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Abstract 

This work aims to study the effect of uncertainties and noise on the nonlinear global dynamics 

of a micro-electro-mechanical arch obtained from an imperfect microbeam under an axial load 

and electric excitation. An adaptative phase-space discretization strategy based on an operator 

approach is proposed. The Ulam method, a classical discretization of flows in phase-space, is 

extended here to nondeterministic cases. A unified description is formulated based on the 

Perron-Frobenius, Koopman, and Foias linear operators. Also, a procedure to obtain global 

structures in the mean sense of systems with parametric uncertainties is presented. The 

stochastic basins of attraction and attractors’ distributions replace the usual basin and attractor 

concepts. For parameter uncertainty cases, the phase-space is augmented with the 

corresponding probability space. The microarch is assumed to be shallow and modelled using 

a nonlinear Bernoulli-Euler beam theory and is discretized by the Galerkin method using as 

interpolating function the linear vibration modes. Then, from the discretized multi degree of 

freedom model (mdof) model, an accurate single degree of freedom (sdof) reduced order model, 

based on theory of nonlinear normal modes, is derived. Several competing attractors are 

observed, leading to different (acceptable or unacceptable) behaviours. Extensive numerical 

simulations are performed to investigate the effect of noise and uncertainties on the coexisting 

basins of attraction, attractors` distributions, and basins boundaries. The appearance and 

disappearance of attractors and stochastic bifurcation are observed, and the time-dependency 

of stochastic responses is demonstrated, with long-transients influencing global behaviour. To 

consider uncertainties and noise in design, a dynamic integrity measure is proposed via curves 

of constant probability, which give quantitative information about the changes in structural 

safety. For each attractor, the basin robustness as a function of a stochastic parameter is 

investigated. The weighted basin area can quantify the integrity of nondeterministic cases, 

being also the most natural generalization of the global integrity measure. While referring to 

particular MEMS, the relevance of the dynamical integrity analysis for stochastic systems to 

quantify tolerances and safety margins is underlined here. 

Keywords: Electrically actuated microarch, reduced order model, parameter uncertainty, noise, global nonlinear dynamics, 

dynamic integrity  
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1. Introduction 

Micro-electro-mechanical systems, or MEMS, have been 

attracting a large amount of attention over the last decades due 

to their potential for applications in a large variety of fields 

such as aerospace, mechanics, electricity, communications, 

bioengineering and medicine. They have many functions, 

including transducers, switches, logic gates, actuators, and 

sensors. This issue is challenging since the problem is 

inherently multiphysical, demanding a multi-disciplinary 

perspective for the modelling, analysis and synthesis [1–5]. 

MEMS are often constituted by standard structural elements 

such as (micro)beams, (micro)plates and micro(arches) 

suspended over a parallel ground plate, and under direct 

current (DC) voltage, alternating current (AC) voltage, or 

both, and classical theories usually apply [6]. Recent review 

papers present the current stage of research on electrically 

actuated MEMS, analysing their theoretical developments and 

mathematical modelling, nonlinear static and dynamic 

behaviours, advances in fabrication technologies, 

development of high-performance nano and microscale 

systems, and other recent advances in the field [7–12]. 

Microarches are among the most used MEMS structures 

[13]. Arches are compliant bistable mechanisms having two 

stable equilibrium configurations and a double well potential 

function. The microarch configuration can be obtained by 

using a buckled beam or can be deliberately pre-shaped during 

fabrication, with bistable beams with buckled-like shapes 

being the most common type. The buckling can be obtained 

by axial compression, heating expansion, or residual stresses. 

Both configurations are increasingly used as bistable 

mechanisms at the small and large scale [14,15]. Examples of 

applications include soft robotics, metamaterials, multistable 

positioning, resonators, actuators, gas sensing, pressure 

sensing, threshold sensing, space applications, biomedical 

devices, and energy harvesting, as mentioned by Hussein et al. 

[16]. 

Many research studies highlight that, thanks to the presence 

of both electric and geometric nonlinearities, MEMS exhibit 

strongly nonlinear behaviour, and various nonlinear static and 

dynamic phenomena may arise in these microstructures. Thus, 

understanding their nonlinear dynamical behaviour is crucial 

for successful implementation. Among these phenomena, the 

pull-in, i.e., the contact of the microstructure with the charged 

substrate, is an inherently nonlinear and crucial effect, which 

may be an undesirable feature or a desirable one, depending 

on the application. Under alternating current (AC) voltage, the 

microarch may exhibit several coexisting attractors due to 

local or global bifurcations, the presence of multiple potential 

wells, and pull-in [17–20]. Thus, the set of initial conditions 

converging to a given attractor becomes an important design 

issue, and the analysis of the evolution of the coexisting basins 

of attraction is the basic tool for evaluating the microstructure 

dynamical integrity and load-carrying capacity. The basins’ 

topology can vary remarkably with a varying parameter, with 

their boundaries being smooth or fractal, depending on the 

stable invariant manifolds of the saddles lying on them. 

Furthermore, the complexity of the interwoven basins of 

attraction increases with the number of coexisting solutions. 

In such cases, responses become extremely sensitive to any 

perturbation, with the final state depending crucially on the 

initial conditions. The importance of the global dynamic 

analysis and dynamical integrity concept for engineering 

design and system safety has been clearly stated in recent 

contributions on macro- to nano-mechanics [17–24]. In 

particular, this analysis can identify the parameter range where 

each attractor can be reliably detected in practice and where, 

instead, it becomes susceptible to unknown parameter 

changes. 

The aforementioned studies emphasize the importance of 

accurately predicting the nonlinear dynamic behavior of 

MEMS. However, this is a challenging problem due to their 

inherently multiphysical nature, the presence of intrinsically 

nonlinear electric excitation, geometrical nonlinearities, the 

uncertainties in the damping estimation, imperfections coming 

from the microfabrication process and the noise of the current, 

resulting in many unknown and uncertain parameters. Thus, 

the deterministic framework represents a theoretical limit, 

which may not occur in practice. A realistic analysis must 

include the effect of noise, uncertainties, and disturbances, 

which are unavoidable and may lead to an outcome different 

from that theoretically predicted. For example, Vig and Kim 

[25] enumerate possible noise sources with thermal, chemical, 

and electrical origins, intensifying dynamic effects that are 

negligible in macro-scale devices. Experimental observations 

[26–28] demonstrate these noise sources and their effects. 

Another type of nondeterminism occurs in MEMS due to 

possible geometric [29–31], constitutive [32], damping [33], 

and general [34] uncertainties. Monte Carlo based 

methodologies, stochastic perturbation, and stochastic 

collocation can be applied to the analysis. Recently, a MEM 

cantilever was analyzed, showing the effects of imperfection 

uncertainty on the frequency responses, and noise on the 

nonlinear global dynamics [35].  

The nonlinear global dynamic analysis is computationally 

demanding, with many phase-space discretization techniques 

devoted to this problem, starting from the Ulam method [36] 

and later the generalized cell-mapping method [37,38]. They 

are actually equivalent [39] for being based on an operator 

perspective of global dynamics. Today, real engineering 

problems demand high-performance computing (HPC), with 

parallel strategies being essential [40–42]. Also, 

nondeterministic considerations add another complication, 

being even more computationally expensive. Orlando et al. 

[43] and Silva and Gonçalves [44] demonstrated this, flagging 

regions susceptible to nondeterministic factors through Monte 
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Carlo method. Basins of attraction were highly affected for 

large uncertainty levels, and the computational cost increased 

significantly with them. To reduce this cost, adaptative phase-

space discretization techniques, designed for nondeterministic 

global dynamic analysis, are an interesting field of 

investigation [45]. Some recent results quantified the effects 

of random parameters and noise on the basins, attractors, and 

dynamic integrity of nonlinear one degree of freedom (dof) 

oscillators [46], obtained by applying an operator perspective 

for the nondeterministic analysis. 

The formulation of reduced order models (ROMs) 

contributes substantially to reducing the computational cost of 

analysis. Younis et al. [47] proposed the construction of 

ROMs by multiplying the equation of motion by the electric 

load denominator. Many systems were analyzed following 

this strategy, such as arch resonators [28,29,48–50], arches 

over flexible supports [51], functionally graded viscoelastic 

microbeams with imperfections [52], cantilever resonators 

[53–55], narrow microbeams subject to fringing fields [56–

58] and microscale beams described by the modified couple 

stress theory [30–32,59–63]. 

The derivation of reliable ROMs) has received 

considerable attention in recent years, especially in the 

analysis of nonlinear systems [64]. A recent literature review 

by Mazzilli et al. [65] showed that ROMs obtained through 

nonlinear modes are significantly superior to those provided 

by the classical Galerkin method. They can represent 

dynamics restricted to specific nonlinear manifolds with a 

small number of dof, a characteristic that profoundly helps the 

global dynamic analysis. In the MEMS literature, the works of 

Ruzziconi et al. [28,49] demonstrated how simple, single 

degree of freedom (sdof) or two degrees of freedom (2dof) 

systems, are capable of representing complex dynamics, 

comparing the Galerkin method to Ritz with Padé 

approximations. 

The objective of this work is to study the global nonlinear 

dynamics of a microarch electrically actuated and to verify the 

effects of noise and uncertain damping ratio on global 

response. The mechanical model is based on [28], and is a 

MEMS device consisting of a shallow arched microbeam, 

with axial load deliberately added and electrostatic and 

electrodynamic actuation. The microstructure is characterized 

by a bistable static configuration [66], with complex global 

dynamics. A ROM is derived for the analysis of the pre-

buckling potential well, and the modified adaptative phase-

space discretization strategy presented in [46] is employed for 

the global dynamic analysis. This methodology allows the 

effects of noise and uncertain parameters to be highlighted. 

The paper is organized as follows. Section 2 presents the 

MEMS formulation and discretization procedure. The static 

analysis and investigation of the minimum number of linear 

modes needed in the Galerkin procedure are presented in 

section 3. In section 4, the ROM embedded in a lower 

dimensional invariant manifold [65] is derived, using the 

theory of nonlinear normal modes. The frequency response 

analyses of both the ROM and a 2dof Galerkin model are 

compared in section 5. In section 6, the global analysis of the 

deterministic arch is presented. The influence of noise and 

damping uncertainty is investigated in, respectively, section 

7.1, and section 7.2. Section 8 presents the concluding 

remarks. 

2. Nonlinear Euler-Bernoulli microarch electrically 

actuated 

A micro-electro-mechanical system model is derived based 

on the experimental and numerical analyses in [28]. The 

microstructure is simulated as a clamped-clamped imperfect 

planar Euler-Bernoulli microbeam [67], with length L and a 

constant rectangular cross-section of width b and thickness h. 

As in [28], residual stresses are represented by a constant axial 

load P, which produces the axial displacement Bu  at the right 

end of the beam. Three coordinate systems are considered, the 

reference system ( , )X Z , the undeformed, stress-free 

configuration 0 0( , )  , and the deformed configuration ( , )   

[35]. The transversal imperfection 0w  and displacement w  

are related through these coordinate systems, from which the 

equations of motion are derived. Both undeformed and 

deformed configurations and the reference system are shown 

in Figure 1. The actuation plate is also depicted at a positive 

distance d in the adopted reference system. 

The Euler angles   and 0 , and the arclength definitions 

s  and s  are also shown in Figure 1. Based on the Euler beam 

theory, the axial strain is given by 

( )0 ,e    =  + −  (1) 

where 0  = + , ( ) d

d s
 =  is the derivative with respect to 

the undeformed arclength s, and e  is the axial elongation,  

( )
2

2 2

01 1.e u w w   = + − + −  (2) 

Through geometry, the following relations are obtained 

[46,67] 

( )

( )

2
2 2

0

2

0

2
2 2

0

2

0 0 0 0

sin ,

1

1
cos ,

1

sin , cos 1 ,

w

w u w

u w

w u w

w w





 

−
=

  + + −

 + −
=

  + + −

 = − = −

 
(3) 
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where 0w w w= + . Finally, the Lagrangian is defined as 

T U= −L , where the kinetic energy is given by 

 2 21
,

2 S

T mu m w ds= +  (4) 

and the strain potential energy is  

 2 21
,

2
u e

S

U D D ds =  +  (5) 

where m is the linearly distributed mass, ( ) d

d t
= , and 

uD E A=  and D E J =  are the axial and flexural stiffnesses, 

E being the Young’s modulus, A the cross-section area and J 

the cross-section area moment of inertia. 

The equations of motion are derived by applying 

Hamilton’s principle, that is, by taking ncW= +H L  as 

stationary in time, where ( )nc w wW Q c w w = −  are the 

nonconservative forces, resulting in: 

2

0 ,
2

u

w
mu D u w w D w w

   
    = + + +  

   

 (6) 

( )( ) ( )

( ) ( ) 

2

0

2

0 0

0

2

2 1

.

w w u

w
mw c w Q D w u w w

D w w w w w w w

w w w w u w u w



  
   + − = + +  

  

       + + − +



       + + + +


 (7) 

Following Nayfeh and Pai [67], the effects of the geometric 

nonlinearities related to the curvature and axial shortening of 

the microbeam up to third order are retained in equation (7). 

Taking u  as time-independent, integrating equation (6) 

twice with respect to s and applying boundary conditions 

( )0 0u =  and ( ) Bu L u= −  results in 

0

0

0

0

2

.
2

L

B

u

s

u

Ds w s
u w w w w ds u

L D L

Dw
w w w w ds

D





  
   = + + −  
  

  
   − + +  
  







 (8) 

Only the initial displacement 0w  is stress-free. The boundary 

condition Bu  imposes an initial deformation that is not in 

equilibrium. Thus, the corresponding w must be calculated. 

Considering a parallel plate capacitor with a rectangular 

cross-section, the electrostatic force wQ  can be written as [2] 

( )

2

2
,

2
w

b V
Q

d w


=

−
 (9) 

where b is the beam width, d is the initial gap for a perfect 

system, ε is the free space permittivity and V is the applied 

voltage. 

Finally, by considering the following nondimensional 

parameters  

* *

4

* * *0

0

3 2

* *

2 2
* *

* *

, ,

, , ,

, ,

, ,

, ,

B

B

w u

w u

w

w

Ds
s t t

L mL

w uw
w w u

d d L

Q L D L
Q

D D

c L L
c

DmD

d b
d b

L L



 





 

= =

= = =

= =

= =

= =

 (10) 

the nondimensional equation of motion in the transversal 

direction is obtained as  

( )
( )

( )

( )

1
2

iv 2

0

0

2 2 1
iv iv

23
0

1
2

iv iv 2

0

0

2 20

0 0 0

0

2

2 1

2

2

w u B

u

B

w
w c w w w u d w w ds

b V d
w w w w w ds

d w

w
w w u d w w ds

w w
d w w w w

w w w







   
  + + + − +  

   

 
  − = + + 

−  

   
 − + − +  

   

        − + +   
  

  + +









( )( )

( )
2

2 2 .
u

w w

d
w w w w



 


    + −  
 

 (11) 

where * was dropped for brevity. With respect to the 

condensed microbeam model used in [28], the r.h.s. of Eq. 

(11) is different from zero due to the nonlinearities being 

considered. 

The initial configuration is assumed in the form of the 

clamped-clamped beam buckling mode [28], which, in 

nondimensional form, is given as  

( )( )
*

* 0

0 1 cos 2 ,
2

y
w s= −  (12) 
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where *

0y  is the maximum initial rise of the imperfect beam at 

* 0.5s = , nondimensionalized with respect to the nominal 

beam gap d. Thus, *

0 1y =  corresponds to a pull-in failure and 

is an inadmissible parameter value. The linear vibration modes 

of the clamped-clamped Euler-Bernoulli beam [46,68]  

( ) ( ) ( )

( ) ( )

cosh cos

sin sinh
sinh sin ,

cos cosh

i iF s C s s

s s

 

 
 

 

= − +

+  −  − 

 (13) 

are adopted in the Galerkin discretization and the natural 

frequencies are the nontrivial solutions of the characteristic 

equation cos cosh 1.  =  

The present formulation is valid for shallow arches under 

small to moderate displacements. Also, the capacitor 

assumption [2] dictates that the system behaves as parallel 

plates. The parameters of Ruzziconi et al. [28] consider these 

constraints and are adopted in this study, with the dimensional 

values summarized in Table 1. 

Table 1. Dimensional geometric and material properties  

Parameters Symbol Values 

Length (μm) L  440 

Width (μm) b  55.8 

Thickness (μm) h  1.864 

Linear mass distribution (kg/m) m  72.4255 10−  

Flexural stiffness (N‧μm2) D  4.9992 

Axial stiffness (N) uD  17.2659 

Nominal gap (μm) d  0.7 

Free space permittivity (N‧V-2) [69]   128.85 10−  

Initial transversal displacement at 

s = 0.5L (μm) 
0y  -1.347 

Axial displacement at s = L (μm) Bu  0.0296 

 

The corresponding nondimensional parameters, given by 

equation (10), are reported in Table 2. Only the free space 

permittivity *  still maintains a dimension unit, V-2, as 

usually done in the literature. This choice simplifies the 

presentation of the results, with both the direct current Vdc and 

alternate current Vac components of the load V in (11) given in 

units of Volt (V). 

Table 2. Nondimensional geometric and material parameters 

Parameters Symbol Values 

Width *b  0.1268 

Nominal gap *d  0.0016 

Free space permittivity (V-2) *  
73.4273 10−  

Axial stiffness 
*

u  668643.74 

Initial transversal displacement at s* = 0.5 
*

0y  -1.9243 

Axial displacement at s* = 1 
*

Bu  56.7288 10−  

 

The minus sign of 0y  and *

0y  results from the axis 

orientation being negative upwards, which implies a total 

initial gap larger than the nominal gap: in dimensional form, 

the maximum initial gap is 0 2.047μmy d+ = . The 

nondimensionalization of the displacement field in [28] is 

with respect to a nominal micrometer, while here the nominal 

gap d is adopted. Thus, the pull-in position becomes w = 1, 

represented by the pole of equation (11). In the following 

sections, the nondimensional formulation is considered and 

the symbol * is dropped for brevity, unless stated otherwise. 

3. Equilibrium at static actuation 

The total applied voltage is the sum of the direct current 

(Vdc) and the time-dependent alternate current (Vac), i.e., 

( ) ( ).dc acV t V V t= +  (14) 

The transversal displacement is, therefore, decomposed 

into its dynamic and static parts, 

( ) ( ) ( ), , .d sw t x w t x w x= +  (15) 

The static response of the microarch is now investigated. 

Initially, the modal equations are obtained. Following a 

classical procedure [2], equation (11) is multiplied by the load 

denominator, ( )
2

1 w− , the time dependent terms are deleted, 

and then a Galerkin projection using the linear vibration 

modes, equation (13), is conducted, resulting in the following 

system of nonlinear equilibrium equations 

(

)

2 1

3
0

,
2

i in j ijn j k ijkn u n i in

i j ijn i j k ijkn i j k l ijkln

i j k l m ijklmn n i in i j ijn

i j k ijkn i j k l ijkln

dc

i j k l m ijklmn n

w w w w w

w w w w w w w w w

w w w w w w w w

w w w w w w w

b V
w w w w w F ds

d





 − + + + 

+ + +

+ = + +

+ +

+ + 

Β Β Β C C

C C C

C D D D

D D

D

 
(16) 

where wi are the static modal amplitudes, the tensor constants 

are given in Appendix A, and the Einstein summation 

convention is adopted, with indexes , , , , ,i j k l m n  varying 

from 1 to the total number of linear vibration modes, equation 

(13), adopted in the Galerkin discretization procedure. 

Equation (16) presents nonlinearities up to the fifth order with 

coupling between all linear modes. The nonlinear equilibrium 

paths are obtained through a pseudo arc-length continuation 

procedure together with the Newton-Raphson method [70,71], 

and their stability is verified through the maximum eigenvalue 

of the Jacobian matrix. 
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The static equilibrium responses for various imperfection 

levels are displayed in Figure 2, considering an increasing 

number of modes, namely, the first, third and fifth linear 

symmetric modes, that is, , , , , ,i j k l m n  can be  1 ,  1,3 , or 

 1,3,5 . The vertical axis corresponds to the total static 

displacement sw  at the middle of the microarch span, s = 0.5, 

with respect to the perfect reference system. That is, it 

accounts for the displacement due to the static actuation Vdc, 

the initial imperfection 0y , and the initial axial displacement 

uB. Recalling the nondimensional relations in (10), the case 

( )* 0.5 1sw =  corresponds to pull-in. 

At least the first two symmetric modes are necessary to 

predict with precision the nonlinear response before pull-in for 

all imperfection levels and, consequently, the associated 

potential energy function and the ensuing global dynamics. 

For 0 2y  − , the results indicate the viability of the 2-mode 

expansion for shallow arches, being a good compromise 

between quality of results and difficulty of analysis [46]. 

Notice that, although the imperfection magnitude 0y  is a 

multiple of the nominal gap d, it is still very small in 

comparison to the nominal microarch span L [28]. The 

maximum absolute displacement corresponds to 0.477% of 

the microarch span for 0 2y = − . Therefore, the displacements 

are still very small. Finally, symmetry-breaking bifurcations 

are not considered, so asymmetric modes are not included in 

the analysis. 

4. Reduced order model based on nonlinear normal 

modes 

Here the concept of normal nonlinear modes is used to 

derive a reliable sdof ROM for the microarch [65]. The usual 

procedure to obtain the modal equations of motion is to define 

the displacement w as a sum of static and dynamic 

components, equation (15), expand the dynamic part in Taylor 

series, and then apply a Galerkin projection onto the linear 

vibration modes [2]. The resulting nonlinear system represents 

a dynamic perturbation of the static position. Depending on 

the excitation frequency and the expected displacement 

amplitude, several linear modes are necessary to describe the 

original continuous problem correctly [72]. This is a problem 

for global dynamic analysis since the phase-space dimension 

increases with the number of modal equations n (dimension 

2n), and discretization of multidimensional spaces is still 

computationally prohibitive, especially when noise and 

uncertainties are considered. 

To address this issue, a reduced order model is derived. As 

in the static analysis, by multiplying equation (11) by ( )
2

1 w−  

and then applying the Galerkin projection without separating 

static and dynamic displacement components, the system of 

nonlinear equations takes the form 

( )

(

)

32

i w i in j ijn j k ijkn

i in j ijn j k ijkn u n i in

i j ijn i j k ijkn i j k l ijkln

i j k l m ijklmn n i in i j ijn

i j k ijkn i j k l ijkln

i j k l m ijklmn dc

w c w w w w

w w w w w

w w w w w w w w w

w w w w w w w w

w w w w w w w

b
w w w w w V V

d





 + − + 

 + − + + + 

+ + +

+ = + +

+ +

+ + +

A A A

Β Β Β C C

C C C

C D D D

D D

D ( )
1

2

0

,ac nF ds

 (17) 

where the Einstein summation convention is adopted, the 

constant tensors are given in Appendix A, and the same 

indexes as in equation (16) hold. The load V is separated into 

static and dynamic contributions, namely the direct current 

voltage Vdc and the alternating current voltage Vac. This is a 

strongly nonlinear equation, with second-order nonlinearities 

in the inertia and damping terms and nonlinear stiffness terms 

up to the fifth-order. Modal systems obtained from equation 

(17) are highly coupled, complicating the analysis. 

Following the results from the static analysis, the 

symmetric 2-mode expansion is initially adopted, where 

 , , , , , 1,3i j k l m n = . However, the adoption of the 2-mode 

expansion results in a 4-dimensional phase-space, which is 

still complicated to analyse. An alternative is to restrict the 

analysis to solutions embedded in a lower dimensional 

invariant manifold [65], following the definition of nonlinear 

normal modes of Shaw and Pierre [72]. 

To construct the ROM, the 2dof system is expanded using 

Taylor series up to the fifth order around a static equilibrium 

position given by the modal amplitudes of two symmetric 

modes obtained by the solution of equation (16), 
( ) ( )( )1 2

,s sw w , 

for a given value of direct current voltage Vdc. The indexes (1) 

and (2) correspond to the first and third linear vibration modes, 

given by equation (13), which are also the first two symmetric 

modes. The resulting first-order differential system is derived 

( ) ( )( )1 2

1 2 1 2

,

, , , , , , , ,

k k

k k s s dc ac

d
w w

dt

d
w F w w V w w w w V

dt

=

=

 (18) 

where  1, 2k =  represent the first and second linear 

symmetric modes. 

For the following numerical analysis, the static position is 

calculated assuming Vdc = 0.7V, as in [28], with parameters 

from Table 2, and 
( ) ( )1 2

0.8382, 0.0200s sw w= − = . Then, the 

procedure described in [72] is applied. One of the modal 

amplitudes and the corresponding velocity are taken as the 

independent manifold variables (master pair), while the others 
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are assumed as dependent variables (slave coordinates). Here 

the first modal amplitude and the corresponding velocity, 1w  

and 1w , are adopted as governing or master coordinates, and 

the second modal amplitude and velocity, 2w  and 2w , as slave 

coordinates. Expanding the slave coordinates up to the fifth 

order results in 

5

2 0 , 1 1

1 0

,

n

n i i

i n

n i

w a a w w−

= =

= +  (19) 

5

2 0 , 1 1

1 0

.

n

n i i

i n

n i

w b b w w−

= =

= +  (20) 

The constants are obtained by substituting equations (19) 

and (20) into the first and second of equations (18), 

respectively, for k = 2, and by setting damping and forcing 

terms to zero. This results in a two-equation system of 

( )1 1 1, ,w w w . The acceleration term 1w  is eliminated by 

applying the second equation in (18), with k = 1. Retaining 

terms up to the fifth power of 1w  and 1w  results in the system 

5

1;0 1; , 1 1

1 0

5

2;0 2; , 1 1

1 0

,

n

n i i

i n

n i

n

n i i

i n

n i

C C w w

C C w w

−

= =

−

= =

+ =

+




 (21) 

5

3;0 3; , 1 1

1 0

5

4;0 4; , 1 1

1 0

,

n

n i i

i n

n i

n

n i i

i n

n i

C C w w

C C w w

−

= =

−

= =

+ =

+




 (22) 

which are dependent on the constants ai,n and bi,n in equations 

(19) and (20). Terms of the same degree are equated resulting 

in a system of algebraic equations in terms of ai,n and bi,n, 

which can be solved sequentially, as in any perturbation 

method [72]. These characteristics make it possible for the 

method to be easily used in computational solution schemes, 

even for systems with many degrees of freedom [73]. The 

resulting nonlinear polynomial system 

1;0 2;0

3;0 4;0

1; , 2; ,

3; , 4; ,

0,

0,

0, , ,

0, , ,

i n i n

i n i n

C C

C C

C C i n

C C i n

− =

− =

− = 

− = 

 (23) 

governs the coefficients ai,n and bi,n. In this case, there are 

forty-two equations up to the fifth power in ai,n and bi,n. This 

approach for the approximate solution of the system of 

differential equations is local by nature, and results in 

approximations to the nonlinear normal modes of vibration 

and dynamics close to the equilibrium point. 

Solving this problem results in the nonlinear normal mode 

governed by 

( )

( )

( )

1 1

5 4 6 4

1 1 1 1

2 2 3

1 1 1

2 2

1 1

2 5 4

1 1 1

,

5.0854 14.3037 2.4554 10

0.0035 121.6181 0.0224

762.4990 0.0114

1385.5761 0.0172 1.5913 10 .

d
w w

dt

d
w w w w

dt

w w w

w w

w w w

−

−

=

= + − 

+ − +

+ −

− − + 

 
(24) 

Figure 3 illustrates the two-dimensional manifold given by 

equation (24), based on equations (19) and (20), embedded in 

a four-dimensional phase-space. This manifold is tangent to 

the plane corresponding to the linear normal mode at the 

origin, also present in the figure. The plane corresponds to the 

linear terms in equations (19) and (20), being a linear modal 

embedding of the original problem. For small ( )1 1 2 2, , ,w w w w

, the motion is restricted to this plane. As ( )1 1 2 2, , ,w w w w  

increase, nonlinear terms in equations (19) and (20) become 

relevant, with the two-dimensional manifold deviating from 

the linear solution. 

By substituting equations (19) and (20) into equation (18), 

for k = 1, the first-order nonlinear equations of the forced and 

damped system are given by 
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( )

( )

( )
( ) ( ) ( )( )

1 1

5 4 6 4

1 1 1 1

2 2 3

1 1 1

2 2

1 1

2 5 4

1 1 1

1 1 2

1 1 1

4

1

,

5.0854 14.3037 2.4554 10

0.0035 121.6181 0.0224

762.4990 0.0114

1385.5761 0.0172 1.5913 10 .

0.0104 0.1449

0.0351  1.

w w w

d
w w

dt

d
w w w w

dt

w w w

w w

w w w

c w c c w w w

w

−

−

=

= + − 

+ − +

+ −

− − + 

− + − − −

+ +( )

( )

( )

5 2 2

1 1 1

2 7 2

1 1 1 1

2 6 2

1 1 1

5 2 2 4

1 1 1

3 6 2

1 1 1

6 2 2

1 1 1

2

1

0034 10

0.0164 6.5676 10

0.0193 5.2796 10

0.6280 1.0091 10 0.0399

0.0980 7.2601 10

1.0335 10 0.2257 0.4405

0.0700

ac

ac

w w w

w w w w

w w w

V w w w

w w w

w w w

V w

−

−

−

−

−

−



+ + 

− − 


+ +  +

+ + 

+  + + 

+



3 6 2

1 1

2 7 2

1 1

1

5.1858 10

0.1612 7.3821 10

0.3146 0.4486 ,

w w

w w

w

−

−

 + 

+ + 

+ +  

(25) 

which is the reduced order model for vibrations in the pre-

buckling potential well, with ( ) ( )1 1, 0,0w w =  as the energy 

minimum. 

If 
( ) ( )1 2

w wc c= , the damping is significantly simplified, which 

is the case adopted in [28]. Here, the damping ratio   is the 

same for the two modes, leading to distinct values for 
( )1

wc  and 

( )2

wc , and also to nonlinear damping terms in equation (25). 

5. Frequency response under dynamic actuation 

The dynamic actuation is given by the periodic voltage, 

( )cos ,acV A t=   (26) 

where A is the forcing magnitude, and Ω is the forcing 

frequency. The damping coefficients are given in terms of the 

damping ratio,  , as 

( )

( )

1

1

2

2

2 ,

2 ,

w

w

c

c





=

=
 (27) 

where ω1 and ω2 are the first and second natural frequencies. 

The natural frequencies are a function of the static voltage Vdc, 

the initial axial displacement Bu , and the initial imperfection 

0y . For the parameters in Table 2 and Vdc = 0.7V, the natural 

frequencies are ω1 = 37.6699 and ω2 = 116.7780. 

The analysis is conducted with the software Continuation 

Core and Toolboxes (COCO) [74]. Initially, the free 

vibrations of the 2dof model, described by the 2-mode 

expansion, equation (17), and the conservative reduced order 

model, equation (24), are compared. The backbone curves are 

shown in Figure 4 in terms of the transversal displacement w  

at s = 0.5, with respect to the reference frame, which is sum of 

the initial imperfection 0w , the static displacement sw  due to 

the direct current Vdc , and the dynamic displacement dw  due 

to the alternate current Vdc , being thus the real, observable 

displacement. 

A softening behavior is observed, with both the small 

amplitude (nonresonant) and large amplitude (resonant) 

solutions coexisting in a frequency band lower than the 

resonant frequencies. This is due to the strong nonlinear 

electric load, which is known to lead to a softening behavior. 

Also, shallow arches such as those studied here display a 

softening behavior [75]. The initial rise of the shallow arch has 

a significant effect on reducing its hardening behavior and 

increasing the softening one, as shown by Younis et al. [76]. 

Such behavior matches the experimental results in [28], 

validating the present modelling strategy. 

The two models agree qualitatively well in terms of 

transversal displacement w , even for large values. The ROM 

and the 2dof model are compared in Figure 5 where the 

frequency response curves are shown for A = 17V, ξ = 0.05 

and ξ = 0.03. Two resonance regions are observed, one at 

Ω = 37.2 and other at Ω = 18.6. The former corresponds to the 

first mode natural frequency, while the latter is a 

superharmonic resonance. The superharmonic resonance is 

due to the term Vac
2 in both the reduced model, equation (25), 

and the 2dof model, equation (17). This is a well-known 

phenomenon in MEMS literature [77]. Specifically, the 

superharmonic resonance is more prominent, with larger 

displacement values. Markers identify the bifurcation points: 

saddle-node bifurcation points in green and period-doubling 

bifurcation points in red. Stable and unstable solutions are 

identified by continuous and dashed lines, respectively. The 

ROM agrees well with the 2dof model, including the point 

where the saddle-node bifurcation occurs, demonstrating the 

quality of the ROM as a lower dimensional substitute of the 

original model expansion for excitation frequencies up to the 

first resonance region. The impact of increasing forcing 

amplitude is demonstrated in Figure 6, for ξ = 0.05, in Figure 

7, for ξ = 0.03, and in Figure 8, for ξ = 0.01. The main 

resonant region exhibits small amplitude vibrations for the 

two former cases, while the superharmonic region presents 

much larger vibration amplitudes. For smaller damping ratios, 

ξ = 0.01, Figure 8, a more complex response is observed, with 

the main resonant region exhibiting large amplitude 

vibrations. This shows the importance of the damping 

parameter on the results. Thus, the influence of damping 

uncertainty will be explored later in this work. 

Page 8 of 29AUTHOR SUBMITTED MANUSCRIPT - JMM-106059.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



J. Micromech. Microeng. XX (XXXX) XXXXXX Benedetti et al  

 9  
 

6. Deterministic global analysis 

The deterministic global dynamics of the arch are now 

addressed through the ROM given by equation (25) with 

harmonic dynamic actuation, equation (26), and damping 

coefficients, equation (27). For consistency and suitable 

comparison, deterministic basins of attraction are obtained 

through the same adaptative phase-space discretization 

technique, designed for nondeterministic global dynamic 

analysis in the framework of the operator approach, used later 

in Section 7 to obtain stochastic and parametric uncertainty 

basins. A concise description of the discretized operator 

approach used here and in Sect. 7 is provided in Appendix B. 

A more detailed description is found in [46], where also an 

extensive literature review is presented. The superharmonic 

resonance region is investigated, considering a forcing 

frequency Ω = 15 and an excitation amplitude A = 17V in all 

cases. Resonant (large amplitude) and nonresonant (small 

amplitude) solutions are expected for these parameters, as 

observed in the frequency response analysis (Sect. 5), as well 

as an escape solution representing the pull-in (failure) of the 

system, The fourth order Runge-Kutta integrator is adopted, 

with time-step T/2000. The analyzed phase-space window is 

   2,3 70,60= −  −X , which contains all relevant 

attractors.  

Basins of attraction are shown in Figure 9 in terms of 

probability distributions (according to color bars’ scale), by 

separately considering nonresonant, resonant and escape 

solutions so to not miss information about the varying 

probability of each basin. Changes in the basins’ topology 

with the damping ratio ξ are apparent. For ξ = 0.05, the two 

basins are robust, with well-defined smooth boundaries. As 

the damping ratio decreases, both basins’ integrity degrades, 

with escape tongues gradually eroding them, with the resonant 

basin more affected than the nonresonant one. This is also 

evident in the probability increase of the escape region with 

decreasing damping ratio. Also, the resonant and the 

nonresonant basins become more intertwined as ξ decreases, 

although for ξ = 0.01 they are still fairly well separated from 

each other by the escape basin entered in between them (see 

Figure 9(c)). In the nonresonant and resonant basins of Figure 

9 there are localized regions along the boundaries, far from the 

attractors, with probability between 0 and 1. This is due to a 

smoothing resulting from the operator approach, which causes 

small numerical diffusion along classical deterministic 

boundaries. According to Ulam [36], in the limit of infinity 

resolution, the method converges to the expected sharp 

boundaries. 

The efficiency of the adopted hierarchical procedure of 

phase-space refinement [46] is compared against that of a 

uniformly discretized phase-space, both strategies using the 

same minimum cell size and, therefore, providing the same 

attractors and basins results. The adaptative discretization 

algorithm reduced the total number of integrated initial 

conditions and the total number of cells by at least 30% and 

60%, respectively. Higher economy values were observed in 

[46] for simpler phase-space structures, which is an expected 

outcome. 

As an example, Figure 10 shows a phase-space final 

discretization by applying the adaptative algorithm described 

in [45,46]. Some regions, particularly attractors and basins 

boundaries, after several interactions, have a much higher box-

resolution. The adaptative discretization reduces the analysis’ 

computational cost without losing precision in these important 

regions. This economy is expected to be greater if the 

important regions are localized in small phase-space areas, as 

showed in [45,46]. 

 

7. Nondeterministic global analysis 

The framework for the analysis of nondeterministic 

dynamics though an operator approach has been addressed 

recently in [45,46], see also Appendix B. There, pairs of dual 

global operators, each pair constituted by a transfer and a 

composition operator, are employed for each type of 

dynamical system. The transfer operators for deterministic, 

stochastic, and parametric uncertainty cases are, respectively, 

the Perron-Frobenius tP , the Foias tF , and the parameter 

indexed Perron-Frobenius ( )t P  operators. The composition 

operators are for all cases Koopman tK  operators. They are 

discretized through the Ulam method [36], a classical 

discretization of flows in phase-space, which is extended here 

to nondeterministic cases. In [46] Benedetti proposes two 

strategies for phase-space discretization and refinement. The 

first strategy is based on a heuristic boundary identification 

procedure, where the basin boundary cells are cyclically 

subdivided using a binary tree structure. The second approach, 

used here, is based on the identification of the saddles’ stable 

manifolds, which are related to the basin boundaries’ 

geometry. All phase-space dimensions are subdivided 

simultaneously using an r-tree structure, thus reducing the 

number of initial conditions and the cost of high dimensional 

problems. A concise description of the construction of the 

discretized operators and the information given by them is 

provided in Appendix B. 

7.1 Effects of additive white noise 

On one hand, almost all theoretical and most numerical 

studies of nonlinear dynamics are performed for idealized 

noise-free systems; on the other hand, in experiments and real-

life, noise is ubiquitous. Here, a white noise is represented by 

the generalized derivative of the standard Wiener process, 

W , where   is a scaling parameter. It is added to the right 

side of the second equation of the ROM, equation (25), and 
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considering the harmonic dynamic excitation, equation (26), 

and damping, equation (27), results in a stochastic differential 

system of Itô type. The sampling numerical integration of this 

system is obtained by a stochastic Runge-Kutta method of 

fourth order in drift and half order in diffusion, with the same 

time-step of the deterministic case, T/2000. Ten samples for 

each set of initial conditions are integrated for the construction 

of the discretized Foias operator ij hp F . 

The effect of noise on the attractors and basins is 

investigated, and the results are displayed in Figure 11, for the 

nonresonant attractor, and in Figure 12, for the resonant 

attractor. A damping ratio ξ = 0.03 is adopted in this section. 

As Lindner and Hellmann [78] discussed, the generalization 

of stochastic basins of attraction for noisy dynamical systems, 

which assigns to each phase-space region a probability of 

converging to a specific attractor, given a fixed time-horizon, 

1/ε , is adopted. In all cases, the time-horizon for the stochastic 

basin computation in equation (B3) [46] is 1/ε = 109T, giving 

the expected outcome. For σ = 0.5, see Figure 11(a) and Figure 

12(a), the basins’ boundaries maintain the same structure as in 

the deterministic case, but a slight diffusion is already evident, 

with regions with a probability between 0 and 1 appearing. 

These regions are here referred to as nondeterministic. Also, 

the noise results in the mild spreading of both attractors over 

the phase-space, with the resonant attractor seemingly more 

sensitive to it. As noise increases up to σ = 1.4, these effects 

increase, the attractors spreading over larger regions of phase-

space and basin boundaries becoming more diffused, Figure 

11(c) and 12(c). The distance between the resonant attractor 

and its basin’s boundary decreases considerably, indicating a 

loss of dynamic integrity for this system. For σ ≥ 1.6, only the 

nonresonant attractor is observed. The previous resonant basin 

becomes nondeterministic, being partially absorbed by the 

nonresonant basin: initial conditions in this region have a 

probability between 40% and 50% to converge to the 

nonresonant attractor after 109 periods of excitation, and the 

complementary probability corresponds to escape. The 

stochastic basin’s change for σ ≥ 1.6 is akin to a global 

bifurcation, drastically changing the outcome for this system. 

This stochastic erosion is correlated to the noise influence onto 

the hilltop saddle’s manifolds, see [46]. This will be a topic 

for future investigations. 

The nonautonomous character of stochastic dynamical 

systems suggests that stochastic basins are time dependent. An 

investigation of the transient behavior is desirable for σ ≥ 1.6, 

when the resonant attractor disappears. To this end, the 

transient behavior for σ = 1.6 is addressed. Increasing values 

of the time-horizon 1/ε are considered in equation (B3) [46], 

with the function idA marking the nonresonant or resonant 

attractor, or the escape solution. The results for σ = 1.6 are 

summarized in Figure 13, for the nonresonant attractor, in 

Figure 14, for the resonant attractor, and in Figure 15, for the 

escape solution. Similar results are obtained for sigma σ = 1.8 

and σ = 2.0. The first three time-horizons, with ε = 0.5, 

ε = 0.1, and ε = 0.01, show the transient stochastic basin 

spreading in phase space but already with regions of 

probability lower than one, see Figures 13(a, b, c), 14(a, b, c), 

and 15(a, b, c). The resonant basin starts to decrease for 

ε ≤ 10-7, that is, after 107 periods of excitation. This is 

demonstrated in Figure 14(d, e), for ε = 10-7 and ε = 10-8. For 

ε = 10-9, Figure 14(f), the resonant basin completely 

disappears, with initial conditions in this region converging 

either to the nonresonant basin or to the escape region. These 

results stress the time dependency of basins in stochastic 

systems. Due to computational limitations, the system is 

assumed ergodic for 1/ε ≥ 109, that is, it has converged to the 

steady-state response after 109 periods of excitation. 

The integrity measure proposed in [46] is applied to 

quantify the system’s integrity loss due to nondeterministic 

effects. It is defined as the weighted normalized basins’ areas, 

  ( ),1
id

,
A Ap

g g dx

dx




X

X

 (28) 

where Ag  is a stochastic basin of attraction,   ( ),1
id Ap

g  is an 

indicator function, which is equal to 1 if  ,1Ag p  and zero 

otherwise, and p is the required probability threshold, between 

0 and 1. This expression is a particular case of equation (44) 

in [78], with ( )pert x  as a uniform density over the phase-

space window X , and also reduces to the global integrity 

measure (GIM) [79] in the deterministic limit. Figure 16 

shows the results for 0 ≤ σ ≤ 2 and 1/ε = 109. The nonresonant 

attractor dynamic integrity, Figure 16(a), corroborates its 

resilience to noisy perturbations, with its basin area being 

practically constant for σ < 1.6. Also, the probability is 

practically equal to one for all initial conditions. For σ > 1.6, 

the integrity measure increases, but the results show a more 

marked variation of the probability with large regions with 

p < 0.5. However, the basin area with probability p =1.0 

remains practically constant. The resonant attractor dynamic 

integrity measure, Figure 16(b), shows a steady decline, with 

an abrupt Dover cliff integrity loss at σ = 1.6, as already 

observed in Figure 12. If a conservative p-value is required, 

for example, p ≥ 0.8, then the constant decline of the basin 

area can be viewed as a warning for σ < 1.6. 

Continuing the discussion of the dynamic integrity, its 

dependency on the adopted time-horizon is illustrated in 

Figure 17, where the variation of the basin area is plotted for 

increasing values of the time-horizon 1/ε for selected 

probability thresholds p. Initially, the basin area increases up 

to a plateau, as expected for short transients, and between 102 

and 106 periods of excitation the integrity of both attractors 

remains practically unchanged; however, the resonant 

attractor shows a significant dependence on the required 

probability threshold, indicating its high sensitivity to noise. 
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The basin area only changes after 106 periods of excitation, 

with the resonant basin vanishing completely after 109 

periods. Classical methods, which rely on the time integration 

of each initial condition up to the time-horizon, would be too 

expensive to represent the permanent state of this system. 

Therefore, the approximation of the flow structure in phase-

space becomes advantageous, considerably diminishing the 

computational cost. 

The adopted hierarchical phase-space discretization 

reduced the total number of integrated initial conditions by at 

least 30%, in comparison with a uniform discretization of the 

phase-space, for all noise intensities. This again demonstrates 

the efficiency of the proposed methodology [46], when 

compared to a full phase-space discretization. 

7.2 Effects of parametric uncertainty of the damping 

ratio 

As shown in the previous sections, damping has a critical 

influence on the global dynamics of the microarch. However, 

damping is usually difficult to model or measure since it stems 

from different sources. Thus, it is important to investigate the 

influence of damping uncertainty on global dynamics. The 

variation of the frequency responses in Figure 6 to Figure 8 

demonstrates how the superharmonic oscillations vary with 

the damping ratio ξ. However, as an estimated parameter, it is 

usually associated with a distribution, defined as a random 

parameter of a given probability space. To better understand 

how this uncertainty affects the global response, the effects of 

this assumption on the superharmonic global dynamics of the 

harmonically excited microarch for A = 17V and Ω = 15, is 

investigated. Here, a modified refinement algorithm, see [46], 

is applied in conjunction with a probability space 

discretization, explained in [46], to obtain mean global 

structures. 

The damping ratio is assumed as uniformly distributed over 

the real continuous interval [a, b], that is, ξ ~ U(a, b). The 

computation of the mean structures is accomplished through 

the Gauss-Legendre quadrature, a common choice for treating 

uniform random variables through spectral expansion [80]. 

Taking ξstd as a standard random variable uniformly 

distributed over [-1, 1], ξstd ~ U(-1, 1), the damping ratio can 

be defined as 

( )
( ) ( )

std std .
2 2

b a b a
  

− +
= +  (29) 

It is clear that ξ(-1) = a and ξ(1) = b. The probability 

 X  P  is given by 

( )
( )

( ) ( )
std std

1

1
,

2 2 2

X x

a

x

f d

b a b a
d

  

 

−

=

− +  
+ 

  





 (30) 

where f(ξ) is the probability density of ξ. Differentiating both 

sides of equation (30) with respect to x and applying equation 

(29) by taking X =  and std x = , one obtains 

( )
 

 

1
, ,

0 , .

a b
f b a

a b







 

= −
  

 (31) 

Therefore, the damping ratio ξ ~ U(a, b) can be represented by 

equation (29). This allows the Gauss-Legendre quadrature in 

[80] to be applied for ξstd, and the original ξ is obtained through 

equation (29). In the following application, ten collocation 

points are adopted, discretizing the probability space into 10 

points. Then, after obtaining the attractors’ densities and 

basins observables for each ξ-value, see Appendix B, 

discretized mean structures are computed. For details, refer to 

[46]. 

Four cases are considered adopting 

a = 0.04, 0.03, 0.02, 0.01, and b = 0.05. The interval 

[a, b] = [0.04, 0.05] represents a low uncertainty case, and the 

interval [a, b] = [0.01, 0.05] represents a high uncertainty 

case. Figure 18 shows the mean basins’ observables and 

attractors’ distributions for the four cases, showing how these 

structures change as uncertainty increases. In the first case 

with ξ ~ U(0.04,0.05), Figure 18(a), the effect of uncertainty 

is already evident in the mean basins, diffusing their 

boundaries. That is, regions with probabilities different from 

0 and 1 to converge to either attractor start to appear. Again, 

these regions are referred to as nondeterministic. The 

uncertainty already affects the resonant attractor, with its 

mean distribution forming a curve in the phase-space. The 

nonresonant attractor, however, stays localized. This pattern is 

observed for all uncertainty cases, with the resonant attractor 

mean distribution spreading over a curve in phase-space as 

uncertainty increases. Also, the nonresonant mean basin 

diffusion depicts increasing regions with probability lower 

than one. In the last case, Figure 18(d), large nondeterministic 

regions are observed for both attractors, and the deterministic 

region of the resonant attractor is confined to a small area in 

phase-space. This suggests that the resonant attractor is 

sensitive to uncertainty in the damping ratio. 

Figure 18(.3) shows how the escape region is affected by 

the uncertainty in the damping ratio. As the uncertainty 

increases, nondeterministic escape zones inside the original 

deterministic basins of attraction regions appear. The last case, 

Figure 18(d.3), demonstrates how large uncertainties 

deteriorate the classical basins of attraction, with large 
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nondeterministic regions. Finally, the results are time-

independent since the parametric uncertainty of ξ does not 

depend on time. Therefore, there is no influence of the time-

horizon on the stochastic basins. Classical global analysis 

methods, such as the Grid of starts, could be considered with 

low time-horizons, with the uncertainty addressed, for 

example, through a Monte-Carlo method. However, this 

would still be computationally expensive since such a method 

demands that initial conditions are integrated until the time-

horizon is reached, whereas the Ulam method/Generalized 

cell-mapping approximates the phase-space flow through only 

one period of integration for each set of initial conditions. 

Additionally, the hierarchical phase-space discretization led to 

an economy of at least 60% in the total number of integrated 

initial conditions, for all uncertainty levels. This demonstrates 

once more the efficiency of the proposed methodology [46], 

when compared to a full phase-space discretization. 

The process of basins’ erosion and the complexity of their 

boundaries for increasing uncertainties, observed in Figure 18, 

is correlated to the uncertainty effects on the manifolds, see 

[46]. This correlation will be a topic of future investigations. 

Figure 19 displays the dynamic integrity profiles computed 

through equation (28) for the analyzed uncertainty cases as 

functions of the lower parameter boundary a. The first case, 

a = 0.05, corresponds to the deterministic result with ξ = 0.05. 

The nonresonant attractor shows a steady integrity decrease 

for all probability thresholds p. Surprisingly, the resonant 

basin shows two distinct patterns: for a probability threshold 

p < 0.8 the integrity increases before decreasing, and for 

p > 0.8 the integrity always decreases. Therefore, the system 

can gain or lose integrity for mild uncertainty cases, depending 

on the adopted probability threshold p. 

8. Conclusions 

Uncertainties in microelectromechanical systems are 

unavoidable and can drastically change their behavior. Also, 

noise is inevitable in the operational stages. The 

computational cost of both global dynamic and 

nondeterministic analysis makes it difficult to consider these 

phenomena simultaneously in such a complex system. Here, a 

recent adaptative phase-space discretization strategy [46] was 

applied to a microarch electrically actuated. Clamped-

clamped boundary conditions, an initial stress-free curvature, 

and imposed axial displacement were considered. The axial 

displacement was condensed, and a flexural beam model was 

derived. Its static response under DC actuation displayed two 

limit points which delimit the unstable solutions branch and 

lead to a multistability range and hysteresis. It was shown that 

two symmetric linear modes are the minimum necessary for 

qualitative analysis. 

A reduced order model, based on the first two symmetric 

linear modes, was derived for the dynamics in the vicinity of 

a given static position, following the definition of nonlinear 

normal modes of Shaw and Pierre [72]. The free vibration 

response and the frequency response under AC actuation 

demonstrated the validity of the proposed model when 

compared against the classical 2-mode discretization. A main 

superharmonic resonant region was identified, with the 

primary resonant region being excited only for low damping 

ratios. In all cases, a softening response was obtained due to 

the initial beam curvature and load. 

The adaptative phase-space discretization of stable and 

unstable manifolds with an r-tree data structure presented in 

[46] was employed. The global dynamics in the 

superharmonic region was studied. A potential well with 

nonresonant and resonant solutions was observed, and the 

impact of different damping ratios and added noise was 

investigated. The basins of the deterministic case 

demonstrated a convoluted partition of the phase-space for 

low damping ratios. Then, a low damping ratio case was 

investigated under noise, and the transient characteristic of 

solutions under high noise levels was observed, similar to 

previous results in [35]. This was evidenced in the integrity 

profiles, which display a Dover cliff pattern when the noise 

amplitude varies, along with a dependency on the adopted 

time-horizon (integration time). Finally, the influence of the 

uncertainty of the critical damping ratio was investigated, with 

a uniform distribution being adopted. The spread of the 

attractors along the bifurcation path as the distribution interval 

increases was observed, a distinct result in comparison to 

noisy cases. Their basins also spread over the phase-space. 

The integrity profiles revealed the gradual integrity loss of 

both solutions. 

The adaptative discretization strategy adopted proved to be 

efficient when compared to a full phase-space discretization, 

in the context of a MEMS device. Additionally, the important 

role of nondeterministic global dynamics in unveiling the 

nonlinear response and actual safety of microengineering 

systems was highlighted. 
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The raw data required to reproduce these findings are 

available on request. The processed data required to reproduce 

these findings are available on request. 
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Appendix A: Constant tensors resulting from the 

Galerkin expansion of the microarch problem 
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Appendix B: Discretized transfer operator approach 

for nondeterministic dynamics 

In the framework of an operator approach for the analysis 

of global dynamics, a concise description of the construction 

of the discretized operators is summarized here, along with the 

information given by them. Detailed expositions can be found 

in [45,46]. 

Initially, a phase-space window of interest X  is 

partitioned into a finite collection of n disjoint boxes 

 1,. , nb b=B . Such a collection is also referred to as cell 

space in the cell-mapping literature [38,40–42,81,82]. Then, 

initial conditions in each box are integrated for a period of 

time T (the same period that defines the stroboscopic Poincaré 

map [83]). Assumed a set of initial conditions within a given 

box 
ib , the transfer probability between boxes is approximated 

by  

#states in  after 1
.

#i.c. in 

j

ij

i

b T
p

b
=  (B1) 

The matrix 
ijp  approximates the continuous Perron-

Frobenius operator 
tP  for a time-interval 1T. Given a phase-

space subdivision into n boxes, 
ijp  is a n n  row stochastic 

matrix. Stochastic dynamical systems due to the presence of 

noise are considered by integrating the initial conditions 

repeatedly, and entries 
ijp  are computed through a Monte 

Carlo approach. The resulting transfer matrix approximates 

the continuous Foias operator 
tF  for the time-interval 1T. For 

parametric uncertainty cases, given a parameter set of possible 

values  , it is assumed that the transfer operators are functions 

of such set, resulting in the matrix ( )ijp   and approximating 

( )t P . 

The left-fixed space of 
ijp , that is, the solutions of 

( ) ( ) ( ) ,i ij i ijf p f   =  (B2) 

where the vector ( )if   contains information on attractors’ 

distributions if the phase-space is sufficiently refined, holds 

for deterministic and stochastic dynamics, and a particular 

uncertainty parameter value  . Once all attractors’ 

distributions are computed, the basins are obtained following 

the definition of stochastic basins of attraction by Lindner and 

Hellmann [78]. Such basins are described by functions 

( ) ( );
A

g x


  over the entire phase-space, giving the probability 

of a set of initial condition x to have converged to an attractor 

A until a time-horizon 1 
 
is reached. This function, also 

named observable, is the solution of a linear ill-conditioned 

system, which is given in vector (discretized) form by 

( ) ( ) ( )
1 ; id .ij ij j A

p g


     − − =   (B3) 
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The term ( );jg    is the vector form of 
( ) ( );

A
g x


  due to 

the phase-space discretization, while 
( )

id
A 

 is the phase-space 

indicator function of the attractor ( )A   with discretized 

distribution ( )if  . In summary, ( )if   and ( );jg    are 

discretizations of the attractors’ distributions and basins’ 

observables, respectively, for deterministic or stochastic 

dynamics given a particular value of  . In the case of 

uncertainty parameter, mean attractors and basins can be 

obtained from a discretization of the parameter space. 
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Figure 1. Orientation of imperfect undeformed and deformed coordinate 

systems of the microarch with respect to the reference system 

  

(a) 0 0y =  (b) 0 1y = −  

  

(c) 0 2y = −  (d) 0 3y = −  

Figure 2. Comparison of the microarch static response for different modal 

expansions and levels of initial imperfection. – stable, -- unstable 
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Figure 3. Two-dimensional invariant manifold of the reduced order model 
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Figure 4. Backbone curves for the first mode natural frequency of the total 
displacement w  at s = 0.5 

  
(a) ξ = 0.05 (b) ξ = 0.03 

Figure 5. Resonance response curves for A = 17V and varying ξ. Saddle-

nodes in green, period-doubling points in red. – stable, -- unstable 

  

Figure 6. Resonance response curves of the reduced order model for 

ξ = 0.05 and varying amplitude A. Saddle-nodes in green, period-doubling 

points in red. – stable, -- unstable 
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Figure 7. Resonance response curves of the reduced order model for 
ξ = 0.03 and varying amplitude A. Saddle-nodes in green, period-doubling 

points in red. – stable, -- unstable 

  

Figure 8. Resonance response curves of the reduced order model for 
ξ = 0.01 and varying amplitude A. Saddle-nodes in green, period-doubling 

points in red. – stable, -- unstable 
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(a.1) ξ = 0.05, nonresonant (a.2) ξ = 0.05, resonant (a.3) ξ = 0.05, escape 

   
(b.1) ξ = 0.03, nonresonant (b.2) ξ = 0.03, resonant (b.3) ξ = 0.03, escape 

   
(c.1) ξ = 0.01, nonresonant (c.2) ξ = 0.01, resonant (c.3) ξ = 0.01, escape 

Figure 9. Basins’ distributions (color bar) dependency with the critical damping ratio ξ, for A = 17V and Ω = 15. Attractors marked in red 
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(a) Full phase-space (b) zoom A – attractor region (c) Zoom B – basin boundary region 

Figure 10. Example of phase-space adaptative discretization. Important regions are more refined, namely, attractors distributions and basins boundaries, 
while distant nonrelevant regions maintain a crude discretization. Zoomed regions depict the resolution contrast in (b) an attractor region and in (c) a 

basin boundary region 
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(a) σ = 0.5 (b) σ = 1.0 (c) σ = 1.4 

   
(d) σ = 1.6 (e) σ = 1.8 (f) σ = 2.0 

Figure 11. Stochastic nonresonant attractors’ distributions (first color bar) and basins’ distributions (second color bar) for varying noise intensity. 

A = 17V, Ω = 15, ξ = 0.03 

   
(a) σ = 0.5 (b) σ = 1.0 (c) σ = 1.4 

Figure 12. Stochastic resonant attractors’ distributions (first color bar) and basins’ distributions (second color bar) for varying noise intensity. A = 17V, 

Ω = 15, ξ = 0.03 
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(a) ε = 0.5 (b) ε = 1e-1 (c) ε = 1e-2 

   
(d) ε = 1e-7 (e) ε = 1e-8 (f) ε = 1e-9 

Figure 13. Dependency of the nonresonant basin’s distributions (color bar) 

with the time-horizon 1/ε. A = 17V, Ω = 15, ξ = 0.03, σ = 1.6 

   
(a) ε = 0.5 (b) ε = 1e-1 (c) ε = 1e-2 

   
(d) ε = 1e-7 (e) ε = 1e-8 (f) ε = 1e-9 

Figure 14. Dependency of the resonant region’s distribution (color bar) 

with the time-horizon 1/ε. A = 17V, Ω = 15, ξ = 0.03, σ = 1.6 
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(a) ε = 0.5 (b) ε = 1e-1 (c) ε = 1e-2 

   
(d) ε = 1e-7 (e) ε = 1e-8 (f) ε = 1e-9 

Figure 15. Dependency of the escape region’s distributions (color bar) with 

the time-horizon 1/ε. A = 17V, Ω = 15, ξ = 0.03, σ = 1.6 

  
(a) nonresonant (b) resonant 

Figure 16. Integrity profiles of the weighted basins area as a function of the 
noise intensity σ for A = 17V, Ω = 15, ξ = 0.03. Color scale corresponds to 

the probability threshold p. Time-horizon 1/ε = 1e9 

  
(a) nonresonant (b) resonant 

Figure 17. Integrity profiles of the weighted basins area as a function of the 

time-horizon 1/ε for A = 17V, Ω = 15, ξ = 0.03, σ = 1.6. Color scale 

corresponds to the probability threshold p 
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(a.1) nonresonant, ξ ~ U(0.04,0.05) (a.2) resonant, ξ ~ U(0.04,0.05) (a.3) escape, ξ ~ U(0.04,0.05) 

   
(b.1) nonresonant, ξ ~ U(0.03,0.05) (b.2) resonant, ξ ~ U(0.03,0.05) (b.3) escape, ξ ~ U(0.03,0.05) 

   
(c.1) nonresonant, ξ ~ U(0.02,0.05) (c.2) resonant, ξ ~ U(0.02,0.05) (c.3) escape, ξ ~ U(0.02,0.05) 

   
(d.1) nonresonant, ξ ~ U(0.01,0.05) (d.2) resonant, ξ ~ U(0.01,0.05) (d.3) escape, ξ ~ U(0.01,0.05) 

Figure 18. Mean attractors’ (first color bar), mean basins’ (second color bar), and mean espace regions’ (grey) distributions for varying damping ratio ξ 

distributions. A = 17V, Ω = 15 
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(a) nonresonant (b) resonant 

Figure 19. Integrity profiles of the weighted basins area as a function of the 

lower parameter uncertainty boundary a for A = 17V, Ω = 15. Color scale 

corresponds to the probability threshold p 
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