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Advances in pediatric cardiac surgery have resulted in a recent growing
epidemic of children and young adults with congenital heart diseases
(CHDs). In these patients, congenital defects themselves, surgical operations
and remaining lesions may alter cardiac anatomy and impact the mechanical
performance of both ventricles. Cardiac function significantly influences
outcomes in CHDs, necessitating regular patient follow-up to detect clinical
changes and relevant risk factors. Echocardiography remains the primary
imaging method for CHDs, but clinicians must understand patients’ unique
anatomies as different CHDs exhibit distinct anatomical characteristics
affecting cardiac mechanics. Additionally, the use of myocardial deformation
imaging and 3D echocardiography has gained popularity for enhanced
assessment of cardiac function and anatomy. This paper discusses the role
of echocardiography in evaluating cardiac mechanics in most significant
CHDs, particularly its ability to accommodate and interpret the inherent
anatomical substrate in these conditions.
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1 Introduction

Cardiac function in adults is assessed using echocardiography,

following specific guidelines and parameters. In children, the wide

variety of congenital heart diseases (CHDs) has led the guidelines

for echocardiographic evaluation to be more focused on

morphological rather than functional aspects (1).

However, advances in cardiac surgery have led to a recent

growing epidemic of children and young adults with CHDs, where

congenital defects themselves, surgical operations and residual

lesions can alter cardiac anatomy and affect the mechanical

efficiency of both ventricles differently. Cardiac function is an

important determinant of outcomes in CHDs (2); thus, it is

mandatory to adequately follow up patients to identify changes in

their clinical status and relevant parameters for risk stratification

(3). Echocardiography continues to be the primary imaging

technique in CHDs. When performing an echocardiography,

clinicians should know patients’ anatomy properly, since different

CHDs have different anatomical peculiarities that may alter

cardiac mechanics. In addition to standard measurements, the use

of myocardial deformation imaging and three dimensional

echocardiography (3D) has become popular to better assess

cardiac function and anatomy (3, 4).

In this paper, we will discuss the role of echocardiography in

assessing cardiac mechanics in most significant congenital heart

diseases, with a keen focus on how it accommodates and

interprets anatomical features inherent to these conditions.
2 Atrial septal defects

2.1 Anatomy and pathophysiology

The pathophysiological feature of an atrial septal defects (ASD)

is known to be right heart volume overload due to left-to-right

shunting. When congenital ASDs are repaired during early

childhood, patients tend to have a life expectancy similar to that

of the general population. While the right ventricular (RV)

volume overload and the increased end-diastolic dimensions are

well tolerated for an extended period, they ultimately lead to

diminished RV function, hypokinesia, and heart failure, resulting

in increased morbidity, including arrhythmias, and higher

mortality rates.
2.2 Echocardiographic assessment

A previous study by Jategaonkar et al. (5) found that people

with chronic RV volume overload caused by an ASD have not

only higher tricuspid annular plane systolic excursion (TAPSE)

values but also higher myocardial strain values compared to

healthy populations of the same age. These observations

primarily rely on changes in the lateral segments, particularly the

mid and apical lateral segments of the RV wall.

Moreover, in a proof-of-concept study by Wu et al. (6) a non-

invasive analysis of right ventricular myocardial work (RVMW)
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was conducted in a cohort of 29 individuals with atrial septal

defects. The results revealed that the ASD patients with RV

volume overload exhibited significantly higher values for the

following parameters: right ventricular global work index

(RVGWI), right ventricular global constructive work (RVGCW),

and right ventricular global wasted work (RVGWW) in

comparison to the control group. However, there was no

statistically significant difference observed in right ventricular

global work efficiency (RVGWE) between the two groups.

The increased strain values due to RV overload tend to return

to normal levels after both percutaneous and surgical ASD closure,

according to Jategaonkar (5). Other studies showed nearly

normalization of RV strain patterns in patients who underwent

percutaneous closure of the atrial defect, while in patients who

received surgical correction right ventricular strain remained

altered even after 6 months from surgery (7). Moreover, in a

study by Di Salvo. et al, atrial strain itself seemed to be altered in

patients who received surgical closure of the defect, while peak

systolic strain doesn’t seem to differ from healthy control in the

device closure group (8).In details, speckle tracking analysis

across the device showed almost no deformation on the ASD

occluder as if strain imaging was not influenced by global heart

motion and tethering from adjacent segments, while myocardial

velocities failed to significantly discriminate between this

noncontracting structure and the normal atrial wall (9).

Regarding the long-term follow-up after ASD closure, a study

by Menting et al. (10) demonstrated that, even in patients who

underwent ASD closure during childhood, a noteworthy

reduction in the right ventricular lateral wall longitudinal strain

can be observed 35 years after the closure procedure, compared

with the healthy population. This reduction is likely attributed to

preoperative chronic volume overload or may be related to the

surgical closure technique. One possible explanation is that in the

remodelled RVs of ASD patients, the apical segment appears to

have a straighter configuration than in healthy subjects, resulting

in higher wall stress in these particular locations.
3 Ventricular septal defects

3.1 Anatomy and pathophysiology

Patients who have large ventricular septal defects (VSDs) leading

to excessive blood flow in the lungs demonstrate an enlarged left

ventricular end-diastolic diameter (LVEDD) due to the substantial

overload of blood volume in the left ventricle. These patients may

exhibit differences in contractility in comparison to individuals

with hearts that have normal structural characteristics. Although

several studies have indicated the presence of systolic dysfunction

in individuals with VSDs, the replication of these findings has

been inconsistent. On the other hand, it is conceivable that

contractility may be augmented in specific patients as a

compensatory mechanism to counterbalance the decrease in

systemic output resulting from excessive pulmonary circulation.

This observation implies that there could potentially exist

variations in contractility among individual subjects with VSDs.
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3.2 Echocardiographic assessment

According to a study conducted by Penk et al. (11), the

evaluation of contractility through the measurement of left

ventricular longitudinal strain and strain rate did not yield

statistically significant distinctions between patients with VSDs

who were recommended for surgical intervention and healthy

children in a baseline state.

Similarly, Kotby et al. (12) found no statistically significant

differences in the mean global peak longitudinal systolic strain

between patients and controls, asymptomatic groups and groups

with symptoms, and people with dilated left ventricles (LV) and

those without LV dilation. This suggests that keeping systolic

function in people with volume overload can be important

enough to go unnoticed even when using 2D speckle tracking

echocardiography (STE)-derived longitudinal strain, a method

that is known for being able to find subtle ventricular

dysfunction. To figure out what’s going on, researchers are

looking at eccentric hypertrophy and myofibril remodeling,

which happen when the ventricles are overloaded with blood and

help keep systolic function going. Magee et al. (13) conducted a

study employing a unique methodology and found results

consistent with those of previous studies. In particular, they saw

that older children and adults with VSD and moderate left-to-

right shunting had either the same amount of systolic function

or more systolic function than their control groups.

Favorable long-term outcomes are observed in the surgical

correction of VSDs during infancy. In the present study, Kwon

et al. (14) examined infants and neonates who had symptomatic

VSD requiring surgical intervention. The authors observed that

post-surgery, there was an anomalous movement of the

ventricular septum, which coincided with a decrease in preload.

The observed changes in septal motion resulted in a subsequent

decline in left ventricular torsion during the immediate

postoperative period.

Even though ventricular systolic dysfunction can happen right

after surgery, it is important to note that most patients’ left

ventricular mechanics return within the first year.
4 Left ventricular outflow tract
obstructions

4.1 Anatomy and pathophysiology

Coarctation of the aorta (CoA) is characterized by a narrowing

of the aorta, typically found just beyond the left subclavian artery

and near the point where the ductus arteriosus attaches,

sometimes associated with transverse arch hypoplasia. While

CoA has been considered simply a focal stenosis, it is now

established that it is a complex disease of vasculature (15).

Indeed, mechanical obstruction at the aortic isthmus,

potentially associated with others left-side lesions, and vascular

dysfunction lead in the long term to increased LV pressure and

wall stress (16). This, in turn, causes the development of

compensatory concentric left ventricular hypertrophy (LVH).
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Surgical correction is essential to remove the stenosis, but LV

function may remain subnormal in many patients even years

after surgery. Also, patients have an increased aortic stiffness and

a reduced aortic distensibility regardless of the stenosis, and

often develop systemic hypertension which, in turn, may provoke

LVH and, ultimately, systolic and diastolic dysfunction (17).
4.2 Echocardiographic assessment

Although the diagnosis of CoA is still the fetal cardiologist’s

Achilles heel, some data suggest that LV remodeling starts during

fetal life. Data from Soveral et al. found that, compared to

controls, foetuses with CoA had a right dominance due to

smaller LV cavities, and to an abnormally elongated LV. They

also found a preserved LV function and thickness and

hypothesized that volume redistribution prevents LV pressure

increase during fetal life. After birth, the LV tries to adapt to the

acute increase of volume through left-side cavities with a more

globular shape and augmented filling velocities (18).

A study investigating diastolic and systolic performance with

Doppler Tissue Imaging (TDI) in patients who underwent CoA

repair in neonatal period vs. later repair and controls found that

diastolic and systolic performance were altered in both groups of

patients preoperatively. An improvement of systolic and diastolic

performance was noticed postoperatively both in neonate and

infants; however, diastolic function seems to remain impaired in

both groups compared to controls after the first postoperative

year. By contrast, systolic performance was found to be more

persistently altered in patients who underwent surgical repair in

the neonatal period, suggesting a higher hemodynamic stress in

this group before surgical correction (19).

Avendaño-Pérez et al. showed that adult patients with

unrerpaied CoA had LVH, an increased LV mass, lower values of

LV EF and GLS compared to controls, and that values of

myocardial deformation were inversely related to LV mass. Also,

GLS was reduced in patients with preserved EF, confirming the

ability of this technique in detecting subclinical dysfunction (20).

Indeed, regional longitudinal systolic myocardial deformations

as assessed by strain rate (SR) were significantly reduced in a large

sample of young normotensive patients years after successful CoA

repair in the presence of a normal/increased LVEF. Also, the degree

of longitudinal SR impairment was correlated with age at repair

and aortic stiffness. The increased aortic stiffness in these

patients demonstrates that, despite a successful repair, surgery

cannot change the intrinsic abnormalities in vascular structure

and function (21).

In addition, a reduction of longitudinal strain values of basal

septal segment (≤−16.6%) and of LV twist were found to be the

best predictors of masked hypertension in adolescents with

repaired CoA. The impairment of basal segment function, which

is impaired also in hypertensive heart disease, could probably be

explained by the increased regional stress on the basal

subendocardial longitudinal fibers at that level (22) (Figure 1).

Lastly, left atrial (LA) function, assessed by STE as reservoir

phase, was found to be frequently impaired in adolescents and
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FIGURE 1

Evaluation of systolic function in a patient with coarctation of the aorta. (A,B) CoA as assessed by Color and CW Doppler; (C) GLS values in the same
patient. As noticed, strain values are reduced in basal segments, which are impaired also in hypertensive patients. CoA, coarctation of the aorta; CW,
continuous Doppler; GLS, global longitudinal strain.
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young adults years after CoA repair, especially in those with altered

aortic arch geometries (i.e gothic aortic arch) and in those with

atrial arrhythmia and stroke (23). These represent some of the

most feared morbidities after CoA repair. Thus, investigating LA

reservoir function, an early indicator of both LA and LV

function in conditions of elevated afterload, could be useful to

identify patients at higher risk of morbidity.
5 Tetralogy of Fallot

5.1 Anatomy and pathophysiology

Tetralogy of Fallot (TOF) is most likely the best example of

the success of paediatric cardiology and cardiac surgery, but

success is not a miracle, and as a result, the survival rate among

adults remains significantly lower than that of the general

population. This discrepancy is primarily attributed to a

heightened occurrence of heart failure (HF), ventricular

arrhythmias, and sudden cardiac death, with heart failure being

the primary cause of mortality in adult patients with repaired

TOF (rTOF) (24, 25).

The underlying mechanisms leading to cardiac dysfunction in

Tetralogy of Fallot seem to involve an adverse biventricular

response and (mal)adaptation to multiple stressors such as RV

pressure and/or volume-overload, surgery, myocardial fibrosis,

and electro-mechanical dyssynchrony (5). Genetics and acquired

mechanisms contribute to this biventricular response, often

termed “remodeling”, starting from fetal life, and continuing

into adulthood (25).

Histological analysis of myocardial biopsies from the RV at the

time of surgical repair showed increased cardiomyocyte diameters

and higher interstitial fibrosis in both ventricles compared to

normal reference values (26). These changes were particularly

prominent in older patients with longer exposure to cyanosis and

pressure overload, as well as in individuals experiencing

myocardial dysfunction and ventricular arrhythmias (27). A
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study comparing the myocardial histopathology of adults with

TOF who had late repairs and those who didn’t showed that, at

the same age of death, the rate of hypertrophy and fibrosis

progression in the two ventricles was the same in both groups,

even though the repaired hearts had less of both (28).

Furthermore, there are differences in ventricular myocardial

architecture between individuals with TOF and those with

normal hearts. In people with TOF, the RV sub-epicardial fibers

are more angled, and there is a clear layer of circumferential

fibers in the middle, especially at the level of the sub-pulmonary

infundibulum. These features have been observed in both adult

patients with rTOF and in children before undergoing surgery

(29). This highlights the unique pathophysiology and complexity

of TOF, where various loading conditions and surgical

interventions contribute to cardiac remodeling.

Lastly, it is essential to acknowledge the interdependence

between the LV and the RV, as they share myofibers, the septum,

coronary blood supply, and the pericardium (30). Thus, it is

logical that the function of one ventricle influences and is

influenced by the other one.
5.2 Echocardiographic assessment

With 2D echocardiography, it is difficult to properly assess

the RV, but advancements in 3D echocardiography and

speckle tracking imaging provide valuable new information for

evaluating ventricular function in TOF patients. Recent 3D

echocardiography data shows that the shape of the RV curvature

changes during the cardiac cycle in repaired TOF patients with

severe pulmonary regurgitation (PR). Indeed, compared to

control subjects, those with rTOF and severe PR exhibit a flatter

RV-free wall, with a tilt of the tricuspid annulus, a rounded apex,

and a more convex right ventricular outflow tract (RVOT) and

interventricular septum. Furthermore, their mid-RV free wall and

interventricular septum become less convex from end-diastole to

end-systole, while apical-free wall convexity increases during
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end-systole (31). These geometrical changes in wall curvature are

expected to alter wall stress and regional myocardial remodeling.

Other studies have shown that people with rTOF and PR have

lower RV global longitudinal and circumferential strains (32, 33).

The longitudinal component of the RV free wall seems to be the

most affected (33).

Right bundle branch block (RBBB) is common after TOF

repair and can be caused by damage to the heart at different

stages (34). How much the ventricular activation sequence is

delayed depends on where the damage is. This delayed

activation of the RV free wall may cause significant electrical

dyssynchrony and this may contribute to mechanical inefficiency

and dysfunction (35).

Hui et al. conducted a study with STE which revealed that a

right-sided septal flash, a marker of RV intraventricular electro-

mechanical dyssynchrony, with concomitant early prestretch and

late contraction of the RV basal lateral wall is common in rTOF

patients, and intra-RV delay is more prominent in individuals

with higher RV volumes (36).

Also, reduced RV deformation in association with RV

dyssynchrony and decreased exercise tolerance have been

demonstrated in asymptomatic rTOF children (37), suggesting

a potential role of resynchronization therapy in improving

RV dysfunction.

Lastly, in rTOF patients, RV diastolic function is also impaired.

Different levels of dysfunction have been reported, but the

assessment of RV diastolic function with standard

echocardiographic is still a challenge (38). Promising data are

emerging about the role of right atrial strain to investigate RV

diastolic function and to identify patients at higher risk of

adverse events (39, 40).

In addition to right ventricular dysfunction, a reduction in

longitudinal, radial, and circumferential strain has been

demonstrated also for the LV, despite a preserved ejection

fraction. The LV radial component seems to be more affected

than the other components (41). Recent study demonstrated that

in rTOF patients LV torsion, a main determinant of LV

mechanics, is impaired. This impairment is characterized by a

reversed (counterclockwise) basal rotation along with a

compensatory increase in apical rotation at a younger age (41,

42), which becomes impaired later in life (43). Changes in

rotational mechanics may indicate that the disease is in a more

advanced stage and are linked to events like death, heart failure,

arrhythmia, reintervention, or hospitalization for cardiac reasons

(44). Notably, RV strain was identified as the sole predictor of

reversed counter-clockwise LV basal rotation, suggesting that RV

dysfunction, rather than RV dilatation alone, could potentially

play a crucial role in abnormal LV rotation and mechanics (41).
6 D-transposition of great arteries

6.1 Anatomy and pathophysiology

In D-transposition of great arteries (D-TGA), during foetal life

and before surgical correction, the right ventricle acts as the
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systemic pump, while the left ventricle, situated under the

pulmonary circulation, experiences low systolic pressure. Cardiac

surgery is usually performed shortly (<7–10 days) after birth.

This is mainly because there is concern about the left ventricle’s

ability to cope with the abrupt transition to the pressure load of

the systemic circulation and to avoid the development of

pulmonary vascular disease.

The arterial switch operation (ASO) is currently the

standard surgical procedure to treat D-TGA, with remarkable

outcomes in reducing mortality rates and the necessity for

further interventions (45). However, coronary artery

abnormalities and reimplantation, reduced coronary flow

reserve, intimal proliferation, the development of significant

neo-aortic regurgitation, and RVOT obstruction may impair

cardiac function in the long term (46, 47). Also, approximately

10% to 20% of patients who underwent ASO has a gothic

aortic arch (GAA), a particular anatomical variation

distinguished by an elevated, slender, and elongated aortic

arch (48). The pathogenesis of this variation is not fully

understood, but an altered geometry and tension of the aorta

following ASO as well as genetic and developmental factors

may play a role.
6.2 Echocardiographic assessment

Few studies have investigated cardiac mechanics and

morphology in foetuses with D-TGA. Reduced global and

regional RV longitudinal systolic peak velocity, strain, and strain

rate, as well as a more globular RV shape compared to controls,

were found (49, 50). After birth, this morphological aspect

persists before surgical correction, while RV function is usually

normal or mildly impaired (50, 51).

When evaluated using conventional echocardiographic

parameters after ASO, LV systolic function is typically within the

range of normal (52). However, LV functional abnormalities have

been shown by some studies both under pharmacological stress

(53) and at rest (54), especially in patients with variant coronary

arterial anatomy (55). Also, a significant reduction in the

longitudinal systolic myocardial deformation with normal

circumferential deformation and torsion has been found in

asymptomatic patients years after ASO, and age at surgery was

the only variable significantly correlated with global LV

longitudinal systolic deformation (56). These findings altogether

may suggest that: (1) an older age at the time of surgery might

be linked to a decrease in LV mass and an underdeveloped left

anterior descending coronary artery, which supplies the larger

amount of myocardial mass; (2) consequently, these factors could

lead to abnormal global longitudinal deformation, which

represents an early marker of cardiac dysfunction. (3) Normal

torsion might serve as a compensatory mechanism to preserve

LV function.

Lastly, the presence of a GAA can change the dynamics of

blood flow, with variations in shear stress distribution along the

aortic wall that may cause arterial stiffness, vascular remodeling,

and, ultimately, cardiac dysfunction. Studies investigating
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myocardial strain in patients with GAA after ASO revealed

changes in strain values and distribution patterns, particularly in

the basal segments of the LV (57). These alterations may be

attributed to increased wall stress in those segments, as explained

by Laplace’s law.
7 Ebstein’s anomaly

7.1 Anatomy and pathophysiology

Ebstein’s Anomaly (EA) is a rare CHD involving the

tricuspid valve and the RV. It is caused by a failure in the

delamination process during embryologic development which

results in septal and posterior leaflets typically adherent to the

underlying myocardium and in a dysplastic anterior leaflet,

with varying degrees of redundancy and fenestration (58). In

EA, the RV can be divided into two distinct regions (58, 59).

The inlet portion becomes in fact functionally integrated into

the right atrium due to the TV malformation. This “atrialised”

portion is usually thin, dilated and poorly contractile, serving

as a passive reservoir during atrial contraction. The number of

RV myocardial fibers is decreased, contributing to thinning

and decreased myocardial efficiency (60). The remaining

“functional” RV (fRV) is also dilated, with concomitant

tricuspid annular dilatation and various degree of
FIGURE 2

Functional assessment in ebstein anomaly. (A) EA as visualized by 2DE; (B)
TAPSE an S’ wave, are increased in EA because of volume overload;
morphologically, but also functionally, as basal and medial septal strain va
EA, ebstein anomaly; 2DE, two-dimensional echocardiography; TAPSE, tric
RV, right ventricle.
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regurgitation. The RV myocardial cells are normally organized

in a specific structure; the epicardial fibers are in fact obliques

and continuous with the LV ones, the mid-wall circumferential

layer is poorly developed, and the endocardial ones are

longitudinally oriented (61). This explains why RV contraction

usually relies more on longitudinal shortening than

circumferential deformation (61). Abnormal loading conditions

can change this asset, with a greater contribution of

circumferential and radial shortening components to global

RV ejection (61).
7.2 Echocardiographic assessment

The evaluation of RV volumes and function by

echocardiography is often difficult due to the retrosternal

position of the RV and its complex geometry (62). This is

particularly true in patients with EA, where the morphological

abnormalities of the RV and the altered loading conditions (i.e.,

volume overload due to tricuspid regurgitation) further challenge

this assessment (Figure 2). Most of the conventional echo

parameters used to assess RV function may therefore be

unreliable (63). In a small study of 16 EA’s patients,

measurement of fractional area change (FAC) was unfeasible due

to difficulties in detecting the endocardial border (64). However,

in another study including only young and unrepaired EA
standard echocardiographic parameters to assess RV function, such as
(C) GLS analysis shows that the RV in EA is “atrialised” not only
lues (green arrows) are positive in systole, thus behaving as an atrium.
uspid annular plane systolic excursion; GLS, global longitudinal strain;
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patients (n = 50) FAC assessment was feasible in the whole cohort

(65). The authors found that this functional index also had

prognostic significance, being the only predictor of progressive

disease along with right atrium peak systolic strain (RA-PALS)

(65). The RV-FAC is the expression of the contraction of the

obliquely oriented fibers. This data confirms that the longitudinal

function may be compromised early in EA patients, with an

increased compensatory circumferential deformation reflected

by FAC (65).

Kühn et al. compared TAPSE, tissue Doppler myocardial

velocities (peak systolic myocardial velocity, s’, and isovolumic

acceleration) and 2D strain and strain rate measures with cardiac

magnetic resonance (CMR)-derived EF. Of the six parameters

investigated, only 2D global longitudinal strain (GLS) had a good

correlation with CMR-derived RVEF. Of note, it was also the

only parameter showing a good inter- and intra- observer

variability in their study (63). Results of a more recent study

enrolling 620 patients with EA, confirmed the importance of

implementing the use of RV GLS in risk stratification of EA

patients. RV GLS was in fact identified in this larger cohort as an

independent predictor of all-cause mortality and cardiovascular

mortality, with superior prognostic power than RV FAC, RV s’,

or TAPSE (66). In particular, RV s’ and TAPSE did not correlate

at all with clinical outcomes, perhaps reflecting more segmental

rather than global systolic function (66).

Data coming from STE can also be helpful to understand how

mechanical dyssynchrony can impact RV function. Intra- RV

conduction delay can be assessed using the standard deviation of

time to peak shortening among the fRV segments. Patients with

EA have mechanical dispersion, as demonstrated by the presence

of abnormal early functional RV septal activation, RV lateral wall

prestretch/late contraction, postsystolic shortening and increased

intra-RV delay measured by STE (67). This is clinically relevant,

as associated with fRV remodeling, dysfunction and impaired

exercise capacity (67).

Although the exact underlying mechanisms are not yet fully

understood, LV dysfunction has been described in up to 50% of

patients with EA (68). The dilatation of the RV causing septal

bowing and compression of the LV can be in part responsible

for LV impairment, although it is unlikely to represent the only

mechanism (69, 70). Along with patients with overt LV

dysfunction, there is a proportion of patients with normal

EF but small volumes and low stroke volumes (71). These

patients have worse right heart dysfunction, higher diastolic

interventricular dependence (higher diastolic eccentric index),

and therefore reduced LV pre-load and stroke volumes (71).

The reduced LV end-diastolic volume provides a normal LVEF

value even in the presence of LV dysfunction. The relatively

load-independent GLS can unmask this occult dysfunction and

be used as an early marker of impaired function (71). A

reduced absolute LV GLS, but not LVEF, was an independent

predictor of death or cardiac transplantation and was associated

with suboptimal postoperative LV reverse remodeling (72, 73).

The presence of mechanical dyssynchrony can further

contribute to LV dysfunction and should be assessed in these

patients. An increased circumferential strain dyssynchrony
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index calculated as (peak segmental average−peak global

average)/peak segmental average has been observed in neonates

with EA and tricuspid valve dysplasia and is associated with an

increased risk of mortality (73).
8 Univentricular heart

8.1 Anatomy and pathophysiology

The term “univentricular heart” refers to various complex

congenital heart conditions where both atria primarily connect to

a single functional ventricle, preventing the possibility of

biventricular repair. These defects can involve either a single right

ventricle or a single left ventricle. Treatment typically involves a

staged approach, including a neonatal Norwood stage I procedure,

a Glenn procedure or Norwood stage II around 6 months of age,

and Fontan completion surgery around 4 years of age (74).

From infancy to Fontan palliation, univentricular hearts face

unique load conditions (75). The Norwood stage I procedure

causes systemic and pulmonary circulation to work in parallel,

leading to chronic volume overload in the single ventricle,

causing it to enlarge and gain a spherical shape. After the Glenn

procedure, venous blood from the upper body must pass through

the lung to reach the heart, reducing ventricular volume load and

potentially improving atrioventricular valve and myocardial

function. Finally, with Fontan surgical completion, the systemic

venous blood flow results completely redirected, and the

ventricular volume load is significantly reduced.

Moreover, in the presence of a volume-contracted condition

and preserved myocardial mass, the single ventricular mass/

volume ratio results increased, with consequent high myocardial

wall stiffness and risk of diastolic dysfunction. In this setting,

further factors (e.g., residual coarctation of aorta, subaortic

stenosis, ventricular dyssynchrony, myocardial scars, systolic

ventricular dysfunction) may worsen myocardial relaxation

and be responsible for diastolic dysfunction (76). However,

long-term Fontan circulation can lead to isolated diastolic

dysfunction, further impacting clinical prognosis (77). Multiple

factors, including reduced cardiac output reserve, renal and

ventilatory dysfunction, and autonomic nervous system

activation, may contribute to heart failure with preserved ejection

fraction (HfpEF) (78).

Univentricular hearts differ from biventricular hearts also in

terms of myo-architecture. Indeed, the single right ventricle has a

thicker circumferential layer and reduced longitudinal layer,

leading to more circumferential contraction (79). Moreover,

hypoplastic left hearts exhibit myocardial fibers disarray with

variable myocyte size (80) and fibrosis, contributing to systolic

and diastolic dysfunction (75).

Finally, ventricular interdependence is lost in the presence of

single ventricle physiology. However, in some studies (81–83) in

patients with hypoplastic left heart syndrome, the presence of

large remnants of the LV has been associated with impaired

single RV function and worse outcomes, but other studies failed

to confirm this association (84). A recent Swedish study with
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20 years of follow-up has demonstrated that a thickened,

globular left ventricle with endocardial fibroelastosis and aortic

atresia-mitral stenosis subtype represent morphological risk

factors for worse outcomes in patients with hypoplastic left

heart syndrome (85).
8.2 Echocardiographic assessment

In the presence of a univentricular heart with left morphology,

the most common approach to estimate systolic function is the

biplane Simpson’s method. Even though this method is load-

dependent and influenced by geometry, it has a moderate

correlation with MRI measurements and reasonable reliability

(86). Even more challenging can be the evaluation of a

morphological right single ventricle. FAC is a simple geometric

method, but its accuracy can be limited by the complex

anatomical geometry and the high inter and intra-observer

variability (87). Of note, these measurements have no precise

normal values for univentricular hearts, but they are valuable

when evaluated in the longitudinal follow-up. The

atrioventricular systolic to diastolic duration ratio has been used

to evaluate ventricular performance without anatomical

assumptions. Cordina et al. (88) demonstrated that a value >1.1

independently predicts mortality in adult patients with Fontan

circulation. STE has emerged as a valid and reliable method for

assessing single-ventricle function without geometric assumptions

or the effect of acute preload (89). When the GLS is evaluated

serially in the follow-up of children with hypoplastic left heart

syndrome, it has been demonstrated to predict ventricular

dysfunction leading to need for transplantation or death (87). A

recent study (90) demonstrated the different value of longitudinal

strain related to the different univentricular morphology. Single

right heart has shown lower longitudinal strain than biventricular

and single left heart morphology, underscoring a worse

morbidity associated with this subgroup. STE has also been used

to demonstrate a dyssynchronous pattern in patients with Fontan

circulation. The dyssynchronous segments showed an early

shortening (“flash”), followed by a systolic stretching; while

segments with conduction delay showed early stretching,

followed by delayed contraction. A recent study (91)

demonstrated this dyssynchronous pattern was associated with a

worse outcome in patients with Fontan circulation. 3D

echocardiography allows the evaluation of univentricular

dimensions and function without geometrical assumptions. The

evaluation of three-dimensional ejection fraction and volume

appears feasible with a good correlation with CMR, although it is

noteworthy to underscore the underestimation of measurements

in comparison with CMR (92) (Figure 3).

Even in the presence of a preserved single ventricle systolic

function, diastolic dysfunction may be commonly present in

patients with Fontan circulation. The E/e’ ratio has been

demonstrated to poorly correlate with invasive filling pressure and

should not be used as an index of diastolic function in patients

with Fontan circulation (93). The presence of a considerable

lengthening (>28 ms) of the pulmonary venous atrial reverse flow
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relative to atrial forward flow time into the ventricle, raises the

possibility of a high filling pressure of the single ventricle. A short

atrioventricular valve’s inflow deceleration time has also been

linked with diastolic dysfunction (84). Recently, Chowdhury et al.

(78), demonstrated E:e’/end-diastolic volume ratio with a cutoff

value of 0.26 ml-1 reasonably identifies HFpEF in paediatric

patients with Fontan circulation.
9 Systemic RV in biventricular
physiology

9.1 Anatomy and pathophysiology

It is estimated that systemic RV (sRV) account for 10 to 12% of

all CHDs (94). Systemic right ventricles in biventricular physiology

are commonly encountered in TGA with previous atrial switch

repair (Senning or Mustard operation) and Congenital Corrected

Transposition of Great Arteries (ccTGA). Despite all the

adaptational mechanisms though, the RV seems not to be able to

sustain systemic circulation in the long run, as most patients

develop ventricular dysfunction in time (95). Nevertheless, this

process is not yet fully understood (96) In fact, there are several

confounders that can have an impact in determining systemic

RV failure, like the presence of associated lesions (like Ebstein

anomaly in ccTGA), intrinsic or acquired conduction

abnormalities and previous surgeries.

In terms of physiology, considering its high surface/volume

ratio, the thin wall and the high compliance, the normal RV is

well suited for managing large volumes of blood and changes in

preload and, vice versa, is poorly tolerant of acute changes in

afterload (97). Myocardial fibers architecture supports the role of

the right ventricle as a “volume” chamber, rather than a

“pressure” chamber. Unlike the LV, in fact, the right one is

composed only of two layers of myofibers. The sub-epicardial

layer accounts for approximately 25% of wall thickness and it is

formed by predominantly circumferential aggregates, while the

subendocardial layer is composed of predominantly

longitudinally oriented fibers (98). This peculiar arrangement

results in the typical longitudinal-peristaltic contraction pattern

of the sub-pulmonary RV (99, 100).

When an RV is in a systemic position, it faces increased

afterload and therefore it undergoes some morphological and

functional adaptations. Indeed, it shows hypertrophy and a

change in myocardial fiber orientation with a higher proportion

of circumferentially oriented elements (101, 102). Since

circumferential shortening is one of the main features of normal

left ventricular mechanics, this appears to be an adaptive

mechanism of the sRV to the increased afterload, although the

virtual absence of the torsional deformation may represent a

potential cause of systolic dysfunction (103). Hypertrophy itself

seems to be detrimental in the long term as it is associated with

increased oxygen demand as well as reduced myocardial capillary

density, leading to potential supply/demand mismatch (104), and

prolonged microvascular ischemia can then lead to right

ventricular fibrosis (105, 106).
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FIGURE 3

Evaluation of systolic function in patients with univentricular heart after fontan procedure. (A) Upper panel: apical 2D view. Lower left
panel: atrioventricular systolic to diastolic duration ratio. (B) Upper panel: univentricular speckle tracking analysis. Lower right panel: 3D ejection
fraction evaluation.
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In addition, tricuspid regurgitation can be one of the causes

and one of the effects of systemic right ventricular dysfunction as

well (107). Tricuspid valve, in fact, can be congenitally altered

and mechanisms like annulus dilatation and septal leaflet traction

due to right-to-left septal shift can worsen valve regurgitation.

Those two mechanisms though, are also the results of progressive

ventricular dilatation, which creates a detrimental loop in

between regurgitation and dysfunction.

Finally, conduction disorders and heart blocks that require

pacing can be very common comorbidities that lead to ventricular

dyssynchrony and enhance ventricular dysfunction (108).
9.2 Echocardiographic assessment

Although its morphological features preclude the application of

formulae based on geometrical assumptions, transthoracic

echocardiography remains the main imaging modality to assess

systemic right ventricular function (Figure 4). Many studies

compared standard echocardiographic parameters, such as
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TAPSE and tissue doppler velocities of the tricuspid annulus,

with EF calculated by CMR showing inconclusive results (109,

110). FAC, instead, seems to show a moderate correlation with

ejection fraction from CMR (111). These indexes can therefore

be more useful as controls for the same patients than as a precise

quantification of myocardial function. Myocardial deformation

imaging is a very attractive clinical tool for the assessment of RV

systolic performance, since it provides incremental diagnostic and

prognostic information over the traditional indices of RV

function (112). In particular, STE allows to characterize

contraction patterns separating longitudinal and circumferential

components. Systemic right ventricles, in fact, seem to have a

more circumferential pattern of contraction than sub-pulmonary

ones. As shown by Wu et al., in D-TGA who underwent Senning

or Mustard operation, longitudinal strain was reduced as well as

in TOF patients if compared to healthy controls. However,

circumferential strain was higher in sRVs than in TOF patients

or in healthy controls and it correlated with ejection fraction at

MR while longitudinal strain didn’t (113). Moreover,

circumferential strain seems to be the best echocardiographic
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FIGURE 4

Functional assessment in systemic right ventricle physiologies. (A) Upper panel: apical 2D view in a patient with D-TGA after Senning operation. Lower
panel: right atrial strain in the same patient. Atrial reservoir is impaired in this patient (21%). (B): Upper panel: sRV function as assessed by 3DE in a
patient with ccTGA. Lower panel: GLS values in the same patient, which are impaired in all segments. D-TGA, D-transposition of great arteries;
sRV, systemic right ventricle; 3DE, three-dimensional echocardiography; ccTGA, congenitally corrected transposition of great arteries.

Avesani et al. 10.3389/fcvm.2024.1301116
predictor of exercise capacity in these patients (114). So, a possible

compensatory increase in circumferential strain must always be

considered when hypothesizing a dysfunction of the systemic

right ventricle because longitudinal parameters might not be

sensitive enough.

Tricuspid regurgitation assessment is another important part of

echocardiographic evaluation of these patients. Assessing the

tricuspid valve can be challenging due to congenital

abnormalities, complex anatomies, and poor acoustic windows.

3D transesophageal echocardiography seems to be the best tool

to assess the mechanism of regurgitation since it allows to

reconstruct multiplanar anatomy (109). Real-time 3-dimensional,

both transthoracic and transesophageal, may, in facts, not only

overcome the problem of geometric assumptions and apical

foreshortening but also provide more comprehensive assessment

of contraction patterns and ventricular function (115).
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9.2.1 State-of-the-art and future perspective of
STE to assess cardiac mechanics in CHDs

The current guidelines from the European Society of

Cardiology and the American College of Cardiology/American

Heart Association on adults with CHDs lack disease-specific

recommendations for the application of STE, and reference

values for different CHDs; also, they do not address the role of

this technique in risk stratification. Similarly, the pediatric

recommendations still mention STE as a novel technique but

continue to focus more on structural rather than functional heart

assessment (116–118).

However, much data showed the feasibility and reproducibility

of this technique, which is reported to be good in different studies

including patients with different CHDs (119, 120) and modest in

patients with complex anatomy such as single ventricle

physiologies (121, 122).
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To enhance the reliability and reproducibility of strain analysis,

a standardized approach is fundamental, and this follows the

EACVI consensus document recommendations for adult patients

(123). To optimize the analysis, the temporal resolution of image

acquisition should be higher than 50 fps (124). Regulating the

acquisition depth and the sector width are strategies to increase

image frame rate (125). Once the images are collected, it is

generally either required to trace the endocardial border or to

indicate some reference points of the region of interest (ROI).

The automatized tracking must always be inspected before

proceeding to results: good tracking should follow the

endocardial border throughout the cardiac cycle. It might be

necessary to adjust the ROI width according to cardiac width, so

that only cardiac walls are included. At this point, the system

will provide strain values for the assessed structure: a bull eye for

the left ventricle with an average global longitudinal strain, a

longitudinal strain value separately for right ventricle free wall

and the septum and 3 values for LA referring to reservoir,

conduit and contractile function.

Data about the prognostic values of STE in CHDs are scarce.

Still, a very recent meta-analysis including 33 studies found that

RV GLS, LV GLS, and both, were associated with major adverse

cardiovascular events in ccTGA/atrial switch, congenital aortic

stenosis/bicuspid valve and TOF, respectively. Also, strain and

strain rate of single ventricle showed associations with outcomes

in HLHS during the interstage phase and following stage 2 and

Fontan procedures, yet not preceding stage 1/Norwood (126).

This meta-analysis supports the need for an update of the

current recommendations on the use of STE with specific data

on CHDs and should encourage the CHD community to develop

standardized protocols and reference values to enhance

diagnostic precision, consistency and to impact patients’

management providing information on optimal time for

intervention, correction and prognosis (127).
Conclusion

In conclusion, echocardiography plays a central role in the

comprehensive assessment of cardiac mechanics in CHDs. In

addition to standard echocardiographic parameters, continued

advancements in technology, including deformation imaging and
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3D echocardiography further enhance its effectiveness, making

echocardiography an indispensable component of the

multidisciplinary approach to managing and improving outcomes

for individuals with congenital heart anomalies.
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