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Abstract

In daily life, the presence of speciĄc stimuli provokes reactions reĆecting in un-
conscious experience-related changes of human physiological status. Variations in
physiological signals may be obviously measured in ambulatory conditions by means
of medical instruments, but the healthcare provisioning paradigm is shifting towards
remote monitoring, and wearable devices have gained more and more popularity for
daily collection of individual data. This research activity presents several contributions
to this topic, including a set of studies conducted to develop and test measurement
procedures, to validate signal processing techniques and wearable devices performance
with the aim of quantitatively assessing human response to external stimuli, by means
of physiological signals. Firstly, a study identiĄed the elicitation of acoustic, visual,
and physical stimulation on the Skin Conductance (SC) signal collected through a
commercial wearable device (Empatica E4) by healthy individuals. Data analysis in
time domain showed that listening to an unpleasant sound increases the subjective
physiological response (higher number of SC peaks), especially when the sound dura-
tion is short. Additionally, SC proved to be a standalone reliable signal in recognising
a driver’s drowsy status (Random Forest classiĄcation: 84.10% accuracy) and different
level of physical exertion when extracting features from frequency domain; in this
regard, the proposed larger observation band (i.e. [0.40, 1.00] Hz) can avoid loss of
potentially meaningful information about the skin activity, with respect to common
investigated one [0, 0.40] Hz. These analyses were conducted also in collaboration with
Prof. Florez-Revuelta (University of Alicante) to understand whether and how living
environments design affects the individual emotional capacity. This research gives rise
to a second study on cardiac activity measurements (i.e. Heart Rate Variability (HRV),
Heart Rate (HR) and Blood Pressure (BP)) conducted by healthy subjects, while
wearing the Empatica E4 at rest, during acoustic stimuli, and after physical exertion.
Either in multimodal signals and cardiac activity standalone approach, Support Vector
Machine algorithm identiĄed the presence of acoustic and physical stimuli (accuracy:
72.62% and 97.50%, respectively). Regarding the physical exertion, it was shown that
time-consuming data classiĄcation could be replaced by a simpler Fatigue-Related
Index proposed to determine the fatigue-related stress levels. At rest, some commer-
cial wearable devices were validated, by comparison with the related gold standards,
including a metrological characterisation in terms of accuracy and precision (which
are currently debatable, since unavailable or not reported with rigorous validations
from the manufacturers). By using different wearable devices, results show different
accuracy and precision of BP and HR values. This conĄrms the importance of these
metrological Ągures, for a better device selection depending on the target application.
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An additional analysis investigated the factors interfering the Photoplethysmographic
sensor readings and consequently the quality of data processed, such as motion arte-
facts and skin-device contact pressure. SpeciĄcally, a new data artefacts correction
method was implemented to improve the classiĄcation performance in external stimuli
detection (accuracy from 48.81% to 66.67%) and the role of band tightness of a DIY
wrist-worn device was investigated. All the overmentioned aspects are strictly related
to the decision-making processes that need reliable and high-quality information to
properly interpret results and take right decisions, especially in the healthcare domain
(e.g., personalised care and remote monitoring). Within this context, the last relevant
contribution concerns the issues in data acquisition from wearable devices focusing
on acceleration signal. This study consisted in the measurement of wrist acceleration
during daily human activities performed in a real-life setting, not-controlled envi-
ronment, without instructions or guidance, by wearing wearable devices. Different
hardware sensor technologies, playing a paramount role to determine the classiĄcation
accuracy, are compared to quantify how this is affected by the nature and quality
of the collected measurement data. Long-term data collection may expose users to
privacy violations, due to leakage of personal details. To mitigate this aspect, a Multi
Objective Evolutionary Algorithm (MOEA) approach was implemented to conceal
subject’s gender while maximising the accuracy on data recording. The proposed
method strongly limited gender recognition (decreased of 25.00%), while maintaining
high the activity recognition accuracy (decreased only of 5.45%). Research on how
much the device choice and position, along with the measurement setup, affect data
quality and variability has been conducted at the R&D Nestlé Orbe (Electronic Team)
as well, during the training period abroad, to develop a new coffee machine with an
embedded sensor. Here, the work focused on the sensor assessment and data analysis
including pattern recognition for improving the quality of coffee thanks to continuous
recording of meaningful coffee extraction parameters. Finally, to understand the users’
requirements in terms of perceived beneĄts and barriers and to increase the awareness
of issues associated with lifelogging, transversal activities were performed during an
International Project (i.e. PAAL - Privacy-Aware and Acceptable Lifelogging services
for older and frail people, More Years Better Lives JPI) in collaboration with other
International Universities (i.e. University of Alicante, University of Toronto, Stockholm
University and Aachen University).
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Sommario

Nella vita quotidiana, la presenza di stimoli speciĄci provoca reazioni che si riĆettono
nei cambiamenti dello stato Ąsiologico umano legati all’esperienza inconscia. Le
variazioni dei segnali Ąsiologici possono ovviamente essere misurate in condizioni
ambulatoriali per mezzo di strumenti medici, ma il paradigma dell’assistenza sanitaria si
sta spostando verso il monitoraggio remoto e i dispositivi indossabili hanno guadagnato
sempre più popolarità per la raccolta quotidiana di dati individuali. Questa attività
di ricerca presenta diversi contributi a questo argomento, tra cui una serie di studi
condotti per sviluppare e testare procedure di misurazione, per validare tecniche
di elaborazione del segnale e prestazioni di dispositivi indossabili con l’obiettivo di
valutare quantitativamente la risposta umana a stimoli esterni, per mezzo di segnali
Ąsiologici. In primo luogo, uno studio ha identiĄcato l’elicitazione della stimolazione
acustica, visiva e Ąsica sul segnale di conduttanza cutanea (SC) raccolto attraverso
un dispositivo indossabile commerciale (Empatica E4) da individui sani. L’analisi dei
dati nel dominio del tempo ha mostrato che l’ascolto di un suono sgradevole aumenta
la risposta Ąsiologica soggettiva (numero maggiore di picchi SC), soprattutto quando
la durata del suono è breve. Inoltre, SC si è rivelato un segnale affidabile autonomo
nel riconoscere lo stato di sonnolenza di un guidatore (classiĄcazione Random Forest:
84.10% di accuratezza) e il diverso livello di sforzo Ąsico se analizzato nel dominio
della frequenza; a questo proposito, la banda di osservazione più ampia proposta (cioè
[0.40, 1.00] Hz) può evitare la perdita di informazioni potenzialmente signiĄcative
sull’attività cutanea, rispetto alla banda comunemente studiata [0, 0.40] Hz. Queste
analisi sono state condotte anche in collaborazione con il Prof. Florez-Revuelta
(Università di Alicante) per capire se e come il design degli ambienti di vita inĆuisca
sulla capacità emotiva individuale. Questa ricerca dà vita ad un secondo studio sulle
misurazioni dell’attività cardiaca (cioè, Variabilità della Frequenza Cardiaca (HRV),
Frequenza Cardiaca (HR) e Pressione Sanguigna (BP)) condotte da soggetti sani,
mentre indossano Empatica E4 a riposo, durante stimoli acustici , e dopo uno sforzo
Ąsico. Sia nei segnali multimodali che nell’approccio autonomo dell’attività cardiaca,
l’algoritmo Support Vector Machine ha identiĄcato la presenza di stimoli acustici e
Ąsici (accuratezza: 72.62% e 97.50%, rispettivamente). Per quanto riguarda lo sforzo
Ąsico, è stato dimostrato che la classiĄcazione dei dati potrebbe essere sostituita
da un più semplice indice proposto per determinare i livelli di stress da fatica. A
riposo, alcuni dispositivi indossabili commerciali sono stati validati, per confronto
con i relativi gold standard, inclusa una caratterizzazione metrologica in termini
di accuratezza e precisione (che al momento sono discutibili: indisponibili o non
validate rigorosamente dai produttori). Utilizzando diversi dispositivi indossabili, i
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risultati mostrano una diversa accuratezza e precisione dei valori di HR e BP. Ciò
conferma l’importanza di queste cifre metrologiche, per una migliore selezione dei
dispositivi a seconda dell’applicazione target. Un’ulteriore analisi ha studiato i fattori
che interferiscono con le letture del sensore fotopletismograĄco e di conseguenza la
qualità dei dati elaborati, come gli artefatti da movimento e la pressione di contatto
pelle-dispositivo. In particolare, è stato implementato un nuovo metodo di correzione
degli artefatti dei dati per migliorare le prestazioni di classiĄcazione nel rilevamento
di stimoli esterni (precisione da 48.81% a 66.67%) ed è stato studiato il ruolo della
tenuta della fascia di un dispositivo indossato al polso fai-da-te. Tutti gli aspetti
sopra menzionati sono strettamente correlati ai processi decisionali che necessitano
di informazioni affidabili e di alta qualità per interpretare correttamente i risultati e
prendere decisioni giuste, soprattutto in ambito sanitario (es. cure personalizzate e
monitoraggio remoto). In questo contesto, l’ultimo contributo rilevante riguarda le
problematiche di acquisizione dati da dispositivi indossabili focalizzati sul segnale di
accelerazione. Questo studio consisteva nella misurazione dell’accelerazione del polso
durante le attività umane quotidiane eseguite in un ambiente reale, non controllato,
senza istruzioni o guida, indossando dispositivi indossabili. Diverse tecnologie di sensori
hardware, che svolgono un ruolo fondamentale per determinare l’accuratezza della
classiĄcazione, vengono confrontate per quantiĄcare in che modo questo è inĆuenzato
dalla natura e dalla qualità dei dati di misurazione raccolti. La raccolta di dati a
lungo termine può esporre gli utenti a violazioni della privacy, a causa della perdita di
dati personali. Per mitigare questo aspetto, è stato implementato un approccio Multi
Objective Evolutionary Algorithm per nascondere il genere del soggetto massimizzando
l’accuratezza nella registrazione dei dati. Il metodo proposto limitava fortemente il
riconoscimento del genere (diminuito del 25.00%), pur mantenendo alta l’accuratezza
del riconoscimento dell’attività (diminuita solo del 5.45%). La ricerca su quanto
la scelta e la posizione del dispositivo, insieme all’impostazione della misurazione,
inĆuenzino la qualità e la variabilità dei dati è stata condotta anche presso l’R&D Nestlé
Orbe (Team elettronico), durante il periodo di formazione all’estero, per sviluppare una
nuova macchina da caffè con sensore incorporato. Qui, il lavoro si è concentrato sulla
valutazione del sensore e sull’analisi dei dati, incluso il riconoscimento dei modelli per
migliorare la qualità del caffè grazie alla registrazione continua di parametri signiĄcativi
di estrazione del prodotto. InĄne, per comprendere le esigenze degli utenti in termini
di beneĄci e barriere percepite e per aumentare la consapevolezza delle problematiche
associate al lifelogging, sono state svolte attività trasversali durante un Progetto
Internazionale ("PAAL" - Privacy-Aware and Acceptable Lifelogging services for old
and fragile people, More Years Better Lives JPI) in collaborazione con l’Università di
Alicante, Università di Toronto, Università di Stoccolma e Università di Aquisgrana.
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Motivations and aim of the research

In daily life, individuals are constantly overexposed to stimuli, that can provoke
unconscious experience-related changes of their physiological status. Thus, there is a
need for effective methods to accurately measure the physiological responses for the
early detection of modiĄed conditions, which can affect both the mental and physical
human health-related status. Although the medical instruments are the gold standard
for physiological measurements, nowadays the healthcare provisioning paradigm is
rapidly shifting towards remote monitoring. In this regard, wearable devices, especially
wrist wearables such as smartwatches and wrist bands, have gained more and more
popularity for daily collection of personal health-related data. In addition to the
advantage of reduced size, comfortable use and relatively low cost, the majority of wrist
wearables include multisensors system providing real-time continuous data about vital
signs (e.g., cardiac and skin activity), along with further information (e.g., activity
and physical performance) that can be collected in uncontrolled conditions and used
for several purposes.
Among the others, a typical measurement manifestation of the sympathetic system
to external stimuli are the mostly involuntary responses such as heart rate, sweating,
breathing, and eye blinking. However, although a variety of sensor technologies are
already available, some research questions are still open. The right collection and
determination of such information from the huge amount of sensor data is a complex
task in remote healthcare monitoring. Moreover, due to the complexity of the human’s
reactions and behaviours, extracting a meaningful knowledge for the context of the
monitored person and detecting the health status represent open research challenges.

Within this context, the overall objective of this Ph.D. thesis is to quantitatively
assess human response measurement to external stimuli, by means of physiological
signals. This aim is achieved by developing and testing measurement procedures to
validate wearable devices performance, and by investigating and testing proper signal
processing techniques. As such, the research questions addressed in this Thesis work
are the following ones:

• Can a wearable device accurately detect physiological changes due to stimuli?

• How can the accuracy performance be improved?

• Which factors can affect data collection from wearable devices or cause misinter-
pretation of data processed?

In this work, commonly-used physiological signals, such as blood volume pulse and
the related derived parameters, are considered together with the skin conductance,
speciĄcally associated to involuntary human responses to different types of stimuli.
Hence, starting from the analysis in time and frequency domain of the skin conductance
signal (related to the skin sweating), different groups of healthy subjects were involved
in several experimental tests: from listening to audio clips (Chapter 2.1), through
performing a simulated driving path (Chapter 2.2), to engage in physical activities
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(Chapter 2.3). Data were collected mainly through the commercial wearable device
Empatica E4 (described in Chapter 1.5).

This Ąrst investigation gave rise to a second analysis on cardiac activity measurements
(i.e. heart rate, heart rate variability and blood pressure), conducted by healthy
subjects, while wearing the Empatica E4 at rest, during acoustic stimuli and after
physical exertion. Being the gold standards for cardiac measurements, some commercial
wearable devices were validated, including a metrological characterisation available
in the market in terms of accuracy and precision (values currently debatable, since
unavailable or not reported with rigorous validations from the manufacturers for
wearables) to underline the importance of the device selection depending on the
target application (Chapter 3.1). Further analyses investigated the factors interfering
the photoplethysmographic sensor readings and consequently the quality of data
processed, such as motion artefacts and skin-device contact pressure (Chapter 3.2).
The overmentioned aspects are strictly related to the decision-making processes that
need reliable and high-quality information for a proper interpretation of the results
and for the right decisions, especially in the healthcare context (e.g., personalised care
and remote monitoring). Within this domain, wrist acceleration signals from wearable
devices can be affected by several factors. Therefore, data were recorded during
daily human activities performed in a real-life setting, not-controlled environment,
without instructions or guidance, by wearing wearable devices (Chapter 4.1). Different
hardware sensor technologies, playing a paramount role to determine the classiĄcation
accuracy, were compared to quantify how the nature and quality of the collected
measurement data affect the performance. Moreover, since long-term data collection
may expose users to privacy violations, due to leakage of personal details, a Multi
Objective Evolutionary Algorithm approach was implemented to conceal subject’s
gender while maximising the accuracy on data recording (Chapter 4.2).

General discussion and conclusions of the Ph.D. thesis are reported in Chapter 5. As
the concluding part of the studies performed, a speciĄc Appendix section is dedicated
to the transversal activities on assistive technologies (Chapter 6.1) and experiences
performed abroad (Chapter 6.2).

A block diagram related to the structure of this thesis is reported below 1.

It is important to underline that the participants were always informed about the
purpose and the methods of the study and they decided voluntary to be part of the
research, by signing the informed consent compliant to the General Data Protection
Regulation (GDPR) before starting the tests (which were performed following the
principles outlined in the WMA Declaration of Helsinki - Ethical Principles for Medical
Research Involving Human Subjects [1]).

Some of the experimental studies described in this Thesis were affected by the
spread of COVID-19 pandemic, representing a social and economic context posing
some restrictions for involving a large test population.
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Chapter 1

Introduction

1.1 Remote healthcare monitoring

In the last few decades, the healthcare system almost worldwide relied on centralised
hospitalisation, where the individuals were supposed to move to the hospital for re-
ceiving own medical diagnosis. Nowadays, the remote health monitoring of individuals
is largely required and has reached an unprecedented importance and popularity, also
due to the global epidemics, such as COVID-19 pandemic [2]. Moving the medical
care services from the hospital to the individual’s home, thanks to the use of assistive
remote technologies, offers signiĄcant opportunities to speed up the care, improve
health outcomes and reduce the hospitalisations, along with the related reduction of the
costs. In particular, today the individuals themselves or healthcare personnel can daily
monitor health data and potentially receive an alarm when recorded measurements
exceed a predetermined threshold. Undoubtedly, the continuous monitoring both
patient’s physiology (e.g., heart rate, blood pressure and skin activity) and behaviour
(e.g., physical activity or fall events) from a distance [3] may allow the early detection
or tracking of diseases and assessment of wellbeing; as an example, for the early
diagnosis of COVID-19, together with blood oxygen saturation and physical activity
level, the heart rate has been demonstrated to be a fundamental variable [4].

In this perspective, a paramount role is played by the miniaturisation of electronic
components and the explosive growth of Information and Communication Technology
(ICT) along with the Internet of Things (IoT) infrastructure, resulting in many com-
mercial devices as "IoT-enabled" and, consequently, capable to share data from remote
[5]. Indeed, the development of IoT-enabled wearable devices with wireless technology
support has allowed and facilitated the transition from measurements conducted in
laboratory settings, typically with bulky wired instruments, to minimally-invasive,
comfortable and real-time recordings, in free-living conditions [6] with devices capable
of streaming data to a cloud-based repository. Such remote healthcare monitoring
system, known as telemedicine, results in the Internet of Medical Things (IoMT)
paradigm [7, 8], which is leading towards the so-called Healthcare 4.0. SpeciĄcally,
robust ArtiĄcial Intelligence (AI) algorithms are applied to manage the physiological
data variability, especially for digital health applications [9]. To this aim, audio-, video-
and sensor-based systems are explored in many application Ąelds, such as Ambient
Assisted Living (AAL), anomaly living patterns recognition, fall detection, Ątness-
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oriented purposes, disease detection, emotion recognition and pandemic emergency
like COVID-19 [10, 11], just to cite some. Among the sensor-based systems, wearable
devices are gaining more and more consensus for several applications (even if further
actions and improvements are still needed to reduce the barriers for a wider adoption
by older adults [12]); those of interest for this Thesis will be described in the following
sections.

1.1.1 Wearable sensors for human-related measurements

Wearable sensors have been prominently featured in the healthcare domain, especially
because of some advantages with respect to the standard equipment for monitoring the
physiological parameters: user-friendly, comfortable, relatively low-cost, availability in
different forms and quality, becoming capable to satisfy different customers, also thanks
to user-experience oriented design of these devices [13, 14, 15]. Moreover, nowadays a
single device can provide multiple physiological acquisition, such as heart rate, heart
rate variability, energy expenditure, blood oxygen saturation, skin temperature, skin
conductance, stress-related index, walking distance etc. An additional success of
wearable devices is attributable to the possibility of easy remote health monitoring
through a proper IoT architecture, generally working with WiFi and Bluetooth to
connect with other devices and share individual-related data for example on a Cloud
platform, making them remotely available and safely stored [15]. This aspect is
particularly relevant in health monitoring applications, also to support the healthcare
providers in decision-making processes; in fact, such wearable systems are capable
to collect data 24 hours a day, seven days a week. This generates a huge amount of
data, the so-called "big-data", that is potentially useful for AI algorithms training
to provide useful information for the decision-making processes applied to different
purposes. This offers a valid solution for well-being assessment [16], personal comfort
measurement [17], stress level quantiĄcation [18], Activities of Daily Living (ADLs)
recognition and classiĄcation [19], just to cite some. Among the existing sensors used
for human-related measurements, the two categories of sensors used in this Thesis are
following listed:

• Biosensor: biosensors detect a chemical substance, that combines a biological
component with a physicochemical detector. However today, the term includes a
wide type of sensors that are able to collect vital signs and physiological signals,
encouraging a proactive approach to preserve individual’s health through daily
gathered data [20]. To this purpose, clinical-grade biosensors and wearable
devices are expected to provide predictive guidance for clinical interventions.
Examples of physiological signals collected from wearable sensors, which will be
discussed in the Thesis, are the Heart Rate (HR), Blood Pressure (BP), Skin
Temperature (SKT) and Skin Conductance (SC) [21].

• Inertial sensor: inertial sensors transduce inertial force into electrical signals
to measure acceleration, inclination, and vibration of an object. Among the
most frequently used for the human daily activity recognition, accelerometer
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measures the value of gravitational force along one or more sensitive axes; as
a result, such sensors, individually or in combination as Inertial Measurement
Units (IMUs), provide descriptive features of body posture and user’s movement
[22]; hence, real-life applications include the monitoring of activities such as
performing physical exercises, walking, standing, sitting, or walking upstairs
and downstairs, from which several pathological states can be deducted (e.g.,
Parkinson’s disease [23] and post stroke [24]).

Sensors embedded in wearable devices (e.g., wrist bands, watches, bracelets and
belts) have the strong advantages to be minimally invasive, non-intrusive and non-bulky
with respect to the hospital instruments; however, some limitations are evident. The
placement of sensors on different body positions, or incorrect wearing, may result in
different readings; combination of several sensors may lead to cumbersome feeling and
low user’s acceptance. Moreover, the overall system performance inevitably depends
on the test protocol adopted and on the metrological characteristics of the wearable
device used for acquiring the data [25], which need to be considered together with the
intra- and inter-subject variability impacting on the system usability. Additionally,
metrological properties of commercial wearable devices are often unavailable [26], and
consequently data collected are often difficult to handle and the extracted indicators
to process as well. Evaluation of accuracy and reliability of these devices require
particular attention when using data gathered by wearable devices for healthcare
purposes: to date, only a few wearable devices are classiĄed as medical devices, e.g.,
Apple Watch Series 4-6 [27].

1.2 Machine Learning

As mentioned above, over the past few years, the monitoring and collection of indi-
viduals’ and environmental features have been supported by the fast development
of the sensing devices (e.g., optical sensors, accelerometers and cameras). However,
most applications involve much more than simply gathering measurements from the
quantities of interest. Indeed, healthcare systems may beneĄt from such technologi-
cal advancements to ensure tailored services. In particular, AI along with Machine
Learning (ML) techniques play a signiĄcant role in the effective diagnosis of monitor-
ing patient’s health condition, and in supporting the suitable measures for detected
abnormality, chronic diseases or impairments [28, 29, 30]. The main idea is to create
a machine that automatically builds the analytical models thanks to the designed
algorithms, which iteratively learn from data without any human intervention. There
are two ML approaches, namely supervised and unsupervised learning, which deal
respectively with labelled and unlabelled data, depending on the association to a
known actual class or not. Some other systems work with semi-supervised learning
in which some data are labelled but most of them are unlabelled [31]. Most of the
healthcare monitoring systems work Ąrstly in a supervised context because the learning
activity systems should return a label activity such as walking, stepping, hypertension
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etc. Typically, the supervised learning algorithms learn a relationship between the
input data attributes (features) and the target attribute (class label), by minimising
a loss function determined by the pairs of input data and the corresponding target
attribute. The result, that characterises the discovered relationship, is a model used
for predicting the class label having the input data [32].

The classiĄcation approaches mainly used for healthcare monitoring aims may be
grouped in three main categories, based on the estimation criterion for adjusting the
parameters of the classiĄcation method:

• Discriminative, which create the decision boundaries in the feature space, thus
learning the feature mapping to class labels. Such techniques face the problem
of over-Ątting and the large amount of labelled data required for training;

• Generative, which are statistical approaches to the pattern recognition problem.
Although a huge amount of training data is needed, these techniques are Ćexible
and able to deal effectively with the data uncertainty. Moreover, the generative
techniques learn from both labelled and unlabelled data;

• Heuristic, which is a hybrid modality using a combination of generative and
discriminative approaches. Generally, it was found to reach the best predictive
performance with respect to its single use.

Among the overmentioned classiĄcation methods, the ML algorithms used in this
Thesis are detailed in Table 1.1.

Such ML algorithms are generally fed with features extracted from time and/or
frequency domain, representing the meaningful information computed from the gath-
ered signals. Among the feature engineering techniques exploited in this Thesis, the
Multi-Objective Evolutionary Algorithm (MOEA) is detailed in the next section. In
almost all the studies that will be presented hereafter, the k-fold cross validation was
implemented to train and test the models. This method randomly divides the entire
set of features into k subsamples: in which k − 1 subsamples are used as training data
and a single subsample for testing the model, as validation set. After each subsample
has been used once as the validation data, the accuracy percentage from the folds is
the average over the k iterations, resulting in the cross-validated performance.

Multi-objective evolutionary algorithms

In multi-objective optimisation, the goal is to optimise simultaneously several objective
functions [33]. These different functions have conĆicting objectives, i.e. optimising one
affects the others. Therefore, there is not a unique solution but a set of solutions. The
set of solutions in which the different objective components cannot be simultaneously
improved constitute a Pareto front. Each solution in the Pareto front represents a
trade-off between the objectives. MOEA aims to [34]: (1) Ąnd a set of solutions as close
as possible to the Pareto front (convergence); (2) maintain a diverse population that
contains dissimilar individuals to promote exploration and to avoid poor performance
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Table 1.1: Machine Learning algorithms used in this Thesis work, along with the
related classiĄcation methods

Approach Algorithm Classification method

Discriminative

•tree-like graph from the root to a leaf node;
Decision Tree •attribute values with hierarchical architecture;
(DT) •if node condition is satisĄed, next node is

checked until leaf containing classiĄcation result.

•ensemble of decision trees;
Random Forest •random trees created varying at each step
(RF) the features subset and descriptors of space;

•outcome is an average of all the trees trained.

•instances map in higher dimensional space;
Support Vector •to divide data with linear decision boundary
Machine (SVM) (optimal hyperplane);

•outcome is only from data closest to boundary.

ArtiĄcial •human biological neural system model;
Neural Networks •reception, processing and transmission of
(NNs) information replicated through network links;

K-Nearest •instances labelled as the most common class
Neighbor among k-nearest neighbors (measured by
(kNN) distance function - e.g., Euclidian);

Generative
Naïve-Bayes •attributes conditionally independent
(NB) given the class variable value;

Heuristic
/ •hybrid approach combining

the generative and discriminative approaches.

due to premature convergence (diversity); and (3) obtain a set of solutions that spreads
in a more uniform way over the Pareto front (coverage).

In our speciĄc work the Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [35] was employed as wrapper algorithm. NSGA-II: (1) uses an elitist principle,
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i.e. the elites of a population are given the opportunity to be carried to the next
generation; (2) uses an explicit diversity preserving mechanism (Crowding distance);
and (3) emphasises the non-dominated solutions. The algorithm will obtain a set
of solutions, some of them optimising one over the other objective and vice versa.
From these set of solutions, a speciĄc solution fulĄlling particular conditions could be
selected.

Performance evaluation metrics

According to the literature, there is a wide range of metrics commonly used to evaluate
the performance of classiĄcation algorithms. In the current Thesis, for each tested
approach we focused on two evaluation measures that are the percentage accuracy and
the F-measure. The former is deĄned as the number of correctly classiĄed instances
over the total number of instances considered [32], or:

accuracy = (1 − ErrorRate) × 100 (1.1)

where:

ErrorRate =
|Ncci − Nti|

Nti

(1.2)

being Ncci the number of correctly classiĄed instances, and Nti the number of total
instances considered by each classiĄcation algorithm. Contrarily, F-measure refers to
a weighted harmonic mean of the recall and precision, as an indicator of the overall
effectiveness of the activity classiĄcation. According to the deĄnitions, the F-measure
(also named F-score) can be calculated as per (1.3):

F − measure =
(1 + β)2 × Sensitivity × Precision

β2 × Sensitivity + Precision
. (1.3)

Assuming that β is the weight coefficient (β = 1 in WEKA tool), Sensitivity (or
equivalently Recall) is the ratio of correctly classiĄed instances to the total number of
identiĄed instances that are true, calculated as:

Sensitivity =
TP

TP + FN
(1.4)

whereas Precision (or Specificity) is the ratio of correctly classiĄed instances to
relevant instances, deĄned as:

Precision =
TP

TP + FP
. (1.5)

Hence, F-measure value depends on the above-mentioned performance indicators:
True Positive (TP), True Negative (TN ), False Positive (FP) and False Negative (FN )
rates. An F-measure, as well as the Area Under the ROC Curve (AUC), close to 1
means high values of accuracy and strong algorithm. Such indicators are also used to
generate the Confusion Matrix, that is a table summarising how the activities were
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decreases. Moreover, pupil diameter can vary. Knowing all these potential physiological
changes, a reliable alternative may be built around the use of physiological signals,
from which objective measurements can be obtained, to identify the participants’
unconscious emotional changes. If thinking to the emotions as subject’s reaction to
a stimulus, the monitoring of physiological signals might provide useful information
on the presence/absence of stimuli inĆuencing the subject’s state. When individuals
are exposed to daily circumstances and stimuli such as images, sounds, noises and
physical, the sympathetic division of the Autonomic Nervous System (ANS), with
no conscious control, induces emotions such as fear, anxiety, stress, joy and sweat
reaction (even if sometimes imperceptibly). To this aim, several physiological signals
have been exploited in the literature, such as the Electrocardiogram (ECG), the
Electroencephalogram (EEG), the Electromyogram (EMG), the Photoplethysmogram
(PPG), the Skin Conductance (SC) signal, and the Skin Temperature (SKT) signal [43].
Among the others, in this Thesis, skin- and cardiac-related changes are investigated
and assessed.

SC signal, named also as Electrodermal Activity (EDA) or Galvanic Skin Response
(GSR), is a biometric index reĆecting changes in the electrical properties of the skin
and, consequently, the sympathetic activity [44, 45]. Thanks to the availability of
wearable devices for easily monitoring, the SC is currently one of the most involved
signals in the emotion research. Changes of the skin electrical characteristics can be
monitored by placing two electrodes on speciĄc areas of the skin surface (e.g., Ąngers,
hand, and foot palm [46]). Research studies have suggested two different methods to
measure SC signals: the exosomatic approach (applying a direct current (DC) or an
alternating current (AC) source) and the endosomatic approach (without applying any
external current or voltage source) [47]. The former approach is the most commonly
used, with an external constant voltage source that is applied on the human skin
through electrodes.
Among the others, the wrist is not the most appropriate place to measure SC, never-
theless, it is considered a comfortable position for the user and also for the designer,
to hold electrodes and drive the SC signals through the bracelet to the microcontroller
onboard the device. The gathered information is double: the tonic component (i.e.
Skin Conductance Level, SCL), which slowly changes over time being the individual’s
baseline characteristic, and the phasic component (i.e. Skin Conductance Response,
SCR), which is related to fast-changing signal contributions and to events [48].

Several research studies already demonstrated the connection between heart rate
variability (HRV) and ANS, so that HRV-derived features are typically exploited
to detect human feelings, by recognising emotions, mental fatigue and also stress
generated by physical activity as well [49, 50, 51]. Additionally, the HRV analysis, i.e.
the physiological variability of the cardiac rhythm, along with Heart Rate (HR) and
Blood Pressure (BP), according to the autonomic regulation, may be used to evaluate
different health conditions, such as cardiovascular diseases, hypertension, diabetes,
pregnancy. Recently, some commercial wearable devices, especially those acquiring
electrocardiogram (e.g., Apple watch [52]), have been demonstrated to be a valid tool
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• SC sensor measures the changes in skin electrical conductance with a sampling
rate of 4 Hz, in the range of [0.01, 100] µS and with a resolution of 1 digit∼900 pS.
Through 10 mm diameter silver-coated with copper underlay on brass electrodes
placed on the ventral wrist, a small alternating current (8 Hz frequency Ű max
100 µA) is applied to the user’s skin;

• 3-axial MEMS accelerometer to measure motion-related activity with a sampling
frequency of 32 Hz and a resolution of 8 bit of the selected range. Each
acceleration sample includes the three components, representing the three spatial
directions (X, Y, Z axes). The conversion factor between raw samples and
true acceleration values is attained by g/64 (where g = 9.81 m/s2), given that
according to E4 manual a sample component value of 64 corresponds to 1 g, in
the measurement range [-2g, 2g] m/s2 (±4g or ±8g can be selected with custom
Ąrmware);

• IR thermometer is conĄgured with a sample frequency of 4 Hz with a resolution
of 0.02 ◦C. SKT values are measured by an optical thermopile sensor. The
reported accuracy within the range of human skin temperature (i.e. 36Ű39 ◦C)
is ± 0.20 ◦C. Calibration is valid in the range [-40, 115] ◦C.

It is important to notice that the over-mentioned sampling frequencies, speciĄed in
the E4 wrist-worn device datasheet, are not customisable values. Prior to collecting
data, the working modality can be chosen. Indeed, the device can operate either in
streaming mode for real-time data visualisation using a Bluetooth Low Energy (BLE)
interface and the E4 Realtime app from supported mobile devices, or in-memory
recording mode storing temporarily data in the internal Ćash memory. The battery
duration declared by the manufacturer is up to 24 hours in the former modality, more
than 48 hours in the latter. In any case, the recording sessions associated to the
serial number of the used Empatica E4 are saved into a secure cloud-based repository
(i.e. E4 Connect) for data management. The cloud-based repository provides to each
registered user the list of recorded sessions, and a dashboard for data visualisation;
each session, saved in the form of a .zip archive, includes separate .csv Ąles, each
one pertaining to a speciĄc sensor. After pressing the button to start the recording,
the device takes around 15 s to calibrate, thus improving the accuracy of the sensor
readings.
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Measurement of Skin Activity

This Chapter is focused on a set of studies aimed to identify the elicitation of acoustic,
visual, and physical stimulation on the skin conductance signal collected through
the commercial wearable device Empatica E4 by healthy individuals. Data analysis
in time domain, performed in [64], showed that listening to an unpleasant sound
increases the subjective physiological response (higher number of peaks raised on the
skin conductance signal), especially when the sound duration is short. Additionally, in
[65] SC proved to be a standalone reliable signal in recognising a driver’s drowsy status
(Random Forest classiĄcation: 84.10% accuracy; reaching 93.00% of accuracy when
combined with BVP data [66]) and also in distinguishing different levels of physical
exertion when extracting features from frequency domain [67]; in this regard, the
proposed larger observation band (i.e. [0.40, 1.00] Hz) can avoid loss of potentially
meaningful information about the skin activity, with respect to the common investi-
gated one [0, 0.40] Hz, as demonstrated in [68]. These analyses were conducted also in
collaboration with Prof. Florez-Revuelta, at the University of Alicante to understand
whether and how living environments design affects the individual emotional capacity.

To examine the feasibility of the proposed approaches, data analysis was performed
Ąrst in MATLAB environment and then, when needed, by using the WEKA tool for
the ML performance evaluation.

2.1 Case study 1: Physiological Response to Acoustic

Stimuli

By stimulating emotional responses with external stimuli, variations in physiological
parameters (e.g., heart rate and skin conductance) can be measured. Among the
stimuli that the individuals are daily facing, the acoustic, visual and physical ones
are the most common. Regarding the auditory stimuli, the International Affective
Digital Sounds (IADS) [69] database is among the most used collections of short
sound clips (6 s), each one associated to classiĄcation labels obtained by using the
Self-Assessment Manikin (SAM) [70] and the three basic-emotion rating scales (i.e.
Arousal, Valence and Dominance). Although, the SC signal resulted reliable to assess
the presence of cognitive stress in subjects [71], relatively few studies have investigated
the SC response, either under several external stimuli either in standalone processing.
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Pozzi et al. [72] suggested a features analysis by combining the physiological and
audio signals, to understand the relationship between music and emotional feelings.
Although reaching good results, some open issues were declared on both the reliability
of ground truth data and the evaluation of prediction results due to the subjective
perception of emotion - strongly affecting the classiĄcation performance. This happens
in [73], where the overall accuracy percentage in recognising the emotion valence,
from SC signal, shifted from 81.1% to 57.5%, for subject-dependent and subject-
independent classiĄcation, respectively. As an example, the familiarity of music can
inĆuence the personal event, by inducing learned emotional responses rather than
totally unconscious experience. Different engagement is reĆected on bodily changes,
such as the SC [74] and the HRV [75], sometimes combined to detect user’s emotion
response to music, considering also the personality and music preferences.

Whatever stimulus is used, it may affect participants’ cognitive, and consequently
physiological status. In order to consider both the user’s perception of an emotional
stimulus together with the physiological recordings, the self-assessment questionnaires
are used in literature as ground truth data, such as the 9-points SAM scale. The
overmentioned studies are mostly focused on the emotion recognition and classiĄcation,
performed by extracting several features to feed and test different ML algorithms.
However, in order to achieve high performances for automatically detecting the
emotions, a detailed analysis of the measurement data properties is essential. Therefore,
in this work, the characteristics of the SC physiological signals in response to acoustic
stimuli, are performed, namely by analysing the event-related changes in SC curve
morphology in both time and frequency domains. Such signals are measured in real-life
contexts, i.e. out of a lab, thanks to the use of the Empatica E4 device, which may
open new possibilities in terms of exploitation of physiological information generated
from wearable devices.

2.1.1 Acquisition protocol

In order to measure the inĆuence of auditory stimuli, a small dataset was collected
from 7 healthy individuals, namely 2 males and 5 females of age (35.7 ± 17.9) years
(mean ± standard deviation), average weight 64.4 kg, while being at rest condition
and during the sound listening, wearing only the Empatica E4 on the dominant wrist.
Subjects will be referred to as S1 to S7 in the text. To gather the physiological
measurement data, each individual involved in the tests listened to three different
auditory stimuli once, resulting in 7 recordings for each different acoustic stimulus
(for a total of 21 recordings).The scheme of general measurement setup is shown in
Figure 2.1.

Thanks to the event-marker button on Empatica E4, a real-time annotation was
possible by pressing the button to label the three phases: "pre-stimulus", "during-
stimulus" and "post-stimulus". SpeciĄcally, in the Ąrst and last part, SC data at
resting condition were acquired for 5 minutes as a subject’s physiological baseline (i.e.
reference measurement), while during the central minutes the physiological variations
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themselves with the Ąve pictographs (scoring from 1 to 9) along the three dimensions
of SAM scale. Obtained scores were compared with the standardised values listed in
the IADS database to investigate whether the participants’ experience was consistent
or not with the standardised ranges.

2.1.2 Data Analyses

When an external stimulus is elicited, a peak appears quite evident in the SC signal,
and consequently sparse peaks are considered as an evidence, in time domain, of the
immediate response to stressful stimuli [78]. In order to properly study the phasic
component, i.e. Skin Conductance Response (SCR), as a stimulus reaction, the SC
raw data were analysed in time domain, not by resorting to automatic tools (such as
LedaLAB1) but following the standard procedure described by iMotions [79]. First
of all, data from the Ąrst and last 4 s of acquisition were discarded to remove the
potential artefacts (e.g., transient noise due to the subject’s movements, mostly at
the beginning and at the end of each session). Secondly, through a sliding-window
Ąlter, the median SC was computed for each sample and the surrounding samples in a
window of 4 s, centred on the current sample. This technique allowed to decompose
both the SCR and Skin Conductance Level (SCL) components from the SC signal, as
shown in Figure 2.2.

Figure 2.2: Median Ąlter based extraction of the tonic (SCL) and phasic (SCR) com-
ponents from SC signal.

The SCR was intended as the component representing the signal physiological
content, and the number of peaks as a meaningful feature to describe the effects of
an external stimulus [47], and thus to compare the reaction to different stimuli of a
same subject, or to the same stimulus by different people. Therefore, according to
[80], a peak-and-through detection algorithm has been implemented to identify two

1http://www.ledalab.de/
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thresholds of the SCR curve: the onsets at THon = 0.01 µS and offset at THoff = 0

µS. An onset was marked when SCR > THon, while an offset when SCR < THoff .
Then, back to the original SC signal, the exact position of each corresponding peak
was identiĄed for each onset-offset interval, and counted as a peak. This is the reason
why, along this Thesis, the peaks will be referred as SC peaks, as well as SCR peaks.

Regarding the frequency domain, the analysis was conducted by computing the
Power Spectral Density (PSD) of SC signal in speciĄc frequency bands to assess
the psychophysical response to external stimuli. Commonly, bands up to 0.40 Hz

are adopted for spectral analysis of HRV signal in the assessment of SNS activity
[81]. More speciĄcally, in [82] it is shown that the SC frequency band related to the
SNS activity is deĄned in the range [0.045-0.25] Hz, with the maximum value (95%)
contained below 0.25 Hz in the case of orthostatic, physical and cognitive stress tests
[47].

Firstly, the collected SC raw signals were Ąltered through a high-pass Butterworth
Ąlter of the 8th order at a cut-off frequency of 0.02 Hz. Then, the Welch’s periodogram
with a Blackman window (128 points) was applied to compute the power spectra of
SC signals [83], and the Fast Fourier Transform was calculated on the periodogram.
Finally, the PSD was computed as follows:

PSD = lim
T →∞

1

2T
|XT (f)|2, (2.1)

where XT (f) is the Fourier transform of the SC signal x(t) in the time window
T . Three speciĄc frequency bands were considered: [0.02, 0.25] Hz analysed in [84],
(0.25, 0.40] Hz investigated in [84] and (0.40, 1.00] Hz proposed in our work [68].

2.1.3 Experimental Results

A preliminary analysis, performed in time domain, aimed to understand the event-
related changes on SC signal in different conditions. Therefore, the peaks frequency (i.e.
number of SC peaks per minute) was counted over the three phases (i.e. "pre-stimulus",
"stimulus" and "post-stimulus") to understand the variation among them, irrespective
of the absolute time duration of each one, i.e. one or two minutes long. By examining
how much the pleasant audio affects the physiological changes in SC curve morphology,
while the subjects S3, S4 and S5 are more sensitive to audio clips lasting 1 minute, the
subjects S1, S2, S6 and S7 are more sensitive to pleasant clip 2 minutes long. Regarding
the unpleasant clip, in 1-minute-long audio clips, six out of seven participants, except
S3, show a number of peaks per minute greater or equal to the one recorded during
the resting phase (i.e. ≥ 1). This clearly indicates an increase of the peaks frequency

from the resting to the stimulating phase. Nevertheless, when the stimulating period
was longer (i.e. 2 minutes), the peaks frequency decreases drastically, even reaching
zero for S4. This means that the subjects S2, S5, S6 and S7 were more sensitive to
unpleasant sounds of short duration. Finally, while listening to the neutral sound, four
out of seven participants, namely S2, S4, S5 and S7, show an average peaks frequency
that increases from 0 to higher values under longer stimuli.
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Based on these Ąndings, a second analysis was conducted by computing the number
of SC peaks only on the 5 minutes following the acoustic elicited stimulus to investigate
the variation caused by the listening of the three different audio clips (i.e. neutral,
pleasant and unpleasant) for 1 minute. An example of a portion of raw SC signal to
pleasant sound acquired by S2, where just two peaks are identiĄed, is presented in
Figure 2.3.

Figure 2.3: Portion of SC signal to pleasant sound for S2: a) SC signal, b) SCR
component and peaks marked with a star.

As shown in Table 2.2, the majority of subjects exhibited more peaks to neutral
and unpleasant stimuli, with respect to pleasant ones: in six out of seven subjects,
namely S1, S2, S3, S4, S5, S7, the number of SC peaks detected after listening to
neutral sound is greater or equal to the peaks detected after pleasant sound. Similarly,
six subjects, namely S1, S2, S3, S5, S6, S7, exhibited higher or equal number of peaks
while listening to unpleasant sound with respect to the pleasant one. Only S4 and
S6 showed an equal number of peaks in the SC signals corresponding to pleasant and
neutral sounds, and to pleasant and unpleasant sounds, respectively. This means that
the involved subjects are more sensitive to neutral and unpleasant sounds than to
pleasant sounds.

Regarding the frequency domain, in Figure 2.4 an example plot shows the normalised
PSD of the SC obtained from three different subjects, for different acoustic stimuli.

As it is clear, the power spectra of SC signals are predominantly located at frequencies
higher than 0.40 Hz. Concerning the pleasant (b) and the unpleasant stimuli (c),
for S3 and S2 respectively, the SC spectrum is mainly contained in two sub-bands:
below 0.25 Hz and between 0.40 and 1.00 Hz, then decreasing after this bound. The
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Table 2.2: Number of SC peaks for the three acoustic stimuli for each subject

Subject No. of peaks
Neutral Pleasant Unpleasant

S1 6 2 3
S2 3 2 5
S3 5 1 5
S4 4 4 3
S5 5 4 7
S6 3 5 5
S7 4 1 4

Figure 2.4: Normalised PSD of acquired SC signals to a) neutral, b) pleasant and c)
unpleasant acoustic stimuli. The vertical red lines indicate band limits:
0.25 Hz, 0.40 Hz and 1.00 Hz.

frequency behaviour related to neutral stimulus (a) for S5 is mostly shifted to higher
values, between 0.40 and 1.00 Hz, with a small amount of spectral power below 0.25
Hz and above 1.00 Hz. Since the spectral power above 1.00 Hz was minimal for
several subjects at the best for all the stimuli, the overall SC bandwidth investigated in
this study was limited to 1.00 Hz. In order to exactly quantify the spectral content of
SC signals, the energy contained in the three frequency sub-bands (i.e. [0.02 - 0.25] Hz

named B1, (0.25 - 0.40] Hz named B2 and (0.40 - 1.00] Hz named B3) was computed.
In Table 2.3, the resulting percentages of power spectrum in each frequency sub-band
are detailed, distinguishing the three different acoustic stimuli.
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Table 2.3: PSD percentage computed within the frequency bands for the three acoustic
stimuli

Subject
PSD (%)

Neutral Pleasant Unpleasant
B1 B2 B3 B1 B2 B3 B1 B2 B3

S1 19.44 52.37 28.19 60.01 21.31 18.67 12.74 6.67 80.59
S2 14.37 4.76 80.87 17.26 6.01 76.67 15.53 5.29 79.18
S3 14.80 19.64 65.55 14.60 5.47 79.93 15.83 6.39 77.78
S4 9.61 6.76 83.63 11.02 7.38 81.60 8.24 4.35 87.41
S5 13.35 6.07 80.58 93.10 2.37 4.53 58.42 6.24 35.34
S6 13.30 30.03 56.67 33.17 6.65 60.18 6.36 62.34 31.30
S7 14.00 5.11 80.89 11.84 6.73 81.42 10.54 5.38 84.07

SpeciĄcally, Table 2.3 illustrates that, computing the percent distribution of the
PSD over the whole bandwidth acquired in the neutral acoustic stimulus, B1 ([0.02
- 0.25] Hz) contains always less than 20.00% of the total power spectrum. Indeed,
the percent power spectrum located in B3 ((0.40 - 1.00] Hz) is higher than in the
lower sub-bands, in six out of seven subjects (i.e. S2, S3, S4, S5, S6, S7), reaching
the 83.63% in S4. Contrarily, S1 presents a higher value in the adjacent sub-band B2
((0.25 - 0.40] Hz). For what concerns the pleasant acoustic stimulus, the sub-band
B1 (below 0.25 Hz) contains the greatest amount of power spectrum for S1 and S5;
contrarily, for the other subjects the percentages are lower than 34.00% in B1, followed
by an increase in the last sub-band B3 (0.40 - 1.00] Hz, achieving values higher than
80.00% for S1 and S7. Similarly for the response to the unpleasant acoustic stimulus,
in which only S5 reaches the 58.42% of PSD in the Ąrst frequency band B1. Almost
all the remaining individuals (i.e. S1, S2, S3, S4, S7) achieved a percent of SC power
spectra higher in B3 (0.40 - 1.00] Hz than in the Ąrst sub-band B1; contrarily, S6
featured the same condition in (0.25 - 0.40] Hz.

2.1.4 Discussion and conclusions

Regarding the analysis in time domain, the SC peaks frequency (i.e. number of SC
peaks per minute) was computed being the event-related feature, and then compared
among the different acoustic stimuli. An increase of SC peaks per minute during the
unpleasant sound listening period in almost all individuals was presented especially
for short sound, probably due to the track played: an unexpected and well-known
annoying sound (i.e. ’Scream’). Probably, the negative emotion induced a high sweat
reaction, and consequently evident physiological changes. However the same reaction,
if the external stimulus is too long (i.e. 2 minutes), can be affected by the habituation
phenomenon [85], resulting indeed in a lower number of peaks per minute on the SC
curve. Contrarily, the Ąndings from the pleasant and neutral stimuli are more randomly
distributed, resulting in any speciĄc visible physiological reaction to ’Walking’ and
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’RockNRoll’ sounds, especially when presented the one-minute-long tracks. Concerning
the frequency domain, although in the literature the most investigated frequency band
for SC signal is generally conĄned to [0, 0.40] Hz [71], we found that, by using acoustic
elicitation, the extended range [0.40, 1.00] Hz contains a higher amount of power
spectrum with respect to lower frequency bands. Therefore, when acoustic stimuli are
used to elicit human emotions, it could be useful to extend the SC spectrum analysis
to a upper frequency bound (i.e. until 1.00 Hz), with respect to the case of other types
of stimulus. A larger observation band can avoid the loss of potentially meaningful
information. In general, the results conĄrm that the physiological changes in SC are
visible, but subjective. Even though different individuals can share some emotional
status or mental perception of the same sound track (as declared in SAM scale scores),
their physiological features can have signiĄcant differences. This statement is evident
for pleasant sound, where high perception of affective valence and intensity corresponds
to a small number of peaks during the stimulation. Contrarily, the low valence and
high arousal of ’Scream’ sound can be strictly associated to the bigger number of
peaks during the elicitation of an unpleasant experience. Moreover, from Ąndings in
frequency domain, it is evident that the reaction to acoustic stimuli is very subjective,
showing different characteristics of SC power spectra among the subjects involved in
the experiment. Moreover, results underline different reaction times under the three
stimuli: the SC power spectra, mostly located at high frequencies for neutral acoustic
stimuli, suggest a faster reaction than for the unpleasant and pleasant ones in human
brain.

Although the results of these experiments are promising, some limitations are
present. Future works to generalise these Ąndings would intend to enrol a wider and
more heterogeneous population in terms of gender and age, reducing the inter-subject
variability. As an example, the different perception of an external stimulus (e.g.,
acoustic and visual), and consequently the resulting SC Ćuctuations can be compared
among males and females, and different range age. Also selecting more sound tracks
from IADS database and more driving paths, can allow to obtain more generalised
and reliable Ąndings. Moreover, additional physiological signals besides SC, such
as HRV, can be taken into account to identify the frequency sub-bands related to
emotional responses under acoustic stimuli. Also different cross validation techniques
(e.g., Leave-One-Subject-Out Cross Validation, LOSO) may be employed to improve
the ML detection accuracy, especially for distinguishing the two classes alert and
drowsy.

2.2 Case study 2: Physiological Response to Visual

Stimuli

Video stimuli are among the most widely delivered when trying to evoke strong psycho-
physiological responses [86] for measuring and quantifying physiological changes.
Dominguez et. al [87] collected SC signals alone while showing video clips to stimulate
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sadness, amusement and neutral reactions; the target raised emotions were well-
recognised from RF classiĄer (up to 100% of accuracy). Contrarily, in order to tackle
the inĆuence of subject’s personal, cultural and cognitive aspects on physiological
changes, Zhao et al. [88] recorded multi-physiological signals (i.e. SC, HRV and skin
temperature). In this case, the average accuracy of the emotion recognition process
dropped down to 75.56%. Further studies employed 2D visual stimuli selected from the
International Affective Picture System (IAPS) database [89] or speciĄc images, among
which pleasant and unpleasant pictures for exciting feelings, and neutral ones for calm
emotions [90] [91] to evaluate different emotion classiĄcation techniques. Within the
domain of visual stimulation, this Thesis explored how the driving path might act
as a visual stimulus affecting the daily psychophysical status of a driver. Based on
the World Health Organisation estimates, nearly 1.35 million deaths each year [92]
are due to driver drowsiness, occurring with decreasing levels of arousal. Although
some safety technologies are already implemented in cars with on-board sensors to
classify the driving behaviour (e.g., lane deviations, steering wheel rotation, along
with camera-based systems for eye gaze location), recent investigations are focused on
the drowsiness and the consequent ANS activity reĆected by changes in physiological
signals [93]. According to the literature, the BVP, leading an estimation of HRV, is a
useful indicator for drowsiness conditions [8], while the SC signal is useful to detect
changes in subjects’ arousal [78]. Both the gold-standard measurement methods for
BVP and SC require the direct contact between electrodes and the subject’s skin in
speciĄc positions. This represents a major shortcoming in the automotive context
[94]. Pushed by the growing trends of the IoT-enabled wearables market, several
wrist-worn devices (or bracelets [95] and double-rings [96]) were tested to collect
physiological data, then processed by classiĄcation algorithms to monitor drivers and
detect a drowsy status [97]. For example, Lee et al. assessed the driving behaviour
by utilising the built-in motion sensor of a smartwatch; SVM classiĄer achieved an
accuracy of 98.15% [98]. Then, by combining the accelerometer signal and the PPG
signal, they obtained an accuracy of 95.80% [99]. Contrarily, Leng et al. measured
both PPG and SC through a wearable device on the Ąngers; SVM model reached an
accuracy of 98.70% [100]. Choi et al. developed an intrusive system with a wrist-worn
wearable device with PPG, SC, temperature, acceleration, gyroscope sensors and an
additional PPG signal acquired on the ear. Although the SVM employed to distinguish
the normal, stressed, and drowsy states achieved with an accuracy of about 85.00%,
the uncomfortable system results less suitable for real-life driving applications [101].
Therefore, in this Case study, a dataset was collected within the automotive context
to both explore the physiological human response to visual stimuli, and detect the
driver’s drowsiness by wearing only a smartband. In particular, Ąrstly the SC signal is
considered alone, and secondly, a multimodal system is proposed by combining the
SC and the HRV signals.
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Figure 2.6: Sample acquired BVP (left) and SC (right) signals during a whole session
(40 min duration).

from the wrist, and consequently the performance of driver’s drowsiness detection
by ML algorithms. Therefore, to identify and reduce the motion artefacts, the
Stationary Wavelet Transform (SWT) denoising with haar mother wavelet (7 levels of
decomposition) was implemented according to previous studies [103]. This approach
Ąrstly models N wavelet coefficients dj as zero-mean Laplace distribution, with j

representing the wavelet decomposition level. Then to identify the boundary between
clean SC signal and motion artefacts, the Thigh and Tlow, high and low threshold
respectively, are deĄned as follows [104]:

∮︂

Tlow = ( 1
N

∑︁N

n=1 |dj |) · loge(δ)

Thigh = −Tlow,
(2.2)

where δ is the proportion of motion artefacts in the original SC signal, that quantiĄes
how much motion artefacts affect the signal by exploiting the 3-axial acceleration values
simultaneously acquired with the SC samples through Empatica E4. Depending on the
subject’s wrist movement amplitude, the value of δ depends on the standard deviation
(σ) of the acceleration samples collected from all the three directional components (i.e.
accx, accy, accz), as follows:

∮︂

δ = 0.01, σ(accx,accy,accz) < 0.04 m/s2

δ = 0.10, otherwise
(2.3)

The limit on the value of σ, with the threshold of 0.04 m/s2 (heuristically set by
visual inspection of both acceleration and SC signals), has to be satisĄed by each
acceleration component: if just one is greater than 0.04 m/s2, then the motion artefact
is identiĄed, and consequently removed. When wavelet coefficient exceeds these
thresholds, they are set to zero. Then SWT is applied resulting in a denoised signal.
At this point, the SC signals and their components (i.e. SCR and SCL) were divided
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in short-time intervals with Ąxed size of 15 s (i.e. 60 samples); then, according to the
KSS scale’s scores reported by the participants, each window was labelled creating
three groups, depending on the drowsiness level: scores between 1 and 5 in class 1
(labelled as alert), 6 and 7 in class 2 (labelled as slightly drowsy), 8 and 9 in class 3
(labelled as drowsy). Finally, a total of 23 features (listed in Table 2.4 - some used in
previous studies [68], [105]) were computed, from each labelled window, in time and
frequency domains to analyse the temporal and spectral information contents.

Table 2.4: Features extracted from the SC signal and its components
Type

of signal
Domain Features (measurement unit)

SC
signal

Time

Mean (µS), standard deviation (µS),
minimum (µS), maximum (µS),
kurtosis (µS), skewness (µS),
variance ((µS)2), range (µS), median (µS)

Frequency

Mean (µS/Hz), standard deviation (µS/Hz),
minimum (µS/Hz), maximum (µS/Hz),
kurtosis (µS/Hz), skewness (µS/Hz),
variance ((µS/Hz)2), range (µS/Hz),
median (µS/Hz)

SC
components

Time
SCR number of peaks (-), SCL mean (µS),
SCL standard deviation (µS),
SCL minimum (µS), SCL maximum (µS)

In order to improve the ML performances, the correlation coefficient (ρ) was com-
puted to quantify the strength of the features relationship; features with ρ > 0.90 (i.e.
strong correlation) were discarded to reduce the potential high correlation and redun-
dancy between tested features, affecting the classiĄcation algorithms. As a result, Ąve
features, namely SC mean, SC maximum, SC median, SCL mean and SCL maximum,
were discarded, resulting in a total of 18 features to use. Once selected the relevant
features, three ML algorithms, namely RF, Bagging and Boosting , were trained
and then tested through the 10-fold cross validation method [106]. The classiĄcation
performances were compared by using accuracy, precision, recall and confusion matrix.

The added BVP signal was not Ąltered, due to an algorithm embedded in Empatica
E4 Ąrmware (details are not disclosed by the manufacturer) that removes the motion
artefacts exploiting data measured during exposure to the red LED. Being the HRV
a well-known drowsiness indicator [107], it was derived from the BVP signal, by
quantifying the inter-beat intervals (i.e. IBIs, the distance between two consecutive
signal peaks). Then, obtained signal was divided into time interval with 15 s, from
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which 9 features were extracted (Table 2.5).

Table 2.5: Features extracted from HRV
Type

of signal
Domain Features (measurement unit)

HRV
signal

Time HR (bpm), SDNN (ms), RMSSD (a.u.), pNN50 (µS)

Frequency
LF (a.u./Hz), HF (a.u./Hz), LFn (a.u./Hz),
HFn (a.u./Hz), LF/HF (a.u.)

2.2.3 Experimental Results

After processing the SC signals collected during the visual stimulation of an overnight
driving path on a highway, three ML algorithms were tested and compared depending
on the classiĄcation performance. In Table 2.6, the resulting metrics are summarised.
The average accuracy in identifying the three different drowsiness conditions (i.e. alert

(class 1), slightly drowsy (class 2) and drowsy (class 3)) is equal to 84.10% for Random
Forest, 83.20% and 82.80% for Bagging and Boosting, respectively. Precision and
recall are equal to 84.20% and 84.10%, respectively, for RF, whereas 83.30% and
83.20% for Bagging, and both equal to 82.80% for Boosting.

Table 2.6: ClassiĄcation performance of proposed approach

Classifier Accuracy (%) Precision (%) Recall (%)
Random Forest 84.10 84.20 84.10
Bagging 83.20 83.30 83.20
Boosting 82.80 82.80 82.80

Among ML classiĄers tested, RF proves to be the best one, according to all the
performance metrics considered. Therefore, in Table 2.7 the confusion matrix related
to the RF algorithm is detailed with percentage values.

Table 2.7: Confusion matrix for RF algorithm
Predicted Instances

1 2 3

A
c
tu

a
l

In
st

a
n

c
e
s 1 85.7% 11.7% 2.6%

2 6.1% 83.0% 10.9%
3 3.9% 12.2% 83.9%

From the resulting Table, the classes 1 and 2, representing the alert and slightly

drowsy conditions respectively, are well-distinguished (867 instances classiĄed, out
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of the 1045 actual instances), except for a few instances. This means that there are
evident and meaningful physiological variations captured by the recorded SC signals,
that uniquely characterise the alert and the slightly drowsy conditions. Thanks to such
SC changes, the features extracted from these two conditions can be well-distinguished
from the drowsy class. In the future, this capability may be exploited to design
automatic systems to alert the driver, just wearing a smartwatch. On the contrary,
class 2 (slightly drowsy) is often misclassiĄed with class 3 (drowsy); most probably
the SC features related to the drowsy status are quite similar to those computed
over the data collected during the slightly drowsy ones. Anyway, considering a safety
system applied in real-life, the most important challenge is the capability to detect
the physiological variation in short-terms between the alert and the slightly drowsy

conditions.
When adding the HRV features to the initial 23 ones referred to the SC signal, the

RF algorithm (speciĄcally the Ensemble algorithm on Weka tool) reached a higher
performance with an average accuracy of 93.0 % in detecting the drowsy status.

2.2.4 Discussion and conclusions

When visual stimuli were exploited to detect the driver’s drowsiness, 18 features were
extracted from SC signals and an average accuracy of 84.1% was provided by RF in
distinguishing the alert, slightly drowsy and drowsy classes, while it reached 93% when
combining SC and HRV features. About the visual stimuli, the Ąndings demonstrate
the feasibility of detecting driver drowsiness exploiting either only SC signals, acquired
from a single wrist-worn device or exploiting the joint SC and HRV information.
Moreover, the classiĄcation performance is obtained with short-term time windows,
essential for detecting short-term events as the natural drowsiness onset. This way,
when abnormal changes are detected, a proper timely alert can notify the driver, for
example suggesting to take a short break to rest.

Although the results of these experiments are promising, some limitations are
present. Future works to generalise these Ąndings would intend to enrol a wider and
more heterogeneous population in terms of gender and age, reducing the inter-subject
variability. As an example, the different perception of an external stimulus (e.g.,
acoustic and visual), and consequently the resulting SC Ćuctuations can be compared
among males and females, and different range age. Also selecting more sound tracks
from IADS database and more driving paths, can allow to obtain more generalised
and reliable Ąndings. Moreover, additional physiological signals besides SC can be
taken into account to identify the frequency sub-bands related to emotional responses
under acoustic stimuli. Also different cross validation techniques (e.g., Leave-One-
Subject-Out Cross Validation, LOSO) may be employed to improve the ML detection
accuracy, especially for distinguishing the two classes alert and drowsy.
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2.3 Case study 3: Physiological Response to Physical

Stimuli

The second Case study aims to investigate whether and how the SC signal changes
in response to physical stimuli, by examining the morphological characteristics of
this speciĄc physiological signal. In the sport context, where the body is elicited
by physical efforts, measuring SC in different training sessions, before and after a
positive or negative performance, may support the evaluation of the most suitable
and personalised training schedule for athletes [108], by assessing the sympathetic
function during exercises [84]. These applications need to Ąrstly recognise the type of
stimulus associated to speciĄc SC variations. To do this, recent studies involve the
features extraction and the machine learning classiĄcation, such as in [109]. However,
the SC signal is characterised by a great variability inĆuenced by the data acquisition
procedure and the physiological variability among the individuals. Such factor makes
it difficult to Ąnd the proper meaning of the classiĄcation outcomes and to relate
the results in the SC signal response to a speciĄc kind of stimuli [110]. To improve
the accuracy and reliability, an accurate feature selection and evaluation are required
prior to classiĄcation, as described in [67]. Once selected the most meaningful features
describing the SC physiological response to the physical exercise, the second study
[111] aims to recognise the perceived physical exertion intensity by implementing two
machine learning classiĄers (i.e. Support Vector Machine and Bagged Tree - both
supervised approaches), fed with features computed on heart-related parameters (from
BVP signal), SKT, and wrist acceleration, all collected by wearing the Empatica E4.
As a novelty, such outcomes are exploited to validate the use of the SC data only, to
classify the user’s perceived effort.

2.3.1 Acquisition protocols

In the Ąrst study, SC measurement data were acquired from four healthy subjects (2
males and 2 females aged between 20 and 59 years, with a Body Mass Index (BMI)
between 21.07 and 25.24 kg/m2), by wearing the Empatica E4 on the dominant wrist.
Each individual was involved in three different recording sessions (at rest - R, after
mild exercise - M, and after intense exercise - H) acquired in three different moments
of the day (morning, afternoon and evening), obtaining nine sessions per each subject.
This allowed to have different repetitions of the same type of Physical Activity (PA),
irrespective to the moment of the day it was recorded. Depending on the activity to
perform, the acquisition time was different. SpeciĄcally, the sessions at rest lasted 15
minutes, while the subject was lying on a bed. Then, subject was asked to perform
almost 5 minutes of mild exercise (e.g., walking and climbing stairs). As soon as the
exercise terminated, the subject was asked to lie again down on a bed for a 10-minute
recording. The same procedure was repeated to acquire 10-minute recordings after
almost 5 minutes of intense exercise (e.g., running stairs or repetitions of a vigorous
free body exercise). Such exercises were selected based on the guidelines provided by
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the Mayo Clinic [112]. It is important to note that all the acquisition sessions were
conducted after the physical activity, in order to assess the physiological response
after the physical effort. Contrarily, a second small experimental test, involving three
healthy participants (2 females and 1 male, ageing between 25 and 29 years old with
a BMI between 17 and 23 kg/m2), was focused on the physiological response during
the physical effort. In particular, participants performed two test sessions per day, in
the morning and in the afternoon always at the same hour, for 5 consecutive days,
resulting in a total of ten test sessions. Similarly to the data collection previously
described, each session included three trials with different PA intensity levels (10
minutes for each): the Ąrst trial consisted in a sitting condition (as R level), the
second one in a squatting period (as M level), then the third one in a squatting with a
high frequency of execution (as H level). Two minutes of rest were included in the
acquisition protocol, at the end of moderate activity, to ensure the vital signs could
get back to the physiological baseline. The overall protocol lasted around 32 minutes.
During each trial, the HR values displayed in the running E4 Realtime app were used
as ground truth for the correct deĄnition of PA intensity level. In particular, the HR
values between 90 and 120 beats per minute (bpm) deĄned the moderate activity,
while those between 120 and 140 bpm indicated the intense one [113]. Moreover,
as soon as each trial terminated, participants rated their perceived exertion while
performing the PA trial using the Borg Rating of Perceived Exertion (RPE) scale
[114], where different levels of exertion are categorised into sedentary, moderate and
vigorous intensity.

2.3.2 Data Analyses

Following the analysis in both time and frequency domain of SC signals, the extraction
of meaningful features was explored. Generally, features mostly computed in time
domain are the statistical descriptive ones (e.g., signal mean value, standard deviation,
kurtosis, skewness, and variance) [109, 115]. Further metrics frequently extracted are
related to morphological alterations in the signal (e.g., the area under the curve),
along with the computation of the Ąrst derivative of the signal, considering its mean
and the mean of the negative one [116]. A few researches focused on frequency-domain
features, but since the transient characteristics of the SC signal affect mostly the
time domain, the computation of features on the Fast Fourier Transformed signal is
proposed as a promising approach. Statistical aspects such as signal magnitude area,
range, kurtosis, skewness, mean value, energy and entropy have been proposed as well.
In Table 2.8, both the time- and frequency-domain features computed are listed.

The overmentioned features were extracted from both the SC signal components,
i.e. the tonic and phasic ones. A data reduction process was applied separately for
the features computed on the two different components, for managing the dataset
collected from the experiments and to reduce its complexity. First of all, the average
of features related to the same subject and to the same physical activity, measured
over different time sessions, was computed. Then, feature values across all the subjects
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Table 2.8: Time- and frequency-domain features from SC signal

Domain Features (measurement unit)

mean (µS), standard deviation (µS), area under curve,
Time variance (µS)2, kurtosis (µS), skewness (µS),

mean derivative (µS/s), negative mean derivative (µS/s)

mean (µS/Hz), standard deviation (µS/Hz),
Frequency signal magnitude area, range (µS/Hz), kurtosis (µS/Hz),

skewness (µS/Hz), energy, entropy

were normalised by the maximum value to be included in the range [−1, 1]. Finally,
a discrepancy metric was evaluated among the value assumed by the same feature
over the two SC components, in order to understand in which component the speciĄc
feature had a highest weight and relevance. Discrepancy was deĄned as the difference
(∆) between the normalised value of the same feature F extracted from the tonic and
phasic components related to the same SC signal:

∆F = F norm
tonic − F norm

phasic (2.4)

Only the features for which ∆F ≥ 0.5, concerning the subject and physical activity
they are related to, were considered signiĄcant. After Ąnding the meaningful features
describing the response to the physical exercise in terms of SC signal, other physiological
signals were considered to recognise the perceived physical exertion.

Considering the second small dataset, a multimodal physiological signal system was
proposed, including also the HR, SC, SKT and acceleration samples. According to
[117], from each BVP signal collected, the IBI (measured in s) and the HR (measured
in bpm), both related to heart rate variability, were extracted. Since SKT and SC
data contain the greatest information content regarding the PA intensity, in terms of
skin temperature changes and sweat secretion respectively, any Ąlter was implemented,
to avoid loss of information. To remove the motion artefacts from the raw acceleration
samples due to potential loss of contact between the E4 device and the subjects’
wrist, a 4th order Butterworth bandpass Ąlter, with a low- and a high-pass cut-off
frequency of 0.5 and 1.5 Hz respectively, was applied. Then, signals were segmented
with a Ąxed-size sliding window of 12 s, with 50% overlap (6 s), from which time- and
frequency-domain features were computed to feed the ML algorithms. A total of 50
features were computed and standardised by Z-score normalisation to obtain a common
interval by scaling the signal amplitude. In particular, 8 from each acceleration axis,
7 from the IBI, 4 from the HR signal, 11 from the SKT signal, and 7 features from
the SC signal. Each time window was labelled as a 0 (Sedentary - R), 1 (Moderate -
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subjects. Discrepancies in the signal behaviour may be due to intrinsic physiological
characteristics of each subject (e.g., gender, age and sweat glands density distributed in
the different locations of the body), and to extrinsic physiological characteristics (e.g.,
level of physical training and Ątness conditions of the subject, which brings to a different
perception on the effort requested to perform the physical activity). Since these aspects
could reĆect in the computed features, they may be useful to implement customised and
subject-dependent classiĄcation algorithms, by considering user-related characteristics.
On the other hand, frequency domain analysis demonstrated signiĄcance in the
discrimination of different levels of activities (e.g., high information content at lower
frequency for medium and high intensity activity, with respect to the resting condition),
and in the association of this differences to a signal component rather than another.

When considering cross-domain data, namely the 3-axial acceleration, HR, IBI
and SKT signals, from one hand the vigorous intensity class achieved the highest
classiĄcation performance, being associated to evident differences in the signals (e.g.,
the amplitude of the acceleration data characterising the vigorous movements), with
respect to those acquired during the moderate and the sedentary activities. On the
other hand, as expected, the moderate intensity class was the most often misclassiĄed
(i.e. always lowest accuracy percentage), being an intermediate class that probably
include feature values either low and/or high, hence attributable to the sedentary and
vigorous PA intensity classes, respectively. This fact may also depend on the different
perception of PA effort, that was assessed by each subject when evaluating the Borg’s
RPE scale. As an example, a hard trained subject may feel the vigorous activity as
moderate and vice versa. For a potential real-life application of the proposed approach,
the misclassiĄcation between moderate and sedentary classes may have a great impact
on the information reliability received for the user’s self-tracking evaluation, especially
if thought for the healthcare operators’ assessment [118].

Given that in the Ąrst study some analyses were not performed according to the
purpose of the study, some of its limitations were investigated in the second study. In
particular, to assess the best ML predictors for PA intensity, cross-domain signals were
involved and, when required, Ąltered from motion artefacts. However, some limitations
still need to be assessed in future works. For example, in both cases, to validate and
generalise the proposed approaches, a wider population in terms of different physical
training and different ages should be involved in the studies, along with additional
PAs to be performed.
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Measurement of Cardiac Activity

This Chapter is focused on a set of studies on cardiac activity measurements conducted
by healthy subjects, while wearing the Empatica E4. At rest, the validation of some
commercial wearable devices collecting activity-related cardiac signals is described, by
comparison with the related gold standards. The assessment is performed in terms
of accuracy and precision (metrological characterisation is currently debatable, since
unavailable or not reported with rigorous validations of commercial wearable devices
from the manufacturers) to underline the importance of these metrological Ągures for
a better device selection depending on the target application, as reported in [119, 120].
A further analysis investigated the factors interfering the Photoplethysmographic
sensor readings and consequently the quality of data acquired and processed, such
as motion artefacts in [117] and skin-device contact pressure in [121]. Following this
analysis at rest, a new signal processing technique and an approach to reduce the
complexity of current detection processes are proposed as in [8], for data collected
during acoustic stimuli and after physical exertion, to improve the ML classiĄcation
performance for external stimuli recognition systems.

To examine the feasibility of the proposed approaches, data analysis was performed
Ąrst in MATLAB environment, then, when required, by using the WEKA tool for the
ML performance evaluation.

3.1 Case study 4: Assessment of wearable devices

performance

The daily measurement and continuous monitoring of cardiac data plays a pivotal role
in many Ąelds, from hospital care to sport applications, through robotics and affective
computing, including the emotion recognition, just to cite some [122]. According to the
target application, multiple devices (e.g., ECG, pulse-oximeter, PPG sensors largely
widespread in wearable devices, e.g., smartwatches, chest-strap monitors, automatic
blood pressure meters based on oscillometric method, ballistocardiograms) can be used
to measure a subject’s heart rate. Similarly, multiple BP measurement methods exist,
namely cuff-based and cuff-less ones. The former category includes, among others, the
auscultatory and oscillometric methods, both requiring a sphygmomanometer cuff. In
the case of auscultatory method, a skilled operator takes the BP values using a stetho-
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scope and jointly listening for the Korotkoff sounds [123]. In oscillometric methods, it
is possible to relate intra-arterial BP to the oscillations of a sphygmomanometer cuff
pressure, recorded during its gradual deĆation [124]. Cuff-less measurement of BP has
been made possible by exploiting several techniques, among which the Pulse Transit
Time (PTT - time interval in which a BP wave, created by a heartbeat, travels between
two points along an artery, [125]) obtained from a pulse wave measured at the wrist.
Similarly, the Pulse Wave Velocity (PWV) - based technique, which considers the
velocity of the BP wave propagating in the vessels [126]. Both the techniques involv-
ing two measurement sites, require an electrocardiogram; BP readings are provided
following a proper calibration (by which a user’s physiological baseline is established,
considering her/his physiological characteristics, e.g. arterial walls rigidity) performed
with a validated BP measurement instrument equipped with an inĆatable cuff and,
then, using the calibration results to properly conĄgure the wearable device. Among
the approaches to detect the BP changes from cuff-less wrist-worn devices, along
with the HR values, the photoplethysmography has been widely investigated in last
decades. A PPG sensor, composed by one or more Light Emitting Diode (LED) and
a photodetector, records the pulsatile cardiovascular signal driven by the heartbeat
[127]. The HR pulsations are associated to the arterial pressure pulse, then if the PPG
signals are integrated with other modalities, such as ECG, it is possible to obtain
features like PWV, PTT and Pulse Arrival Time (PAT) for BP measurement.

Although the ECG and the sphygmomanometer are both considered to be the most
reliable devices for HR and BP, respectively, (not considering invasive techniques,
which however require expert operators as well as specialised healthcare settings),
they are not comfortable for use during the daily living activities, especially for long-
term monitoring (e.g., an arm cuff inĆated from an external source). On the other
hand, the reliability of more comfortable commercial wrist-worn devices requires to be
veriĄed. Unfortunately, the wearable devices metrological characterisation is currently
debatable because information are often unavailable or not reported with rigorous
validations from the manufacturers. For this reason, the aim of the studies described
in the following section is to extensively evaluate the metrological performance of
two cardiac activity-related data (i.e. HR and BP) acquisition methodologies and
devices. As such, different consumer technologies devices are simultaneously employed
with respect to the gold standard instruments (i.e. ECG and sphygmomanometer,
respectively) in order to validate them from a metrological point of view, following a
well-deĄned testing procedure. Standard analyses for assessing measurement accuracy
and precision, which are of particular interest in remote physiological monitoring
applications, are used.

It is beyond doubt that the hardware characteristics of the used device inĆuence its
performance and the quality of measurement results [59]; also the correct positioning of
the sensing device is important to collect reliable data, along with the band tightness
that obviously inĆuences the measurement results, since sensors are susceptible to
the contact pressure with skin; as an example, when wearing a smartwatch, these
factors affect particularly the PPG sensor, for which the measured signal depends on
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the quantity and quality of light received by the photodetector after being emitted
by the LED and having crossed or been reĆected by skin tissues. However, to the
best of the available knowledge, concerning the consumer wearable devices, neither
manufacturers provide speciĄc indications on the optimal band tightening level value
that should be achieved in order to maximise the signal-to-noise ratio (SNR), while
minimising the environmental light that can reach the photodetector, and maximising
the capture of the light reĆected/transmitted by the skin, nor data related to this
type of investigation are available in literature. Therefore, a prototype of a wrist-worn
device including both a PPG sensor and a load cell was realised in order to quantify
the effect of different band tightening levels on the recorded signal, evaluating in
particular its variability.

All the following tests were conducted according to the principles outlined by the
World Medical Association (WMA) in the Declaration of Helsinki - Ethical Principles
for Medical Research Involving Human Subjects [128].

3.1.1 Acquisition protocols

In the Ąrst study, a test population of 20 healthy subjects (12 females, 8 males),
aged (27.5 ± 6.1) years (mean ± standard deviation) has been enrolled. HR data
were acquired through the several devices (see Table 3.1 for technical speciĄcations).
Additionally, data from pulse-oximeter, automatic BP meter and palpatory method
were manually recorded.

The overall dataset was acquired at rest, with subjects remaining as relaxed and
still as possible in order to minimise the inĆuence of movement artefacts [129]. Four
repeated acquisitions were performed on each subject, for a total of 28 recordings per
each device according to the measurement setup shown in Figure 3.1.

All the used acquisition devices were positioned before starting the tests in the
following positions:

• Empatica E4 smartband was worn on the right wrist, while Polar Vantage V2
on the left one. Devices were connected to the E4 RealTime and Polar Flow
applications, respectively, running on a smartphone;

• Nonin 9560 Onyx II pulse-oximeter was placed on the right index Ąnger;

• cuff of TD-3128 automatic BP meter was positioned on the left arm (following
the general recommendations for BP measurements according to the oscillometric
method [130]);

• three electrodes for the acquisition of the ECG I lead were positioned according
to the Einthoven’s triangle (two electrodes on the shoulders, the third on the
iliac crest - being neutral from an electrical point of view). The patient cable
was connected to the DAQ system;

• chest-strap monitor was worn just below the sternum and made snug enough to
ensure a good skin contact.
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Table 3.1: Acquisition devices and related technical speciĄcations (Fs: sampling fre-
quency)

Acquisition Data Technical Additional
device acquired specifications notes

PowerLab
4/25T (DAQ
board)

ECG
signal

4 digital inputs •ADInstruments MLA2540.
Accuracy: > 0.1% •5 Lead Shielded Bio Amp Cable
Set Fs: 1 kHz (reference device).
Set full scale: 5 mV
Data format: .txt

Empatica E4
(smartband)

PPG
signal

Fs: 64 Hz •HR derived from BVP signal.
Resolution: 0.9 nW/Digit •2 red LEDs for motion artefacts
HR storage Fs: 1 Hz removal.
Data format: .csv

Polar Vantage
V2
(smartwatch)

PPG
signal

Measurement range: [15,24] bpm •HR derived from BVP signal.
HR storage Fs: 1 Hz
Data format: .csv

Garmin
HRM-Swim
(chest-strap
monitor)

HR
signal

HR storage Fs: 1 Hz •Not standalone device.
Data format: .Ąt •Combined with Garmin

Venu Sq watch.

Nonin 9560
Onyx II (pulse-
oximeter)

HR
single
value

LED Red (660 nm) •Manually recorded data.
LED InfraRed (910 nm)
Measurement range: [20,250] bpm
Precision: ± 3%

TD-3128 (BP
automatic
meter)

HR
single
value

Measurement range: [40,119] bpm •Manually recorded data.
Precision: ± 4%

Firstly, the ECG acquisition was started, as well as the beginning of the activity was
set on wearable devices in order to start data recording. The measurement through
the BP meter was launched and the operator started simultaneously to count pulses by
palpating the carotid artery (for a time interval of 30 s - then the obtained value was
doubled to provide HR in bpm). When the oscillometric-based method measurement
was completed, the resulting value was annotated, along with the pulsations counted
by palpatory method and the HR value readable on the pulse-oximeter display. The
remaining data, namely those acquired by the two smartwatches, the chest-strap
and the DAQ board acquiring ECG, were saved automatically. In order to obtain a
temporal tag for the end of each acquisition, the Empatica E4’s mark event button
was pushed by the subject at the end of the measurement performed by the automatic
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BP meter. In the second study, an automatic sphygmomanometer, the AND A&D
Medical UA-767 plus BT-Ci [131], has been used as reference device to measure BP
by an oscillometric technique. As summarised in Table 3.2, three smartwatches have
been tested, namely the Samsung Galaxy Watch3, Asus VivoWatch SP and Omron
HeartGuide).

Table 3.2: Technical speciĄcations of the BP acquisition devices and modalities (NA
= not available)

Device
Acquisition

Modality

Accuracy

[mmHg]
Range

[mmHg]
Medical

Device

A&D Medical
UA-767
plus BT-Ci [131]

Oscillometric
method

±3 BP: [20;280]
Yes
(93/42/EEC)

Samsung Galaxy
Watch3 [132]

PPG sensor
and electrode

NA NA No

Asus
VivoWatch SP
(HC-A05) [133]

PPG sensor
and electrode

NA NA No

Omron HeartGuide
HEM-6411T-MAE
[134]

Oscillometric
method

±3
SBP: [60;230]
DBP: [40;160]

Yes
(ISO 81060-2:2013)

In this second study, 19 volunteer healthy subjects (10 males, 9 females), aged
between 18 and 35 years with weight (70.84 ± 13.75) kg and height (173.74 ± 10.00)
cm (mean ± standard deviation) were recruited. As shown in Figure 3.2, participants
were sitting on a chair with their arms resting on the table and legs not crossed with
both feet on the Ćoor, and instructed to avoid speaking during data collection.

Environmental conditions (e.g., room temperature and ambient light) were main-
tained as much stable as possible to reduce their inĆuence on the measurements. Before
starting the BP data acquisition, the calibration procedure for each device was properly
conducted following the related manufacturer’s instructions. Also recommendations
provided by the manufacturer in the datasheet were considered to setup the test
protocols.

According to the Association for the Advancement of Medical Instrumentation
(AAMI)/ESH/ISO universal standard for the validation of BP measuring devices, the
test methodology included two reference BP measurements, one preceding and one
following the device BP acquisition, for each device under test [135]. After 5 minutes
of subject’s rest, the acquisition protocol started with an initial measurement by using
the automatic sphygmomanometer worn on the left arm, along with the calibration
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participants were required to avoid hand and/or arm movements to reduce the motion
artefacts potentially compromising the measurements. Moreover, data collected by
using both the PPG sensor and the load cell were graphically displayed with the
Telemetry software to have a preliminary signals visual inspection. Indeed, data from
the load cell helped to verify that the reached tightening level was comparable, over
all the subjects, irrespective of the personal wrist circumference.

3.1.2 Data Analyses

MATLAB environment was used to process the collected values and perform the
statistical analysis in each study presented in the previous section. Before the processing
operations, data collected in the Ąrst study, were synchronised using the timestamps
provided by the different devices (namely the two smartwatches, the chest-strap
monitor and the DAQ board acquiring ECG). Then, data were analysed in 30-s long
portions, ending with the tag provided by Empatica E4. While wearables directly
supply HR data, ECG signal, acquired through the PowerLab 4/25 (i.e. reference
instrument), needs to be processed to obtain the tachogram, from which HR values can
be extracted. In particular, the reference Pan-Tompkins algorithm [137] was applied
to detect R peaks on the ECG signal; then, RR intervals (RRs) were computed and
tachogram derived. Average HR value was computed on the tachogram related to
the 30 s before the tag. Likewise the mean HR was computed from the 30 s-portions
of the signals acquired by means of wearable devices (i.e. the 2 smartwatches and
the chest-strap monitor). This way, all the computed HR values are related to the
same temporal span over which oscillometric-based method, palpatory method and
pulse-oximeter provided their outcomes, so that a comparison can be properly made.

In the second study, the reference SBP and DBP values were computed by de-
termining the average of the two reference measurements preceding and following
each smartwatch recording. If the two SBP or DBP reference measurements differed
by more than 5 mmHg [138], the recording session was discarded and repeated, up
to two additional attempts. In order to identify the best device for blood pressure
measurements among the considered wearables, the comparison was performed by
following both the British Society of Hypertension (BHS) [138] protocol and the AAMI
standard [139]. According to these criteria, a device can be recommended if it receives
at least grade B (under the BHS protocol, the highest agreement with the reference
device corresponds to grade A, while the lowest one corresponds to grade D) for both
systolic and diastolic pressures values, and if the absolute mean difference between
standard and under-test device measurement is < 5 mmHg, or the standard deviation
is < 8 mmHg, according to AAMI.

Then, in both these overmentioned studies, the deviations between tested methods
and the reference instrument (i.e. ECG and sphygnomanometer, for HR and BP
respectively) were evaluated; in particular, deviations were computed as reported in
Equation 3.1:
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deviation = datatestedmethod − dataref.device[bpm] (3.1)

The obtained deviations were at Ąrst analysed in terms of their distribution: his-
togram was plotted with mean and standard deviation values, i.e. the bias µ, and
the 95% conĄdence interval (CI95%). Moreover, the Bland-Altman plots [140] were
employed to visualise the measurement accuracy and precision. Finally, the correlation
between the data resulting from each different acquisition device and the reference one
was assessed with a scatter plot and related Ątting line (i.e. y = m · x + q), deriving
the Pearson’s coefficient (ρ) to estimate the strength of the correlation. A ρ > 0.70
was considered index of a strong correlation, based on literature Ąndings [141].

Regarding the third study, both PPG and load-cell signals gathered with the DYI
wrist-worn device were resampled at 1 kHz, by using the modiĄed Akima piecewise
cubic Hermite interpolation. Then, the signal peaks were searched for the computation
of HR from PPG signal. Once the HR series were obtained, the statistical quantities
were derived, namely the mean (µ), the standard deviation (σ) and the coefficient of
variation (cv, also known as relative standard deviation) computed as follows:

cv = σ/µ (3.2)

Same features were extracted from data collected through the load cell, to verify
that the band tightening system was effective and that the contact pressure levels
among different subjects were compatible, as well as repeatable on the same subject.
Histograms were plotted to describe the distribution of the measurement results; the
number of bins (K ) was computed by means of the Sturges’ rule formula, as follows:

K = 1 +
10

3
log10(N), (3.3)

where N is the numerosity of the sample.

3.1.3 Experimental results

For what concerns the evaluation of wearable devices performance in measuring the HR
data, an example of the distribution of deviations is shown in Figure 3.5(a) (related to
Polar Vantage V2 smartwatch); the black vertical line reported in the graph indicates
the mean deviation (i.e. bias µ: -1 bpm) and the grey dashed lines identify the 95%
conĄdence interval CI95% deĄned as µ ± 2·σ, where σ is the standard deviation of
the population of deviations obtained from the comparison among devices. For the
same smartwatch, in Figure 3.5(b) an example of Bland-Altman plot is reported;
as expected, the bias coincides with the mean of the deviation value obtained from
the histogram describing the distribution of deviations. Moreover, the mean of the
deviation does not present any trend if HR varies within a CI95% of [-10, 7] bpm.

The results from the deviations analysis related to HR measurements performed by
all the tested methods with respect to the reference ECG are summarised in Table 3.3.
It is worthy to underline that the mean of the deviation (i.e. bias, µ), can be obtained
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(a) (b)

Figure 3.5: Distribution of deviations (a) and Bland-Altman plot (b) related to HR
measurement (Polar Vantage V2). µ: mean of the deviation; σ: standard
deviation of the deviations.

Table 3.3: HR deviations analysis between tested methods and reference (ECG): mean
of the deviation (µ), standard deviation of the deviations (σ) and 95%
conĄdence interval (CI95%)

Tested methods µ [bpm] σ [bpm] CI95% [bpm]
Empatica E4 1 4 [8, 10]

Polar Vantage V2 -1 4 [-10, 7]
Garmin HRM-Swim 0 4 [-8, 8]
Nonin 9560 Onyx II 0 4 [-7, 8]

TD-3128 3 12 [-21, 26]
Palpatory method -1 6 [-12, 10]

both by the deviations distribution in a histogram and the Bland-Altman plot, as
already mentioned for the examples related to Polar smartwatch device. According to
the results obtained, the Garmin chest-strap results to be the most accurate device,
with a bias of approximately 0 bpm (i.e. null mean deviation); similarly, the pulse-
oximeter (Nonin 9560 Onyx II), with a bias of approximately 0 bpm, that turns also to
be the most precise instrument, with the lowest standard deviation and the smallest
CI95%, of 4 bpm and [-7, 8] bpm respectively, among the others. The chest-strap
appears more accurate than smartwatches (both Empatica and Polar models), which is
in line with what it is reported in literature [142]. The sphygmomanometer TD-3128,
working according to the oscillometric-based method, is the least accurate device, even
if the mean deviation is still acceptable (3 bpm); however, its measurements result
to be very dispersed (σ = 12 bpm and CI95% = [-21, 26] bpm). If these results are
compared to the device technical speciĄcations, some discrepancies can be underlined;
in fact, the pulse oximeter should have a precision of ± 3% of the measured value,
which in the tested HR range should be approximately 2 bpm on average (considering
HR = 70 bpm, the mean value measured in the tests, see Figure 3.5 (b)), versus the
obtained σ = 4 bpm (hence higher deviation, meaning lower precision than that one
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reported). The discrepancy results to be even higher for the BP automatic meter, with
an assessed σ = 12 bpm versus the 3 bpm on average corresponding to the 4% of the
reading reported in the datasheet. Regarding the correlation analysis, an example of
the plot depicting HR values measured by a tested instrument (in particular, Garmin
HRM-Swim chest-strap) compared to the reference ones is reported in Figure 3.6. It
is possible to notice that data are well distributed along the Ątting line, with the
exception of few outliers, which are quite far from the line. Results of correlation

Figure 3.6: Correlation between HR measured by Garmin HRM-Swim chest-strap
monitor and reference instrument (ECG).

analysis in terms of Ątting line and Pearson’s coefficient are reported in Table 3.4,
for all the tested devices. It is possible to observe that all the measurement methods,
with the exception of oscillometric-based one, show a strong correlation with respect
to ECG (i.e. reference). On the other hand, pulse-oximeter provides the strongest
correlation with respect to the reference, underlining the high reliability of such a
device.

Table 3.4: Correlation between tested methods and reference (ECG): m and b coeffi-
cients of the Ątting line y = mx + b, where x and y are HR measured by
ECG and the tested methods, respectively; ρ, Pearson’s coefficient

Tested methods m b ρ
Empatica (smartband) E4 1 6 0.90

Polar Vantage V2 (smartwatch) 1 -4 0.92
Garmin HRM-Swim (chest-strap monitor) 1 5 0.90

Nonin 9560 Onyx II (pulse-oximeter) 1 3 0.93
TD-3128 (BP automatic meter) 1 32 0.44

Palpatory method 1 13 0.82
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On the other hand, the wearable acquisition devices were evaluated according to
the recommendation criteria of the AAMI standard and the BHS protocols. The
distribution analysis between under-test device and reference measurements, in terms
of bias and standard deviation, along with the Bland-Altman plot and the correlation
analysis was performed. An example of distribution analysis is reported in Figure 3.7
for the Samsung Galaxy Watch. The bias is the black solid line, whereas the dotted
grey lines indicate the conĄdence interval limits.

Figure 3.7: Distribution of deviations values for Samsung Galaxy Watch: systolic
(SBP) and diastolic (DBP) blood pressure data in mmHg. µ: mean of the
deviation; σ: standard deviation of the deviations.

According to the AAMI and BHS recommendation criteria, among the tested
devices, the Samsung Galaxy Watch is the unique recommendable smartwatch for BP
monitoring (Table 3.5). In fact, Omron HeartGuide met both the requirements only
for DBP recordings, while Asus VivoWatch received grade D for both SBP and DBP
values.

Besides the distribution of deviations analysis, the agreement between the sphygmo-
manometer and the tested smartwatches was assessed. In Table 3.6, the inter-subjects
results related to the bias and the CI95% are reported for all the considered smart-
watches. The desired values are represented by null bias and smallest CI95%. While
the Samsung Galaxy Watch exhibits the best performance, with low values of both
bias and CI95% (the combination of values closest to the desired performance, thus
resulting the most precise smartwatch among those tested), and the Omron HeartGuide
slightly higher, the Asus VivoWatch shows an evident increase of both the absolute
value of the bias (µSBP = -14.89 mmHg; µDBP = -10.44 mmHg) and the interval of
agreement (CI95%SBP = [-40.71, 10.92] mmHg; CI95%DBP = [-31.70, 10.91] mmHg),
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Table 3.5: Validation of BP acquisition devices, according to the recommendation
criteria of the AAMI and the BHS

Criteria

Tested device
AAMI
(SBP/DBP)

BHS grade
(SBP/DBP)

Recommendation

Samsung
Galaxy Watch3

Passed/Passed A/A Yes

Asus
ViVoWatch SP

Failed/Passed D/D Not

Omron
HeartGuide

Passed/Passed D/B Not

resulting in the least accurate device with worst data agreement when compared to
the reference device.

Table 3.6: Distribution of SBP and DBP deviations between tested smartwatches and
reference device, in terms of bias (µ) and 95% conĄdence interval (CI95%)

SBP DBP

Device
Bias
[mmHg]

CI95%
[mmHg]

Bias
[mmHg]

CI95%
[mmHg]

Samsung
Galaxy Watch3

0.60 [-9.70, 10.91] 1.44 [-4.68, 7.57]

Asus
VivoWatch SP

-14.89 [-40.71, 10.92] -10.44 [-31.70, 10.91]

Omron
HeartGuide

1.73 [-21.68, 25.15] 0.73 [-15.72, 17.19]

As an example, Figure 3.8 shows the BlandŰAltman plots, which evaluate both the
SBP and DBP values discrepancies between data from automatic sphygmomanometer
and Asus smartwatch, and the stability across the different values of the blood pressure.
The agreement limits are deĄned by the bias ±1.96·σ of the quantiĄed differences.

According to the agreement analysis, the Samsung Galaxy Watch is the most
accurate device for the SBP (µDBP = 0.60 mmHg), while the Omron HeartGuide for
the DBP (µDBP = 0.73 mmHg).

Regarding the correlation analysis, for both SBP and DBP values, in Table 3.7,
the results underline a strong positive relationship (ρ > 0.90; ρSBP = 0.93, ρDBP =
0.97) between the Samsung Galaxy Watch and the automatic sphygmomanometer, a
moderate relationship for the Omron HeartGuide smartwatch (as shown in Figure 3.9)
and a weak relationship (ρ < 0.50) for the Asus VivoWatch.

Concerning the last study about the metrological evaluation of a wrist-worn device
at different band tightening levels obtained from the load cell, it is possible to notice
that the same band tightening level resulted in different tightening force values. This
is probably due to the different subjects’ wrist circumference and morphology (i.e.
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Figure 3.8: Bland-Altman plots for Asus VivoWatch smartwatch: systolic (SBP),
and diastolic (DBP) blood pressure data in mmHg. The black solid line
indicates the bias µ, while the dotted grey lines indicate the conĄdence
interval (µ ±1.96·σ).

Table 3.7: Fitting line y = mx+ q, where x : data measured with the sphygmomanome-
ter; y: data acquired with the tested smartwatches; ρ Pearson’s correlation
coefficient

SBP DBP

Tested device
y = mx + q

[mmHg]
ρ

y = mx + q
[mmHg]

ρ

Samsung
Galaxy Watch3

y = 0.92x+9.62 0.93 y = 0.88x+9.72 0.97

Asus
VivoWatch SP

y = 0.29x+65.64 0.32 y = 0.38x+34.17 0.46

Omron
HeartGuide

y = 0.57x+50.72 0.66 y = 0.66x+25.91 0.78

physiological diversity), which means a different contact condition between the band,
consequently the load cell, and the skin. However, considering the whole test population
along with all the acquired force signals, the variability (quantiĄed with the mean µ

and the standard deviation, σ) among the subjects is quite low (cv < 1%, see Table
3.8).

On the other hand, analysing the variability within the same subject (i.e. intra-
subject variability), higher standard deviation values are reported for some subjects
with respect to others (e.g., subject no. 5). However, considering all the tightening
levels, it is possible to observe a homogeneous increasing trend (from loose to tight
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Figure 3.9: Correlation between blood pressure systolic (SBP) and diastolic (DBP) data
in mmHg, acquired by Omron HeartGuide and the sphygmomanometer.

Table 3.8: Inter-subject variability related to tightening force values obtained from the
load cell, for the three different tightening levels (i.e. loose, medium and
tight)

Tightening
Tightening force

level µ [N] σ [N] cv [%]

Loose 0.49 0.15 0.30
Medium 1.07 0.17 0.16
Tight 2.51 0.62 0.24

level) for all the subjects, even if different absolute values of force are reported, as it
can be seen in Figure 3.10.

The force distributions, along with the corresponding HR distributions, related to
the data acquired with different band tightening levels, are both reported in Figure
3.11.

As it is evident, the force distribution is unimodal (not normal), with a positive skew
(i.e. the tail is on the right), whereas the distributions of HR values are approximately
Gaussian-like. Regarding the inter-subject variability of PPG results, the values
obtained with the three different band tightening levels are compatible (see Table 3.9),
considering that HR parameter shows an intrinsic physiological variability, irrespective
of the band tightness.

However, it is worthy to underline that the device wearing conditions undoubtedly
inĆuence the quality of the acquired data and, consequently, the reliability of the
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(a) (b)

(c)

Figure 3.10: Tightening force intervals (mean±standard deviation) measured for loose
(a), medium (b) and tight (c) levels, for the whole population.

Table 3.9: Inter-subject variability related to HR obtained from PPG sensor, with the
three different tightening levels (i.e. loose, medium and tight)

Tightening
HR

level µ [bpm] σ [bpm] cv [%]

Loose 81 15 18
Medium 80 13 16
Tight 81 14 17

measurement results. In particular, the measured tightening force is different depending
on the wearing conditions of the device. It is possible to see that the mean value
increases with tightening level, as expected (see Table 3.8 and Figure 3.10). However,
the coefficient of variation shows a trend not coherent with the tightening level,
suggesting that it is possible to obtain more stable results with a higher tightening
level of the band. The lowest variation is obtainable with the medium tightening
level (corresponding to a tightening of 0.5 cm with respect to the subject’s wrist
circumference).

3.1.4 Discussion and conclusions

The Ąrst study aimed at comparing the HR values acquired through several acquisition
methodologies (i.e. smartwatch, chest-strap, BP automatic meter, pulse-oximeter
and palpatory method) with respect to the gold standard instrument (i.e. ECG).
Results show that different technologies provide diverse measurement accuracy and
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strap (Garmin HRM-Swim) turns to be the most accurate one (bias, µ = 0 bpm).
Contrarily, the oscillometric-based method (i.e. BP automatic meter) results to be
quite inaccurate (bias = 3 bpm, still acceptable but underestimated in the device
technical speciĄcations) and not precise (σ = 12 bpm), despite being classiĄed as a
medical device. A very strong correlation (ρ > 0.70) is proved for almost all the tested
devices, indicating that the devices outcomes agree with the reference ones, except for
BP automatic meter (ρ = 0.44).

For what concern the BP measurements from wrist-worn devices, Ąndings conĄrm
that also blood pressure can be monitored by using a PPG sensor. In this case, the
sensor needs to be used in conjunction with an electrode for the initial setting and
calibration of the data processing method, based on the acquisition of the subject’s
electrical ECG signal. BP values recorded by wearing the Samsung Galaxy Watch3
are linearly correlated to the values collected by the reference device (i.e. automatic
sphygmomanometer), for both SBP and DBP (ρSBP = 0.93 and ρDBP = 0.97). Indeed,
the same wearable device results to be the most accurate (µSBP = 0.60 mmHg) and
precise (CI95%SBP = [-9.70, 10.91] mmHg; CI95%DBP = [-4.68, 7.57] mmHg) among
the three tested ones; whereas the Asus VivoWatch SP results in the least accurate
device, showing the lowest data agreement and correlation when compared to the
reference device. The clear advantage is to provide accurate and reliable HR and BP
readings to the user, with higher comfort (especially for BP recordings thanks to the
cuff-less methods), leading to a high adherence to self-recording sessions for control,
hence increasing the user’s awareness and commitment on cardiac-related health.
Furthermore, the so-called "white-coat effect" may be reduced through wearable-based
acquisition.

Later on, the analysis was moved on to whether and how different tightening levels
of a wrist-worn band may affect the variability of collected data (from PPG and load
cell sensors) and, hence, the reliability of the measurements. Over all the subjects, the
results show that the different tightening levels produce an increasing tightening force
when passing from loose to tight through medium level. Nevertheless, the coefficient
of variation is minimum (i.e. cv = 0.16 %) when the band tightening level is medium,
according also to the subject’s comfort conditions in commonly wearing the DIY wrist-
worn wearable device; tight level sometimes causes discomfort, particularly in those
subjects having a higher wrist circumference (i.e. > 17 cm). According to the results,
the load cell could be avoided and replaced with a commercial watch wristband, used
at different predeĄned tightening levels, starting from the subject’s wrist circumference
(i.e. loose level). Such replacement can be performed after a dedicated calibration
of the different tightening levels on a wide test population, properly including the
physiological variability in wrist morphology and circumference also to collect data
better fulĄlling the normality condition.

In the future, HR and BP reliability from wearables might be performed recruiting
a larger and more heterogeneous cohort of subjects to generalise the analysis results
and better fulĄl the Gaussian data distribution, properly including the physiological
variability depending on the skin morphology (e.g., different pigmentation) and age
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(two important factors changing the absorption of PPG light). Moreover, since the
main usage limitation is the inĆuence of body posture and motion artefacts on the
device reliability, future validation studies should investigate the wearable devices
with a speciĄc protocol to assess the stability of data acquired over long-term period,
also by testing the performance of measuring devices when subject’s physiological
parameters are altered (e.g., after physical effort). Furthermore, it would be important
to deĄne guidelines on how to choose the acquisition device depending on the Ąnal
application, making users (healthcare personnel but also common citizens) aware of the
real performances, hence able to properly interpret the results, without drawing wrong
conclusions. However, further interesting investigations can be conducted focusing
on the optimal band tightening of wearables in real life, when the subjects perform
activities of daily living.
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3.2 Case study 5: Assessment of activity-related cardiac

signals

As mentioned in the Case study 3, the PPG sensor is sensitive to several disturbance
factors, including the motion disturbance. As a result, the use of a proper artefact
correction method is of paramount importance. In the literature, three main strategies
can be identiĄed for this purpose: deletion, interpolation (with different methods, e.g.,
nearest neighbours, cubic spline or piecewise cubic Hermite [143, 144]), or Ąltering
techniques. The correction of faulty inter-beat-intervals values can be performed by
considering the surrounding IBIs over short windows [145]. At present, there is no
consensus on the best way to edit artefacts, but in any case interpolation should
be preferred to deletion, in order to avoid spurious frequency components linked to
spikes, causing an increase of the high frequency (HF) power and a decrease of the
low frequency (LF) one, causing an erroneous evaluation of sympathetic and vagal
activities described by the two components, respectively.

The motivation of the studies described in the following subsections is to improve
the performance of emotion recognition systems in which classiĄcation is performed
by exploiting features extracted from HRV analysis. Therefore, this work proposes a
new method for artefact correction in IBI time series, based on replacing the missing
beats with the mean value of those previous and next to the data gap. In particular,
IBI signals from the PPG sensor of Empatica E4 have been considered during tests
eliciting emotions through audio stimuli chosen from the IADS-2 database. The
effect of the artefact correction method on the results has been then evaluated by
comparison to the artefact correction approach implemented in the Kubios toolbox
[146]. The presence/absence of stimuli has been detected through the Support Vector
Machine (SVM) classiĄer, considering as input features those identiĄed with statistically
signiĄcant differences through a preliminary Student’s t-test.

Alternatively, when the IBI signal is not available among the data collected through
the used device, the IBI signals may be derived from the PPG signal. This is the case
of Empatica E4 device, that is able to generate the BVP signal as a primary output
from the PPG sensor. Reduced Blood Volume Amplitude (BVA) in the BVP signal,
i.e. vasoconstriction, along with limited HRV, increase HR, increase blood pressure
and increase of energy expenditure are the physiological variation as consequence of
intense physical exertion (that can be thought as a physical stress). Within a work
context (e.g., industry), IoT-enabled wearable devices can easily monitor the intensity
of physical exertion, and potentially suggest a correct level of performing activity
(and, therefore, energy expenditure). This advice could improve the general status
of a subject, since it has been demonstrated that interventions at level of physical
activity can determine changes not only in physical but also in mental well-being.
Therefore, it would be useful to recognise the fatigue-related stress conditions from a
calm state, by starting from a few simple physiological parameters derived from BVP
signals measured through an IoT wearable device.
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event-marker button of the wristband, in correspondence of the beginning and the
end of each acoustic stimulus, in order to allow real-time annotations of the recording
sessions.

In the second study, BVP data were acquired on a test population of 4 healthy
volunteers (2 females and 2 males), for a total of 20 recordings (in particular, each of
them repeated the test 3 or more times). The involved healthy subjects aged between
20 and 59 years, with a BMI between 21.07 and 25.25 kg/m2. Before the test execution,
all the subjects signed an informed consent, describing the study objectives and test
modalities. The initial phase of each acquisition is conducted at a rest condition
lasting 15 minutes (t0, t1) while the subjects lay on a bed with Empatica E4 on the
dominant wrist. Then, subjects perform 5 minutes (t1, t2) of intense physical effort
(e.g., running stairs or free body exercises), without wearing the Empatica device.
The exercise to execute was selected from the guidelines provided by Mayo Clinic
[112], depending on the intensity of the exertion subjectively perceived by each study
participant. As soon as the exercise terminates, the subjects are asked to lay down for
a 10-minute recording (t2, t3), again while wearing the Empatica E4 on the dominant
wrist. Hence, each recording included two rest periods, before and after the physical
effort (i.e. stimulus absence/presence, respectively). Furthermore, it is worthy to
underline that only 10 minutes before the physical exertion were considered for the
analysis, in order to have two comparable intervals of the same duration before and
after the exertion.

3.2.2 Data Analyses

For the Ąrst study, only IBI signals gathered with Empatica E4 were considered. They
consist in two columns of data, the former reporting the time instants (in seconds, s)
of the sampled data, the latter representing the values of the recorded time separation
(in seconds, s) from the previous beat (i.e. RR interval). However, the generated
undisclosed tachogram (i.e. the succession of consecutive RR intervals) is not complete
due to the artifact avoidance algorithm embedded in Empatica E4 that enables solely
the registration of the IBIs obtained from a noise-free PPG signal, by exploiting
data from accelerometer to detect motion disturbances. Discarded data cannot be
recovered in any way. Hence, when data are corrupted by motion noise, samples are
not reported in the .csv Ąle; therefore, a proper algorithm for artefact concealment
is needed, in order to be able to perform a reliable HRV analysis without spurious
frequency components introduced by missing beats.

In order to avoid spikes that would introduce spurious frequency components, two
different correction methods were considered in the present study: the interpolation
method implemented within Kubios tool, and a new method proposed. The former
(referred as ŞKubios MethodŤ) corrects the detected abnormal beats with a linear/cubic
spline interpolation, considering a time-varying T threshold computed from the dis-
tribution of consecutive IBIs. This threshold can be selected from the very low, low,
medium, strong, very strong or customised options, depending on the settings chosen
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by the operator. In this study, a medium threshold equal to 0.25 s was selected. On
the other side, the algorithm proposed (referred as ŞProposed MethodŤ in our study
[117]) consists in the following steps:

1. detection of missing beats, T = 2 · σ;

2. computation of the corrected beat, RRi = RRi−1+RRi+1

2 ;

3. reconstruction of the corrected tachogram

where σ is the deviation between consecutive sampling time intervals. Correction of
more than three consecutive beats was rarely performed to avoid signiĄcant artiĄcial
distortion of the signal.

The signals resulting from both the analyses were assessed in terms of HRV through
the Kubios toolbox. Obviously, when considering signals pre-processed with the
Proposed Method, no further beat corrections were performed within Kubios toolbox.
Concerning the HRV analysis, the parameters listed in Table 3.10 were considered.
Then, the two artefact correction methods were compared in terms of deviations
(considering their mean value and related standard deviation, with a coverage factor,
k, equal to 2) and their distributions.

A preliminary investigation of the differences in HRV analysis parameters with/without
an acoustic stimulus was carried out through the Student’s t-test (5% signiĄcance level).
Two sample populations were realised: one with the 5-minute signals before listening to
the stimuli (t0, t1), the other with the 5-minute signals, including both during and after
listening to the stimuli (t1, t3). The statistical analysis was performed on the HRV
parameters computed by means of Kubios. Looking at the results obtained with the
t-test, the parameters more sensitive to stimuli were identiĄed; then, those reporting
statistically signiĄcant differences between presence/absence of stimuli were used as
input variables for a ML analysis. In particular, the SVM classiĄer was considered,
since it is previously reported to have the best performance for HRV analysis [147].
To deĄne the class identity of the proposed features, the classiĄcation was performed
in WEKA toolbox. Regarding the testing approach used to assess the classiĄcation
system, the 10-fold cross validation was selected. Finally, the performance of the two
artefact correction methods was evaluated in terms of the ability of classifying the
presence/absence of a stimulus; since the classiĄcation accuracy seems to be higher
for arousal than for valence dimension of emotional state, only arousal was considered.
Therefore, the classiĄcation was of binary type: presence of stimulus or not. The
classiĄcation performance was evaluated in terms of accuracy, F-measure, sensitivity
and precision.

An alternative is represented by the possibility to directly consider the raw BVP
signals collected through the PPG sensor embedded in Empatica E4. In this case, a
pre-processing phase to obtain the IBI is needed. The two main steps are shown in
Figure 3.13.

Firstly, peaks are identiĄed through an algorithm to Ąnd the local maxima of BVP
pulses and considering the related information content. Secondly, the RR intervals (i.e.
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Table 3.10: Features extracted from HRV signals in different domains

Domain Features (measurement unit)

mean (RRmean, ms), standard deviation (RRstd, ms) of IBIs;
mean (HRmean, bpm), standard deviation (HRstd, bpm),

Time minimum (HRmin, bpm), maximum (HRmax, bpm) values of HR;
domain root mean square of successive RRs differences (RMSSD, ms);

n. successive RRs whose difference exceeds 50 ms (NN50, beats)
and their proportion (pNN50, %)

very low frequency, V LF , 0-0.04 Hz; low frequency, LF , 0.04-0.15 Hz,
high frequency, HF , 0.15-0.40 Hz, maximum amplitude (V LFpeak,

Frequency LFpeak, HFpeak, Hz), absolute (V LFabs, LFabs, HFabs, ms2),
domain relative powers (V LFperc, LFperc, HFperc, %); band powers

in normalized units (LFnu, HFnu, n.u.); total power (Ptot, ms2);
ratio between spectral power in LF and HF ranges (LF/HF )

standard deviation of Poincaré plot parameter (SD1 and SD2, ms);
Non-linear balance between long- and short-term variability (SD2/SD1);
parameters approximate (ApEn) and sample (SampEn) entropy;

short term (alpha1) and long term (alpha2) Ćuctuation slope
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Table 3.11: Features extracted from the BVP signal

Type of signal Feature (measurement unit)

M
A

T
L

A
B

BVP as acquired
Average amplitude BVA, BV Aavg (nW )
Standard deviation BVA, BV Astd (nW )

1st derivative BVP
Average amplitude BVA 1st derivative, BV A′

avg (nW/s)
Standard deviation BVA 1st derivative, BV A′

std (nW/s)

2nd derivative BVP
Average amplitude BVA 2nd derivative, BV A′′

avg (nW/s2)
Standard deviation BVA 2nd derivative, BV A′′

std (nW/s2)

K
ub

io
s

Time Domain

Average RR intervals, RRavg (ms)
Standard deviation RR intervals, RRstd (ms)
Average HR, HRavg (bpm)
Standard deviation HR, HRstd (bpm)
Minimum value HR, HRmin (bpm)
Maximum value HR, HRmax (bpm)
Root mean square successive RR intervals, RMSSD (ms)
Number of RRs with difference > than 50 ms, NN50 (−)
Proportion of NN50 with respect to total RR, pNN50 (%)

Frequency
Domain

Absolute power in VLF band (0-0.04 Hz), V LFabs (ms2)
Absolute power in LF band (0.04-0.15 Hz), LFabs (ms2)
Absolute power in HF band (0.15-0.40 Hz), HFabs (ms2)
Total power, Ptot (ms2)

Non-linear and
information
theory measures

HRV short-term variability, SD1 (ms)
HRV long-term variability, SD2 (ms)
Balance HRV short/long-term variability, SD1/SD2 (−)
Approximate entropy, ApEn (−)
Sample entropy, SampEn (−)
Short-term Ćuctuation analysis, alpha1 (−)
Long-term Ćuctuation analysis, alpha2 (−)

average and standard deviation of BV A, i.e. amplitude of BVP signal (BV Aavg

and BV Astd). This way, it is possible to assess the signiĄcance of the considered
physiological parameters in absence/presence of physical stress (and consequently in
terms of well-being level).

The WEKA toolbox was employed to perform the classiĄcation, using a 10-fold cross
validation method as testing approach. The average of each performance metric was
computed over the 10 iterations, with a conĄdence interval of 95%. The performance
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of classiĄers was evaluated through standard Ągures, namely Accuracy, F-measure,
Sensitivity, Precision and Confusion Matrix [32].

Starting from the same data used for the classiĄcation, the authors deĄned the FRI
as:

FRI =
(BV Aavg)

(HRavg) · (LF/HF )
[nW/bpm]. (3.4)

The parameters used to compute the FRI were chosen based on the fact that stress
is physiologically characterised by an increased HRavg and a higher LF/HF , as well
as reduced BV Aavg (i.e. vasoconstriction), hence this index should show lower values
in the presence of stress, derived in particular from a physical exertion comparable to
that performed in the workplace. As it can be noticed from variables used for FRI
calculation (Equation 3.4), the index is proposed as a surrogate for energy expenditure
with the Ąnal measurement unit homogeneous to energy. Hence, the correlation
analysis between FRI and the traditional EE measurements may be evaluated to
generalise the index meaning.

3.2.3 Experimental results

Results showed that the two artefact correction methods, namely Kubios Method and
Proposed Method, are not equivalent. An example of the comparison between the two
obtained tachograms is reported in Figure 3.15.

Figure 3.15: Comparison between tachograms obtained with Proposed Method (a)
and Kubios Method (b). In red the corrected data.

It is important to underline that only the HRV parameters obtained for the data
pre-processed with Kubios Method gave Not a Number (NaN) values sometimes.
Differences were highlighted from the deviations analysis between the two methods.
An example is reported in Figure 3.16 for the LFpeak parameter; it can be noticed
that the distribution is Gaussian and its mean is approximately 0 Hz.

In particular, for the reported example, we have a deviation of (0.00±0.06) Hz

between parameters obtained with Proposed Method and Kubios Method, considering
a coverage factor k = 2. Based on this assumption, further analyses were conducted
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Figure 3.16: Example of deviations distributions between the two methods - LFpeak

parameter.

to understand which one, among the two tested approaches, provides the best signal
reconstruction, and consequently the best extracted features set in order to achieve the
highest performance in SVM classiĄcation. By means of Student’s t-test, parameters
with statistically signiĄcant differences (signiĄcance level: 5%) between presence and
absence of stimuli were identiĄed for data pre-processed with the Proposed and Kubios
Methods. In particular, 18 parameters were identiĄed as input for the SVM classiĄer,
namely RRavg, RRstd, HRavg, HRstd, HRmin, HRmax, RMSSD, V LFabs, LFabs,
HFabs, Ptot, SD1, SD2, SD2/SD1, ApEn, SampEn, alpha1 and alpha2, HRmax,
RMSSD and SD1. Since the two methods were demonstrated to be not equivalent
(both through the analysis of deviations and t-test between HRV related parameters),
it was expected to Ąnd different results concerning emotion recognition as well. The
accuracy of the classiĄcation between the presence and the absence of a stimulus was
equal to 66.67% for the data pre-processed with the Proposed Method, against the
48.81% with the Kubios Method. It is worthy to note that, considering the data
pre-processed with the Proposed Method, almost all the signals with stimuli were
correctly classiĄed (i.e. 41 instances up to 42), whereas some of those without stimuli
were not (i.e. 15 instances up to 42). On the contrary, for the data pre-processed
with the Kubios Method, there were misclassiĄed signals for both the presence and
the absence of stimuli (i.e. only 50% of instances correctly classiĄed). Besides the
accuracy, also F-measure was computed in the two classes: presence of stimulus (0.74
and 0.49, for Proposed and Kubios Method, respectively) and absence of stimulus
(0.52 and 0.48 for Proposed and Kubios Method, respectively). From Ąndings, the use
of the Proposed Method provides a better classiĄcation performance in terms of the
detection of emotions elicited by an audio stimulus. However, the accuracy cannot be
considered completely satisfactory, not even with the Proposed Method.

The good performance of SVM is conĄrmed in the second study for the identiĄcation
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3.2.4 Discussion and conclusions

The Ąrst work proposed a new method for artefact correction in IBI signals acquired
through the PPG sensor of a wearable device (Empatica E4). Such method was
validated in comparison to linear/spline interpolation implemented by the Kubios
toolbox used as a reference tool in the literature. Then, the performance in terms of
emotion classiĄcation accuracy was evaluated, by playing three different audio stimuli
to elicit emotion in 7 subjects. A total of 18 features, identiĄed with a signiĄcance
level < 5% through a preliminary Student’s t-test, are employed as input variables
for SVM classiĄer, in order to detect and classify the presence/absence of the audio
stimulus, depending on the emotional response reĆected in the changes of IBIs time
series. According to the percentage of accuracy achieved by the SVM classiĄer, the
Proposed Method (accuracy: 66.67%) for the artefact correction provides a better
performance with respect to that one implemented in the Kubios tool (accuracy:
48.81%). This emphasises the importance of the artefact correction method and the
strong impact on the results: the capability to recognise the presence of a stimulus
(considering only its arousal) is signiĄcantly affected by the artefact correction method
used to pre-process the acquired data.

After verifying the efficiency of the proposed artefact correction method, the same
was implemented also in the second study, where two ML algorithms were assessed
in distinguishing between non-stress and stress conditions, caused by physical effort.
An index, called Fatigue Related Index, was proposed to assess the fatigue-related
stress level in response to physical exertion, starting from physiological parameters
measured with the commercial wearable device Empatica E4. From the measured
BVP signal, being linked to stressed and relaxed statuses, the BV Aavg, HRavg and
LF/HF parameters were selected to deĄne the FRI and calculated before and after the
execution of a physical exertion. The choosen classiĄers, namely SVM and RF, provide
accuracies equal to 92.50% and 82.50%, respectively, in the discrimination between
stress/non-stress conditions. Moreover, the proposed index show a decrease of 62.47%
after the physical exertion because of the stress/fatigue-related reaction of the subject.
Based on the results, the combination of BVP, HR, and HRV data measured through
an IoT-enabled wearable device yields an accurate recognition of fatigue-related stress
conditions. When applied to the Industry 4.0, the continuous monitoring of fatigue-
related stress conditions in workers may both support the assessment of workers’
well-being status and drive actions on changing processes and organisation aimed to
improve the workers’ perception of workload and overall working environment.

Future studies may improve the proposed method, by implementing a proper algo-
rithm for the automatic identiĄcation of missing beats in IBI signals. Moreover, an
idea may be to test a multimodal system to improve the classiĄcation performance,
thanks to the broader Ąngerprint obtained at multiple levels, facilitating the emotion
recognition task with respect to the use of a single physiological signal. This con-
sideration might be useful also in tests performed on subjects during normal daily
activities, somehow compensating for the inĆuence of movement artefacts on the
recorded signals, and consequently on the classiĄcation performance of ML classiĄers.
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In addition, further classiĄers may be tested and compared in terms of classiĄcation
performance. Finally, it would be interesting to increase the number of involved people,
hence collecting enough data for the classiĄer to be able to reliably distinguish among
stimuli with different intensities, which with the considered dataset results not possible.
To this aim, also the inclusion of self-assessment questionnaires could be helpful for
the ML algorithms training, and consequently classiĄcation.
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Decision-making processes need reliable and high-quality information to properly
interpret results and take right decisions, especially in the healthcare domain (e.g.,
personalised care and remote monitoring). Within this context, the last set of relevant
studies concerns the issues in data acquisition from wearable devices focusing on
acceleration signal. Compared to the majority of ADLs datasets available in literature
that are collected in lab conditions, the following studies consisted in the measurement
of wrist acceleration during daily human activities performed in a real-life setting
(i.e. not-controlled environment), without instructions or guidance provided to the
subject, by wearing wrist-worn devices (dataset collected available in [149]). Since in
preliminary works the Ąndings showed that both different hardware sensor technologies
and the modality to collect data (real vs lab conditions) play a paramount role
to determine the accuracy of automatic activity classiĄcation, in [150] and in [151]
respectively, further investigations were conducted, as reported in [59]. In particular,
data collected from Empatica E4 device and an Arduino-based wristband prototype
are compared to quantify how the ML performance is affected by the nature and
quality of measurement data. When processing long-term data, users may be exposed
to privacy violations due to leakage of personal details. If gait has been proved to
enable a subject’s identiĄcation from own motion data and algorithms to sanitise this
aspect are well-known in the literature, in our study [152] we demonstrated the risk of
exposure of personal information, namely the subject’s age, also when the collected
acceleration data are not related to gait, but associated to different types of daily
activities captured from data collected on the wrist. To mitigate these aspects, a
Multi Objective Evolutionary Algorithm (MOEA) approach is proposed in [153] and
implemented to conceal Ąrstly the subject’s gender while maximising the accuracy on
data recording. Therefore, the aim of these studies is to evaluate the performance
in HAR accuracy by implementing different learning algorithms, in relation to the
sensing device, the measurement data accuracy and the privacy preservation approach.

To examine the feasibility of the proposed approaches, data analysis was performed
Ąrst in MATLAB environment and Python, then, when required, by using the WEKA
tool for the ML performance evaluation.
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4.1 Case study 6: Issues in data acquisition from

wearable devices

4.1.1 Human activity recognition and factors of influence

Among the quantities commonly assessed by wearable devices, many studies in litera-
ture related to HAR deal with the acceleration signal, since it quantiĄes the motion
across the three spatial dimensions , and, at the same time, it can be acquired by means
of small, lightweight, and inexpensive sensors, thus appearing particularly suitable for
the monitoring, recognition and tracking of ADLs. It is worthy to note that the choice
of device type [154] and the sensor positioning [155, 156] signiĄcantly inĆuences the
HAR performance, especially in terms of classiĄcation accuracy. A possible solution
that can mitigate these problems is to collect a huge variety of data, hence improving
the classiĄcation accuracy by fusion with data generated by other sensors [157], or
multiple body-worn accelerometers [158]. Nevertheless, the user’s comfort should
always be accounted for, in particular to ensure the compliance in the prolonged use
of wearable sensors for long-term remote monitoring. Concerning ML algorithms,
different approaches have been extensively applied in the literature. Among the others,
both Jiménez-Gómez et al. [159] and Xu et al. [160] conĄrmed the RF validity by
reporting a performance greater than 90% in the classiĄcation of different activities
measured with the wearable device. Kuncan et al. [161] tested the Motif Patterns
approach, for extracting the features from accelerometer and magnetometer signals,
with the Long-Short Term Memory (LSTM) method in the classiĄcation of 19 different
activities, including daily and sport activities, reporting an accuracy of 98.42%.

However, the performance of the overmentioned algorithms is highly affected by
the nature and quality of the collected dataset. Such awareness results in challenges
during the study, especially in the phase of experimental setup and subsequent data
analysis. Among the challenges which highly affect the quality of the recognition, the
most common ones are how to collect the data in the real-life conditions, and how
to select and extract the features to be computed. In this Chapter, following the
preliminary Ąndings presented in [150], the inĆuence of the wearable sensing device
characteristics and measurement uncertainty on the accuracy of ADLs classiĄcation is
described. In particular, two different measuring devices have been considered (i.e.
Empatica E4 smartband and an Arduino-based wristband prototype) to measure the
acceleration signal at the dominant wrist of the subject performing different ADLs in
real-life conditions. Even the prototype, despite the known limitations, might replace
the Empatica E4 if coupled with properly selected classiĄcation algorithms.

4.1.2 Acquisition protocol

In order to measure and collect acceleration values from the subjects’ wrist, an
Arduino-based wristband prototype (shown in Figure 4.1) was assembled at the
Electronic Instrumentations and Measurements Lab of the Università Politecnica
delle Marche, using an Arduino UNO Microcontroller connected through a four wires-
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11 subjects were left-handed and 25 right-handed. Data were simultaneously recorded
through both the devices, i.e. the Empatica E4 and the Arduino-based prototype,
placed on the dominant wrist. Each test subject performed a series of six ADLs,
pertaining to personal hygiene and housekeeping related activities, speciĄcally: washing
hands (WH), brushing teeth (BT), brushing hair (BH), dusting (D), ironing (I), and
washing dishes (WD). Each activity was continuously recorded for 5 minutes and
repeated 3 times by each subject to have a quite long and large data collection, but
also to facilitate the signal processing, such as the spectral analysis thanks to a better
resolution). An important aspect is that the activities were all performed in free
conditions and in a real-world scenario, namely at subject’s home environment, in
standard daily hours by means of real tools, without any instructions about the
execution. Although the signals collected were realistic as much as possible, the actual
activity duration was sometimes modiĄed (e.g., for WH or BT), with respect to what
usually happens in daily life, for the reasons mentioned above. In order to facilitate
the labelling of data collected and to annotate reference information for the activity
classiĄcation task, the participants were supervised during the recorded sessions.

4.1.3 Data Analyses

Pre-processing phase improves data quality and consequently increases the reliability
of outcomes, since raw data are generally affected by noise, maybe linked to movement
artefacts or a not adequate device-wrist contact. For reĄning noisy datasets, two
Ąlters were applied: a 4th order low-pass Butterworth Ąlter with a cut-off frequency
equal to 15 Hz, to preserve human motion while eliminating noise, and a 3rd order
median Ąlter to remove abnormal spikes [162, 163]. Regarding the sensor calibration,
note that E4 calibrates itself during the initial 15 s of each session, which, for this
reason are removed (the subject did not move during this interval). Contrary, the
calibration of accelerometer in the Arduino-based device is performed before starting
the measurements, by exploiting the acceleration due to gravity for 30 s (i.e. the
accelerometer is Ąxed in three different positions and orientation to align each sensor
axis with the axis of gravitational force). Before moving to the ADLs classiĄcation, the
acceleration signals were windowed to Ąxed-sized parts, namely into 3 s non-overlapping
windows, since the performed activities are not rapidly time-variant. For each window,
time features strictly related to the changes in the acceleration signal were derived
from the directional components (Ax,i, Ay,i, Az,i, where i is the index of the sample)
and the Signal Magnitude Vector (SMV) to reduce the impact of sensor orientation
on the activity discrimination The SMV can be deĄned as a vector of N elements ai,
with i = 1 . . . N , being N the total number of samples in a given acquisition (i.e., the
product between the acquisition duration and the sampling frequency):

SMVi =
√︂

A2
x,i + A2

y,i + A2
z,i (4.1)

The samples plot shown in Figure 4.3 illustrates the single acceleration components
and the resulting SMV.
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Figure 4.3: Samples plot illustrating the single acceleration components and the re-
sulting SMV.

For what regards spectral features, they were extracted from the magnitude of
the discrete Fast Fourier Transform (FFT) of each acceleration signal. Table 4.1
summarises the whole set of time- and frequency-related features considered.

From this whole set, Ąve datasets of features were derived as shown in Table 4.2.

After organising the datasets for the signals collected from E4 and Arduino-based
prototype, ADLs classiĄcation was performed. The performance of different ML
classiĄers was estimated by means of the Weka tool to compute the evaluation metrics.

In order to identify only the most discriminant features, by excluding the redundant
ones, a feature selection method was used. Among those supported in Weka, the
Information Gain (IG) approach [164] was selected, as validated in a previous work
[162]. This approach evaluates the amount of information for each feature by measuring
the information gain with respect to the class of activity, namely:

IG = H(Class) − H(Class|Feature) (4.2)

where H(Class) is the entropy of the class of activity and H(Class|Feature) is the
conditional entropy, which represents how the considered feature is consistent to
identify a particular class of activity. All the ML approaches mentioned in Chapter
1, i.e. DT, RF, SVM, ANNs, kNN and NB, were selected to classify the considered
ADLs, adopting the 10-fold cross-validation method. The performance was assessed
through two validation metrics, namely the accuracy and F-measure. It is worthy to
say that among the DT, the J48 algorithm was used since available in Weka tool.
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Table 4.1: Features extracted in time and frequency domain, divided per computation
type

Domain Features Computation

Time
Domain

Mean, Median, Standard Deviation, Range
Maximum, Minimum, Zero Crossing,
Coefficient of Variation, Autocorrelation, X, Y, Z axes, SMV
Median Absolute Deviation, Skewness, Kurtosis

Axes Correlation XY, YZ, ZX axes

Signal Magnitude Area, No. of Peaks,
Percentiles (20th - 50th - 80th - 90th), SMV
Peak - Peak Amplitude

Frequency
Domain

Spectral Entropy, Spectral Energy,
Spectral Centroid SMV

Table 4.2: Datasets of features

Dataset Features Domain Computation
D1 Time SMV
D2 Frequency SMV
D3 Time and Frequency SMV
D4 Time Ax, Ay, Az and SMV
D5 Time and Frequency Ax, Ay, Az and SMV

4.1.4 Experimental results

In terms of accuracy, the performances of the six different algorithms tested with
the same set of features for both the Empatica E4 and the Arduino-based prototype
signals are summarised in Table 4.3.

Regarding the Empatica E4, the J48, RF, and ANNs classiĄers achieve an accuracy
> 90% for D1 and D3 datasets, whereas SVM and kNN only reach values in the range
70-80%; among the others, NB classiĄer reported the worst performance: correctly
recognised around 50% of the activities (i.e. 56.78% and 48.65% for D1 and D3,
respectively). Considering D4 and D5 datasets, similar results are reported; however
the accuracy of all the classiĄers is < 40% if D2 is considered, conĄrming that the
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Table 4.3: Average percent accuracy of tested classiĄers on acceleration data from
Empatica E4 and Arduino-prototype devices

Device Classifier D1 D2 D3 D4 D5

Empatica
E4

J48 99.55 31.36 99.51 99.39 99.23
RF 98.55 30.77 95.53 99.12 97.67
NB 56.87 20.80 48.65 50.66 54.20
SVM 70.65 17.84 71.11 83.39 86.12
ANNs 93.28 24.24 92.67 96.25 93.52
kNN 80.65 27.78 81.41 89.82 89.75

Arduino-
prototype

J48 83.49 31.63 80.37 90.04 87.05
RF 89.86 39.08 88.70 95.06 93.81
NB 54.37 16.73 55.93 66.54 67.23
SVM 65.17 18.81 65.97 81.24 81.57
ANNs 75.31 23.80 72.79 91.70 91.28
kNN 79.03 40.03 78.28 92.75 92.23

frequency domain features used alone are not suitable for the classiĄcation of the
ADLs considered, based on acceleration signals collected on the wrist. Similarly the
Arduino-based prototype, the highest accuracy values (> 80%) are obtained for D1 and
D3 datasets processed by J48 and RF classiĄers. Both D4 and D5 datasets (including
SMV, along with the features over the three directions of the acceleration signal, i.e
Ax, Ay and Az) allow to achieve accuracy values > 90% for RF, ANNs, and kNN.
Again, NB classiĄer reported the overall worst performance (i.e. 16.73%) and poor
results are obtained when only features in frequency domain (i.e. D2 dataset) are
chosen, irrespective to the classiĄer used. In this regard, a further investigation was
conducted by computing the mean ± standard deviation of the Spectral Entropy and
Spectral Energy. In Table 4.4, the results show that values related to the Spectral
Energy are very similar either for different devices and activities. This explains why
the use of such feature would not improve the accuracy of the classiĄcation algorithm
in a signiĄcant fashion. On the other hand, the values of the Spectral Entropy are
mostly higher and much more dispersed for the Arduino-based device than the E4.
Being the Spectral Entropy a measure of uncertainty, the differences among the devices
are based on the fact that E4 runs a proprietary Ąrmware that identiĄes the unreliable
or noisy samples and automatically remove them, while this capability is not available
from the Arduino-based device. As a result, Spectral Entropy may be considered as a
relevant feature in recognising the type of device used (E4 or Arduino), and not the
activity (since values are similar among the overall ADLs investigated).

Being D4 the dataset allowing very good performance, both the partial and the
average percent accuracy values provided on it by the six classiĄers are detailed in
Table 4.5 (Empatica E4) and Table 4.6 (Arduino-based prototype). In particular,
the Tables show how accurately each activity performed by subjects (i.e., Washing
Hands, Brushing Teeth, Brushing Hair, Dusting, Ironing, Washing Dishes) is classiĄed,
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Table 4.4: Spectral Energy and Entropy values (mean ± standard deviation) computed
for each device and ADL

Spectral Entropy Spectral Energy
ADL E4 Arduino E4 Arduino
WH 4.28±3.79 2.78±1.80 0.51±0.22 0.61±0.19
BT 3.91±2.84 4.74±3.05 0.44±0.15 0.55±0.16
BH 2.31±1.61 4.44±3.81 0.58±0.18 0.53±0.23
D 5.42±5.44 4.41±3.61 0.46±0.23 0.49±0.19
I 5.75±5.09 7.33±9.21 0.44±0.19 0.31±0.19

WD 2.44±1.27 3.12±2.01 0.55±0.14 0.54±0.17

depending on the ML classiĄer selected.

Table 4.5: Partial and average percent accuracy (Avg.) of the tested classiĄer (CL.) Ű
Empatica E4

ADLs
CL. WH BT BH D I WD Avg.
J48 99.09 98.55 100.00 99.81 99.45 99.40 99.39
RF 98.55 98.91 100.00 98.73 99.46 99.27 99.12

ANNs 96.19 97.46 99.45 96.90 96.24 91.84 96.25
kNN 90.39 90.57 99.45 92.39 88.94 77.17 89.82
NB 90.94 85.68 17.93 34.42 44.21 29.34 50.66

SVM 86.59 90.99 99.45 58.51 89.31 76.81 83.39

Table 4.6: Partial and average percent accuracy (Avg.) of the tested classiĄer (CL.) Ű
Arduino prototype

ADLs
CL. WH BT BH D I WD Avg.
J48 92.32 91.38 89.51 88.57 87.07 91.38 90.04
RF 94.38 96.82 96.63 94.38 93.82 94.38 95.06

ANNs 90.45 95.88 94.57 90.07 89.88 89.32 91.70
kNN 93.44 95.50 97.00 92.13 88.01 90.45 92.75
NB 71.72 82.21 82.78 52.06 64.80 45.70 66.54

SVM 83.52 91.76 85.39 76.03 84.64 66.10 81.24

Although both J48 and RF achieved 100% of accuracy for BH activity recorded
by using the Empatica E4, their performance decreases when processing acceleration
signals collected wearing the Arduino-based device. Similarly, ANNs and SVM were
less accurate in recognising the ADLs activities from the Arduino-based tested device
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than those recorded using the Empatica. Contrarily, kNN classiĄer reached an accuracy
greater than J48 for Ąve activities (except for WD activity) from Arduino-based tested
device. When using NB classiĄer, the highest number of misclassiĄcations happened
providing a relatively low accuracy (lowest value: 17.93% for BH activity collected
using the Empatica E4).

To validate the Ąndings and compare the performance of the learning algorithms
with the highest accuracy of the model (i.e. J48, RF and ANNs), further evaluations
were carried out. Besides the accuracy, the F-measure was computed for each single
dataset, from both Empatica E4 and Arduino-based devices, as reported in Table 4.7.

Table 4.7: F-measure of the tested classiĄers on ADLs-related acceleration data

Arduino - based device Empatica E4
Dataset J48 RF ANNs J48 RF ANNs

D1 0.83 0.90 0.75 0.99 0.98 0.93
D2 0.32 0.38 0.20 0.31 0.31 0.23
D3 0.99 0.98 0.89 0.99 0.96 0.92
D4 0.90 0.89 0.92 0.99 0.99 0.96
D5 0.87 0.94 0.91 0.99 0.98 0.93

Firstly, the high values of F-measure on D1, D3, D4 and D5 conĄrm the accuracy
trend. Secondly, the low F-measure values in D2 (including frequency-domain features
only) demonstrate that the features computed in the time domain are essential to reach
a good classiĄcation performance. According to all the Ąndings, RF clearly showed
a performance better than the other classiĄers in terms of accuracy measures, in
classifying the six different activities working on data collected from different wearable
devices.

To develop a successful automatic classiĄcation system based on ML, the appropriate
features must be identiĄed, since a high correlation among the features may strongly
affect the classiĄcation performance [165]. Therefore, the Information Gain Ąlter was
applied on D3 dataset, because it includes the whole features set for SMVi signals,
from both Arduino and E4. Even if a list with different features was extracted for each
device, a new optimal subset was composed including the 10 features with the highest
IG ranking score to have the same number of features and according to a previous
similar work [166]. Then, the classiĄers performances were tested again. For both the
devices used, the set of features is listed in Table 4.8, in descending order of their IG
value.

It is interesting to notice how, for the two sensing devices, the IG Ąlter selected almost
the same features but with different rankings. The two couples of features uniquely
characterising the speciĄc device are median absolute deviation with interquartile,
and signal magnitude area with variance for Arduino-based prototype and E4 device,
respectively. Selected features were used to feed the six classiĄers and compare the
performances obtained in two different cases: when using all features versus a smaller
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when using the reduced subset of features, especially to classify data from Arduino-
based device; this is the case of four out of six classiĄers (i.e. ANNs, kNN, NB, and
SVM), resulting in a substantial decrease in terms of accuracy (maximum decrease
obtained: 27.02% for ANNs). By wearing E4, the results indicate that ANNs, NB, and
SVM obtained lower accuracy percentages: 67.96%, 40.61%, and 47.34%, respectively.
ClassiĄers characterised by different natures reasonably can be differently affected by
irrelevant and redundant features.

4.1.5 Discussion and conclusions

The Ćuctuation of the classiĄcation performance may depend on the activity, signal
processing and classiĄer selected (Table 4.5 and Table 4.6). Therefore, Ąve datasets
including different features were arranged and tested. From the results, the highest
accuracy is obtained thanks to the combination of time and frequency domain features
extracted from both the acceleration SMV and the signal components along the three
directions (i.e. Ax, Ay, and Az), corresponding to D4 and D5 datasets. Additionally,
the performance of almost all the ML classiĄers, in terms of accuracy, F-measure,
speciĄcity, and precision, results higher by using data collected through the Empatica
E4 than those obtained using the Arduino-based prototype: Empatica E4 reached
accuracy values in the range of 51%-99%, while the Arduino-based prototype in the
range of 66%-95%; in both cases, the best performance is achieved by using J48
and RF classiĄers. As a result, it is possible to infer that the measurement device
characteristics affect the data quality and consequently the activities classiĄcation
accuracy. This point is strongly important for the reliability of activity classiĄcation
in critical application Ąelds, such as health monitoring and assistive technologies for
ageing people.

Another interesting point is the type of activity performed, and consequently the
signal quality because the acceleration signals are sensitive to the movements of the
subjects. Accordingly, some activities are classiĄed with a good performance, whereas
others are more difficult to discriminate. In particular, the quality of data declines very
drastically in the case of non predictable physical activities: as an example, "Washing
Dishes" and "Washing Hands", characterised by personal and casual movements,
featured low classiĄcation rates with high misclassiĄcation, mostly due to the difficulty
of distinguishing the highly random gestures (see Table 4.5). Contrarily, activities
such as "Brushing Teeth", "Brushing Hair" and "Ironing" are performed quite similarly
among the users because the movements are repetitive, linear and performed mainly
along one spatial dimension.

The classiĄers performance was assessed also by considering the most meaningful
features. The number of relevant features for a good classiĄcation of ADLs changes
depending on both the sensing device and the classiĄer, denoting the importance of
an appropriate choice of both hardware and software components of a monitoring
system, especially when high accuracy and reliability are required, such as in AAL
and health-related applications, sometimes also supporting decision-making processes
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in the deĄnition of therapeutic strategies.
The results show the potential implications that measurement device and data quality

may have on HAR classiĄcation accuracy. This study would analyse the consequences
of making decisions in HAR system in real-life, investigating some possible solutions to
improve the results. As a future work, the classiĄcation approaches herein considered
can be trained and tested on data gathered from older adults, verifying the classiĄcation
performance not only with respect to the choice of device and the selection of features,
but also in terms of the inĆuence of gender- and age-related patterns in the acceleration
signals.

80



4.2 Case study 7: Issues in information extraction from wearable devices

4.2 Case study 7: Issues in information extraction from

wearable devices

4.2.1 Human activity recognition and privacy preservation

Depending on the nature of the data collected and also on the target item to classify
(e.g., activity and gesture), different ML algorithms can be suitable for different scenar-
ios of HAR. Generally, the algorithms exploit features computed on the acceleration
data, either in time or frequency domain; however, some of the features may capture
not only the information strictly needed to classify the human activity, but also the
subject’s personal details (e.g., age, height, gender and weight) can be exposed. In
the literature, several mechanisms and approaches have been proposed in order to
guarantee anonymous sharing and avoidance of privacy disclosure [167]. However, the
same personal information could be disclosed also without the explicit consensus of
the user, by processing motion-related data collected from wearable sensors, especially
those generated by accelerometers; thus becoming a potential threat despite being
thought to be harmless. As explained in [168], a potential privacy leakage exists about
the user’s identity from the sensed accelerometer data, because it is possible to infer
gait characteristics depending on a user’s muscle growth, height, and weight. Based
on the above observations, motion data can be classiĄed as a quasi-identifier, because
it may allow the identiĄcation and tracking of a user. In fact, every individual has
a distinctive way of walking, which is the reason why gait can be a key element of
biometric techniques to authenticate and/or identify the user of a wearable device.
As an example, Boutet et al. in their report [169] present a privacy-preserving tool
to sanitise motion sensor data against unwanted sensitive inferences (thus improving
privacy), while keeping an acceptable accuracy of the HAR (thus maintaining data
utility). To do so, the tool builds several models to sanitise the motion data against
the speciĄed attribute (such as gender), by exploiting Generative Adversarial Net-
works (GANs). Authors present test results on available data collections, for which
gender inference is reduced up to 41% while decreasing the HAR accuracy only by
3%. While acceleration signals related to gait has been proved to enable a subject’s
identiĄcation from user motion data in the literature, a second important aspect is
the risk of personal details exposure also when the data acceleration is to associated
to different types of gestures or daily activities (e.g., house cleaning or brushing
teeth). Disclosure of personal details, namely the subject’s age, has been investigated
in [152]. This motivated the need for approaches to both privacy by design and by
default in wearable devices, and for designing de-identiĄcation algorithms to be applied
onto acceleration signals gathered by wrist-worn devices, to reduce the unintentional
release of personal details. So, features computed from the acceleration data acquired
with a smart wristband while performing different activities, and used by supervised
classiĄcation algorithms, should be properly selected; so that HAR accuracy (i.e. the
utility of the data) is not affected, while personal attributes (i.e. unnecessary private
details in the processed data), in our speciĄc study [153] the gender, are concealed.
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A Multi-Objective Evolutionary Algorithm (MOEA) is applied to Ąnd appropriate
weights for each feature, differently from the paper cited above which exploits GANs.

4.2.2 Acquisition protocol

A dataset was acquired with the wearable multi-sensor device Empatica E4, providing
raw activity motion data in real-life conditions. The dataset and the related description
is publicly available as PAAL ADL Accelerometry dataset [149], and it is continuously
updated with new data collected. Among the signals collected by the sensors, only the
acceleration has been extracted to monitor the users performing different activities of
daily living. To promote the real-life acquisition procedure, subjects acted in their
natural environment, with no instructions about how and for how long to perform
each activity.
The dataset includes 24 different activities (listed in Table 4.9) performed using real
objects with the common duration. Each activity was repeated between 3 and 5 times
by 33 healthy subjects, 19 females and 14 males between 18 and 77 years (mean =
45.24 years and standard deviation = 18.24 years), to reach a gender balance and
large age range. Information about the gender and age of each subject are included in
the dataset.

Table 4.9: ADLs performed by the subjects
1. Drink water 13. Sit down
2. Eat meal 14. Stand up
3. Open a bottle 15. Write
4. Open a box 16. Phone call
5. Brush teeth 17. Type on keyboard
6. Brush hair 18. Salute
7. Take off jacket 19. Sneeze/cough
8. Put on jacket 20. Blow nose
9. Put on a shoe 21. Wash hands
10. Take off a shoe 22. Dusting
11. Put on glasses 23. Ironing
12. Take off glasses 24. Wash dishes

4.2.3 Data Analyses

As for the Ąrst study, each acceleration time series A was Ąltered by Ąrstly applying a
4th order low-pass Butterworth Ąlter (cut-off frequency: 15 Hz) then with a 3rd order
median Ąlter was applied to remove abnormal spikes. In order to infer the information
contained in the human activity data, the features listed in Table 4.1 were reviewed
according to the aim of this study. In particular, 62 features were extracted from both
raw data of the three axes and SMV , each segmented by Ąxed-size sliding windows
of 5 s (i.e. 160 samples), with 20% (i.e. 1 s) of overlapping between two adjacent
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windows, being activities of short duration. The list of features used is presented in
Table 4.10 [150, 170].

Table 4.10: Features extracted in time and frequency domain, divided per computation
type

Domain Features Computation

Time

Mean, Median, Standard Deviation
Maximum, Minimum,
Range, Coefficient of Variation X, Y, Z axes, SMV
Median Absolute Deviation

Axes Correlation XY, YZ, ZX axes

Signal Magnitude Area, Autocorrelation
Skewness, Kurtosis, Root Mean Square
Percentiles (20th - 50th - 80th - 90th) SMV
Interquartile range, No. of Peaks
Peak - Peak Amplitude, Energy

Frequency

Mean, Standard Deviation X, Y, Z axes, SMV

Spectral Entropy, Spectral Energy
Spectral Centroid SMV
Percentiles (25th - 50th - 75th)

The overall implementation was made using the Python library Scikit-learn. Among
the ML classiĄers commonly selected to train and test the HAR classiĄcation model,
Random Forest was used thanks to its good performance reported in previous similar
studies [171]. In this study, the whole set of features was used to build each tree of
RF, measuring the quality of split with the Information Gain function. The number
of trees was investigated by selecting different numbers of estimators (from 10 to 170)
to verify whether such parameter can improve the model accuracy for activity and
gender recognition. The k-fold cross validation was implemented with k = 10.

Although the above data analysis process was designed to reach an high accuracy in
HAR, if the goal is to protect identity details of the users performing those activities,
the same set of features also gets good results for gender recognition. Hence, it is
important to understand whether and how the input features may be transformed so
that HAR remains good but gender (or any other private details) recognition accuracy
decreases. In this study conducted within the PAAL project, namely in collaboration
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with the University of Alicante, the acceleration signal captured by the wristband
was Ąltered trying to maximise the HAR accuracy and at the same time to minimise
the recognition of personal characteristics of the subjects, such as gender or age. In
particular, the MOEA with the wrapper approach (i.e. the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) offered by pymoo [172] in Python) was implemented
to Ąnd appropriate weights for each feature, by using the following parameters selected
experimentally: (i) size of the population: 50; (ii) new individuals (offsprings) created
per generation: 10; and (iii) number of generations without changes in the best
individual to stop the algorithm: 100. Other characteristics of the algorithm are as
follow:

• individuals in the initial population are created with random real values between
0 and 1;

• binary tournament is used to select the parents to generate a new offspring;

• Simulated Binary Crossover (SBX) [173] with default parameters is employed to
create each individual;

• each new individual is mutated by applying Polynomial Mutation [173] with
default parameters;

• duplicates are eliminated after merging the parent and the offspring population:
duplicates with respect to the current population or in the offsprings itself are
removed and the mating process is repeated to Ąll up the offsprings until the
desired number of unique offsprings is met.

An individual in the population (potential solution) is encoded as a real vector U

whose elements uj , ∀j ∈ [1..62] represent the weight of a particular feature during the
classiĄcation (62 being the number of features, see Table 4.10), i.e. each feature is
multiplied by the appropriate weight before being input to the classiĄer. The Ątness
functions to be optimised are:

f1 = HAR (4.3)

f2 =

\︄

\︄

\︄

\︄

GenderRecognition −
1

2

\︄

\︄

\︄

\︄

(4.4)

The objective is to maximise f1 while minimising f2, i.e. maximising HAR while
taking gender recognition close to random. Therefore, for other private information,
the second term in f2 must be 1

Number of categories
.

4.2.4 Experimental results

Generally, in the HAR context, supervised learning approaches are widely exploited by
using labelled data as inputs for predicting the classiĄcation of unknown data through
the ML algorithms. Firstly, the performance of the RF supervised algorithm used to
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Table 4.12: Confusion matrix related to the gender recognition (after MOEA)
Predicted Instances
Male Female

A
c
tu

a
l

In
st

a
n

c
e
s Male 10 90

Female 0 100

increase, namely the movements become slower, the intensity and the energy involved
to perform ADLs decrease; thus the acceleration signals from the wrist exhibit quite
different characteristics in young and elderly subjects. This could lead to a disclosure
of the observed subject’s age range, somehow releasing a personal information that is
not actually relevant for the aim of ADLs classiĄcation and automatic recognition.

Based on this preliminary investigation, the study focused on whether also gender
information is included within the set of features extracted from accelerometer data.
Therefore, a method for privacy preservation in non gait-related human motion data
collection was proposed working on 24 different ADLs performed in realistic conditions
by 33 healthy subjects, wearing the Empatica E4 wrist worn device. Adopting the
RF algorithm with 90 trees, results show a global accuracy percentage of 89.59%
and 89.37% for human activity and gender recognition, respectively, demonstrating
that the user’s gender can be easily detected from the wrist motion data. However,
Ąnding the appropriate weights by using a MOEA allows to conceal the gender of the
user while HAR is not considerably affected, resulting in a global accuracy of 84.14%
and 64.38% for human activity and gender recognition, respectively. Additionally,
considering the set of solutions constituting a Pareto front, under some conditions
instead of choosing the best balanced solution (as the overmentioned work proposes)
any other of the obtained solutions could be chosen, for instance in the case that, for
a speciĄc user, activity recognition performance needs to be prioritised over privacy
protection. In the future, a further development may examine the same algorithm for
other private information which users would like to conceal, e.g., age. In that case, in
which more than two objective functions should to be considered, the optimisation will
be carried out with a many-objective evolutionary algorithms. Additionally, other sets
of features extracted from the accelerometer data may be explored, for instance, by
extracting deep features from the original data instead of using the handcrafted ones.
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Chapter 5

Discussion and conclusions

The overall aim of this Ph.D. Thesis is to develop and test acquisition procedures in
order to validate wearable devices performance and signal processing techniques with
the aim of quantitatively assessing human response to external stimuli, by means of
physiological signals. In particular, the studies are based on the evidence of wearable
devices advantages experimented in several real health-related monitoring contexts,
especially considering the ongoing shift towards the so-called Healthcare 4.0 through
IoT infrastructure. Results show how, among the existing wearable devices used for
human-related measurements, both biosensors and inertial ones, may be used to record
human physiological data, to detect human patterns in response to external stimuli and
eventually to send an alert for unusual data gathered or for promoted actions. In this
perspective, the Ąndings are signiĄcant with a speciĄc accuracy depending on the target
application, especially for future trials that may be conducted through IoT-enabled
wearable devices involving a wider population, so as to approve both the efficiency of
the proposed/tested approaches. However, it is conĄrmed that some factors may affect
the data interpretation and consequently the system accuracy, such as the modality of
data collection (e.g., real vs Lab), as well as the signal processing (e.g., Ąltering and
features selection) and the device selection depending on the application targeted and
user involved. Results concerning the wearable devices performance may be applied
for the selection and also development of future commercial devices, dealing with
appropriate speciĄcations and technical recommendations related to the metrological
requirement for the health-related monitoring, the illness preventing and the quality
of life improving.

Chapter 2 is focused on the human physiological response, clearly reĆected on
SC signal, that can be recorded through a wrist-worn device. Results conĄrm that
although different individuals may share emotional perception of the same audio
clip, their intrinsic physiological characteristics may have signiĄcant differences due
to gender, age and sweat glands density in the different locations of the body (or
even due to extrinsic physiological characteristics, for example, the level of physical
training and Ątness conditions of the subject, which brings to a different perception
on the effort requested to perform the physical activity). This statement is evident
for pleasant sound, where high perception of valence and intensity corresponds to a
small number of SC peaks arising during the stimulation. To have a wider Ąngerprint
on acoustic elicitation, it is needed to extend the SC analysis until 1.00 Hz; this
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larger observation band of the SC signal spectrum may avoid the loss of potentially
meaningful information. Similarly, when designing an experiment with audio clips
presented repeatedly, the habituation phenomenon of subjects to the acoustic stimuli
may inĆuence the SC response, by decreasing the affective reaction.
Concerning the visual stimuli, it is important to note that the results show the feasibility
of detecting driver’s drowsiness either with only SC signals or in combination with the
HRV signal, gathered from a single wrist-worn device. This assumption is based on
a population that is varied and balanced in terms of gender and age. Additionally,
short-term time windows yield strong classiĄcation performance (84.1%) and are
crucial for identifying short-term events like the onset of natural sleepiness. Thanks
to this wearable-related approach, a good timely warning might alert the driver
when abnormal variations in skin conductance are identiĄed, for example, proposing
that they take a little pause to relax. Based on the overall results discussed above
about physical stimuli, the vigorous intensity class obtained the best classiĄcation
performance, being associated to clear differences in the signals (e.g., the amplitude of
the acceleration data), with respect to those acquired during the moderate and the
sedentary activities. This fact may be inĆuenced by how the participants perceived
their PA effort while assessing the score on Borg’s RPE scale. Additionally, in order
to prevent features from being automatically selected by the classiĄer and not based
on the information content, a correct weight should be assigned to each feature when
classiĄers are used for the distinction of PA levels exerted by a certain individual.

Results from the Chapter 3 underline how it is extremely important to properly
choose the acquisition device, especially in the case of commercial wearables, depending
on its metrological performance for reliable values assessment. In fact, the decisions
made considering the measurement results will be reliable only if the measurement itself
is adequately accurate and precise. The fundamental role of these aspects have become
extremely clear during the COVID-19 related pandemic, which made individuals
conscious of the importance of remote monitoring and, hence, of IoT-enabled devices
and their metrological performance. Despite promising usage, experimental research,
systematic testing procedures and a proper validation are needed to validate the
metrological properties of BP and HR commercial wearable devices. For what concerns
the correct modality to wear such devices, speciĄcally the wrist-worn devices, the most
suitable option to enhance reliable PPG sensor readings, is the medium tightening
level. In this perspective, it could be interesting to develop custom wearable devices
providing real-time alerts to the user whenever the device positioning or functioning
are not correct, indicating what actions can solve the issue. Also the inclusion in
workplace environment would be interesting, along with additional parameters (e.g.,
ambient noise, temperature and relative humidity) in order to consider the subject’s
conditions in a more general fashion, not limited to physiological parameters. This
would provide a large view on the working conditions of people monitored through
a simple wearable device, which would neither compromise the workers’ capabilities
or privacy, nor disturbing them in the execution of daily tasks. This way, when a
too low FRI is obtained, proper actions can be undertaken or promoted in order to
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improve the worker’s stress perception, maybe through a mobile app suggesting what
to do (e.g., changing a pose, taking a short break or starting a different activity to
interrupt the routine). The reliability and accuracy of a physiological measurement
system is highly affected by several choices starting from the measurement bench up
to the classiĄer, passing through the used sensors and the following signal processing
techniques used to elaborate data and obtain the Ąnal results supporting the ML
decision-making actions.

Finally, as it is clear from the Chapter 4, the type of relevant features for a good
classiĄcation of ADLs varies both with sensing device and classiĄer, denoting the
importance of an appropriate choice of both hardware and software components for a
monitoring system, especially when high accuracy and reliability are required, such
as AAL and health-related applications, sometimes also supporting decision-making
processes in the deĄnition of therapeutic strategies. An accurate HAR system, reaching
a compromise between performance and computation load, may be a valid tool in
many applications. Especially for ageing people, this tool may support as long as
possible independent and safe living, thus aiding the healthcare system in remotely
managing decentralised care, in home environments. Moreover, by implementing a
concealing strategy on-board the sensor based on the selected condition on the Pareto
front, it is possible to obtain what is envisaged as a privacy-by-design approach by
the regulations, hiding individual personal details and obtaining high performances on
the targeted purpose.

More in general, this Thesis contributes to the advancement of scientiĄc knowledge
along two main axes. The Ąrst one deals with the usage of wearable devices to provide
reliable and meaningful signals to be analysed for obtaining relevant health indicators,
especially when moving in real-life applications. Indeed, some of the described studies
highlight the advantages and limitations regarding some commercial wearable devices
against the related reference instrument (e.g., for blood pressure measurements). Every
time the device must be very carefully chosen among available devices and depending
on the target application. As an example, E4 device limitations are clearly found when
the device stops providing data due to motion artefacts. In this sense, an approach
to detect and Ąll in the missing data has been proposed. Within this context, it is
possible to state that frequency parameters of SC signal should be studied in a wider
frequency range to provide more information.

The second axis deals with the proper selection and processing of features collected
from wearable devices for AAL and health-related applications. Firstly, the need
for reliable devices to have better classiĄers for ADLs is conĄrmed and underlined.
Secondly, insights are provided on what might be applied to ensure privacy of the
individuals wearing those device, with a limited reduction of the classiĄer performances
using features based on the signals collected.

Finally, this Thesis provides useful information for scientiĄc researchers seeking
for efficient and reliable wearable devices to run experiment in real-life conditions,
avoiding misinterpretation of signals gathered.
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Chapter 6

Appendix: Additional Research

Activities

In the above Sections, diverse wearable technologies have been described according to
advantages, disadvantages and applications in human daily life. However, not only
wearable devices are gaining ground, but also sensor-based ambient devices and systems
are increasingly perceived as beneĄcial in supporting users. So far, it is not known
whether and to what extent these three speciĄc sensor types are perceived and accepted
differently by future users. This could lead to the risk that developed technologies are
not used from the Ąnal user. Therefore, in the Ąrst Section, the importance of knowing
the individual’s perspective on using technologies in home environments is underlined.
Then, experiences and collaborations performed abroad, namely at the University of
Alicante and at R&D Nestlé Orbe, respectively, are described in the second Section.
In particular, at the University, the topic of assistive technologies for the ambient
assisted living was further explored, while at the company, the measurement chain
(e.g., data collection setup, sensor calibration etc.) was investigated and improved for
the purpose of the project.

6.1 Assistive Technologies for Ageing

According to the demographic change and an increasing ageing population, assistive
lifelogging technologies are developed for supporting people to be independent and
active as much as possible. In fact, lifelogging may help reaching awareness about
individual’s own Quality of Life (QoL), thanks to the broad spectrum of available
technologies, reaching from audio- and video-based approaches [175], over ambient
systems based on different sensors and technologies (such as microphones, pressure
or vibration sensors) [176] to wearable technologies using acceleration and rotation
rate sensors [59]. Sometimes multiple wearable and ambient devices work together to
create an aggregated solution able to capture the various facets of events leading to
the decrease in the perceived QoL, as associated with old age. To this end, within
the International project vINCI (clinically-Validated INtegrated Support for Assistive
Care and Lifestyle Improvement: the Human Link), the vINCI platform was designed
as a clinically-validated ambient intelligence framework, including different system
components engaged in the communication, interaction, and exploitation of sensed
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data and how they interoperate over using speciĄc open middleware and software
services [177]. The added value of vINCI, with respect to other platforms focused on
assisted living, is its clinically-supported validation of the algorithms enabling the
detection of anomalous evolving conditions in older adults, based on the observations
regarding their daily level of activity status, social behaviour, and health-related
parameters. The typical workĆow should include the steps in Figure 6.1.

Figure 6.1: WorkĆow of vINCI platform.

All these technologies and systems have in common that they can be used to
support people daily life, e.g., by detecting emergency situations, by identifying
typical movement and behaviour patterns as well as anomalies, or by remembering
functions. Beyond complex technical solutions, the usage of ambient room sensors
represents a comparatively inexpensive and promising alternative. Besides the technical
opportunities and functions (already discussed in the Ąrst part of the Thesis), it is
currently not known whether and to what extent future users distinguish between
different sensor-based lifelogging technologies; it is an open question how high future
users estimate the costs for the acquisition and what costs they are willing to pay.
Moreover, the current stage of research is insufficient when it comes to the ethical,
legal, and social implications of using sensor- based technologies in home environments.
There is a lack of a context-sensitive analysis of user acceptance and an empirical
exploration of the users’ requirements for the recording and managing of health-related
user data referring to their privacy. Therefore, within the context of International
PAAL project, namely in collaboration with the University of Aachen, in [178], the
authors addressed the current gap in research and empirically investigated the users’
attitudes towards acceptance and privacy in the context of sensor-based technologies
in private environments. Moreover, [179] focused on the future users’ perspective on
different ambient sensor-based lifelogging technologies. Then, an online survey was
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privacy, which were especially true for the PIR sensors when proposed in the intimate
spaces of domestic environments (e.g., bathrooms and bedrooms). Although, the
participants perceived the feeling of being under surveillance in their own home envi-
ronments, expressing also doubts about the reliability of the sensor-based technologies,
they were also willing to provide data transparency in case of emergency (e.g., acute
risk to their health). Regarding the cost estimations and the willingness to pay the
sensors, on one side, the majority of the participants overestimated the costs for this
technology with respect to the real one. On the other side, many respondents were
willing to spend a realistic amount of money for a reasonable equipment of sensor-based
technology integrated in their homes.

Results suggest that users’ perceptions of personal privacy largely affect the accep-
tance and successful adoption of sensor-based lifelogging in home environments. Surely,
these Ąndings may enable to derive guidelines for both, the technical development
and design as well as the communication and information of assisting sensor-based
technologies and systems.
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6.2 Experiences and collaborations abroad

6.2.1 Influence of affective environments in ageing at home

In 2021, after applying to the SHELD-ON COST Action call (CA16226 - Indoor
living space improvement: Smart Habitat for the Elderly) for a Short Term ScientiĄc
Mission (STSM), I was selected to spend one month at the University of Alicante for
collaborating with the Department of Computer Technology. Therefore, from the 1st

of March 2021 to the 31st of March 2021, I was employed as a visiting Ph.D. Student,
joining Prof. Florez-Revuelta’s team. Due to the Coronavirus outbreak and the closure
of Spanish universities, I had to interrupt my research activities at the University of
Alicante on the 14th of March. After getting to know that some universities in Spain
were closing and more universities would have followed, Prof. Florez-Revuelta and I
rescheduled the pending workplan, as described in the section below.

Introduction and aim

Literature suggests that older people prefer to live independently at home as long as
possible [180, 181]. This requires providing care at home, and Ambient Assisted Living
(AAL) solutions can represent a way to do so. Among other applications, AAL solutions
can be used for monitoring and improving the emotional state and the well-being of an
individual at home. For example, certain living environments can counteract negative
psychological states (e.g., anxiety) and thus have an inĆuence on the psychological and
physical well-being. The main goal of the STSM was to investigate whether and how
living environment design affects the individual emotional capacity. To do this, Ąrstly,
the physiological metrics (e.g., Skin Conductance, Heart Rate) which were measured
by means of the Empatica E4 wristband device were evaluated and, secondly, relevant
information from the signal were extracted to recognise individuals’ emotions. The
speciĄc objectives follow:

1. To conceptualise the methodological approach for evaluating elderly’s expe-
rience/emotion with different living environment designs, using non-intrusive
devices;

2. To develop a system which is able to detect, process and interpret emotional state
of elderly at home, by collecting individual physiological signals through wearable
devices. Based on this, it would be possible to customise living environment
designs to make living places more comfortable or changing depending on the
emotional state.

A schematic representation is shown in Figure 6.3.

Results and discussion

Based on the discussions with the Research Group of the Department of Psychology, a
conceptual framework was developed. From this, we can expect that the design of living
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Results and discussion

Being a new concept of sensor system for fully automatic coffee machines, knowl-
edge/opinions from external and internal specialists about coffee and OOH machines
were collected to identify the beneĄts reachable by applying this smart sensor system,
as follows hereafter:

1. Operational costs:

• speedup the Ąrst setup of the machine by the technician, ensuring same
coffee cup characteristics everywhere;

• optimise the number of onsite technical interventions thanks to remote
monitoring of machine performance and coffee extraction quality.

2. Customer and consumer satisfaction:

• improve the machine consistency;

• reduce the claiming calls related to the beverage quality;

• correlate the consumer/customer’s quality feedbacks with the measurements
of extraction parameters (make objective/quantify the subjective taste).

3. Sustainability:

• improve the sustainability, optimising the number of onsite technical inter-
ventions.

After deĄning the business context of the project, a new standard in consistency of
in-cup quality for coffee beverages was investigated. Firstly, by executing several
experimental tests, the best setup (i.e., location and position in the coffee line) of the
conductivity sensor was deĄned according to the best conductivity signal (µS/cm)
collected in time. Then, the in-line conductivity readings (measured by the sensor
embedded in the machine during the coffee extraction and averaged through a speciĄc
algorithm) along with the TDS (estimated through a speciĄc algorithm) were compared
with those measured in-cup after the coffee extraction. Values obtained in-cup are
considered as reference values, being measured with reference lab instruments: refrac-
tometer for TDS (%) and conductivity meter for conductivity (mS/cm). Therefore,
after calibrating both the in-line sensor and the reference device with a standard
solution, a calibration factor was computed and integrated in the acquisition system.
Such calibration phase highly improved the reading accuracy of the in-line conductivity,
strongly reducing the delta difference between values read in-cup and those in-line.
Once validated the measurements, the parameters affecting the perception of coffee
taste were explored to understand if individuals might perceive the differences in coffee
taste, depending on both coffee and machine changes. Three tests were conducted to
compare two coffee machines, two coffee batches and two different espresso recipes.
All the tests included a preliminary phase of sensory tasting and a second phase of
analytic measurements, for investigating the correlation between the individual quality
feedbacks and the lab measurements of TDS in-cup. From the overall sensory session
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where 11 internal assessors were recruited, Ąndings show that signiĄcant differences
(95% conĄdence interval) in taste were perceived (around 10% of variation in both TDS
and EY) when using two different machines equally manually calibrated, and when
changing the coffee batch without re-calibrating the machine (representing a quite
common scenario in real-life). In the overmentioned cases, the measurements of TDS
and EY parameters would support the manual calibration phase indicating the exact
target recipe to reach, and would also alert the operator for potential deviations due
to re-calibration needed. DeĄnitely, in order to reduce the taste difference between two
coffee cups, it is important to include the TDS and EY measurements. An additional
note can be reported for the third test, affirming that changes in coffee dosage are
perceived more in Ćavour than in texture. At this point, data acquisition during coffee
extraction was conducted to enlarge the dataset that will be used in the next steps to
automatically correct the potential deviation detected in TDS from one-cup to another
one.

Regarding the Electronics sustainability project, the activity was focused on im-
plementing a strategy and identifying potential solutions to reduce the impact of
electronics on the climate change. Firstly, the impact of electronics (i.e. for manufac-
turing and whole life of coffee machine - including power consumption) with respect to
the overall impact of coffee machine was separately estimated for simple and complex
coffee machines. Then, after identifying the most impactful electronics component in
terms of CO2, several innovative ideas were proposed to re-design such component,
reducing the electronic impact on climate change for the next years.
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