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ARTICLE INFO ABSTRACT
Keywords: Addressing climate change and promoting sustainable energy practices is a pressing issue in our era and
Non-Intrusive Load Monitoring requires a comprehensive transformation of our energy production, transportation, and consumption methods.
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This is particularly relevant for industries and residential buildings, which together represent 70% of the total
electricity demand. The Smart Grid, with its real-time data collection and renewable energy management
Machine learning capabilities, promotes energy awareness and intelligent energy transactions. Recent studies have highlighted
Load identification the untapped potential for energy reduction in industrial settings. However, the effective deployment of
Load disaggregation advanced methodologies to enhance energy efficiency in these settings necessitates a detailed understanding of
consumption patterns Non-Intrusive Load Monitoring (NILM), a technique that disaggregates consumption at
the device level, has been identified as a key strategy in this context. Although NILM has been widely applied
in residential settings, the need for its application in industrial settings is increasingly acknowledged, given
the complexities associated with installing electrical sensors in such environments. Notably, the last review
dedicated to NILM for industrial settings was published in 2015. In light of the growing body of research, this
work aims, for the first time, to systematically collect, organize, and analyze the literature published to date.
This is crucial for the ongoing research in this field and to highlight open challenges and limitations.
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1. Introduction

The increasing evidence for climate change and global warming
underscores the urgent need for intelligent and effective solutions to
reduce emissions and promote sustainable energy practices in all sec-
tors [1]. According to the “Net Zero Emissions by 2050” [2], a complete
overhaul of our energy production, transportation, and consumption
methods is essential to achieve the goal of limiting the average global
temperature increase to 1.5° C. The residential and industrial sectors
deserve particular attention in this regard, as they are the main con-
sumers of electricity, accounting for almost 70% of the global use of
electricity [3]. Therefore, it is crucial to improve energy efficiency
and sustainability, particularly in these sectors. These goals can be
achieved by developing and promoting technologies that minimize
waste, optimize energy use, and harness the potential of renewable
energy sources.

In this context, the Smart Grid emerges as a pivotal technology.
The Smart Grid is an advanced electricity network that uses digital
communication technology to monitor, control, and optimize electricity
production and distribution [4]. It enables a two-way flow of electricity
and information and can react to changes in power demand, supply,
and costs in real-time. This leads to improved energy efficiency, reli-
ability, and sustainability [5]. The Smart Grid is also equipped with
the necessary features for recording real-time electricity data via smart
meters and the Advanced Metering Infrastructure. These data, when
processed with advanced algorithms, can promote energy awareness,
observability, forecasting, and intelligent energy use scheduling [6].
These are vital for reliability and energy savings, especially given the
increasing penetration of electric vehicles [7].

In particular, by leveraging information on consumers’ habits, en-
ergy utilities can offer opportunities for energy savings and efficiency
through Demand-Side Management (DSM) strategies. Energy Manage-
ment System (EMS) can ensure energy efficiency in residential build-
ings and industries by identifying the most effective solutions to op-
timize energy consumption and save money [8,9]. Both EMS and
DSM are typically developed based on detailed knowledge of energy
consumption within a building, allowing for the initial analysis and
accurate management of appliance usage [10,11].

The potential for improvement in the industrial sector is particu-
larly high. In fact, studies have shown that industries use about 50%
more energy than they theoretically need [12]. Other studies have
highlighted the substantial untapped potential for improving industrial
energy efficiency [13] and the key role of the industry in energy
savings [14]. Moreover, as reported in [15], studies have shown that
the stress of the Smart Grid could be alleviated if industrial activities
are planned and synchronized according to the constraints of power
generation and the needs of other customers.

For improving efficiency, it is crucial to measure energy usage
in a detailed and real-time manner, which helps in understanding
energy consumption patterns [17]. Following the pioneering work of

Hart [18], NILM has been extensively researched and proposed as an ef-
fective method of monitoring the consumption of multiple loads within
a building. The primary advantage of NILM is its non-intrusive nature,
as it allows one to estimate the power consumption of individual loads
using only the aggregate measurements from the main meter. Fig. 1
illustrates the NILM approach with an example in an industrial setting.
Numerous articles [19-22] and reviews [23-26] published on this
topic in recent decades underscore the importance and effectiveness of
NILM in the residential sector. This body of research demonstrates the
growing recognition of NILM as a valuable tool for energy management.

In the industrial sector, this issue is of even greater importance
due to the high energy requirements of the plants and the difficulty
of installing a large number of meters to monitor each load [14,27].
The importance of NILM in this sector is also highlighted by the
significant increase in the volume of recent research published, with
the number of papers published in 2023 triple that of 2019 (11 vs.
2). This is further supported by the promising outcomes achieved in
the residential sector for which the number of published papers is
much higher. However, there is a noticeable gap in the literature for a
review that systematically organizes the research efforts on this topic to
date. Although several reviews appeared in the literature for residential
NILM [25,28-30], it was only in 2015 that industrial approaches were
briefly reviewed together with residential ones, and some aspects of the
industrial context were discussed in [31]. Thus, it is strictly necessary
to systematically review the innovative material published during these
years, producing an up-to-date analysis and discussion.

To fill this gap, in this paper, we present a comprehensive review of
NILM applied to industrial settings (hereafter called “Industrial NILM”).
The key contributions of this study can be summarized as follows:

We present the first systematic review of the literature about
Industrial NILM, with a focus on the most important aspects and
peculiarities of the methods proposed for industrial settings.

We introduce a taxonomy for features and methodologies, cate-
gorizing them based on their core technical categories.

We provide the first in-depth analysis of all publicly available
datasets collected in industrial settings and their applications.
We examine and discuss the characteristics of the loads present
across various industries, based on power profiles, type, and usage
patterns

We compare and discuss the performance of the approaches that
adopted public datasets, posing attention to the comparability and
effectiveness of the current literature.

The outline of the paper is as follows: Section 2 provides background
on NILM, outlining the general NILM problem and the peculiarities
of NILM in industrial contexts. Section 3 details the characteristics of
Industrial NILM based on the load profiles and industrial scenarios. In
Section 4 the review methodology employed is described followed by
the general NILM framework adopted by the selected approaches. Sec-
tion 5.2 is dedicated to the description of publicly accessible datasets
for Industrial NILM. Section 6 examines the characteristics of power
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Abbreviations

AC Alternating Current

ACC Accuracy

ADC Analog-to-Digital Converter

AE Auto-Encoder

AM Attention Mechanism

AMI Advanced Metering Infrastructure

AMPds Almanac of Minutely Power Dataset

BRNN Bidirectional Recurrent Neural Network

CHP Combined Heat and Power Machine

CNN Convolutional Neural Network

CO Combinatorial Optimization

CRF Conditional Random Field

CUSUM Cumulative Sum

CVD Continuously Variable Devices

DBT Decision Bagging Tree

DE Disaggregation Error

DER Distributed Energy Resources

DevMat Device Matching

DNN Deep Neural Networks

DSM Demand-Side Management

DWT Discrete Wavelet Transform

EMI Electromagnetic Interference Signals

EMS Energy Management System

FHMM Factorial Hidden Markov Model

FHSMM Factorial Hidden Semi-Markov Model

FN False Negative

FP False Positive

FSM Finite State Machine

FT Fourier Transform

GMM Gaussian Mixture Model

HIPE High-resolution Industrial Production En-
ergy

I Current

IGWO Improved Grey Wolf Optimization

IMDELD Industrial Machines Dataset for Electrical
Load Disaggregation

knn K-Nearest Neighbor

L Power Factor

LILACD Laboratory-measured Industrial Load of Ap-
pliance Characteristics

LSTM Long-Short Term Memory

LVQ Learning Vector Quantization

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MIP Mixed Integer Programming

ML Machine Learning

MLP Multi-Layer Perceptron

MNE Mean Normalized Error

MR Match Rate

NDE Normalized Disaggregation Error

signals found in industrial environments and investigates the commonly
used features in the literature for Industrial NILM. Industrial NILM ap-
proaches are described in detail in Section 7, while the performance of
approaches that employed public datasets are analyzed and compared
in Section 8. Challenges, limitations, and future directions are discussed
in Section 9. Finally, Section 10 concludes the paper.

NILM Non-intrusive Load Monitoring

NMF Non-negative Matrix Factorization

P Active Power

PR Precision

PSO Particle Swarm Optimization

Q Reactive Power

RBF Radial basis function

RE Recall

RF Random Forest

RMS Root Mean Square

RP Recurrence Plot

S Apparent Power

TCN Temporal Convolutional Network

TECA Total Energy Correctly Assigned

TMLD Textile Mill Load Dataset

TN True Negative

TP True Positive

\Y% Voltage

w Watt

WHITED Worldwide Household and Industry Tran-
sient Energy Data Set

WRG Weighted Recurrence Graph

2. Background
2.1. Problem statement

NILM aims to track the energy consumption of individual loads
within a building, without needing to install additional sensors beyond
the existing main meter. This approach is not only cost-effective but
also addresses practical challenges such as the need to install smart
plugs for each device under monitoring.

The total (or aggregate) active power consumption of a building
measured by the main meter is the sum of the active power of each
load within the building, expressed in Watt (W). This relationship can
be expressed as follows:

K
) =Y, pe() + o), @
k=1
where p(7) is the aggregate active power, p,(f) the active power of load
k, K is the total number of loads, and n(r) is the measurement noise.
Generally, the number of loads of interest is less than the total
number of devices within the building. The power consumed by the re-
maining appliances can be considered as noise. This can be represented
as:

M

PO =Y pyt) + v(0), @
k=1

where M < K is the number of loads of interest, and wv(¢) is the

sum of the power consumed by the remaining appliances and any

measurement noise, represented as v(t) = ngﬂjy +1 Pi(®) + n(®).

NILM can be framed as a classification or regression problem. In a
classification setting, the goal is to determine which loads are active at
a specific time based on the aggregate measurements, as schematically
depicted in Fig. 2. Throughout the paper, we also refer to this task as
load identification. Mathematically, this means finding the state s, (7) for
each load k, where s,(¢) € {0,1}. Here, 0 indicates that the load is off,
and 1 indicates that it is on. The state of a load is typically determined
using a threshold value 6,, that is,

0, if p(r) < .
1) = 3
) {L if p(1) > . ®
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Exhaust Fan
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Fig. 1. Non-intrusive load monitoring. The machinery, the lighting system, and all the other electrical loads account for the total energy consumption of the plant, recorded by
the main meter. The NILM block uses aggregate measurements to estimate the power profile of each individual load.

Source: Power signals are taken from IMDELD [16].
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Fig. 2. Example of multi-label appliance classification. For one window of aggregate
power signal the aim is to detect which device is active and when. p(7) is the total
power consumption recorded at the main meter. “1” means that the device is active
for those samples, respectively for two different appliances (blue and green rectangles).
“0” means that the device is inactive.

It is worth to highlighting that in some classification works, espe-
cially the ones that use high-frequency signals, the task is not predicting
the state of the device at a sample level resolution but identifying the
presence or absence of an activation in a certain time segment.

In a regression setting, aggregate measurements are used to estimate
the active power p, (¢) of each individual load, as schematically depicted
in Fig. 3. Throughout the paper, we also refer to this task as load
disaggregation. These aggregate measurements can be represented solely
by the active power p(¢), or can include other quantities such as the
reactive power. This aspect will be discussed further in Section 6.

w !t p(5)  p(6)
o O p(7)
(4) *
5 p
§ p(3)
o ¢
3
p(1) P(2) p(8)
r(0) ‘& @ 4
8§ ¢® o000 030

t

® Device1 @ Device 2

Fig. 3. Example of power profile reconstruction. For one window of aggregate power
signal the aim is to estimate the power profiles of each appliance of interest. p(r) is
the total power consumption recorded at the main meter. Blue and green signals refer
to active power profiles for two different devices.

2.2. Types of device

Each load has a specific power signature that identifies its spe-
cific power consumption pattern. Hart [18] proposed to classify loads
into three categories based on their activation states and consumption
patterns:

+ Type I: Single-state ON/OFF.
+ Type II: Finite State Machine (FSM) or Multi-state.
» Type III: Continuously Variable Devices (CVD).

Type I devices are boolean switching devices that can only have
one activation status at a time, such as bulb lamps, toasters, kettles,
etc. Type II, or FSM, allows for a set of discrete states and state tran-
sitions. This category includes appliances such as washing machines,
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washer dryers, dishwashers, and heat pumps, which are characterized
by repeatable patterns. Type III, or CVD, includes appliances that do not
have a finite number of activation states and lack repeatability in their
power profiles, making them more challenging to identify compared to
FSM devices [18].

In addition to these classes, Zeifman et al. [23] proposed a fourth
class for consumer devices that are active for long periods (e.g., days,
weeks). This category comprises loads such as television receivers,
smoke detectors, and telephone sets.

3. Characteristics of industrial NILM

Differently from NILM applied in residential settings, Industrial
NILM has unique characteristics that have steered research in a differ-
ent direction. In this section, we will explore aspects such as the power
signature and industrial load patterns, the temporal correlation among
consumption patterns, and other characteristics specific to Industrial
NILM.

3.1. Characteristics of industrial loads profiles

Monitoring power consumption profiles in industrial settings poses
unique challenges compared to residential buildings. This is primarily
because industrial load power profiles are often continuous and do not
exhibit clear state changes, as highlighted in a study by Wichakool
et al. [32]. According to the classification presented in Section 2.2, in-
dustrial loads are predominantly Type III [14,33,34]. This is confirmed
by the HIPE dataset [35], where most devices are Type III, although
some Type I and II loads are also present. On the contrary, the public
data set IMDELD [16] contains only Type II devices. In this dataset,
each load can be modeled as a three-state machine (off, no load on, full
load on) [36]. Evidently, there are limited publicly available datasets,
and they only partially capture the diversity of industrial loads.

Considering the operational patterns of different loads in industrial
settings, their active period is concentrated mainly during working
hours [35] or within a predetermined period during the day, as illus-
trated in Figs. 4 and 5. Moreover, power profiles of industrial loads
often exhibit cyclic patterns that repeat every work period. This is
evident in the exhaust fan and the milling machine, as shown in Fig. 5
from the IMDELD dataset. Differently, the aggregate power signal varies
across working days due to different power fluctuations (see the first
and second rows of Fig. 4). This behavior is probably influenced by
non-monitored machinery or appliances that depend on other factors,
such as industrial building management (lighting, heating) or other
industrial production processes. It is important to note that in this
case, non-monitored loads account for 27% of total consumption. Other
differences depend on weekend days or holidays, as shown on the
third, fourth, and fifth rows of Fig. 4 where consumption patterns are
similar (third and fourth) but shifted in time or the power profile is
significantly different (fifth row). Additionally, small-batch production
leads to frequent and irregular shifts in production schedules, coupled
with changes in machine programs that consequently alter the load
curves. Furthermore, most industrial equipment is managed by variable
speed drives, making it difficult to learn a pattern [31]. This variability
is present in a few residential appliances, while others maintain a stable
load signature.

Another aspect worth considering is the variability of aggregate and
load power profiles with location, even if they belong to the same
scenario (e.g., dairy farms) [35,37]. This suggests that local factors,
including climate and weather conditions, availability and cost of re-
newable energy sources, and the operational and maintenance practices
of site owners, can influence load profiles. In general, there could be
even more different behaviors in energy consumption when moving
from one country to another.

The significant temporal correlation among consumption patterns of
different loads, as noted in [33], is a noteworthy aspect in the industrial
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Fig. 4. Power consumption of different loads extracted from IMDELD. During the
working period, all the monitored loads are active. Selected days are ‘2018-03-26’,
2018-03-27’, ‘2018-03-30’, ‘2018-03-31’, ‘2018-04-01’, and ‘2018-04-02’, from 19:00.

setting. Specifically, the HIPE dataset [35] reveals that machine usage
is strongly correlated due to the logic of production processes (e.g., the
operation of primary and secondary vacuum pumps or soldering de-
vices and over-screen printers tends to be synchronized). Furthermore,
depending on the specific manufacturing process, multiple devices can
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Fig. 5. Active consumption patterns for the Pelletizer I (blue) and Exhaust Fan II (orange) from the IMDELD dataset over a 3-days period (from 2018-03-26 19:00 to 2018-03-29
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Fig. 6. Comparison between industrial (HIPE, IMDELD) and residential (AMPds) energy
consumption datasets, based on the reactive energy contribution over the active energy
one estimated for the entire datasets.

consume power at the same time, further complicating the disaggrega-
tion task [35,38]. In Fig. 4, it is notable that all the monitored devices
in IMDELD are active at the same time, highlighting the difficulty of
distinguishing between them. This behavior has also been observed for
loads collected in HIPE [35] and Textile Mill Load Dataset (TMLD) [39].
For the sake of conciseness, we do not report other examples from the
cited datasets.

Regarding power signals, due to the nature of industrial loads, the
contribution of reactive power is generally greater than the contribu-
tion related to household appliances. This aspect is illustrated in Fig. 7
related to the IMDELD dataset, which clearly shows that most industrial
devices have a significant reactive power contribution. Fig. 6 presents
the ratio of reactive to active energy for two industrial datasets com-
pared to AMPds [40], a residential dataset that also contains reactive
power measurement. For both the HIPE and IMDELD datasets, this ratio
is three times that of the AMPds dataset [40]. This characteristic of
industrial loads has been utilized as an additional measure to reduce
misidentification [41]. In fact, due to greater fluctuations in the active
power signal, the reactive power can aid in reducing false positives.
This has been shown in the monitoring of high temperature ovens [42]
and devices in a brick factory [43].

The dynamic nature of industrial loads, along with the activity
patterns and temporal inter-dependencies arising from industrial pro-
cesses, has motivated the development of specialized approaches for
the industrial setting. The study [33] experimentally demonstrated that
common methods developed for monitoring household appliances are
not suitable for industrial settings.
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A Double Pole Conductor |
Double Pole Conductor Il
Milling Machine |

|| Milling Machine Il
Exhaust Fan |
‘ Exhaust Fan Il
I I I I I
250 o |
200 - N
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! ! ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180

Active Power (kW)

Fig. 7. IMDELD loads in the Active-Reactive Power plane. Values for every device are
the maximum estimated on 1 day activation from ‘2018-02-21 21:00’ to ‘2018-02-22
21:00’. All devices have a reactive contribution.

3.2. Industrial scenarios

In 2023, the U.S. Energy Information Administration (EIA) pub-
lished a report on energy consumption in various industrial sectors [44]
. Manufacturing, which involves transforming materials into products,
accounted for the largest share of energy consumption at 76%. This was
followed by mining (12%), construction (7%), and agriculture (4%),
which includes farming, fishing, and forestry.

The research community has extensively investigated the food sce-
nario, including poultry feed [33,36,45-47], mushroom farms and
clinic kitchens [48], and dairy farms [37,49].

Regarding the manufacturing sector, with the availability of the
HIPE dataset [35], research has also expanded to the power electronics
production scenario. Industries related to materials, such as brick pro-
duction [42,43], textile [39], electrical products manufacturing [50],
cement plants, metal foundries, and steel mills [51], have also been
explored.
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Industrial scenarios and the related equipment considered in this review.

Main scenario Specific application

Equipment

Poultry feed

Pelletizer, milling machine, exhaust fan, double-pole conductor

Mushroom farms

Compost ground, washing machine, boilers,

Food exhaust heat pumps, steam boilers,refrigeration cells, vacant space

Clinic kitchens

Combination streamers, food distribution, coffee machine

Dairy farms

Vacuum pump, compressor, milking robot, cleaning, water treatment,

pipe cooler pump, water pump, dunging milking robot, milk cooling

Power electronics

Vacuum pump, screen printer,

chip press, washing machine,
pick and place unit, high temperature oven,

Manufacturing

chip saw, soldering oven,
vacuum oven

Cement

Submersible pump, cement mixer,

electrostatic precipitators, electric arc furnaces

Textile

Machine tool, sewing machine

Submersible pump, central air conditioning, integrated office socket,

Energy and mining Gas station

canopy lights strip, uninterrupted power supply, kitchen socket,
lounge socket, outdoor advertising signage counter socket,

counter socket, convenience store socket, freezer

Others Cold store

Compressors, light, industrial fans, condensers, evaporators, heat pumps

Other scenarios presented in the literature include chiller plants
[52], cold storage facilities [14], while for the energy and mining sector
includes energy and gas stations [50,53-56], and sewage treatment
plants [51].

Electrical industrial loads and the machinery can be very different.
Table 1 collects most of the scenarios discussed in this section and the
related equipment for a better understanding of the various industrial
loads treated in this review. Specific applications are clustered based on
classification reported in [57]. Few of industrial fields cited above have
been excluded due to missing details about equipment in the original
works. As it is possible to see from Table 1, only the vacuum pump, the
washing machine and heat pumps are in common among the various
scenarios. The complexity and variety of industrial scenarios, compared
to residential settings, highlight the need for tailored approaches to
monitor energy usage of industrial loads.

The sectors considered by the research community for applying
NILM can be evaluated based on the potential energy savings that
NILM services can offer to various industries. The total energy con-
sumption of the building can highlight the necessity for a more detailed
investigation into energy usage. Based on the works collected in this
review, the industries under investigation have been selected due to
their high energy consumption and the variety of the processes within
the building [14]. Specifically, food and agriculture sectors have been
considered since their amount of energy consumption. As noted in [36],
a large portion of the electricity consumption in Brazil’s food indus-
try is attributed to electric motors. The study conducted by Yadav
et al. [49] highlighted the high energy consumption of dairy farms.
Thus, monitoring can help identify potential energy savings and fa-
cilitate the implementation of demand-side management strategies.
Similarly, Todic et al. [37] focused on dairy farms, emphasizing that as
demand increases, measuring energy consumption becomes a valuable
tool for decision-making and planning in the agricultural sector [37].

4. Overview of industrial NILM methods
4.1. Review methodology

In this study, we conduct a systematic review process to collect,
organize and discuss pertinent research that aligns with the research
question we have posed. Our discussion will primarily focus on the
methodologies used in Industrial NILM and their contributions. This
will allow us to highlight existing research gaps and challenges, laying
the foundation for future studies. The discussion will largely include

the methodologies for Industrial NILM and their contributions to clearly
highlight current research limitations and challenges and pose the basis
for future research.

Systematic reviews typically rely on search strategies, predefined
search strings, and specific criteria for inclusion and exclusion. The
fundamental steps followed in this research for the selection process
are listed below:

1. Definition of the aim that motivates this review.

2. Selection of Scopus, IEEEXplore, and Google Scholar as
databases for identifying eligible works.

3. Collection of studies published in peer-reviewed journals and
conferences.

4. Check of the title and abstract to exclude papers on residential
and commercial NILM.

5. Collected papers organization and taxonomy definition.

6. Analysis, report and critical discussion of the review findings.

Publications from the time of Hart’s seminal work on residential
NILM in 1992 [18] to the present day have been considered. Below are
reported the entries used at point (3) to search papers titles, keywords
and abstracts for Scopus:

TITLE-ABS-KEY (industrial AND non-intrusive AND load AND disag-
gregation OR industrial AND non-intrusive AND load AND monitor-
ing OR industrial AND non-intrusive AND load AND identification
OR industrial AND non-intrusive AND load AND classification).

The same entries have been used for IEEEXplore and Google Scholar in
the appropriate form.

4.2. General NILM framework

Since the first study on industrial load monitoring was introduced in
2007, there has been a significant increase in the number of published
research papers, especially after 2020, as shown in Table 3. Although
various approaches have been adopted by researchers over the years,
the framework illustrated in Fig. 8 provides a general scheme for NILM
methods.

The process begins with the “Acquisition” of electrical signals (see
Section 6 for details). Electrical load measurements generally are con-
ducted by installing energy meters at the site meter and on the selected
devices or sub-circuits collecting more than one device. Then, “Pre-
processing” step may involve re-sampling, missing values filling, or
normalization. The “Event Detection” phase then identifies specific
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Public industrial NILM datasets characteristics. Labels refer to the activation state of the appliances sample by sample.

Dataset Country Scenario Length Nr. of loads Resolution  Signals Ground-Truth
IMDELD (2020) [16] Brazil Poultry feed 111 days 8 1s P,Q,S, P,Q,S
RMS-V, RMS-I RMS-V, RMS-I
HIPE (2018) [35] Germany Electronics 3 months 10 5s P,Q, SV, P,Q,S,V,
I, THD,F,L I THD, F, L
LILACD (2018) [60] Germany Laboratory® - 16 50kHz P,V, I P
WHITED (2015) [61] Germany, Austria, Light industry 1.5h 110 44.1kHz LV LV
Indonesia
TMLD (2021) [39] China Textile mill 30 days 5 1s P Appliance states
Zhang et al. (2023) [62] - Manufacturing 1 week - 1s P,Q,V, P
I, phase angle
- Energy station 2 months - 1s P,Q,V, P

1, phase angle

2 Laboratory means that the signals have been simulated in a laboratory with industrial loads and acquired under specific predefined conditions.
Missing information depend on lack of information in the original sources.

L Pre- Event
Acquisition . .
processing Detection —|
Feature Predicti Post-
Extraction rediction processing

Fig. 8. Typical NILM framework.

events when a device is switched ON or OFF for feature extraction
(refer to Section 6.2) or for signal windowing. A simple example of
event detection is represented in Fig. 9. When there is a change in the
aggregate power consumption signal, based on the power difference
between adjacent samples, it can be associated with an event related to
one or more devices. The “Feature Extraction” stage extracts significant
parameters from the acquired signals. This stage can also be absent,
as some approaches directly process raw data. The core part of the
NILM framework, “Prediction”, regards the algorithm to perform the
inference and produce the output. The type of algorithm follows and
depends on the task to be performed, i.e., classification, regression,
or both tasks. In the residential sector, some recent approaches per-
form both tasks simultaneously [58,59]. However, in the industrial
context, the approaches proposed in the literature generally comprise
two consecutive steps: First, an initial estimate of the load state is
performed, and then this information is used to estimate the power
consumption [47,53]. The last step of the framework consists in the
“Post-processing” as de-normalization, smoothing for treating spurious
activations, and quantization. Then, the quality of the prediction can
be evaluated by comparing it with the desired output.

Table 3 provides a detailed analysis of the main aspects of the
industrial NILM literature, which will be discussed in depth in the
following sections. The methodologies are described based on dataset,
scenario, and the input signals used for the monitoring, the features
extracted, the characteristics of the signals in terms of resolution, the
type of approach, and the addressed task. The last column reports the
best performance achieved in each study.

5. Data acquisition and datasets

Referring to the general NILM framework in Fig. 8, the acquisition
of the data is the first step for building NILM algorithms. Thus, the hard-
ware for acquiring energy data in industrial buildings will be presented
and then, available public datasets will be described in details.

5.1. Smart energy metering

Advancements in measurement and communication technologies
have brought the opportunity of collecting real-time data from users
through Advanced Metering Infrastructure (AMI) [63]. Consumption
data are typically acquired by smart meters, which are electronic
devices that measure the power consumption of a building’s electrical
system. Smart meters locally record various electricity parameters and
provide near real-time feedback on energy consumption. They allow
for a bidirectional communication with the grid, receiving information
from the utility, such as energy prices or control signals. Additionally,
smart meters enable consumers to actively participate in energy com-
munities [64]. The internal sampling rate of smart meters is typically
between 1 Hz and 1 MHz [65]. However, meters owned by the utilities
transmit low-resolution data, typically at intervals of 15 or 30 min, or
even 1 h [66]. It is worth to underscore that, if a higher resolution is
necessary for more accurate measurements, an additional meter should
be installed at the main panel to transmit data with higher frequency.
Other components are the Analog-to-Digital Converter (ADC) and a
back-up section is placed for battery-supply for the entire meter. Moni-
toring is performed by using direct or indirect measurement of current
and voltage values. Indirect measurements are based on Ampere’s and
Faraday’s laws and voltage, utilizing the voltage induced on coils. Other
measurements are the phase difference between voltage and current,
frequency, etc. These values are calculated by the embedded signal
processor located after the ADC. A general block scheme is shown in
Fig. 11. These measurements are transmitted to suppliers or service
providers via communication networks. The two most popular commu-
nication systems for advanced metering infrastructures are the Power
Line Communications - PLC (wired option) and the Radio Frequency
Mesh - RF Mesh (wireless option) [67].

5.2. Datasets

In contrast to the residential sector, there are fewer publicly ac-
cessible datasets for Industrial NILM. Fig. 10 shows the percentage of
research papers that have used a public dataset or a custom dataset. It
is evident that most studies have used a custom dataset, which aligns
with the diverse range of devices found in industrial settings due to the
existence of various application scenarios. Each specific work needed
its specific set of data related to the particular machinery used in a
certain production process. This is a stark contrast to the residential
sector, where most of the research has used public datasets, justified
by the similarity of appliances in different households. For detailed
information on residential NILM datasets, please refer to [68].

Table 2 shows the characteristics of all public datasets used in
research to date, including the length of the recordings, the number
of recorder loads and resolution. All signals collected in each dataset
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are explicitly stated, as well as the availability and type of ground-
truth signals. Additionally, the country and scenario are reported where
available in the original paper, as the industrial context encompasses a
wide variety of sectors.

Among the publicly available industrial datasets, IMDELD [16] is
one of the most frequently used for research. It contains electrical
data from heavy machinery used in a poultry feed factory in Brazil,
which produces pellets of poultry rations from corn or soybeans. The
factory primarily operates during the hours of lowest energy cost,
from 10 pm to 5 pm, Monday to Friday. Data were collected over a
period of approximately 111 days, from December 2017 to April 2018,
with a resolution of 1s. The monitored loads are two pelletizers, two
double-pole conductors, two milling machines, and two exhaust fans.
For all machines, electrical signals such as Active Power (P), Reactive
Power (Q), and Apparent Power (S), Current (I), and Voltage (V) were
measured. The dataset also includes sub-circuit measurements related
to the main medium voltage/low voltage transformer, the pelletizers
sub-circuit, and the milling machine sub-circuit.

The HIPE [35] is another popular public dataset for research. This
dataset, collected in 2018, includes data from 10 machines used in
a German industry that manufactures electronic systems for particle
physics, battery systems, and medical applications in small batches.
The data collection period spans from October 2017 to December 2017,
with a resolution of 5s. The authors of the dataset provided an example
of a production process to illustrate the temporal dependencies that
can be observed among the load activation patterns within the data.
However, it is important to note that power consumption can vary
significantly due to the variability of the final products, especially
when production is related to small batches of products. The moni-
tored machinery includes a chip-press and a chip-saw machine, a high
temperature oven, a pick-and-place unit machine, a screen printer, a
soldering, a vacuum oven, two vacuum pumps, and a washing machine.

LILACD [60] contains three-phase aggregated current and voltage
measurements. Measurements are sampled at 50kHz for 16 different
loads spanning both industrial and domestic scenarios. Most appliances
were recorded in various states to encompass a wide range of electrical
profiles. For example, hair dryers were measured at different heating
temperatures, resistors at different resistances, and motors at different
power usage levels. The dataset was collected in a controlled laboratory
environment in Germany. The dataset comprises 381 single appliance
measurements, 864 double appliance measurements, and 56 triple
appliance measurements. Each combination of appliances within these
groups has unique switching-on times.

The TMLD [39] includes 30 days of aggregate active power mea-
surements. It also provides on-/off-state data, which serves as the
ground truth for five loads, including four machine tools and one
sewing machine. However, it does not include power measurements at
the individual load level.

The WHITED [61] is a hybrid dataset that contains electrical signals
from residential and small industrial settings in different regions of the
world. The primary objective of the goal of the dataset is to capture
a wide range of appliance types worldwide. To accomplish this, the
dataset recorded the electrical signals 100 ms before and 5s after
the start-ups of each of the 110 appliances, capturing the transient
event that characterizes each appliance. For each appliance, the user
manually triggered 10 start-ups and measured the related current and
voltage. As a result, the dataset comprises a total of 1100 different
records.

“Non-Intrusive Load Monitoring Datasets for two Industrial Scenar-
ios” [62] includes data from two industrial cases. Measurement devices
were installed at the medium voltage bus entrance and at the target
load to be identified. The types of data measured include three-phase V,
L, P, Q, as well as the amplitude and phase angle of each harmonic. The
first industrial scenario refers to a manufacturing industry for electrical
systems, whereas the second refers to an energy station.

All other datasets used for Industrial NILM research to date are
custom and are not publicly available. The only exception is [69], as
the authors have stated that the data can be made available on request.
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6. Signals and features

Before discussing the various types of electrical signals used in In-
dustrial NILM, it is important to provide information on the acquisition
sampling frequency. In fact, one of the major distinctions made for the
NILM approaches is low-frequency and high-frequency. Based on [23],
low-frequency methods employ data with a resolution equal or lower
to 1Hz and the rest are considered high-frequency. In [70], a slightly
different definition is given, with low-frequency approaches defined
based on rates lower than the Alternating Current (AC) current base
frequency.

6.1. Signals

In the majority of studies, NILM has been carried out using only
the active power signal, without any additional input signals. This is
a common characteristic with residential NILM, where generally only
active power information from the site meter is used for monitoring.
However, a different approach is employed in [47], where the au-
thors used power signals from each separate phase as input. Tavakoli
et al. [41] suggested using details of production processes to improve
disaggregation, while only using P as an electrical parameter. This is
due to the wide variety of industrial loads and the possibility of some
loads overlapping in the plane AP-4Q, where 4 indicates the difference
of active and reactive power for detected events that characterize the
various loads. Furthermore, in Castellani et al. [71], data on ambient
and water temperature were linked to the P signal to disaggregate the
production of a combined heat and power machine.Up to the authors
knowledge, it is the only work that focused on the monitoring of energy
production.

Several studies have incorporated Q alongside P to better distin-
guish the contributions of individual appliances. For instance, Wang
et al. [43] found that using both P and Q improved load monitoring
within a brick factory, as the P characteristics of the loads were quite
similar, unlike the reactive signals. Similarly, Luan et al. [42] utilized
both P and Q contributions to disaggregate loads, as multi-observation
models reduced false positives by leveraging Q. The same study found
that the reactive signal was particularly useful in monitoring machines
in a brick factory, as it provided a clearer distinction between similar
appliances. In [72] both aP and Q, expressed with each phase, are
used as six columns matrix input for their particle swarm approach
for disaggregation. Huang et al. [34] based their method on a physics-
informed approach considering active, reactive, and apparent power
signals. In a recent study [73], reactive and active power were used
to cluster industrial appliances. Zhang et al. [50] utilized Q to extract
features along with I, P, and transient events. In [54], I, P, V, Power
Factor (L) signals and temporal information are used together as input
to detect the status of appliances. In [74], P and Q are combined with
I and V signals. The study demonstrated that the approach was more
effective when additional information was included, such as the turning
on transient energy signature. Afterwards, Chang et al. [75] used power
signature information from P and Q, and/or turn-on transient energy
as inputs for an electrical service entrance. In this case, the turn-
on transient energy feature was used to distinguish different loads
with the same steady-state P and Q. In another study by Rahimpour
et al. [76], both power and current signals were considered as inputs,
with a greater emphasis on current due to the lower hardware and
installation costs of current transducers compared to those for other
measurements. In [77] the aggregate I consumption is the only signal
used to extract frequency information and recognize loads also to
monitor the condition.

In [51], I and V signals were used to map trajectories as input
for their proposed approach, in order to recognize transient events.
Lai et al. [78] analyzed the variation characteristics of AC harmonics
generated by switching each electric equipment, the mean square value
of AC, and the P and Q to monitor two heating, ventilation and air
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Fig. 12. Taxonomy of features used in industrial NILM methods.

conditioning systems. Faustine et al. [79] focused solely on current and
voltage signals as input for their approach to achieve greater accuracy
in the feature extraction process. The approach proposed in [80] used
voltage and current to calculate the difference before and after start—
stop events to extract features for load classification. In another study
by Faustine et al. [81], the unbalanced three-phase I waveform was
extracted from three-phase aggregate P measurements and transformed
into an image-like representation.

6.2. Features

In recent years, NILM research in the residential sector has taken the
direction of using raw active power signals as input for the proposed
techniques. These approaches typically use low-frequency data that do
not allow for the extraction of specific high-frequency features that
require higher resolution. This includes transient-on events (which are
related to very short time periods such as hundreds of milliseconds),
time-frequency decomposition, or Electromagnetic Interference Signals
(EMI). The same holds for Industrial NILM, where all the considered
studies that use raw signals are based on low-frequency data. The
only exception is [52], which extracted features from low-frequency
signals such as mean, maximum, minimum, variance, delay, kurtosis,
and skewness from the active power signal sampled at 1-minute period
and are features that do not require high-resolution data. However, all
studies that used high-frequency signals proposed methods based on
features extracted from the available electrical data.

In studies that use high-frequency signals, the approach proposed
in [82] focused on the v-sections, the core part of the transient event,
to better distinguish between loads. Turn-on transient events were ex-
tracted in the study by Yang et al. [74]. The Discrete Wavelet Transform
(DWT) was used in [75] to detect and localize various types of turn-
on transient events. Lai et al. [78] incorporated minimum and average
current values along with reactive and active power.

The study in [83] utilized transient features of a rotating electri-
cal machine. They considered features such as the average power of
one cycle after the instantaneous maximum power and the last cycle
waveform. Additionally, they considered the quadratic polynomial co-
efficient, the exponential decay time coefficient, and the offset time
of the attenuation component of the instantaneous power curves to
identify different motors.

Faustine et al. [79,84] proposed an adaptive weighted recurrence
graph-based approach, which demonstrated superior performance com-
pared to V-I image features approaches. More recently, the same author
applied the Fortesque Transform to balance unbalanced 3-phase current
waveforms, thereby improving the quality of the V-I trajectories [81].
In [85] a data fusion strategy was developed using the outputs of four
time-domain descriptors. These descriptors include root mean square,
mean absolute deviation, integrated absolute magnitude, waveform
length, zero-crossing, slope sign change feature, and auto-regressive
feature. Tavakoli et al. [41] used the information from the production
process associated with active power signals as a feature to improve
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the performance of their proposed approach. Shi et al. [80] utilized
adaptive scaling Recurrence Plot (RP) due to their rich and evenly
distributed information, which surpasses that of V-I trajectories or the
continuous wavelet transform. Zhang et al. [50] employed features such
as the minimum or average of apparent power and current signals,
along with harmonics. Ayerbe et al. [77] used the Fourier Transform
(FT) to extract the frequency spectra and identify loads within the
aggregate current signals. A similar approach was adopted in [48] to
analyze current signal harmonics, along with reactive and active power
signals.

All the feature extraction approaches discussed above are summa-
rized in Fig. 12.

7. Approaches

We have categorized the methods proposed in the recent literature
into two main groups: data-driven and non-data-driven. The first group
contains most of the research published to date, comprising Machine
Learning (ML) and optimization approaches. Machine Learning refers to
approaches that use algorithms that learn from data examples to adjust
internal parameters in order to meet a specific objective or criterion.
Optimization approaches refer to computational methods that optimize
a problem by iteratively trying to improve a candidate solution with
regard to a given measure of quality. The taxonomy of Industrial NILM
methodologies is shown in Fig. 13.

7.1. Data-driven methods

Data-driven approaches rely on the knowledge of a set of exam-
ples employed to learn the values of a set of parameters to obtain
satisfactory performance from the approach.

7.1.1. Machine learning

A significant number of solutions proposed in the Industrial NILM
setting have centered on ML techniques. In [48], an unsupervised
clustering method was introduced to assign individual switching events
to an appliance. The authors used a modified K-Nearest Neighbor (knn)
classifier, a hierarchical clustering approach, and a custom build Device
Matching (DevMat) procedure, which proved to be the most effec-
tive in identifying industrial loads. Subsequently, a Decision Bagging
Tree (DBT) classifier was adopted in [85], which achieved a high
classification performance by combining various weak classifiers with
a classifier for each appliance. Similarly, Li et al. [53] proposed a
gradient boosting algorithm, showing superior performance compared
to other machine learning techniques such as support vector machines,
Gaussian Mixture Model (GMM), and Random Forest (RF). Recently,
the same authors have proposed a Auto-Encoder (AE)-Transformer
architecture to classify multiple states of appliances using the same
datasets. Holmegaard et al. [14] applied Factorial Hidden Markov
Model (FHMM)s and Combinatorial Optimization (CO), both imple-
mented in the NILM-toolkit [86], in the industrial sector. Recently,
Toledo-Orozco et al. [69] proposed and evaluated a FHMM approach,
which proved to be superior to CO. To address the limitations of
FHMM related to the state occupancy duration (which depends on the
geometric distribution), Luan et al. [42] proposed an extension named
Factorial Hidden Semi-Markov Model (FHSMM).

In [77], an unsupervised approach was proposed that clusters por-
tions of the aggregate signal according to their temporal shape. Each
cluster can then be associated with a specific load and its working state,
based on a distance-based criterion.

Many strategies proposed for Industrial NILM are based on deep
learning techniques This holds also in the residential sector, where deep
learning represents the current state-of-the-art. Notably, all the deep
neural network-based works discussed in the following paragraphs are
based on supervised training.
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The first work based on Deep Neural Networks (DNN) was proposed
by Yang et al. [74], where they compared a neural classifier, trained
with back-propagation, to the Learning Vector Quantization (LVQ)
approach. A Multi-Layer Perceptron (MLP) was proposed in [75], with
only a single hidden layer for classification. In Yuan et al. [52], a
4-layer back-propagation MLP was used to map the non-linear relation-
ship between the input features and the disaggregated output power
level. Recently, Xiong and colleagues [87] proposed an MLP with three
hidden layers and the last dense layer producing the classification
output. A 3-layer Radial basis function (RBF) network was employed
in [83] to learn from mechanical transient features.

Martins et al. [36] utilized WaveNILM, originally developed for res-
idential NILM [88], to disaggregate load power using one network per
appliance. This approach was also applied by Todic et al. [37] to mon-
itor milk machines at a dairy farm plant. Conversely, Gowrienanthan
et al. [47] developed a 2-stage sequence-to-sequence Convolutional
Neural Network (CNN) based on Wavenet, which takes single- and
three-phase electrical power signals as input. The overall approach is an
ensemble learning technique that eliminates the need to train multiple
neural network models.

Yadav et al. [49] applied a sequence-to-sequence strategy using the
multi-layer One-Directional Convolution Layer-Bidirectional Recurrent
Neural Network (BRNN) (1DConv-BRNN) and a deep neural network
based on long short-term memory (Long-Short Term Memory (LSTM)).
The 1DConv-BRNN model demonstrated superior performance in the
disaggregation of dairy farm machinery. Wei et al. [54] proposed an
LSTM-based sequence-to-sequence approach to identify the working
status of 12 industrial loads in a gas station scenario. They also used
a k-means algorithm to cluster the active and reactive power of ap-
pliances, thereby obtaining representative electrical characteristics for
each class that cover all possible operational statuses. In a subsequent
work [55], the authors incorporated the attention mechanism to en-
hance performance, effectively integrating external features alongside
total electricity consumption in the grid data. Also, recently the work
of Zhu et al. [89] incorporated Attention Mechanism (AM) to improve
the learning of CNN-LSTM network, proving its efficacy over two
benchmark methods.

Wang et al. [43] proposed two functional neural networks, one for
background filtering and one neural network for power estimation.
Both networks adopt the extended input neural network structure based
on AlexNet. Shi et al. [80] proposed the Swin-Transformer approach for
industrial NILM, an advanced computer vision transformer suitable for
visual-based features. Another transformer-based approach was devel-
oped in [46], called Energformer. This method aims to capture complex
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patterns in long sequences of data and employs 1D spatial convolutions
in self-attention.

In [79], a convolutional deep learning approach with Weighted
Recurrence Graph (WRG) was proposed. Subsequently, the method
was extended by making the recurrence plots adaptive [84]. In a
recent work [81], the convolutional network was trained with visual
features obtained from a symmetric component transformation of the
V-I trajectories. Similarly, Castellani et al. in [71] used a convolutional
structure to estimate the power output starting from a time series input.
In [34], a physics-informed neural network approach was proposed,
which primarily included a time-aware feature enhancement module, a
baseline deep learning module (composed of convolutional blocks) and
a physics-informed training loss module.

A Temporal Convolutional Network (TCN) with an attention mech-
anism was implemented in [39] to classify the load activation states
in a textile mill industry. This architecture is capable of capturing
temporal dependencies of the industrial load data through the attention
mechanism. Similarly, Zhang et al. [50] adopted the TCN but added a
Conditional Random Field (CRF) layer to model the transfer probability
between multiple states.

In the study by Kalinke et al. [33], the performance of all the
approaches implemented in NILM-TK was explored. The test included
two recurrent networks, a denoising AE, two convolutional networks, as
well as CO and FHMM. The results clearly showed how the DNN-based
approaches outperformed the others.

7.1.2. Optimization methods

Among the optimization methods, CO is the most commonly used
approach [14,33,69]. Brucke et al. [72] proposed a Particle Swarm
Optimization (PSO) strategy to disaggregate industrial loads. They
applied four adaption methods to the final task to improve the dis-
aggregation results, increase the optimizer robustness against local
optima, and reduce the computation time. Recently, in [73], an op-
timization strategy called Improved Grey Wolf Optimization (IGWO)
has been adopted, where improvement is the adoption of a genetic
algorithm. Sum-to-k Constrained Non-negative Matrix Factorization
(NMF) has been adopted in [76]. The task has been treated as a
source separation problem, where the aggregated signal is expressed
as a linear combination of basis vectors within a matrix factorization
framework. Recently, a novel Mixed Integer Programming (MIP) model
was proposed [45]. This model separately handles loads with variable
frequency features and loads with steady-state features, making it more
suitable for industrial scenarios involving various equipment.
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7.2. Non data-driven methods

While most of the literature proposed data-driven methods, a few
studies have suggested non-data-driven approaches. Lai and colleagues
[78] proposed a rule-based strategy to detect and classify events for
air-conditioner monitoring and fault detection. Yi et al. [51] proposed
an algorithm based on Cumulative Sum (CUSUM) using a composite
window for the Root Mean Square (RMS) current value event detection.
The composite window consists of a ground state window for steady-
state detection, a detection window for transient event detection, and
a state window to verify the validity of the transient event detection.
In [82], a pattern-matching strategy is used to compute a distance
metric that locates a particular input vector in a region of a state
space of known transient templates. The prototype event detector is
a transversal or matched filter. A recent work published by Ayerbe
et al. [77] proposed a rule-based approach to identify transient-state
events, which are then clustered online based on a distance criterion.

8. Performance

The recent surge in studies focusing on non-intrusive load monitor-
ing in industrial settings necessitates a performance analysis to assess
their advancements and potential. Depending on the formulation of the
problem described in Section 2.1, load monitoring can be addressed
as a load state identification task or power profile disaggregation
task. Initially, most of the research was concentrated on the identi-
fication task (Table 3). At the same time, recent trends show a shift
towards disaggregation, likely due to the availability of public data
where the appliance power signal can be accessed. Consequently, at
the time of writing this research, the number of studies proposing
identification methodologies is nearly equal to those focusing on disag-
gregation. Interestingly, some methods have been evaluated from both
perspectives.

The following sections will describe the common metrics used to
evaluate these methods, followed by a discussion on the performance
trend. To ensure a fair comparison of the different approaches, we will
limit our discussion to studies that have used the same public dataset
and evaluation metrics.

8.1. Performance metrics

Just as we classified the approaches in Table 3 based on the task,
we apply the same principle to the performance metrics. Classification
methods are assessed on the ability to correctly detect whether a load
is operating during a specific time period or on an instant-by-instant
basis.

We define True Positive (TP) as samples where the load is correctly
identified as active, and True Negative (TN) as samples where the
appliance is correctly identified as inactive. False Positive (FP) refer
to samples where the load is incorrectly identified as active, while
False Negative (FN) are samples where the load is incorrectly identified
as inactive. The most commonly used classification metrics include
Accuracy (ACC), which is formulated as:
_ TP + TN
" TP+FN+FP+TN’

This represents the ratio of all the correct predictions to all predic-
tions (both correct and incorrect). Other widely used metrics are the
Precision (PR) and Recall (RE), respectively defined as:

TP

ACC (€]

PR= ———, 5
TP + FP )
and
RE= 1P ©)
TP + FN

Precision represents the ratio of correct predictions to total predicted
positive samples, while Recall represents the ratio of correct predictions
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to total actual positive samples. From them, a more common used
metric is generally used, that is the F,-score defined as the harmonic
mean of PR and RE:

_ 2-PR-RE

"7 PR+RE
As shown in Table 3, the F,-score is generally included as an evaluation
metric also in studies that reconstruct the load power profile. This is
done to assess whether the activation state is accurately identified,
regardless of the assigned power value.

When evaluating the performance of power profile reconstruction,
two metrics are typically used: the Mean Absolute Error (MAE) and the
Mean Absolute Percentage Error (MAPE). MAE is used to estimate the
error in terms of absolute power, and is defined as:

)

T

1 o
MAE = — ;O Ipi(®) = B0, (8)
where p,(7) is the active power at time ¢ and p,(7) its estimate. On the
other hand, MAPE is defined as:

T A
1~ @ = B @)
MAPE = - Z e % 100. ©)

pr pi(0)
This metric provides a measure of the estimation error relative to the
actual power. Similarly to MAE, the Disaggregation Error (DE) provides
a global comparison between the estimated signal and the ground-truth
and is calculated as:

K
_yv 1 o 2
DE = ; > e = B3 10)
One of the most popular metric is the NDE, defined as:
T S0
1) — Pyt
NDE < Y—oik® = P () ' an

DY AG)
NDE evaluates the disaggregation performance based on the total con-
sumption of the load. Similarly to NDE, some studies assessed the

performance using the Mean Normalized Error (MNE) or Energy Error
(EE) [48], defined as:

NI ROET RO
ST @

Match Rate (MR), as proposed in [90] and used by Bernard et al. [37,
48], is calculated as follows:

7 min {p (1) p ()}
7, max {p (1), p()}
MR assesses performance based on the overlap between actual and esti-

mated energy consumption. Lastly, the Total Energy Correctly Assigned
(TECA), defined in [91], is expressed as:

Lo P = B (0)]
2- 30 1p ol

TECA represents the proportion of total power consumption that has
been correctly estimated.

MNE = (12)

MR = 13

TECA=1- a14)

8.2. Performance comparison of load identification methods

The studies addressing the load identification task often relied on
custom datasets, making it challenging to compare them directly. As
previously anticipated, the discussion will focus on works that adopted
the same data and the same evaluation metric. In this case, works that
employed WHITED and LILACD have been considered. The approaches
from these studies are reported in Fig. 14, along with the corresponding
F,-score, as this is the commonly used evaluation metric. A brief discus-
sion about the only work that used another public dataset (TMLD) has
been included for completeness, covering all works that used publicly
available datasets.
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Table 3
The approaches proposed in literature for Industrial NILM are collected in the present table.
Reference Dataset Application Signals Features Resolution Approach Task Performance
Yang et al. (2007) Custom Induction motors ILV,P,Q Transient-on event High ANN, LVQ Identification ACC: 100%
[74]
Chang et al. (2012) Custom Induction motors P, Q, DWT High ANN Identification ACC: 100%
[75] harmonic
distortion
Holmegaard et al. Custom Cold store P Raw Low CO, FHMM Disaggregation F1: 60%,
(2016) [14] MNE: 0.3
Rahimpour et al. Custom HVAC system P, I Raw Low NMF Disaggregation DE: 0.795
(2017) [76]
Bernard et al. (2018) Custom Mushroom farm P, Q, FFT High kNN, HAC, Identification F1: 98%
[48]
Clinic kitchen harmonics DevMat MR: 62%
Martins et al. (2018) IMDELD  Poultry feed P Raw Low WaveNet Disaggregation F1: 95.89%,
[36] NDE: 0.07
Yuan et al. (2019) Custom Chiller plant P Raw Low MLP Disaggregation MAPE: 2.965
[52]
Yi et al. (2019) [51] Custom Cement Vv, 1 Raw High CUSUM Identification F1: 82.9%
manufacturing
Himeur et al. (2020) WHITED  Laboratory P Time descriptors High DBT Identification ACC, F1: 100%
[85]
Brucke et al. (2020) Custom - P,Q Raw Low PSO Disaggregation MAPE: 6.04%
[72]
Yadav et al. (2020) Custom Dairy farm P Raw Low 1DConv-BRNN Identification F1: 85%
[49]
Faustine et al. (2020) WHITED Laboratory LV WRG High CNN Identification F1: 97%
[79]
Wang et al. (2021) Custom Brick factory P, Q Raw Low AlexNet Identification F1: 92%
[43]
Faustine et al. (2021) LILACD Laboratory - AWRPs High CNN Identification F1: 98.33%
[84]
Castellani et al. Custom CHP machine P Raw Low CNN Identification F1: 96%
(2021) [71]
Liang et al. (2021) Custom Induction motor I, P, pf Mechanical High RBF Identification ACC: 94%
[83]
Kalinke et al. (2021) IMDELD Poultry feed P Raw Low DNN, FHMM, Disaggregation NDE: 0.16
[33]
HIPE Electronics co NDE: 0.58
Liu et al. (2021) [39] TMLD Textile mill P Raw Low TCN Identification ACC: 92%
Todic et al. (2022) Custom Dairy farm P Raw Low WaveNet Disaggregation MAE: 1.28W,
[37] MR: 98.42%
Li et al. (2022) [53] Custom Gas station P, Q, I, pf Raw Low LightGBM Both ACC: 71%,
MAE: 21.38W
Wei et al. (2022) [54] Custom Gas station P, LV, pf Raw Low k-means, LSTM Disaggregation ACC: 87.6%,
MAE: 17.14W
Shi et al. (2022) [80] LILACD Laboratory LV ARPs High Swin Transformer Identification F1: 98.46%
WHITED
Zhang et al. (2022) Zhang Electrical LPQ Statistics Low TCN-CRF Identification ACC: 97.41%
[50] et al. manufacturing
Luan et al. (2022) HIPE Electronics P,Q Raw Low FSHMM Identification F1: 76.7%,
[42]
Custom Brick plant MAE: 340W
Faustine et al. (2023) LILACD Laboratory LV V-I trajectories High CNN Identification F1: 96.43%
[81]
Gowrienanthan et al. IMDELD  Poultry feed P Raw Low 2-stages WaveNet Both MSEloss:
(2023) [47] 0.0117
Angelis et al. (2023) IMDELD Poultry feed P Raw Low Transformer Disaggregation TECA: 92.63%,
[46] NDE: 0.06
Li et al. (2023) [45] IMDELD Poultry feed P Raw Low MIP Disaggregation NDE: 0.076
HIPE Electronics NDE: 0.056
Toledo-Orozco et al. Custom - P Raw Low FHMM, CO Disaggregation F1: 97.56%
(2023) [69]
Wei et al. (2023) [55] Custom Gas station P Raw Low AM-LSTM Disaggregation ACC: 90.5%,
MAE: 16.15W

(continued on next page)
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Table 3 (continued).
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Ayerbe et al. (2023) Custom Testbed P FFT High Clustering Identification F1: 99.87%
[771
Huang et al. (2023) HIPE Electronics P, Q, S, time Raw Low 2D-CNN Disaggregation NDE: 0.81
[34]
Wang et al. (2023) HIPE Electronics P, Q Raw Low IGWO Disaggregation NDE: 0.023
[73]
Zhu et al. (2023) [89] IMDELD  Poultry feed P Raw Low CNN-LSTM-AM Disaggregation NDE: 0.01
Xiong et al. (2023) Custom Environmental P,Q, V,LL Raw Low MLP Identification ACC: 95.5%
[87] monitoring

company
Li et al. (2024) [56] Custom Gas Station P Raw Low AE- Transformer Identification ACC: 90.2%

The high performance (over 90%) reported in the initial work of
Himeur et al. in 2020 [85] is largely due to the composition and
sampling frequency of the public dataset WHITED. However, subse-
quent studies have shown slightly lower performance, which seems
somewhat inconsistent given the effectiveness of the method of [85].
This inconsistency may be due to the experimental setup used in this
study. In [85], the authors stated that out of over 47 load categories,
only 11 were included in the experiments. It is not specified which
categories and loads have been selected, thus making a fair comparison
with other works unfeasible. The same holds for [79,80], for which it
is not clear if all loads or a subset were monitored.

Additionally to the experimental setup, a critical discussion on
the composition of these datasets is necessary to understand the high
performance achieved in load identification. For example, WHITED is
a high-frequency dataset consisting of several-second segments of light
industry equipment. Similarly, LILACD was collected in a laboratory,
that is, in a simulated light industrial environment. Moreover, both
WHITED and LILACD are not continuous because they consist of several
pre-segmented windows acquired separately. Inside these windows
only three appliances can be active at the same time. The composition
of the datasets favors high performance, as can be seen in Fig. 14.

The characteristics of these datasets complicate the comparison of
these approaches with other studies that used public datasets but with
different attributes, such as those acquired at a different sampling
frequency. For instance, Liu et al. [39] utilized the TMLD dataset, which
was acquired in an industrial plant at a lower sampling frequency
over a continuous one-month period. However, this study reported
only the accuracy (ACC: 92%) thus it is hard to make a comparison
with the other approaches. While the performance of identification
methods using high-frequency public datasets shows promise, further
exploration in more realistic scenarios is necessary.

8.3. Performance comparison of load disaggregation methods

Most studies that used publicly available low-frequency datasets
addressed the disaggregation task. The choice of NDE as an evaluation
metric in the industrial context can be justified by the significant differ-
ences in consumption among devices, necessitating the normalization
of error.

Methodologies assessed over the IMDELD dataset, starting with the
work of Martins et al. [36] (NDE:7%), have shown a consistent trend
until Zhu et al. [89] (NDE: 0.9%), with the exception of [33] (NDE:
16%). It is important to note that in Kalinke et al. [33], the algorithms
developed for residential NILM were adopted for the industrial setting,
which could explain the lower performance. In [47], authors performed
experiments on IMDELD but reported MAE for household appliances
and the loss value without clearly specifying the test set.

A similar trend can be observed in experiments using the HIPE
dataset, where the results of Kalinke et al. [33] are lower than others,
except for Huang et al. [34] in which a state-of-the-art architecture
for residential NILM [92] was considered and trained with industrial
consumption data. As with the study by Kalinke et al. [33], this
could explain the resulting performance. Moreover, it is important to
remind that the experimental setup is not specified, thus performance
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Fig. 14. Performance in terms of F,-score for identification approaches that used the
WHITED and LILACD datasets.

inconsistency can be caused by substantial differences in data selection.
In [42] the authors used MAE, making a comparison unfeasible, but the
scores are reported here for completeness (MAE: 340 W).

Li et al. [45] proposed a disaggregation approach starting from an
artificial aggregated signal, consisting only of the devices in interest.
Thus, in particular for HIPE, the disaggregation error is smaller than
other approaches.

Overall, it appears that the error on IMDELD is lower than HIPE,
as illustrated in Fig. 15. This could be attributed to the types of loads
contained in each dataset. In fact, the HIPE dataset contains more Type
IT and III loads.

8.4. Performance comparison on industrial loads

Due to the large variety of industries, it is reasonable to evaluate
which sector can be more promising for NILM. Indeed, a specific
method might be more appropriate for a particular situation, depending
on the characteristics of the aggregate load and the types of loads
(I, II and III). Performance on IMDELD (poultry feed industry con-
sumption dataset) reported a smaller error on average (IMDELD: 6.9
vs HIPE: 36.7) than HIPE (electronics industry consumption dataset).
Nonetheless, the approach [45] that used both sets produced a slight
better disaggregation performance on HIPE than IMDELD. On the other
hand, in the work proposed by Kalinke et al. [33] that applied all the
algorithms implemented in NILMTK on IMDELD and HIPE showed very
different results. The average NDE computed over all the tested ap-
proaches is 152.65 on HIPE while is 2.66 on IMDELD. These outcomes
could suggest that the approach of Li et al. [45] works better in the
electronics industry case study while the approaches tested by [33]
work better with consumption of a poultry feed production industry.
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Fig. 15. Performance in terms of NDE for disaggregation approaches that used IMDELD
and HIPE datasets.

9. Discussion

The preceding sections have outlined the key features of the Indus-
trial NILM literature. In the following, we discuss its limitations and
open challenges.

9.1. Comparability

While initial studies collected their own data from various indus-
tries, recent years witnessed a shift towards the use of public datasets.
However, since 2023, 5 out of 12 published works still utilized datasets
that were acquired by the authors. This leads to a significant challenge
for Industrial NILM: the comparability of different approaches.

The data domain issue, for example, complicates the possibility
of a fair comparison among different approaches, particularly if data
acquisition is customized. In the residential sector, despite the limited
and common types of appliances in households, significant differences
arise when transitioning from a data domain to another [93-95]. This
critical aspect of NILM is even more pronounced in the industry sector,
where each industry has unique production processes and machinery.
Additionally, there can be considerable differences even among indus-
tries that manufacture the same end products, which can adversely
impact performance. Consequently, it is not feasible to compare results
from the same industrial field if the experiments were conducted on
different datasets.

Considerations regarding data domain and the results of Section 8.4
highlight a future direction for the research. For a better understanding
of performance among various industrial loads, it is necessary for the
approaches to use more than one dataset, as done in [33,45]. This
way, performance depends on the consumption data characteristics
rather than intrinsic characteristics of the approach. With the current
Industrial NILM experimental setup, it is challenging to identify the
factors have the most significant impact on performance. Investigat-
ing more scenarios can be very significant, potentially highlighting
some industrial sectors where a particular approach may perform more
effectively.

Another crucial factor related to comparability is the experimental
setup. Recently, with the surge in research publications in the resi-
dential sector, a few standard public residential datasets have become
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widely used for developing innovative methods and demonstrating
advancements over previous research. Hence, there is an urgent need
to standardize the evaluation of methodologies in Industrial NILM, in
terms of both datasets and evaluation metrics. In [36] the portion of
the data used for training, validation, and test set are specified as
percentages. However, in [47] the training portion is not specified, and
the validation set coincides with the test set. Moreover, the discussion
in Sections 8.2 and 8.3 highlighted the importance of the experimental
setup to prevent inconsistencies among methods performance and diffi-
culties in evaluating the trend of performance improvement over time.
Therefore, using the same dataset is not sufficient to achieve a high
level of comparability, and a standardized experimental setup should
be defined. The same holds for the evaluation metrics, as evidenced
in Section 8, where some approaches are excluded because they used
different evaluation metrics.

9.2. Data availability

A wide variety of scenarios and appliances characterize the In-
dustrial NILM research field. Industrial processes typically involve a
diverse array of machinery and equipment, each exhibiting unique
energy consumption patterns. This diversity can pose a challenge in
developing a universal NILM approach that performs well in various
industrial environments. Therefore, having more public datasets cover-
ing various industry contexts would be beneficial for research. Detailed
information about the production processes and specific machinery
used would aid researchers in leveraging public datasets to promote
learning strategies such as transfer learning [96,97], which is widely
used in many other fields. In this way, a public dataset could be used
to train an initial model, and a small amount of local data could be used
to fine-tune the model to a specific environment. However, as suggested
in [31,98] due to privacy concerns related to energy demand patterns
and strategic production processes, in the industrial sector, obtaining
a wide variety of public datasets is more challenging. Compared to
residential datasets, current public industrial datasets have a shorter
duration since they typically contain less than 4 months of data. This
is relatively short compared to datasets such as UK-DALE [99] or
REFIT [100], which contain data spanning up to 2 years. This aspect
is crucial at this stage of research, especially since most published
studies focus on ML and specifically DNN-based methods, which require
large amounts of data. Additionally, due to production requirements,
the energy consumption of an industry can vary without a set peri-
odicity [101], thus it is required to monitor extended time periods to
capture the variability in power signals. This can be compared to the
necessity to monitor at least an entire year of a house, in order to cover
the seasons variability. The scarcity of public data from industries can
also be attributed to industrial confidentiality [31], as industries might
be reluctant to share information about their processes and equipment
to avoid giving away competitive advantages.

To mitigate the issue of limited data availability, data augmen-
tation techniques [102,103] can be tailored for the industrial sector
to expand training data. Moreover, given the challenges of installing
sensors or manually annotating data in the industrial sector due to the
multitude of loads [27,31], weakly supervised strategies [19,104,105]
can be utilized to leverage unlabeled data. This approach would allow
one to enlarge the training dataset without the need for additional
annotations.

Finally, considering that the penetration Distributed Energy Re-
sources (DER) is constantly increasing [106], it would be significant to
include them into the non-intrusive load monitoring problem. Up to the
authors’ knowledge, the only work that addressed this is [71], where
the authors disaggregated the electrical power output of a Combined
Heat and Power Machine (CHP).
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9.3. Data granularity

The performance of NILM services is largely influenced by the
quality of input data, which is directly related to data granularity. How-
ever, in real-world scenarios, acquiring and processing high-frequency
signals is not always straightforward. Generally, consumption datasets
have a low resolution (1 Hz), and it is important to note that smart
meters typically have even lower resolution (15 min, 30 min, etc.) [66].
The granularity influence has been explored in the residential sector,
such as in [107-109]. The study by [107] found that the ability to rec-
ognize different appliances varies with the sampling frequency. When
it is above 60 Hz, it becomes possible to identify even those appliances
that are always-on such as fridge, stand-by, alarm systems etc., which
account for 15% of home energy consumption. However, this task
becomes challenging at lower frequencies. The research by [108] in
residential settings revealed that there is a threshold period value
where performance remains relatively stable before it starts to decline.
Furthermore, changes in sampling frequency can have different impacts
on the approaches, depending on their architecture. For instance, de-
noising auto-encoders are more sensitive to frequency variations, while
convolutional and recurrent networks may see some improvements
when frequency decreases [108]. Another important factor is the nature
of the phenomena being monitored. It has been confirmed that ap-
pliances with long-duration activations in residential buildings benefit
from a reduction in sampling frequency [108]. In the study by [109],
the proposed approach was tested using different non-uniform sampling
strategies. The results showed that for some devices, the sampling
frequency does not significantly influence performance. This holds for
the dishwasher, that has large power variations for each activation and
generally one cycle takes more than one hour. For other appliances,
like the washing machine, performance drops drastically. Most of the
industrial loads have large power variations and even longer working
cycles and experimental results obtained for residential loads can be
similar for industrial loads. Thus, specific studies are required. These
considerations confirm the importance of evaluating NILM methods
under different data resolution conditions, particularly those with low
resolutions. Smart meters collect low-resolution data, and obtaining
higher resolutions would require the installation of additional sensors.
It is also worth to underscore that the approaches we reviewed are
specifically designed for certain sampling frequencies. Methodologies
that rely on extracted features need high-frequency signals and cannot
be applied if only low-resolution signals are available. Only one work
by Liu et al. [39] evaluated the proposed method and benchmarks for
different sampling periods, demonstrating the stability of their method-
ology on load identification. Nonetheless, the results are presented on
average, without details about the effect of different sampling periods
on the single device performance. For these reasons, in the Industrial
NILM literature there is a gap regarding this significant investigation,
which would lead to a better understanding of the applicability of the
methods already proposed in the literature.

9.4. Industrial energy scalability

In the industrial scenario, the energy consumed during a workday
is typically greater than in residential buildings. This is due to the
number of loads installed within the industrial building and the types
of machinery used. For this reason, monitoring industrial loads can
be more challenging, as there may be a significant number of non-
monitored loads contributing to the total consumption, or a higher
number of machines operating simultaneously. In contrast, in the resi-
dential sector, fewer appliances are active at the same time [99,100],
and nonetheless the impact of non-monitored loads is significant [110].
This effect becomes more pronounced as the number of loads and
energy consumption increase. It is also worth noting that, in published
studies, the average number of monitored appliances is 5, whereas in
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the industrial sector, more than 5 appliances are typically monitored
(e.g., works that employed IMDELD generally monitored 8 devices).

Despite the challenges of scalability, the use of NILM in industry is
a promising option, mainly due to sensors cost, installation issues and
the rapid advancements of monitoring algorithms seen in the residen-
tial sector. NILM service does not necessitate to install measurement
devices on each machine and it is suitable also for monitoring devices
where installing electrical sensors is not possible (such as HVAC sys-
tems [76], lighting etc.). Nonetheless, the introduction of semi-intrusive
monitoring approaches could serve to pave the way for integrating
NILM into industrial settings, with the ultimate goal of transitioning
towards a completely non-intrusive architecture. Nowadays, most of
the commercial monitoring solutions in industries are intrusive. This
is directly associated with the difficulty of developing of a general
approach that is effective across various scenarios or different indus-
tries belonging to the same scenario. This can be demanding without
specific information from the target environment, as demonstrated for
residential applications even though fewer loads are simultaneously
on and the installed devices in homes are quite similar. This aspect
represents one of the biggest challenges that Industrial NILM must
address.

Another important factor to consider is the nature of the indus-
trial loads (high or low power variations, long or short activation
etc.) that are monitored. Performance in IMDELD and HIPE, as pre-
sented in Section 8.3, clearly shows how the nature of the devices
influences monitoring accuracy. Therefore, it would be beneficial to
acquire signals from more complex industrial loads (Type III), which
are generally characteristic of the industrial scenario. This would allow
for a better evaluation of the effectiveness of the proposed approaches
in real-world applications and potential performance improvements. In
general, acquiring a wide variety of industrial load data will facilitate
more in-depth studies on load power profiles, considering both active
and reactive powers.

9.5. Computational complexity

This section is focused on the computational complexity and real-
time behavior of the algorithms discussed in this review. Limited
attention has been given to these aspects and only qualitative evalua-
tions of computational complexity and real-time behavior are presented
in the existing literature. The only exception is the work of Angelis
et al. [46] where inference time and a new metric that combines the
predictive accuracy of the disaggregation models with computational
performance has been introduced. For the rest of the literature, the
main focus has been on the effectiveness of the approaches, which
still requires significant attention and further study. Edge computing is
emerging as a viable solution to maintain privacy and mitigate latency
and bandwidth issues associated with cloud-based services [111] and
in industrial scenarios can enhance connectivity, real-time control,
and data optimization. It also supports intelligent applications, en-
sures robust security, and safeguards privacy [112]. This is particularly
important given the proliferation of deep learning methods. The pri-
vacy and confidentiality of industrial processes have not favored the
widespread sharing of energy data, as demonstrated by few public
industrial consumption datasets. Similarly, it can be assumed that
companies are reluctant to move their data to the cloud in order
to avoid revealing sensitive information about production, production
rates, and applied methodologies. For this reason, it is important to
start considering strategies that can be applied at the edge level, in
order to prevent data migration and avoid privacy issues. Monitoring
machine status, including electricity consumption, is crucial for detect-
ing anomalies promptly, making a real-time service essential. Rapid
intervention becomes especially necessary in cases of serious damage.
Focusing on real-world Industrial NILM applications is a vital direction
for the future.
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Table 4
Applications of industrial NILM.
Application Functionality Advantages
Real-time power information Active participation in reducing waste,
Awareness Daily, weekly, monthly and yearly statistics improving energy efficiency, reducing costs,
Energy-aware production processes and minimizing environmental impacts from production processes
Load shifting, Peak shaving, Support for achieving sustainability towards Industry 5.0,
Management Demand response, Integration and management of production with consumption
information
Self-consumption maximization and self-consumption maximization
Production processes monitoring, Identification of State monitoring of machinery and processes to avoid
Maintenance missing cycles,

Machinery state monitoring
to anticipate or identify faults

waste derived from faults, preventing severe
machine damages and guaranteeing a safe workplace.

9.6. Applications

In this review, NILM applications are divided into three main cat-
egories, as shown in Table 4. The first category, Awareness, includes
all the applications directly related to the knowledge of energy con-
sumption at the device level. NILM acts as a sensor to measure power
consumption without installing sensors on each device. This directly
promotes energy awareness and provides consumption details that may
be unknown for non-skilled users, which is the first step towards sup-
porting sustainable behaviors and energy efficiency for industrial users.
As stated in [17], to achieve the desired efficiency improvements, en-
ergy use should be measured in more detail and in real-time, to achieve
awareness of the energy use patterns of every part of the manufactur-
ing system. Monitoring results can be used for computing statistics,
highlighting normal or anomalous behavior in energy consumption,
and even compare the consumption of a plant with similar industries.
Knowing the energy consumed in a specific production line allows for
estimating production costs associated with energy consumption and
emissions. To ensure green manufacturing, the energy consumption of
production processes should be transparent and minimized [113].

Additional functionalities can be built upon the knowledge of
device-level consumption. The second category, Management, includes
energy saving and self-consumption maximization, for instance.

Detailed knowledge of energy consumption can aid industrial users
in minimizing electrical energy waste. Systems, such as EMS, can en-
hance energy efficiency, particularly when detailed information about
machinery consumption and production processes is available. As high-
lighted in [114], there is substantial untapped potential for energy
efficiency in the industry, with EMS being identified as one of the most
promising methods for reducing energy consumption. The development
of such management strategies should include continuous monitoring
of energy usage in processes and plants, the establishment of energy
performance indicators for these processes and plants, and an energy
information system, as discussed in [115]. The significance of energy
management in the industry, especially for energy-intensive industries,
has been highlighted in other studies as well [13,116-118]. The above
discussion can be framed within the context of Industry 5.0 [119,120].
In fact, one of the requirements of this future industrial scenario is
the development of production systems based on renewable energy,
sustainability and reduced energy waste, facilitated by the EMS. Ad-
ditionally, depending on the flexibility of their loads and production
cycles, some industries may be eligible for Demand-Response programs.
This information can be obtained from NILM outputs.

The third category is Maintenance, which pertains specifically to
applications on industrial production processes. In fact, the aim is a
functional monitoring through the power consumption of the device
itself. Analyzing the consumption patterns of industrial machines in-
volved in specific production processes can help monitor the correct
process flow and identifying missing cycles or malfunctions. Moreover,
relating the load signature consumption and specific working param-
eters of the equipment (e.g., heating or cooling temperature of the
machine), models to obtain parameter information from consumption
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patterns can be built. Then, these models can be used to indirectly
monitor the correct functioning of the equipment itself. This can be
useful to act promptly on the machine in presence of dangerous be-
havior. Also, this can ensure a better security in working environment
for the employees [121]. Fault detection has been previously inves-
tigated by Lai et al. [78], and in [77] a ball bearing was driven to
failure, allowing the acquisition of various phenomenological signals.
Other applications identified in the literature include the detection of
low-efficiency appliances. Fahad et al. [122] demonstrated this in a
small manufacturing plant, where they identified old and low-efficiency
equipment that could be replaced to improve the overall efficiency.

10. Conclusion

NILM has emerged as a significant area of interest, particularly for
its potential to save energy, reduce emissions, and cut costs. Following
widespread adoption and promising results in the residential sector,
recent years have seen an increase in publications proposing method-
ologies for NILM in the industrial sector. Given the high number of
devices installed in industrial settings, hardware installation for moni-
toring is more challenging than in residential environments, making a
non-intrusive approach more viable.

This work presented a systematic review of the recently published
literature on industrial load monitoring with non-intrusive methods.
This effort was motivated by the recent growth of approaches for the
industrial sector and the presence of a limited and outdated review
that lacks a significant collection and discussion of methods, datasets,
and scenarios. Our analysis covered signals, features, and approaches,
highlighting the extensive use of raw input aggregate power signals
and the adoption of deep learning-based strategies for load identifica-
tion or disaggregation. A detailed analysis of algorithms’ performance
has been conducted to clearly assess the knowledge of the current
state-of-the-art.

Similarly to the residential sector, a key direction for Industrial
NILM is its application in EMS, given the importance of managing
energy consumption to minimize its waste. Several challenges need to
be addressed, especially concerning the acquisition of longer public
datasets from various scenarios, complete with details on equipment
and processes. The standardization of the experimental setup should
be defined to properly evaluate the improvements achieved by new
approaches.
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