PSE clusters but only DESIGUAL2 (DEAL2, At4g21310) in cluster 1 and CC, confirming we 264 

have not sampled mature MSE cells. However, we are convinced we have identified the first 265 

stages of MSE development in clusters 10 and 1. 266 

The atlas represents a continuum of phloem development  267 

In order to explore the depth of our data, we integrated our phloem atlas with existing root 268 

single cell datasets30,32,45 (Fig 4a). After filtering, this process rendered a UMAP with 113,340 269 

reclustered cells, of which 9% belonged to our project, 7.69% to Wendrich et al., 4.84% to 270 

Denyer et al. and 78.4% to Shahan et al.  We used markers to identify cell types (Fig 4b, d) 271 

and projected the clusters of the phloem pole cell atlas in the integrated dataset to confirm our 272 

trajectories (Fig 4d). The relative position of the original clusters is similar in the integrated 273 

data as it was in our analysis (Fig 1b). The exception are the cells which we named as “outer 274 

layers”, which are dispersed in different parts of the integrated UMAP.  275 
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When projecting the cells of each project in the UMAP, a continuity can be observed in the 276 

cells contributed by our atlas covering the gaps in the other data (Fig 4e). Indeed, most of PSE 277 

cells (cluster 28), a majority of the intermediate PPP and CC cells (cluster 27) and the early 278 

cells in cluster 26 (PPP) were provided by our dataset (Fig S3), demonstrating the difficulty to 279 

sample phloem without using an active strategy to enrich this population. Most of the cells 280 

classified as “Phloem” by Shahan et al. coincide with our clusters 4 and 14, which we 281 

annotated more specifically as PPP cells (Fig 4c). There are also a few cells near our cluster 282 

3, which we annotated as CC cells. We also noticed cluster 3 (companion cells) is split in this 283 

integrated dataset (Fig 4d, orange arrowheads), between mature CC (orange dots on the right 284 

of the plot, that is, cells expressing mature CC markers, like SUC2 and NAKR1, see Fig S3a) 285 

and the orange cells in the less mature CC expressing SAPL (See Fig S3a). Perhaps the more 286 

mature CC have higher overall similarity to more mature cells of other phloem cells (such as 287 

PPP for example), more represented in the integrated dataset than in the original atlas. 288 

While other atlases, in particular Shahan et al., excelled in harvesting mature cells (including 289 

mature MSE cells, Fig S3a,b), the continuity observed in the UMAP allowed us to track phloem 290 

developmental trajectories more accurately (Fig 3a) and enrich populations that were 291 

underrepresented in other general root atlases (Fig 4e, Fig S3a,b). 292 

We also wanted to compare root phloem with a recently published single cell dataset on leaf, 293 

containing 478 vascular cells46. In Arabidopsis leaves (Fig 5a), veins are often formed by 294 

multiple sieve elements usually surrounded by at least two CC and one phloem parenchyma 295 

cell. In turn, phloem parenchyma cells, which are more irregular and have a much less dense 296 

cytoplasm compared to CC, are often in contact with one or more CC, sharing comparatively 297 

many more connections than other interfaces47.    298 

When the root and leaf data were integrated and clusters were annotated using marker genes 299 

(Fig 5d), we noticed PPP and phloem parenchyma cells blended in two clusters (Fig 5b,c). 300 

Cluster 9 of the integrated data was formed by CC cells, which are present in both leaf veins 301 

and roots. However, cluster 6 of the integrated data contained a mixture of cells annotated as 302 
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mature root pericycle cells and phloem parenchyma cells from leaves, showing expression of 303 

signature PPP (Fig 5e), phloem parenchyma genes (Fig 5f) and XPP (Fig 5g)  in both datasets 304 

(see methods on how we assessed the degree of mixing of the cells from the two datasets in 305 

cluster 6). Phloem parenchyma leaf genes are expressed in clusters 11 and 14 in the phloem 306 

pole cell atlas, corresponding to pericycle and PPP respectively (Fig 5f). Pericycle tissue is 307 

present in roots and stems, but not in leaves, and phloem parenchyma cells are found in the 308 

aerial tissue and root secondary phloem but they are not found in the primary root. Despite 309 

being different cell types with different origins, the transcriptional overlap between phloem 310 

parenchyma and mature pericycle is another indication of the importance of positional 311 

information for cell function in plants, reinforcing the role of PSE as phloem organiser. These 312 

data also suggest parenchymatous cells share similarities across different organs and 313 

underscore their relevance for phloem. 314 

Phloem pole cells share transcriptional programmes  315 

In order to identify groups of genes showing distinct expression patterns in the phloem poles, 316 

we built a gene co-expression network from our scRNA-seq data using the algorithm 317 

implemented in bigScale248, which uses a gene-gene correlation metric specifically tailored 318 

for sparse single-cell data. This resulted in a gene-gene network containing 5,238 vertices 319 

(genes) and 370,794 edges (connecting two genes if their correlation was above 0.9). The 320 

biological validity of this network was confirmed by the fact that out of 59,545 edges containing 321 

genes both present in our network and in known TF-target lists (Arabidopsis Gene Regulatory 322 

Information Server, AGRIS49), 51,658 (~86%) were preserved as linked pairs in our network. 323 

To identify groups of genes with correlated expression profiles, we used the Louvain algorithm 324 

and obtained a total of 16 gene modules (Fig S4, Table S2), and summarised their expression 325 

as the first principal component of a PCA, which we refer to as an eigengene50. Among them, 326 

most of the modules were broad in all the trajectories with different temporal patterns. Module 327 

6 seems to represent genes with high expression in PSE (Fig S4). In contrast, module 1, which 328 
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contains 1,367 genes (Table S3), displays an increasing expression in both PPP and CC 329 

trajectories and a lower-than-average expression in PSE (Fig 6a). Reporter lines for genes in 330 

this module followed these predictions: in addition to genes with broader expression (like 331 

MES7, Fig1d), we identified genes showing a “ring” pattern, expressed specifically in all the 332 

cells around PSE (Fig 6b, Fig S5). While At3g11930, At2g02230 (PHLOEM PROTEIN 2-B1, 333 

PP2-B1), At5g47920, At3g163302 and its sister gene At1g52140, and At4g27435 do not show 334 

a strong expression in PSE, At5g59090 (SUBTILASE 4.12, SBT4.12), At2g20562 (TAXIMIN 335 

2, TAX2) and At1g26450 are expressed in late PSE in addition to being expressed in a ring 336 

pattern. Some of the genes found are expressed in some of the cells around PSE (incomplete 337 

ring) and other cell types (Fig S5). For instance, At4g27435 is expressed in CC and 338 

occasionally in PPP and protoxylem plus lateral root cap. At3g21770 (PER30) and At3g11930 339 

are found in the ring around PSE but extend to procambium higher up (Fig S5, Fig 6b). 340 

Out of the nine genes with a ring expression pattern as observed with reporter lines (see 341 

above), seven were found in module 1, with TAX2 (At2g20562) not included in our network 342 

and At4g27435 found in module 4, which includes genes expressed in all trajectories. Despite 343 

module 1 being the largest on our network, this result is more than would be expected by 344 

chance (hypergeometric test, p-value = 0.0005). 345 

Because of the large size of module 1, we tried to refine our analysis by sub-clustering the 346 

genes within this module, to identify a more specific group of candidate “ring genes” as defined 347 

by the reporter analysis above. This resulted in 15 sub-modules, with five of them containing 348 

over 100 genes (Fig S6). Six of the seven “ring genes” from module 1 fell within the same sub-349 

module 1 (the exception was At3g16330), which again is more than would be expected by 350 

chance (hypergeometric test, p-value = 0.0009). While we do not expect that all of the 326 351 

genes in this sub-module have a ring expression pattern, this analysis highlights that this 352 

pattern is widespread for a variety of phloem genes, which group together by similarity in 353 

expression pattern. On the other hand, a gene such as MES7, which we saw was not entirely 354 

ring-specific, fell in a different sub-module. Therefore, our network analysis suggests that there 355 
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is a complex ring-specific pattern of expression shared across several genes in the phloem 356 

pole.  357 

The complex patterns in the cells around PSE point out that PSE-adjacent cells share some 358 

common developmental programs that are maintained even when cells differentiate into their 359 

specific identities, suggesting the transcriptional signature of phloem cells is influenced by 360 

multiple positional cues.  361 

This set of genes could be important to understand how PSE relates to its neighbouring cell 362 

types before and after enucleation. Indeed, as observed in the UMAPs, the ring pattern is 363 

frequent right after PSE enucleation, suggesting a shift in the phloem pole governance after 364 

PSE enucleation. 365 

PINEAPPLE  ring genes are expressed in early phloem  366 

Among the genes in module 1, sub-module 1, that also extend their expression into the less 367 

mature clusters, we found a DOF transcription factor, DOF1.5 (COGWHEEL1, COG1). This 368 

gene and the sister gene DOF2.3 (CYCLING DOF 4, CDF4), are expressed in early phloem 369 

cells (Fig 7a). CDF4 encodes a differentiation factor in columella cells, repressed by WOX551. 370 

The role of COG1 in roots is unknown but this transcription factor is a negative regulator of 371 

phytochrome signaling52 and promotes brassinosteroid biosynthesis by upregulating PIF4 and 372 

PIF5, leading to hypocotyl elongation53. Both genes have been involved in regulating tolerance 373 

to seed deterioration54,55 as well as flowering time56.   374 

Transcriptional fusions of both genes confirmed the expression of both TF in PPP, CC and 375 

MSE from 40 µm from the QC, remarkably earlier than the other ring genes described above. 376 

While both genes form a ring around PSE reminiscent of a pineapple slice (the expression is 377 

weaker or absent in PSE, Fig S7i), DOF1.5 (from now on PINEAPPLE1, PAPL1) is also 378 

expressed in the epidermis (Fig 7b) and DOF2.3 (PAPL2) is found in columella cells with a 379 

broader domain towards the QC (Fig S7f, 17f’). The ring pattern observed with the GFP fusion 380 

construct extends one layer towards procambium when fused to 3xYFP expression (Fig S7a), 381 
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indicating a weaker expression in this layer. Translational fusions show these transcription 382 

factors are nuclear localised and not mobile (Fig 7d, Fig S7a-c, S7e), since transcriptional and 383 

translational patterns are coincident. This indicates that PAPL transcription factors act cell-384 

autonomously. Together with the translational domain of MAKR5, the expression domain of 385 

PAPL genes indicate complex expression patterns in the phloem are relevant from an early 386 

stage. 387 

PAPL genes, as other genes in module 1, were predicted to be downstream of PEAR in 388 

microarray data2. PEAR transcription factors move to PSE-adjacent cells to control periclinal 389 

cell divisions and other transcriptional programs non-cell autonomously. This is evidenced by 390 

markers like SAPL and At3g16330 becoming ectopically expressed after broad PEAR 391 

overexpression or SAPL being expressed in PSE upon PSE plasmodesmata closure2.  392 

To validate PAPL genes are downstream of PEAR, PAPL reporter lines were expressed in 393 

pear1pear2 double mutant, which resulted in a delay in PAPL expression, from 40 to 120 µm 394 

from the QC (Fig 7c, S7g). Since PEAR genes are highly redundant, we also introduced 395 

PAPL1 constructs in the pear sextuple mutant, pear sext42, where we observed a loss in its 396 

usual meristematic expression (Fig S7d). In parallel, closing PSE plasmodesmata connections 397 

to the neighbouring cell types using icals3m tool, the ring expression of PAPL1 is altered (Fig 398 

7e) and overexpressing PEAR1 leads to ectopic expression of PAPL2 (Fig 7f). These results 399 

validate that PAPL genes are downstream of PEAR and indicate that PEARs are needed and 400 

sufficient to express PAPL genes in the early phloem. 401 

In addition to the PAPL genes, we validated that some of the genes in module 1 act 402 

downstream of PEAR TF. Indeed, PEARs are sufficient to induce SBT4.12, At3g11930, MES7 403 

and PER30, since these genes become ectopically expressed upon induction of PEAR2 404 

expressed under a ubiquitous promoter (pRPS5A) (Fig S7j). In pear sext., the expression 405 

pattern of PER30 and MES7 was modified, while SBT4.12 expression was decreased and 406 

At3g11930 spread towards the meristem (Fig S7j).  407 



 

16 

PAPL proteins link PEAR genes to root physiology 408 

Next, we decided to check if PAPL genes were downstream of PEAR genes to control 409 

periclinal cell divisions. Since PAPL expression is delayed in pear1pear2 double mutant and 410 

absent from early phloem, we chose this mutant as a background to express PAPL1 under 411 

the WOODEN LEG (WOL) promoter. When inducing PAPL1 expression (20h treatment or 412 

germinated directly in beta estradiol and grown for 5 days), we did not observe a phenotype 413 

similar to PEAR1 overexpression with increased periclinal cell divisions in the root2 (Fig S8a-414 

h). A similar result was observed when PAPL1 was overexpressed in the stele in wild type 415 

background (Fig S8i-p). These observations indicate PAPL genes do not control periclinal cell 416 

divisions downstream of PEARs.  417 

To gain insight into the function of PAPL genes, and after checking papl single mutants didn’t 418 

show any obvious root phenotype, we generated double mutants (papl1-1 papl2 and papl1-2 419 

papl2). Bulk RNA sequencing identified CYCLING DOF 2, CDF2, as upregulated in papl1-420 

1papl2 (Table S4). This gene encodes another DOF transcription factor expressed in the 421 

cortex, pericycle and procambium, partially overlapping with PAPL expression (Fig S7h). 422 

Presuming this gene was upregulated to compensate for the lack of PAPL genes, we 423 

generated a triple mutant using a cdf2 T-DNA allele56 (papl1-1papl2cdf2-1, 3papl).  424 

The triple mutant root was shorter than wild type in several conditions (Fig S9a) but the effect 425 

was more pronounced growing the seedlings in media without sucrose (Fig 7g, Fig S9a,b). A 426 

triple mutant with a new allele for CDF2 generated using CRISPR/Cas9 technology showed 427 

similar results (3papl-2, Fig S9h). While wild type plants grown in media without sucrose often 428 

showed a bimodal distribution in terms of root growth (Fig S9a,b), the proportion of roots 429 

arresting growth in 3papl was higher (Fig 7g, Fig S9f). Even if there is high variation between 430 

seed batches, the average root length of the mutant is lower than that of the wild-type (Fig 431 

S9h). Contrary to other phloem development mutants apl and pear sext., adding 1% sucrose 432 

to the media mostly suppressed the mutant phenotype of 3papl (Fig 7h, Fig S9e).  In this 433 
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scheme, compared to other mutants, root length  in pear1pear2 mutant was not so affected 434 

by the absence of sucrose in the media. When grown with sucrose, it was rescued to wt levels. 435 

Since the mutants could be rescued by transferring them to sucrose, we aimed to identify the 436 

time point at which sucrose is needed for 3papl. For this experiment, we transferred plants 437 

from sucrose supplemented to sucrose-depleted media and vice versa. The more time the 438 

mutant seedlings spent without sucrose, the more difficult it was for them to recover root 439 

growth (Fig 7h, Fig S9c). Those recovering managed to grow well (Fig S9f). Spending at least 440 

3 days in sucrose was necessary for the mutant seedlings to grow normally while spending 441 

only two days in sucrose was not enough for root growth recovery (Fig 7h, Fig S9c). This 442 

phenomenon was not observed in wild type roots grown and transferred in parallel (Fig S9g). 443 

In the confocal, the root meristem of seedlings that got arrested, looked shorter and stunted 444 

(Fig S9d). PAPL genes were expressed at this stage in both sucrose and non-sucrose 445 

conditions showing similar patterns as observed in more mature seedlings (Fig S10a).  Other 446 

phloem marker genes, like MAKR5, APL and ring gene SBT4.12 were expressed similar to 447 

wild type in 3papl mutant background, suggesting there are no defects in phloem development 448 

in 3papl (Fig S10b-d). On the contrary, MAKR5 expression is delayed in pear1pear2 mutant 449 

background (Fig S10b) and APL expression is highly reduced in pear sext33, suggesting PAPL 450 

genes do not fulfil the same roles as PEAR genes. These markers and SUC2 are expressed 451 

similarly when the plants are grown in media containing or depleted of sucrose (Fig S10e-h). 452 

To better understand the 3papl phenotype, we carried out metabolic profiling of leaves and 453 

roots of seedlings grown in a sucrose-depleted media across six developmental stages (2-7 454 

days post-sowing, dps) (Table S5). We identified 7 and 5 metabolites in leaves and roots, 455 

respectively, with significant differences between WT and mutant in at least one of the time 456 

points (<5% false-discovery rate from a linear mixed model fit to the whole data, see methods; 457 

Fig 8a). One of those metabolites was sucrose, with a significant difference only in the roots, 458 

where it started at lower levels in the mutant (days 2 and 3) and then continued to increase to 459 

reach levels comparable to the WT at the end of the experiment at day 7 (Fig 8b). A similar 460 

pattern, with more significant points, was observed in fructose, which is a component of 461 
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sucrose, and to a lesser extent in glucose, the other monosaccharide forming sucrose (Fig 462 

8b). It has been described that by the time the radicle emerges, all the sugars stored in the 463 

Arabidopsis seed have been consumed. Within 48 hours after germination (approximately at 464 

day 3 after sowing), lipid and protein reserves are exhausted and seedlings need to switch to 465 

autotrophic growth 57,58. The data suggest PAPL genes could be important after the seedling 466 

has transitioned to autotrophic growth, facilitating sugar transport to sink tissues like roots. 467 

The continued increase in sucrose in the mutants could be due to the, on average, smaller 468 

size of 3papl seedlings and stunted growth, which could therefore lead to reduced sucrose 469 

consumption and therefore its observed continued accumulation. 470 

DISCUSSION 471 

Our manuscript demonstrates the power of tissue-specific transcriptomes combining FACS 472 

and single cell sequencing to study elusive cell populations underrepresented in organ general 473 

cell atlases. The use of droplet-based technologies also allowed us to gather more cells and 474 

a higher resolution than plate-associated methods.  475 

The phloem pole cell atlas is allowing a holistic understanding of phloem. While there are 476 

specific genes for PPP and CC, these cell types share the first stages of their developmental 477 

trajectory. Trajectory analysis also revealed the connection between CC and early MSE, 478 

providing new insights on early stages of MSE development.  The commonalities among the 479 

different cell types were validated by gene regulatory network analysis and reporter lines 480 

confirmed the relevance of the ring expression pattern in all the cells around PSE.  481 

PSE differentiation involves enucleation and becoming dependent on adjacent cells for 482 

survival. Using APL expression as a standard, we mapped the enucleation point in the atlas. 483 

While PSE organizes the phloem pole in the meristem neighboured by unspecialized cells, 484 

PSE enucleation marks the onset of cell differentiation for adjacent cells and switches on 485 

similar gene regulatory networks in PSE-surrounding lineages, as evidenced by the ring 486 

pattern shown by many genes right after PSE enucleation. 487 
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The coordinated expression in the cells of the phloem pole highlights the importance of 488 

positional information and cell to cell communication to preserve phloem function when PSE 489 

delegates control in the adjacent cells. They also underpin the relevance of PPP cells, which 490 

we believe should be considered a built-in part of phloem.  491 

A phloem plasticity zone was recently described in the root meristem, when CC and MSE cells 492 

could act as a reservoir for PSE identity18. This further supports the coordination between the 493 

pole identities to ensure correct phloem morphogenesis. It would be interesting to investigate 494 

if PPP can also transdifferentiate to PSE if required. 495 

In turn, the similarities between root pericycle cells and phloem parenchyma cells in leaves 496 

suggests parenchymatic cells share characteristics despite being present in different organs 497 

with variable anatomic configurations and reinforces PSE as the phloem pole organiser. 498 

The modular analysis of the atlas identified the DOF PAPL genes, characterised by early 499 

expression in the ring domain and the inability to introduce new periclinal cell divisions when 500 

overexpressed in procambium. 501 

Contrary to other phloem mutants, like apl, the presence of sucrose in the media almost 502 

completely suppresses the root growth phenotype of 3papl. Regarding PEARs, the  root length  503 

in the pear1pear2 mutant was not so affected by the absence of sucrose in the media and it 504 

was rescued to wt levels when grown with sucrose.  The fact that the subtle root length 505 

phenotype is rescued by sucrose leaves the possibility open that different doses of the 506 

phloem-related DOF genes are responsible for the phenotype as opposed to the type of DOF 507 

genes. However, we don’t favour this scenario because of the functional differences of the 508 

DOF genes based on the overexpression phenotypes.   509 

Since phloem is in charge of nutrient transport and a smaller amount of sucrose and its 510 

component fructose is detected in both mutant leaves and roots at 3 dps when root anatomy 511 

is comparable between wt and mutant, we interpret PAPL genes regulate nutrient allocation 512 

between the leaf source organs and the root sink in young seedlings, when embryo reserves 513 

are scarce. PAPL genes could either regulate phloem loading, long distance transport or 514 

phloem function and more studies are required to determine their precise role. 515 
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MATERIALS AND METHODS 516 

Plant growth conditions 517 

All Arabidopsis thaliana lines used in this study were in Col-0 background except pear1 mutant 518 

allele, which is in Ler background, conferring pear1pear2 mutant a mixed Ler appearance. 519 

Plants were grown in ½ MS Basal salts media (0.5 MS Salts, 1% Difco agar, with or without 520 

1% sucrose) at 23ºC and long day conditions, except for sorting experiments, when they were 521 

grown using 1x MS Basal salts at 23ºC with 30% humidity and 188 μM of light, long day 522 

conditions, to be able to compare with other transcriptomic data. 523 

papl1-1 (cog1-6, from gene At1g29160, PAPL1, DOF1.5, COG1) has a single nucleotide 524 

deletion (G) at position +85, which generates a premature stop codon. This mutant was 525 

identified as a cog1-D suppressor53. papl2 (At2g34140, PAPL2, DOF2.3, CDF4) has a 4 bp 526 

deletion (CAAG) at position +99 creating a premature stop codon. The cdf2 T-DNA allele 527 

(GK782H09) is a knockdown allele56. Triple mutant was obtained by crossing the double 528 

mutant papl1-1papl2 to cdf1r23556, selecting for mutant 3papl and homozygous wild type 529 

alleles for all other genes. The second triple mutant (3papl-2) was obtained by generating a 530 

new cdf2 allele by using CRISPR/Cas9 technology directly on the double mutant papl1-1papl2. 531 

The process rendered a 5 bp deletion (CCCGG) at position +953 (cdf2-2), which generated a 532 

premature stop codon shortly afterwards. 533 

 534 

5 µM Beta estradiol or 10 µM DEX were used in the inducible constructs for the indicated 535 

times. Plants induced with DEX were treated for 24 hours. 536 

Sorting and single cell sequencing 537 

Seedlings from the different marker lines were grown vertically over mesh (Normesh, 100 µm) 538 

for five days in the conditions specified above. Approximately one third of the root including 539 
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the root tip was chopped with razor blades and the tissue transferred to a 70 µm strainer 540 

submerged in 7 ml of the protoplasting solution for an hour with gentle shaking at room 541 

temperature59. In the case of the sample “MAKR5 enriched in root tips”, we submerged the 542 

root tips of intact roots in eppendorfs containing the protoplasting solution for 15 minutes, 543 

which is enough time for the meristems to be enzymatically cut from the rest of the root. Then 544 

the separated root tips were transferred to 70 µm strainers, incubated with 7ml of protoplasting 545 

solution in 4 cm radius petri dishes at room temperature for 45 minutes and from then onwards 546 

were treated as the other samples. Washed protoplasts suspended in solution A were taken 547 

at room temperature to the sorting facilities and the process from chopping to sorting took 548 

approximately 2-2.5h. For the gating, a wild type Col0 sample was run first to establish the 549 

fluorescent negative gate. Then this sample was subsequently stained with DAPI and DRAQ5 550 

to gate for intact cells that contained DNA, respectively. The corresponding sample containing 551 

fluorescent protoplasts was then stained subsequently with DAPI and DRAQ5 and underwent 552 

FACS. Gating helped enrich intact (DAPI negative), YFP/GFP positive, DNA containing cells 553 

(DRAQ5 positive) that were sorted with a 130 µm nozzle using a High speed Influx Cell Sorter 554 

(BD Biosciences). Sorted protoplasts were harvested in W5 solution (154 mM NaCl, 125 mM 555 

CaCl 2, 5 mM KCl, 5 mM MES (2-(N morpholino)ethanesulfonic acid) in BSA coated 1.5 ml 556 

Eppendorf tubes. Cells were centrifuged for 12 minutes at 200g to eliminate the excess of 557 

supernatant. Immediately, Single-cell RNA-seq libraries were prepared in the Cancer 558 

Research UK Cambridge Institute Genomics Core Facility using the following: Chromium 559 

Single Cell 3′ Library & Gel Bead Kit v3, Chromium Chip B Kit and Chromium Single Cell 3' 560 

Reagent Kits v3 User Guide (Manual Part CG000183 Rev C; 10X Genomics). Cell 561 

suspensions were loaded on the Chromium instrument with the expectation of collecting gel-562 

beads emulsions containing single cells. RNA from the barcoded cells for each sample was 563 

subsequently reverse-transcribed in a C1000 Touch Thermal cycler (Bio-Rad) and all 564 

subsequent steps to generate single-cell libraries were performed according to the 565 

manufacturer’s protocol with no modifications. cDNA quality and quantity was measured with 566 
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Agilent TapeStation 4200 (High Sensitivity 5000 ScreenTape) after which 25% of material was 567 

used for gene expression library preparation. 568 

Library quality was confirmed with Agilent TapeStation 4200 (High Sensitivity D1000 569 

ScreenTape to evaluate library sizes) and Qubit 4.0 Fluorometer (ThermoFisher Qubit™ 570 

dsDNA HS Assay Kit to evaluate dsDNA quantity). Each sample was normalized and pooled 571 

in equal molar concentration. To confirm concentration pool was qPCRed using KAPA Library 572 

Quantification Kit on QuantStudio 6 Flex before sequencing. All samples were sequenced 573 

using Illumina NovaSeq6000 sequencer with following parameters: 28 bp, read 1; 8 bp, i7 574 

index; and 91 bp, read 2. 575 

Analysis of single-cell RNA-seq 576 

Here we give a briefer description and overview of our analysis steps, but the full details of our 577 

analysis pipeline (e.g. specific package functions and options used) can be seen in our code 578 

repository at https://github.com/tavareshugo/publication_Otero2021_PhloemPoleAtlas.  579 

To obtain unique molecular identifier (UMI) counts for each gene, the raw sequencing reads 580 

were aligned to the reference Arabidopsis TAIR10 genome using the Araport11 gene 581 

annotation (both downloaded from Ensembl release 45) using 10x Genomics Cell Ranger 582 

v3.1.060. The data were processed and quality-filtered using several Bioconductor packages61. 583 

Empty droplets were inferred and removed using dropletutils v1.8.062, and data normalisation 584 

was done using both the pooling method implemented in scran v1.16.063 and the variance-585 

stabilising transformation from sctransform v0.234. To adjust for potential batch effects, data 586 

from the different samples (i.e. sorted with different GFP fusion markers and/or from different 587 

public datasets) were integrated using the Mutual Nearest Neighbours (MNN) algorithm 588 

implemented in batchelor v1.4.035. After initial data exploration and quality checks, we retained 589 

cells with at least 2000 detected genes and genes detected in at least 100 cells (a gene was 590 

considered to be detected if it had at least 1 UMI count). Downstream analysis was done on 591 

these filtered data, batch-normalised using MNN and using variance-stabilised transformed 592 

https://github.com/tavareshugo/publication_Otero2021_PhloemPoleAtlas
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values. However, our conclusions were qualitatively robust to the specific choice of 593 

normalisation methods. For data visualisation purposes, we have projected the data to two 594 

dimensions using uniform manifold approximation and projection (UMAP), using a 595 

neighbourhood size of 30 cells (sizes of 7, 15 and 100 were also explored and give comparable 596 

results). We have also visualised the UMAP in three dimensions, which did not provide further 597 

insights into the data compared to the two-dimensional projection.  598 

Cell clustering was performed by first defining a “shared nearest neighbours” graph and then 599 

identifying modules in the graph using the Louvain algorithm (using scran v1.16.063  and igraph 600 

v1.2.664. To annotate our cells we used a set of genes with known expression patterns (from 601 

promoter fusion microscopy experiments) and calculated, for each cluster, the percentage of 602 

cells where each marker gene was detected as well as the (z-score scaled) average 603 

expression of the gene in that cluster.  604 

To identify cluster-specific genes, we used pairwise Wilcoxon rank sum tests between a given 605 

target cluster and all others using the findMarkers() function in the R/Bioconductor package 606 

scran v1.16.062. We specifically tested for genes upregulated in the target cluster, to identify 607 

highly-expressed genes specific to each cluster (rather than also including genes that are 608 

specifically absent from the cluster). The results of the pairwise tests for a given target cluster 609 

were then consolidated to obtain a summary p-value (and corrected false-discovery rate) for 610 

how enriched each gene is in a given cluster. We summarised the pairwise p-values for a null 611 

hypothesis that the gene is not differentially expressed in at least 8 out of the 15 clusters, 612 

allowing us to flexibly identify genes that were highly expressed in across multiple cell types 613 

(e.g. mature ring cells such as PPP and CC) but not others. We also did a more stringent 614 

summary of p-values (null of no differential expression in 12/15 clusters) to obtain genes more 615 

specific to particular clusters of interest (namely cluster 10, which was a candidate for early 616 

MSE cells). 617 

The same pipeline was applied to the public datasets, also integrated using MNN. The quality 618 

of this data integration was confirmed by checking that the majority of our annotated cells were 619 

clustering together with the same cell types in other datasets. We produced two sets of data 620 
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integration, one with root data and another with leaf data.  Details of the public datasets used 621 

are given in (Table S6). 622 

To explore how well cells from leaf and root datasets mixed in clusters where they co-occurred 623 

(namely cluster 6, which contained both leaf phloem parenchyma and root phloem pole 624 

pericycle cells) we used the same shared-nearest-neighbours cell graph used for clustering 625 

and calculated the proportion of edges between root-leaf cells (the vertices of the graph). This 626 

value was then compared with a null expectation, obtained by randomly shuffling the cell tissue 627 

labels 1000 times and calculating this proportion each time. The 95% inter-percentile range of 628 

this null distribution was then used to compare with the observed value. The graph had 19.2% 629 

leaf-root edges in this cluster, which is only slightly lower than expected by chance (median 630 

23.5%, 95% CI 22.8%-24.2%, obtained from 1000 random shuffles of the cell labels). This 631 

result suggests that the cells from the two datasets are well mixed. This is in contrast with 632 

cluster 17, for example, which consists of poorly clustered cells that occur separated in the 633 

UMAP. In this case, there were 26.7% leaf-root edges, almost half of the null expectation for 634 

that cluster, which was 44.9%. 635 

To further temporally annotate our phloem pole atlas dataset we used several approaches. 636 

Early dividing cells were identified by checking the expression of all annotated cyclins and 637 

other cell cycle markers such as AUR1 (AT4G32830) and KNOLLE (AT1G08560). We also 638 

cross-referenced our data with a published dataset that profiled the transcriptome of 639 

longitudinal root sections using microarray technology1. Based on 9,674 common genes 640 

between the two datasets, we assigned each of our cells to the longitudinal section of Brady 641 

et al. that had the highest Spearman correlation with it. We also used the RNA velocity method 642 

implemented in scVelo v0.2.2 to infer developmental dynamics in our data44. Finally, cells were 643 

assigned to lineages and ordered by pseudotime using slingshot v1.6.043. We first reduced 644 

the dimensionality of the (batch-normalised) counts to 10 components using diffusion maps, 645 

which is a dimensionality reduction method suited to capture developmental transitions in the 646 

data65,66. In this latter case we used a semi-supervised approach, where the starting point for 647 

the inferred trajectories was set to the cluster highly expressing cell-cycle markers and 648 
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identified as the earliest cluster when cross-referencing with the Brady et al. dataset. In this 649 

manner we obtained biologically meaningful trajectories (without setting this constraint several 650 

more trajectories were obtained but with an ordering of cells which was the reverse of what 651 

was expected from our other analyses). We obtained smooth gene expression patterns for 652 

each trajectory using generalised additive models, as implemented in tradeSeq v1.2.0, which 653 

were then used to explore gene expression patterns along the slingshot trajectories.  654 

To cluster genes based on their similarity of expression across the cells, we built a co-655 

expression network using a modified version of bigSCale48, adapted to work on any species 656 

(rather than the original version suited only for mouse and human). The modified package is 657 

available from 658 

https://github.com/tavareshugo/bigSCale2/tree/support-any-species.  659 

Summarily, bigScale builds a gene correlation matrix not from the original count data (which 660 

in scRNA-seq is too noisy and sparse), but from a z-score statistic calculated between pairs 661 

of cell clusters. These clusters are iteratively generated to ensure the z-scores capture as 662 

much diversity in gene expression patterns across the cells as possible. In this way, 663 

correlations between genes are more robust to the noisy and sparse nature of single-cell 664 

RNA-seq data. This correlation matrix was then thresholded at 0.9 to obtain a gene-by-gene 665 

adjacency matrix, resulting in a network with  5,238 vertices (genes) and 370,794 edges. We 666 

identified gene modules using the Louvain algorithm, resulting in 16 modules. From each 667 

module, we calculated an eigengene following the procedure in WGCNA vX50, which 668 

essentially summarises the expression of all genes of a module as the first principal 669 

component score from a principal components analysis (PCA) done on those genes. The 670 

largest of these modules - module 1 containing 1,367 genes - contained several genes of 671 

interest for our analysis, and was therefore re-clustered with Louvain to generate 15 sub-672 

modules. This was further justified by the fact that the variance explained by this module’s 673 

eigengene was relatively low (21.44%), suggesting some heterogeneity in expression 674 

patterns within the module. To further interpret these results, the eigengenes from these 675 

sub-modules were joined with the pseudotime trajectories from slingshot, although we note 676 

https://github.com/tavareshugo/bigSCale2/tree/support-any-species
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that no information about trajectories was used to build the network itself. Therefore, the fact 677 

that the different approaches (gene network and pseudotime analysis) reveal groups of 678 

genes with similar patterns of expression is a strengthening point in our analysis.  679 

Generation of reporter lines and confocal images 680 

Promoter::VENUSer fusions were generated for the genes At3g27030, At2g23560 (MES7), 681 

At2g32210, At5g64240 (MC3), At5g58690 (PLC5), At2g38640, At3g11930, At2g02230 (PP2-682 

B1), At5g47920, At4g27435, At5g59090 (SBT4.12), At3g21770 (PER30), At1g26450, 683 

At1g29160 (PAPL1, DOF1.5, COG1),  At2g34140 (PAPL2, DOF2.3, CDF4), At5g39660 684 

(DOF5.2, CDF2). 685 

Translational fusions were also generated for At2g20562 (TAX2), PAPL1 and PAPL2. 3xYFP 686 

constructs were also generated for transcriptional fusions of PAPL1 and translational fusions 687 

of PAPL1 and MAKR5.  688 

Promoter fragments between 622-4879 bp were amplified by PCR and cloned using MultiSite-689 

Gateway (Table S7). Transcriptional fusions to VENUS with an ER tag or translational fusions 690 

to YFP were generated in vectors with either resistance to Basta or Hygromycin or a Fast 691 

Green/Fast Red selection system. All the constructs were transformed in Col0 background 692 

and at least 2 independent lines were analysed for each. 693 

Roots from 5-7-day-old seedlings were either imaged in the confocal directly after mounting 694 

them in 50 µg/ml propidium iodide or fixed for 45 minutes in 4% paraformaldehyde in PBS and 695 

cleared using ClearSee solution (10% (w/v) Xylitol, 15% (w/v) sodium deoxycolate, 25% (w/v) 696 

urea, water to the final volume)67. Cleared roots were then stained with SCRI Renaissance 697 

2200 and observed under the confocal. Images were acquired at 512x512 resolution using 698 

the confocal Leica SP8. Images were analysed in ImageJ v2.1.0/1.53c. 699 
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Bulk RNA-seq transcriptomics 700 

Wild type and papl1-1papl2 seedlings were grown on mesh in ½ MS media with sucrose in 701 

the above-mentioned conditions for 5 days. Root meristems from wild type and mutant were 702 

manually and individually dissected in parallel under a stereomicroscope using 18G needles. 703 

Meristems were preserved in RNAlater RNA stabilisation reagent (Qiagen) until 120 704 

meristems per replicate were gathered. 3 replicates for each mutant and wild type were used 705 

for RNA extraction. 706 

RNA was extracted using the RNeasy Plant Mini kit from Qiagen and RNA integrity and 707 

concentration were checked using TapeStation and Qubit 2.0 fluorometer (Life Technologies) 708 

respectively. After quality control in Novogene company, the best 3 replicates for mutant and 709 

wild type were used for library construction and sequencing following the Novogene pipeline.  710 

Briefly, mRNA was enriched by using oligo dT beads and fragmented randomly.  cDNA 711 

synthesis was performed using random hexamers and reverse transcriptase. After first-strand 712 

synthesis, the second strand is synthesized by nick-translation. Library is ready after a round 713 

of purification, terminal repair, A-tailing, ligation of sequencing adapters, size selection and 714 

PCR enrichment. Library concentration was quantified using a Qubit 2.0 fluorometer (Life 715 

Technologies), Insert size was checked on Agilent 2100 and quantified more accurately by 716 

quantitative PCR. Libraries were fed into the HiSeq XTEN platform for sequencing. Original 717 

raw data were transformed to Sequence Reads by base calling and raw data recorded in 718 

FastQ files. Low quality reads or reads containing adaptors were filtered out. TopHat268 719 

v2.0.12 was used to map the reads to the reference genome (TAIR10). HTSeq69 v0.6.1 720 

software was used to analyze the gene expression level using the union mode. Fragments 721 

Per Kilobase of transcript sequence per Millions base pair sequenced (FPKM) value of 0.1 or 722 

1 was set as the threshold to determine whether a gene is expressed or not.  To compare 723 

gene expression levels under different conditions, FPKM distribution diagram and violin plot 724 

were used. For biological replicates, the final FPKM would be the mean value. The differential 725 

gene expression analysis consisted of read-count normalization, model-dependent mean 726 
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value estimation and FDR value estimation based on multiple hypotheses testing. DESeq70 727 

v1.10.1 software was used for these steps. The results of this analysis are given in Table S4. 728 

Root length measurements and statistical analysis 729 

To quantify root growth, an EPSON Perfection V700 Photo scanner was used to obtain images 730 

of the seedlings in plates. A ruler was also scanned to calibrate the images. Roots were 731 

measured manually one by one using ImageJ v2.1.0/1.53c.  732 

Because of the nature of the data, which often had a bimodal distribution, we opted for using 733 

a non-parametric bootstrap approach for our statistical analysis. This was done by resampling 734 

the data 500 times and estimating the difference between groups of interest (either WT vs 735 

mutants or between sucrose treatments, as detailed in the respective figure legends). We thus 736 

obtained distributions of root length differences, which we used to obtain confidence intervals 737 

(based on a 95% inter-percentile range) and a bootstrap p-value calculated as the number of 738 

samples with absolute difference less than a “null” distribution centred on zero. Our p-values 739 

therefore have a lower bound of 1/501 ~ 0.002, which we deemed to be of sufficient statistical 740 

resolution for our analyses (we added an offset of 1 to both the numerator and denominator 741 

to avoid p-value = 0, which would mis-represent the precision of our analysis). Whenever 742 

relevant, the bootstrap analysis took into account experimental and seed stock batches by 743 

summarising the results at those levels first, before then comparing the groups of interest; this 744 

ensured that the uncertainty in our estimates captures those different levels of potential 745 

variation. The results of these analyses are provided in Table S8. 746 

Experimental Design 747 

Experiments were repeated independently for the following number of times. In Fig 1d,  MES7 748 

reporter was imaged 3 times and reporters for MC3, At3g27030 and At2g32210 (also in Fig 749 

2b) were imaged twice.   750 
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For Fig 6b, reporters for At3g11930, At5g47920 and At1g26450 were imaged twice, PP2-B1, 751 

SBT4.12 and TAX2 reporters were imaged 3 times. For figure 7, pPAPL1::GFP was imaged 752 

6 times, pPAPL1::GFP in pear1pear2 was imaged 3 times, pPAPL1::PAPL1-YFP (also in Fig 753 

S7b) was imaged twice, pPAPL1:GFP in pPEAR1::icasl3m was imaged twice and 754 

pPAPL2:YFPer in pRPS5A::PEAR1-GR was imaged once.  755 

For Fig S1a, pMAKR5::MAKR5-3xYFP was imaged 7 times, pS17:GFPer was imaged twice, 756 

pAPL::3xYFP was imaged 3 times and pSAPL::YFPer (also in Fig 2b) was imaged four times. 757 

For Fig S1b, the reporter for PLC5  and At2g38640 were imaged 3 times. 758 

For Fig S2d, pAPL::YFPer was imaged once. For Fig S5, reporters for At3g16330 and PER30 759 

were imaged 3 times, while the reporter for At4g27435 was imaged 4 times. 760 

For figure S7, pPAPL::3xYFP was imaged 6 times, pPAPL::PAPL1-3xYFP was imaged 3 761 

times and this construct in pear sext. background was imaged 3 times. pPAPL2:PAPL2-YFPer 762 

was imaged 3 times, pPAPL2::VENUSer was imaged 3 times and this construct in pear1pear2 763 

mutant background was imaged twice. pCDF2:VENUSer was imaged 3 times. For constructs 764 

in Fig S7j, reporters in the overexpressor background, induced and control, were imaged once 765 

while reporters were imaged twice in pear sext. background. For Fig S8, each line was 766 

observed independently twice. For Fig S9d, roots were imaged for this figure once but these 767 

two backgrounds were imaged many times with reporter lines in them.  768 

For Fig S10a, reporters with and without sucrose were imaged twice. For Fig 10b, 769 

pMAKR5::MAKR5-3xYFP in 3papl mutant was imaged 3 times and it was also imaged 3 times 770 

in pear1pear2 mutant background. Reporter in Fig S10c was imaged 3 times while the reporter 771 

in Fig S10d was imaged once. Reporters in Fig S10e-g were imaged twice and reporters for 772 

Fig S10h were imaged once (Col0) or three times (mutant background).   773 

For the experiment shown in Fig 7g and S9e, the total number of seedlings measured for each 774 

genotype was: 488 3papl; 273 PAPL1-32; 37 PAPL1-51; 33 PAPL1-71; 343 PAPL2-11; 79 775 

PAPL2-23; 37 PAPL2-31; 314 PAPL2-73; 382 wt. Seedlings were split across 5 experimental 776 

batches and came from different seed stocks (N = 24 - 46 with a median of 36 seedlings per 777 
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experimental batch and seed stock combination). Both seed stock and experimental batch 778 

were taken into account in the statistical analysis.  779 

 780 

Metabolic profiling 781 

Arabidopsis plants were grown across six developmental stages (from day to day 7) on mesh 782 

in solid media containing sucrose or devoid of sucrose. Each day of the time course, leaves 783 

and roots were harvested separately and snapped frozen in liquid nitrogen. 50 mg of leaves 784 

and 20 mg of roots were ground using a Tissue Lyser. Extraction was performed according to 785 

Lisec et al. (2006)71, with modifications. In detail, 750 µl/300 µl of extraction buffer (100% 786 

methanol plus the internal standard adonitol, Sigma) were added to root and leaf samples 787 

respectively. Samples were vortexed and transferred to a shaker at 70 ℃ for 15 minutes. 375 788 

µl/200 µl of chloroform and 750 µl/350 µl of water were added to the tubes for leaves and roots 789 

respectively, and samples were centrifuged for 10 minutes at maximum speed. 400 µl (roots) 790 

and 200 µl (leaves) of supernatant were dried for each sample using the speedvac. Samples 791 

were kept at -80℃ until processing. 792 

The dried samples were derivatized for 2 hours at 37 °C in 50 μl of 20 mg ml− 1 methoxyamine 793 

hydrochloride (Sigma-Aldrich, cat. no. 593-56-6) in pyridine followed by a 30 min treatment at 794 

37 °C with 100 μl of N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA reagent; Macherey-795 

Nagel, cat. no. 24589-78-4). For each sample, 1 µl was injected in splitless mode to a 796 

chromatograph coupled to a time-of-flight mass spectrometer system (Leco Pegasus HT TOF-797 

MS; Leco Corp., St Joseph, MI, USA), using an autosampler Gerstel Multi-Purpose system 798 

(Gerstel GmbH & Co.KG, Mülheim an der Ruhr, Germany). Chromatograms and mass spectra 799 



 

31 

evaluation, as well primary metabolites identification based on the expected retention time and 800 

mass fragmentation were performed using the software Xcalibur software (Thermo Fisher 801 

Scientific). The software ChromaTof (Leco) was used to confirm the peaks and retention times for 802 

expected metabolite fragments.  803 

To estimate differences between WT and 3papl metabolite levels, we fit a joint hierarchical 804 

model to the peak areas of all metabolites, including terms for genotype, stage (dps), tissue 805 

and their interactions. The advantage of using this model is that we could include a random 806 

effect term to account for multiple measurements per sample (each sample contributed 21 807 

data points, one for each metabolite). Due to the skewed distribution of peak areas, the data 808 

were modelled on a log-scale, which produced well-behaved normally distributed residuals. 809 

The model was fit with the lme472 v1.1-27.1 R package and we obtained estimates of the 810 

difference between the two genotypes for each metabolite and tissue using the emmeans 811 

v1.6.2-1 R package. The p-values from the emmeans contrasts were corrected for multiple 812 

testing using the false discovery rate method. 813 

Additional information on metabolomics analysis and metabolites annotation are reported in 814 

table S9 (sheets checklist and overview) according to the guidelines provided in Alseekh et 815 

al73. 816 

 817 

 818 

Data availability  819 

Sequencing data from 10x Chromium single-cell RNA-seq is available from NCBI’s 820 

Gene Expression Omnibus through GEO accession number GSE18199974: 821 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181999.  822 

Sequencing data from bulk RNA-seq is available from NCBI’s GEO accession number 823 

GSE18267275: 824 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181999
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE182672. 825 

All other data (phenotypic scoring, microscopy imaging, plasmid maps) are available 826 

from the Cambridge Apollo Repository (https://doi.org/10.17863/CAM.74836). A 827 

persistent DOI will be available upon acceptance76. 828 

Code availability 829 

Analysis code, with instructions on how to run it, is available from: 830 

https://github.com/tavareshugo/publication_Otero2022_PhloemPoleAtlas.  831 
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Figure legends 864 

Figure 1. A root phloem pole cell atlas containing PSE, MSE, CC and PPP cells. 865 

a) Root schematic highlighting the cells in the phloem pole coloured by identity (adapted from42) with a 866 

close-up of the phloem pole (a’). One of the radial cuts shows the middle part of the phloem pole and 867 

the other shows the side view of the phloem pole b) UMAP plot showing the classification of 10,204 868 

cells clustered by cell identity and developmental stage (colours indicate clusters, labelled with a 869 

number). The sample of cells has a median of 4,564 detected genes (10%-90% percentiles: 2,600-870 

6,780) and a median of 17,445 total UMIs per cell (10%-90% percentiles: 5941-52689). c) Cluster 871 

annotation based on markers with known tissue- or cell-specific expression. The size of the points 872 

represents the percentage of cells in a cluster where the gene was detected (i.e. at least 1 UMI). The 873 

colour shows the scaled average expression of the gene (z-score, i.e. number of standard deviations 874 

above/below the gene’s mean across all cells). d) Newly identified genes significantly enriched in PPP 875 
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(At2g23560, At3g27030) and CC (At2g32210, At5g64240). UMAPs show the particular cluster-876 

weighted normalised expression of each gene in the phloem pole cell atlas. UMAP and microscopy 877 

pictures are representative images of the transcriptional reporter lines, where the gene promoter is 878 

fused to VENUSer. Scale bar in the longitudinal sections is 25 µm while it is 10 µm in the cross sections. 879 

White arrowheads point to PSE cells as a reference point. The numbers in each panel indicate samples 880 

with similar results, of the total independent biological samples observed.  881 

 882 

Fig 2. MSE cells identification and identity of cluster 11. 883 
a) Cells were plotted in the UMAP separated by sorting experiment, as indicated in each panel, to show 884 
which sorting experiment provided every cell. Colour indicates point density (lighter colour indicates 885 
higher density of points), with grey areas meaning an absence of cells. Numbers in each panel indicate 886 
the number of filtered cells contributed by that sorting experiment. We sorted MAKR5 twice, one 887 
enriching in root tips (MAKR5) and another sorting the usual one third of the root (MAKR5 differentiated). 888 
b) UMAPs showing the cluster-weighted normalised expression of marker genes used to identify MSE 889 
identity. PEAR1, S32 and DEAL2 are expressed in sieve elements. APL is genuinely expressed in PSE, 890 
CC and MSE. At5g47920, SBT4.12 and PAPL1 are expressed in a ring expression pattern, including 891 
MSE and other cell types. PIN4 is used as a negative control, since it is excluded from sieve elements 892 
early in development3. SAPL and At2g32210 are expressed in CC and MSE. Black arrowheads point 893 
to clusters 1 and 10. In the confocal cross sections, the scale is 10 µm. White arrowheads point to PSE 894 
as a reference point and yellow arrowheads point to MSE. The numbers over each picture indicate 895 
samples with similar results, of the total independent biological samples observed c) UMAPs for xylem 896 
pole pericycle markers, which are found in cluster 11 together with other PPP markers, indicating this 897 
is a late pericycle cluster. 898 
 899 

Fig 3. Developmental trajectories and mapping of the PSE enucleation point.  900 

a) Developmental trajectories inferred using Slingshot coloured according to pseudotime, with more 901 

mature cells in yellow. The origin for all trajectories was set in the clusters containing cycling cells. b) 902 

APL expression is plotted along the PPP, CC and PSE trajectories, with the cells coloured by cluster 903 

number in the UMAP. The black line is a smoothed trend estimated from a non-parametric generalised 904 

additive model. b’) APL is used as a standard to coordinate the three trajectories. Cluster 5 groups the 905 

cells with an increasing expression of APL in PPP and CC trajectory, mapping the enucleation point in 906 

the adjacent cells. The position of each cell type is indicated in the UMAP in relation to PSE enucleation 907 

b’’) APL expression plotted in a UMAP of the phloem pole cell atlas  908 

 909 

Fig 4. Phloem cell types in the integrated UMAP. 910 
a) A new UMAP containing 113340 cells was generated by integrating cells from Denyer et al. 201930, 911 
Wendrich et al. 202032 and Shahan et al. 202045. Colours are used to differentiate cell clusters. b) 912 
Different markers were plotted in the UMAP to identify the phloem pole cell types: SAPL (CC and MSE), 913 
S17 (PPP), PEAR1 (PSE, MSE), SUC2 (mature CC), CALS8 (PPP and CC), KNOLLE (cycling cells). 914 
c) Integrated UMAP showing cells coloured according to the annotation from Shahan et al.  d) Integrated 915 
UMAP coloured by the original clusters from the Phloem Pole Atlas. Orange arrowheads point to the 916 
two parts of cluster 3, split in the integrated dataset e) Integrated UMAP with the cells contributed by 917 
each individual project plotted on top (number indicated below, percentage of the total in brackets), 918 
using a coloured scale to indicate cell density. Green arrowheads point to the clusters mostly 919 
contributed by our dataset. f) Cluster 3 of the integrated dataset containing root early cells and dividing 920 
cells. Cells in cluster 3 (early cells) are indicated in the first panel while the other panels in the row show 921 
the expression of G2/M genes in the integrated dataset, marking dividing cells g) Contribution of each 922 
single cell project to cluster 3. Observe the grouping of early phloem cells (black arrowhead) compared 923 
to the higher dispersion of early cells in other datasets. 924 
 925 

 926 

 927 

Fig 5. Similarities in the gene expression between leaf phloem parenchyma and root pericycle.  928 
a) Schematic of the leaf minor vein showing phloem anatomy. Notice the different composition in terms 929 
of cell identities, cell number and organization compared to the root. Adapted from46 b) UMAP integrating 930 
the phloem pole cell atlas with the leaf single cell dataset. Cells were combined and reclustered, 931 
coloured by source (leaf in green, root in black). Notice the separation of the leaf specific clusters 932 

https://www.zotero.org/google-docs/?uxNKJI
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(bundle sheath and mesophyll cells) and overlap in clusters 6 (PPP / phloem parenchyma) and 9 (CC). 933 
c) Percentage of cells contributed by each dataset in each cluster. Y axis shows the cluster number 934 
with the number of cells in it between brackets. Root cells are coloured in black, leaf cells are in green. 935 
d) Cluster annotation of the root-leaf UMAP based on markers with known tissue-specific expression. 936 
The size of the points represents the percentage of cells in a cluster where the gene was detected (i.e. 937 
at least 1 UMI). The colour shows the scaled average expression of the gene (z-score, i.e. number of 938 
standard deviations above/below the gene’s mean across all cells) e) Violin plots showing the 939 
expression of PPP markers in leaf (green) and root (black) cells for phloem pole pericycle markers (e), 940 
phloem parenchyma markers (f) and XPP markers (g) The confocal picture in f shows the expression 941 
of pSWEET11::SWEET11-2A-GFP in PPP in roots. In f, the gene expression of the respective genes 942 
is shown in the phloem pole cell atlas. The numbers under the black/green violin plots indicate the 943 
number of cells in cluster 6 of the leaf/root UMAP expressing each gene, with the percentage between 944 
brackets. In the confocal picture, the scale is 10 um and the white arrowhead points to PSE as a 945 
reference point. 946 

 947 
 948 

Fig 6. Identification of a gene expression pattern common to non-PSE cells frequent after PSE 949 

enucleation. 950 

a) The module 1 eigengene profile with its expression along PPP, CC and PSE trajectories. b) New 951 

genes with an expression pattern validating the gene profiles grouped in module 1. All the genes 952 

presented in this panel are expressed forming a ring around PSE at the time of PSE enucleation. 953 

SBT4.12 and TAX2 are also expressed in late PSE, with TAX2 also showing expression in the 954 

epidermis. UMAPs show the particular cluster-weighted normalised expression of each gene in the 955 

phloem pole cell atlas and microscopy pictures are representative images of the transcriptional reporter 956 

lines where the gene promoter is fused to VENUSer. Scale bar in the longitudinal sections is 25 µm 957 

while it is 10 µm in the cross sections. White arrowheads point to PSE cells as a reference point. “X” 958 

marks xylem cells. Each gene has also been plotted in PPP (green), CC (orange) and PSE (purple) 959 

Slingshot trajectories, showing average expression values in the Y-axis and pseudotime in the X-axis. 960 

c) Expression profile of sub-module 1 eigengene, the sub-module of module 1 which is enriched for 961 

genes with ring-specific expression. This sub-module contains all the genes in the panel except for 962 

TAX2, which was not present in our network. 963 

The numbers in each panel indicate samples with similar results, of the total independent biological 964 

samples observed.  965 

 966 

Fig 7. PAPL genes are PEAR targets that influence root nutritional status. 967 

a) UMAPs showing the expression of PAPL1, PAPL2 and CDF2 in the phloem pole cell atlas. Note 968 

these genes are also expressed in the early phloem cell clusters. b) pPAPL1::GFP/GUS expression 969 

domain, showing expression in the cells around PSE from 40µm from the QC and in the epidermis c) 970 

Phloem expression of pPAPL1::GFP/GUS is delayed until 120µm in pear1pear2 mutant background d) 971 

pPAPL1::PAPL1-YFP (Col0) translational domain coincides with the transcriptional domain. e) The ring 972 

pattern of pPAPL1::GFP/GUS gets distorted upon PSE plasmodesmata closure using the cals3m tool 973 

(pPEAR1::XVE>>cals3m). f) PAPL2 (pPAPL2::VENUSer) becomes ectopically expressed upon PEAR1 974 

overexpression in the meristem (pRPS5A::PEAR1-GR). g) Average root length of 6 days post-sowing 975 

(dps) seedlings in 3papl, WT and complementation lines in 3papl background with genomic constructs 976 

for PAPL1 (3 lines) or PAPL2 (4 lines) in sucrose-depleted media. The median and 95% confidence 977 

interval are shown (methods). Number of seedlings measured: 488 3papl; 273 PAPL1-32; 37 PAPL1-978 

51; 33 PAPL1-71; 343 PAPL2-11; 79 PAPL2-23; 37 PAPL2-31; 314 PAPL2-73; 382 WT. The same 979 

data is also shown in Fig S9h, separately for each experimental batch and seed stock (see 980 

“Experimental Design” section in the methods). Statistical analysis comparing each mutant genotype to 981 

the WT is in Table S8. h) Transfer experiment between sucrose and sucrose-depleted plates of 3papl 982 

seedlings. Days spent with and without sucrose are represented by grey and purple bars, respectively, 983 

and roots were measured at 8 dps. Number of seedlings: 131 3papl control; 24 3papl seedlings on 984 

average per transfer experiment. Statistical analysis comparing each pair of conditions is in Table S8. 985 
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In confocal pictures b, e and f, primed letters show the cross sections of each respective letter. Scale 986 

bars:  25 µm in longitudinal sections; 10 µm in cross sections. White arrowheads point to PSE cells and 987 

“X” marks xylem cells. The number in each confocal picture indicates samples with similar results of the 988 

total independent biological samples analysed. 989 

 990 

Fig 8. Difference in WT and 3papl metabolite levels in leaves and roots.  991 
a) Overview of the different metabolites with significant differences between WT and mutant in at least 992 
one of the time points. The point and error bars show, respectively, the mean and 2 times the standard 993 
error (i.e. an approximate 95% confidence interval) of the log-fold-change between WT and mutant 994 
metabolite levels, estimated from our linear model (see methods). The asterisk highlights points that 995 
were statistically significant after adjusting for multiple testing across all the tests (false discovery rate 996 
of 5%). b) Average metabolite levels for sucrose in mutant and wild-type. The bars denote the 95% 997 
confidence interval estimated from our linear model (see methods). The points show the raw data for 998 
individual samples. N = 6 - 8 for each timepoint/tissue/genotype combination (3 of them had 6 replicates, 999 
8 had 7 replicates and 13 had 8 replicates).  1000 
 1001 
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