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A B S T R A C T   

This paper presents an experiment for assessing thermal comfort of occupants in the built environment, from a 
subjective perspective, focusing on office environment; a dedicated measurement campaign using sensors for 
acquisition of physiological and environmental parameters was conducted. Skin temperature was measured with 
two sensors: a minimally invasive sensor for measuring wrist temperature, and a thermal camera to retrieve 
forehead temperature; simultaneously, heart rate variability was measured using a wearable device. 15 partic
ipants were exposed to dynamic changes of air temperature. Data was collected to measure the participants’ 
thermal sensation vote, with machine learning algorithms. Decision Tree provided higher performances, using a 
dataset made of wrist temperature, heart rate variability features and air temperature, with mean average error 
and mean absolute percentage error of 0.86 and 20.9%. The research contributes to thermal comfort person
alization in the built environment, to improve well-being and productivity of occupants using minimally invasive 
sensor network.   

1. Introduction 

1.1. Background 

The measurement and evaluation of thermal comfort (TC) in the 
context of the indoor environments is of particular interest because of its 
impact on occupants’ wellbeing and on the energy consumption of 
buildings. TC is strictly related to environmental and personal factors 
and to handle it, buildings are equipped with HVAC systems that act on 
one or more environmental parameters [1]. As a consequence, the 
impact for maintaining TC in the built environment reflects negatively 
on buildings’ energy performance: in fact, buildings are responsible for 
40 % of global consumption and approximately half of it is due to 
activate the HVAC systems, contributing largely to most of the CO2 gas 
emissions [1–3]. Nonetheless, TC assessment is a necessary requirement 
in the built environment, since it has a great impact on occupants’ 
health, workers’ productivity, and satisfaction with the environment 
[3]. It is reported that 38 % of occupants in office buildings are not 
satisfied with indoor thermal environment, and given the strict rela
tionship that exists between comfort, wellbeing, and workers’ produc
tivity, it is necessary to develop new strategies and sensor network that 

can guarantee TC and at the same time reduce energy costs of the built 
environment [4]. In fact, 89 % of buildings are not capable of guaran
teeing indoor TC demands, in which the rule of thumb is that at least the 
80 % of occupants should express satisfaction with the thermal envi
ronment. It is therefore necessary to renovate the way of measuring TC 
and the way in which building energy is supplied: the upcoming trend is 
to apply a human-centered design approach, which is based on the de
mands of the single occupant, rather than using a building centered 
approach [5,6]. In particular, the context of office environment is of 
particular interest since occupants tend to spend one third of their daily 
routine in this kind of environment [7]; for this reason, improving TC in 
office buildings may lead to a substantial increase in occupant produc
tivity but also an increase of their wellbeing [8]; possible solutions to 
monitor workers in office buildings involves the use of a sensor network 
that measures in real-time their comfort, with the aim of avoiding 
thermal stress. 

Within this framework, human-centred design is moving to the 
assessment of personal and physiological quantities of the occupant for 
TC evaluation in office buildings, to have a comprehensive overview of 
all the aspects of the human being that are TC-related, while participants 
are performing typical office tasks. With this approach, it is possible to 
have customized thermal environment that are based on the single 
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differences of occupants, driving to the personalization of TC. Person
alized TC aims therefore at increasing the accuracy of the measurement 
of human TC with the consequent effect of minimizing the interference 
of occupants on TC management; however, the current state of the art 
reports that there are some challenges in the establishment of the most 
appropriate set of parameters for building personalized TC. For this 
reason, TC assessment should be done basing on sensor network that 
measure real-time physiological and environmental parameters, 
through reliable but also minimally invasive equipment that does not 
interfere with occupants’ daily activities [9]. 

1.2. Literature review and research gap 

Currently in buildings the standard approach for TC evaluation is 
based on the predicted mean vote (PMV) index, developed by Fanger; 
the PMV is an index which is dependent on 6 parameters, according to 
ISO 7730 [10]. Four of these are environmental parameters (air velocity, 
air temperature, mean radiant temperature and relative humidity), 
while two parameters are personal factors (clothing insulation according 
to ISO 9920 and metabolic rate according to ISO 8896). Being the PMV 
an index that represents the average behaviour of a group of people, it 
occurs that its value does not consider the peculiarities of each occupant 
in terms of physiological and personal differences, impacting in de
viations in TC perception of the occupant [11,12]. 

Personalized TC measurement are intended to capture personal 
characteristics by monitoring the thermal response of every occupant, 
and developing models using AI algorithms [3]. A great amount of AI 
algorithms were developed to obtain personalized comfort models, and 
research demonstrated that the accuracy of these models is higher 
respect with the traditional PMV model [13–15]. In this context, AI al
gorithms are suitable since occupants’ thermal preferences, and the 
related thermal sensation, change actively through time, since the 
thermal environment is not uniform and also that the outdoor conditions 
are changing [16]. For these reasons, TC measurement through 
personalized approach is still a challenge to address. All the studies 

suggest that this approach as good potential, but this field still needs to 
be further explored. 

Personalized TC measurement can be obtained by employing 
different sensor network and varying environmental conditions of the 
experiment and measurement set-up. An extensive bunch of literature 
has already demonstrated that the measurement of physiological pa
rameters can lead to the development of the next generation of TC 
models: with the recent advancements in the sector of non-invasive 
wearable technology, it is possible to monitor occupants during their 
daily activities in the built environment. Thermal environment assess
ment through physiological parameters comes from several research 
conducted with human subjects, in a highly controlled, and conse
quently unreal environments [16]. Typically, the most relevant physi
ological signals related to TC perception are the electrocardiographic 
signal (ECG), through the estimation of heart rate and heart rate vari
ability (HRV), skin temperature (ST), electroencephalography (EEG) 
and electrodermal activity (EDA)[17]. 

Specifically, personalized TC quantification methods based on HRV 
features and ST are the most spread techniques that can be found in this 
scientific field, given their correlation with the human thermoregulatory 
system, which in turn is triggered when thermal discomfort situation 
may occur. Indeed, HRV is linked to the activity of the sympathetic and 
parasympathetic neural systems, which rule on the human body re
sponses to environmental changes in the surroundings [17]. In partic
ular, the LF/HF ratio derived from HRV serves as an indicator of how the 
nervous system responds to thermal conditions in accordance with the 
human thermoregulatory system. Hence, the scientific community has 
provided several measurement techniques based on innovative proced
ures based on machine learning (ML) algorithms, that measure TC using 
datasets created through the acquisition of physiological parameters 
such as HRV or ST. However, it is still missing a thermal comfort 
assessment technique that includes and exploits both of these two 
physiological aspects [18–20]. 

In this research it is explored the usage of ST in the measurement of 
TC, since much research analyzed the relationship among TC and skin 

Nomenclature 

TC Thermal comfort 
HVAC Heating Ventilation and air conditioning 
PMV Predicted Mean Vote 
ECG Electrocardiographic signal 
HRV Heart Rate Variability 
ST Skin Temperature 
EEG Electroencephalography 
EDA Electrodermal Activity 
ASHRAE American society of Heating, Refrigerating and Air- 

conditioning Engineers 
ML Machine Learning 
DL Deep Learning 
ANN Artificial Neural Network 
CNN Convolutional Neural Network 
PPG Photopletismographic 
tL Air temperature at 0.1 m 
tM Air temperature at 0.6 m 
tH Air temperature at 1.1 m 
RH Relative Humidity 
va Air velocity 
ta Air Temperature 
tr Mean radiant Temperature 
tw Wrist Temperature 
tf Forehead Temperature 
BMI Body Mass Index 

TSV Thermal sensation vote 
ROIs Region of Interest 
MEAN Mean Value 
MEDIAN Median 
RMSSD Root Mean Square of Successive Differences 
SDNN Standard Deviation of NN Intervals 
PNN50 Percentage of 50 NN intervals 
NN50 Numbers of NN intervals 
PNN20 Percentage of NN20 intervals 
NN20 Numbers of NN intervals 
VLF Very Low Frequency 
LF Low Frequency 
HF High Frequency 
TP Total Power 
SD1 Standard Deviation – Short Term Variability 
SD2 Standard Deviation – Long Term Variability 
R Pearson’s correlation coefficient 
ETR Extra Tree Regressor 
LOSO Leave-One-Subject-Out 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
KNN K-Nearest Neighbors 
ADA Adaboost 
RF Random Forest 
DT Decision Tree 
SVM Support Vector Machine 
MLP Multi Layer Perceptron  
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temperature: literature pointed out that these two quantities are corre
lated and that makes skin temperature an indicator for estimating 
human TC [21] and typically the TC assessment is done by applying ML 
and DL algorithms on the collected dataset. The current state of the art 
has highlighted many studies that involve ST measurement to derive TC. 
There are two main methodologies to measure ST that can be adaptable 
to the built environment and can reduce the degree of invasiveness to 
the occupant: non-invasive methods, that uses thermal images collected 
from thermal cameras and contact measurements, such as sensors 
positioned in different locations of the skin. 

Non-contact measurement methods typically are represented by 
thermal cameras that collect thermal images from which it is possible to 
retrieve skin temperature at various locations: FLIR One Pro thermal 
camera is used, as an example, to predict the 7-point scale from ASHRAE 
[22]; their measurement set-up is able to provide a real-time assessment 
of comfort using facial skin temperature features. The research also 
pointed out that it is possible to decrease by 64 % the measurement of 
TC, outperforming conventional approach. FLIR Lepton thermal camera 
is also used for an automated assessment of TC, using ML techniques: 
skin temperature was measured from multiple locations of the body to 
retrieve the thermal preference of participants. The resulting models 
were applied to the data measured from experiments conducted in office 
environments where indoor air temperature was varying from 21.1 ◦C to 
27.8 ◦C: in this case, the accuracy of the prediction of TC was 80 %[23]. 
Contact measurements to measure ST encompass sensors that are posi
tioned on the skin or wearable devices. Recent studies typically adopt 
thermocouples that measure skin temperature at different locations of 
the body, and the collected data are used to train ML and DL model to 
predict thermal comfort. Thermocouples can be used to acquire tem
perature at different sites of the human body: as an example, thermo
couples can be used to retrieve facial skin temperatures, to estimate 
human thermal sensation using artificial neural networks (ANN), with 
an average accuracy of the 80.4 % [24]; thermocouples typically present 
promising results, but they cannot be then applied in daily and real-life 
context. Example of literature works showed that thermal state of oc
cupants can be measured using a contact sensor for skin temperature: for 
example, deep CNN that employs ST measured on the hand, predicts the 
thermal state with an accuracy of 93.3 % [18 25]. Fuzzy logic can be 
used to control indoor air temperature, predicting the thermal sensation 
of occupants measuring ST and heart rate: this study in fact demon
strates that by adjusting the indoor temperature set-point, using physi
ological quantities, may prevent occupants from interfering with their 
regular work [26]. 

Among the other physiological quantities related to TC (EDA, EEG, 
ECG), although all these signals demonstrated to have correlations with 
human thermal comfort, the devices for measuring EDA and EEG result 
often in invasive set-up that cannot be adequately used in daily life- 
contexts, such as the office environment; thermal stress due to thermal 
discomfort could be experienced in daily life situations, therefore is 
expected that the devices are placed on the measurement site 24/7 [27]. 
HRV and its related features were demonstrated to be related to thermal 
comfort and thermoregulatory activities; however, HRV is retrieved 
using photopletismographic signal (PPG), which is typically affected by 
movement artefacts that occur while the occupant is placed in in-the- 
wild applications; HRV in fact is subjected to different measurement 
uncertainties, according to the activity conducted by the occupant (e.g., 
walking, writing at the laptop, handwriting [28,24]). HRV and ST, 
therefore, can be measured through minimally invasive or non-invasive 
devices; given the different methodology available for measuring human 
ST and HRV, they could be measured in real conditions, as the office 
environment. 

1.3. Objectives 

Within this framework, the proposed research aims at providing 
contributions to literature, by proposing an experimental set-up, made 

by the combination of 2 sensors for the measurement of ST, and a 
wearable for HRV collection. The experiment aims at exploring the 
response of ST, combined with HRV features in a semi-controlled envi
ronment, trying to recreate real-life conditions in the office environ
ment. The study aims to investigate the role of skin temperature and 
heart rate variability (HRV) features in a semi-controlled environment, 
simulating real-life office conditions. Participants engage in light office 
activities to explore the feasibility of quantifying thermal comfort during 
such tasks. Although literature has already extensively presented the 
relationship that exists among HRV and human response to a thermal 
stimulus, it is preferable to combine it with ST measurement to improve 
thermal comfort assessment. This kind of approach is trying to overcome 
the current state of the art, which is often characterized by unrealistic 
experimental design that do not accurately reflect the real-world sce
narios. A commercial smartwatch is used to retrieve HRV, while two 
different sensors are used to measure ST: a non-obtrusive sensor that 
collects the skin temperature of the occupant’s wrist and a non-invasive 
thermal camera that is placed in the test room to measure forehead skin 
temperature. These two techniques for measuring skin temperature are 
then compared in this research, in order to evaluate their impact in the 
measurement of skin temperature, for assessing thermal comfort. 

The paper is structured as follows also by considering the research 
methodology represented in the flowchart in Fig. 1: Section 2 describes 
the measurement setup, the experimental campaign, and the techniques 
applied for the data analysis, including machine learning algorithms 
selected for the prediction of thermal comfort and the dataset used. 
Section 3 reports the results, including the dataset used for training ML 
algorithms, highlighting the physiological parameter that provides 
better performance in measuring TC. Section 4 contains a detailed dis
cussion of the differences and similarities with literature, also including 
the limitation of the study, while Section 5 presents the conclusions of 
the research. 

2. Material and methods 

The proposed experimental protocol aimed at measuring human 
thermal comfort through an in-the wild approach, using a minimally 
invasive sensor network for collecting physiological quantities, with the 
final aim of exploring and measuring the dynamics of human TC of 
occupants in an office environment. The focus is twofold: first, to eval
uate the correlation between human thermal comfort and physiological 
parameters, and second, to use these quantities to apply machine 
learning algorithms (ML) and evaluate the set of physiological features 
that provides higher performance in the measurement of TC. 

The experiment took place in one test-room (5.0 m x 3.0 m x 3.0 m) 
at Università Politecnica delle Marche (Ancona, Italy), shown in Fig. 2. 
This experiment aimed at monitoring voluntarily recruited participants, 
as they could execute office tasks. 

During the experiment, the following environmental quantities were 
measured (Fig. 3): air temperature at different heights: at 0.1 m, 0.6 m 
and 1.1 m (tL, tM and tH, respectively), relative humidity (RH), air ve
locity (va), black globe temperature. Table 1 reports the accuracies of the 
sensors, consistent with ISO 7726. 

Physiological quantities were collected by using two sensors for 
measuring skin temperature and a wearable smartwatch. The wearable 
device is a smartwatch, and the measurement uncertainty of the HRV 
was evaluated in past research [16,17]; the smartwatch collected the 
HRV (sampling frequency of 1 Hz). Two devices were used to measure 
ST: the first one is a minimally invasive sensor, named iButton DS1922, 
which was placed on the wrist of the participants, directly in contact 
with the skin, through a dedicated support; the iButton measures skin 
temperature at the level of the wrist (tw); the other sensor for measuring 
skin temperature at forehead level (tf) is the thermal infrared camera Flir 
ThermoCAM S40, with an emissivity value of 0.99 and a temperature 
range from 22.0 to 40.0 ◦C. The thermal camera was located at a dis
tance of 1.5 m from the participant. 
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2.1. Experimental procedure 

The presented research includes the results from the experiments 
conducted in July 2021 in summer season, in center Italy, characterized 
by a Mediterranean climate. Summer season is considered in this study 
since literature has reported that there is lack of studies based in sum
mer, that exploit the personal thermal comfort models [29]. The 

proposed experiment was performed on 15 voluntarily recruited par
ticipants, whose personal information is reported in Table 2. The choice 
regarding the number of participants has been validated through the 
application of a statistical power analysis performed with the dedicated 
software G*Power in alignment with literature [30]. Specifically, the 
software requires specific parameters to be inserted and they are re
ported in Table 3. The authors have selected these parameters based on 

Fig. 1. Flowchart of the research methodology.  

Fig. 2. Layout of the test-room where experiments took place.  
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literature findings [31]. G*Power tool has demonstrated that by 
choosing a sample size of 15 subjects, the current work could reach a 
power of 0.88 which represent the 88 % of probability of obtaining 
statistically significant results. For the whole duration of the test, a user 
from the operating personnel was inside the test-room to certify the 
correct functioning of all sensors and the indoor parameters of the test- 
room, which were maintained at the desired set-point using a portable 
heater and air-conditioning system. 

The participant must enter the test-room, as the experiment begins. 
At this stage, the set-point of temperature is 25 ◦C, which reflects to the 
condition of thermal neutrality during summer, as reported in actual 
standards [32]. This aspect reflects the pivotal role that seasonal effect 
has on human thermal sensation [33]. The experimental protocol con
siders precise temperature configurations in alignment with established 
regulations, as well as the potential impact of outdoor temperatures on 
human thermal perception [34]. 

To defend the subjectivity of the experiment, they were not required 
to follow a specific dress code. Subsequently, participant is required 
should complete a questionnaire to communicate its personal informa
tion (Table 2); moreover to evaluate the individual clothing insulation 
(Icl), ISO 9920 was employed. In addition, the participant positions 
himself on the workstation and starts wearing the wearable device and 
the sensor for measuring skin wrist temperature. During the entirety of 
the experiment, each participant was required to complete a question
naire to record their Thermal Sensation Vote (TSV). This vote is 
expressed using the ASHRAE 7-point scale, which assesses perceived 
thermal sensation on a discrete scale from − 3 (cold) to + 3 (hot) with 
incremental steps of one. Additional descriptors include − 2 (cool), − 1 
(slightly cool), +1 (slightly warm), +2 (warm), and 0 (neutral) for 
thermal neutrality [35]; in this way, thermal discomfort is therefore 
identified whenever the participant provides a TSV different from zero. 

Before entering in test room, one operator explained to the recruited 
participant the aim of the experiment, i.e., to personalize thermal 
comfort measurement using physiological quantities, so that each 
participant provided written informed consent and thus filled up a 
general survey on personal information including age, gender, height, 
and weight. To ensure the correct execution of the test, these steps are 
monitored by the external personnel whose aim is to check that data are 
correctly acquired and to note participant’s movement that could 
invalidate the data. 

The experiment was conceived to let the participant perform low- 
intensity and daily office activities that comprises reading papers or 
activities on the laptop. Another requirement of the experiment is that 
participants is not subjected to any constraints in the hand movement 
constraints to reduce as much as possible the stressful conditions that 
can arise from the test. This aspect serves to ensure that the only 
perturbation applied to the physiological parameters is due to the 

Fig. 3. (a) Microclimatic station, (b) iButton D1922 for skin temperature, (c) Wearable device for HRV measurement, (d-e)) Thermocouples for air temperature and 
board for acquisition, (f) Example of a test, (g) Thermal camera Flir ThermaCAM S40. 

Table 1 
Sensors used for measuring environmental quantities and related accuracies.  

Measured parameter Sensor type Accuracy 

Relative humidity (RH) [%]  ± 1.5 % 
Air temperature at 0.1 m (tL) Thermocouples ± 0.1 ◦C 
Air temperature at 0.6 m (tM)  ± 0.1 ◦C 
Air temperature at 1.1 m (tH)  ± 0.1 ◦C 
Air temperature (ta) Thermal-hygrometer ± 0.1 ◦C 
Mean radiant temperature 

(tr) [◦C] 
Black globe radiant temperature 
sensor 

± 0.15 ◦C 

Air velocity (va) [m/s] Hot wire anemometer ±0.05 m/s 
Heart rate variability (HRV) Samsung Galaxy Watch ± 4 ms (at 

rest) 
Wrist temperature (tw) iButton ± 0.5 ◦C 
Forehead temperature (tf) Flir ThermaCAM S40 ± 2 ◦C  

Table 2 
Personal information of the participants recruited for the experiment.  

ID Age 
(yrs) 

Gender Icl Height 
(m) 

Weight 
(kg) 

BMI (kg/ 
m2) 

1 24 F  0.41 1.61 54 20.8 
2 32 M  0.42 1.85 84 24.5 
3 28 F  0.31 1.75 63 20.6 
4 28 M  0.42 1.8 73 22.5 
5 27 M  0.44 1.9 90 24.9 
6 31 M  0.44 1.87 74 21.2 
7 34 F  0.25 1.79 67 20.9 
8 31 F  0.4 1.68 55 19.5 
9 22 F  0.41 1.7 75 26.0 
10 21 F  0.26 1.63 51 19.2 
11 31 M  0.33 1.94 98 26.0 
12 24 F  0.35 1.67 53 19.0 
13 30 M  0.44 1.73 64 21.4 
14 23 F  0.35 1.66 60 21.8 
15 25 F  0.28 1.78 64 20.2 
µ 27   0.4 2 67 22 
σ 4   0.1 0.1 13 2  

Table 3 
The options that have been inserted in G*Power.  

G*Power Options  

Type of power analysis Post Hoc 
Test T-test 
Effect size 0.66 
probability of α error occurrence 0.05 
Total Sample size 15  
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change in room temperature. When all these actions are completed, the 
experiment can start, according to the following procedure (Fig. 4):  

• 5 min where the room temperature is maintained at 25 ◦C (Comfort 
session), [19].  

• 30 min where the test-room is cooled down from 25 ◦C to 22 ◦C 
(Discomfort session 1).  

• 30 min in which the test-room is heated up from 22 ◦C to 28 ◦C 
(Discomfort session 2). 

Specifically the variation of temperature chosen in this research 
ranges from 25 ◦C to 22 ◦C and from 22 ◦C to 28 ◦C and refers to previous 
literature works (e.g., from 15 ◦C to 26 ◦C in 60 min, from 20 ◦C to 30 ◦C 
in 30 min [19,36].To achieve the desired temperatures, an electrical 
heater (220 V PTC resistance, net power of 1870 W) was used to heat 
and a local air conditioner (Olimpia Splendid, 220–240 V, 865 W) to 
lower the room temperature to the desired setpoints, both of them by 
convection. The location of the two systems is reported in the planimetry 
in Fig. 1. Participants are not aware of the procedure of cooling and 
heating to prevent the TSV from being biased. During the experiment, 
the participant is required to communicate its Thermal Sensation Vote 
(TSV) by completing the TSV questionnaire according to the ASHRAE 
guidelines. The participant is asked to report the TSV each time its 
thermal sensation differs from the previous one, hence there is no fixed 
sampling frequency for TSV collection. This procedure minimizes the 
influence of stress related to the participant’s inclusion in the experi
ment, which could otherwise result in interfering input in the mea
surement of Heart Rate Variability (HRV), known in the literature to be 
influenced by external factors such as stress [37]. Subsequently, the 
measured TSV is resampled at a frequency of 1 sample per minute, 
resulting in a total of 60 data points for each participant. Fig. 5 presents 
the profile the air temperature and relative humidity recorded during 
the test. Air temperature was varying according to the nature of the 
experiment, while relative humidity experienced small fluctuations 
during the experiment. 

2.2. Data processing 

The proposed measurement system is used to acquire a dataset made 
of physiological parameters (skin temperature and heart rate vari
ability), personal parameter which is the TSV of the participants recor
ded during the experiment, and the environmental quantities. 
Therefore, in the following sections, it is described the procedure for 
analysing and filtering the data, which will be used for the thermal 
comfort assessment. 

2.2.1. Measurement of skin temperature 

2.2.1.1. Skin temperature measured through thermal camera. Every frame 
acquired from the thermal camera are analyzed to retrieve the forehead 
temperature of the participants. Forehead temperature was extracted for 
each participant from the videos recorded with the thermal camera 
during the experimental procedure. Specifically, these videos have been 
split into frames with a frequency of one frame every 30 s. After that, tf 
has been computed by selecting the regions of interest (ROIs) in the 
thermal image, at the participants’ forehead level. This operation was 

performed automatically, for every recorded frame, through a dedicated 
algorithm named Template Matching Method, selected from literature 
[38]. In the current work, it has been used to automatically detect 
human faces in all the thermal images by applying the following steps:  

1) The raw infrared image is firstly segmented by using Otsu’s method 
[38]. It is an image thresholding technique used to transform images 
into binary ones based on pixel [39]. This type of segmentation 
method is based on the principle of maximum between-class vari
ance, and it has become one of the most used techniques given its 
solid performance and adaptability [40]. The core idea is extracting a 
histogram for each image and separating it into two clusters 
accordingly to a threshold [41]. This last one is denoted by σ2

w(t), i.e., 
the result of the minimization of the weighted variance between the 
just mentioned clusters. This operation is exploited in the current 
work to obtain a binary image that detects faces in the recorded 
infrared frames, by separating participants’ faces from the image 
background [Fig. 6d]. 

2) The segmented and binary image is then filtered by using morpho
logical operators’ such as dilation, erosion, opening and closing 
(Fig. 6c) [38]. These operators are mainly used in binary image 
processing to remove noise, detect contours, adjust irregular shapes 
and obtain a filtered image [42].  

3) The Normalized Cross-Correlation is then applied to the filtered 
image: this is a matching procedure used between the resulting 
filtered image and a chosen template. The template (Fig. 6b) was 
previously created by selecting one frame of the recorded videos, in 
which the participant was clearly displayed and then it was modified 
by applying step 1 and step 2 [43]. The template (shown in Fig. 6b) is 
therefore an image which is used as matching items for all the frames 
of the experiment [44]. 

The outcome of the matching procedure between the template and 
the processed frames is the ensemble of the coordinates of a rectangle 
centered on the participant’s face, recognized by the algorithm (Fig. 6d). 
To obtain tf, the rectangle is manually adjusted to get a ROI that enclose 
the participant’s forehead in the image. tf is then computed as average of 
all the temperatures included in the selected ROI, for each frame. To 
remove noisy fluctuations in the trend of the tf collected during the 
experiment, Hampel filter was employed to remove the most prominent 
outliers (window size = 30, polynomial order = 3). Then, the signal was 
further smothered using the Savitzky-Golay filter (window size = 30, 
polynomial order = 3); this filter was chosen according to literature, 
since it can maintain the required profiles and information from the 
original without causing any time gap, despite the severity of the filter 
[45]. Finally, tf is included into the dataset. An example of the processed 
data can be seen in Fig. 6 (a-d). 

2.2.1.2. Skin temperature measured through wearable sensor. Wrist tem
perature using the iButton was collected with a sampling frequency of 1 
Hz. To remove outliers and abnormal peaks caused by movement arte
facts, the raw skin temperature signal was subjected to a filtering pro
cedure, using the Savitzky-Golay filter (window size = 30, polynomial 
order = 3)[6]. Fig. 7 shows the result of this process, comparing wrist 
temperature and forehead temperature measured through the thermal 

Fig. 4. Graphical representation of the experimental procedure applied during the experiment to expose the participant to discomfort conditions.  
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camera, and shows the related trend of TSV. After the data processing, 
the TSV and the skin temperature have the same trend, which is in line 
with literature findings that reports a positive correlation between the 
skin temperature and the TSV [46]. 

2.2.2. Heart Rate Variability features extraction 
HRV signal was used to compute HRV features, from the timeline of 

RR intervals. The sequence of RR intervals was filtered in order to detect 
and remove outliers [19,36]. A thresholding method was employed to 
identify outliers by comparing each HRV sample with the preceding one; 
in this way, an outlier was defined as a value deviating by more than 50 
% from the average value of a one-minute time window. Identified 
outliers were substituted with the preceding unaltered interval. Subse
quently, the HRV signal, post-outlier detection, was segmented into time 
frames. The initial time frame spanned 5 min, adhering to the recom
mended minimum duration for short-term HRV series required for 
spectral analysis [36]. Following the extraction of the first window, a 
new window was generated by appending a fresh HRV sample interval 
to the signal, while the oldest sample was removed from the window’s 
beginning. This process iterated until the conclusion of the signal. 

The next step consists in the creation of the dataset to be used to 
measure TSV: all the extracted parameters that can possibly be included 
in the dataset are environmental and physiological data (Table 4). 

2.3. Features selection 

The feature selection process aims to detect a potential correlation 
between collected features and the label of the ML algorithms, which is 
the TSV. Additionally, it seeks to partition the initial dataset for optimal 
training of machine learning (ML) algorithms, ensuring superior per
formance in Thermal Sensation Vote (TSV) prediction. The authors 
employed a methodology drawn from the literature, integrating 
Correlation-Based Feature Selection (CFS). CFS identifies a small subset 
of features characterized by individual high correlation with the class 
(TSV), yet low inter-correlation. The relevance of feature subsets in
creases with correlation to the class and decreases with growing inter- 
correlation. To this aim, Pearson’s correlation coefficient (R) e Spear
man’s rank correlation (S) were exploited to evaluate relationship be
tween the TSV and the feature of the dataset [47]. In this way features 
that are less correlated with the TSV are excluded from the dataset. If 
these variables are correlated with each other, then we need to keep only 
one of them and drop the rest. This process excludes features less 
correlated with TSV, and in case of inter-correlation, retains only one 
variable, discarding others. This technique is complemented by feature 
importance computation using the Extra Tree Regressor (ETR) [19]. The 
methodology relies on the fact that features that have a high linear 
correlation with the TSV and that have greater importance as predictors 

Fig. 5. Raw air temperatures and relative humidity measured from the thermocouples and the hygrometer from the microclimatic station during one of the 
experiments. 

Fig. 6. (a) An example of frame recorded with the thermal camera during the experimental campaign; (b) template image used for the matching procedure; (c) the 
output image after the filtering step; (d) face detection output performed with the template matching. 
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are included in the dataset, while all the others are excluded. Feature 
importance is obtained by means of the ETR, which relies on the Gini 
Importance computed for each feature of the dataset. The dataset used 
for performing the feature selection is made of data obtained from all the 
participants. Finally, to check on multicollinearity on the chosen data
set, authors decided to eliminate the predictors from the dataset that 
exhibits collinearity, exploiting the correlation matrix, using Pearson 
coefficient [48]. 

2.4. Model training and validation 

Once the proper set of features is identified, AI regression models are 

employed to estimate participants’ TSV. The features selected are used 
to predict the TSV of the participants, which is the ground truth of the 
algorithms. Algorithms were trained and then tested through the 
application of the Leave-One-Subject-Out (LOSO) approach, already 
proposed in literature to create generalized models [36]; the LOSO 
approach consists of training the algorithm with data collected from all 
the participants but one, which is then used for the testing phase. This 
process iteratively repeated for the data from each participant. The 
overall dataset is made of a total of 62,356 datapoints. The metrics for 
evaluation regression algorithms’ performance are the mean absolute 
error (MAE) and the mean absolute percentage error (MAPE), Equation 
(1) and Equation (2), respectively [49]. The algorithms were chosen 
from literature and included ML algorithms such as K-Nearest Neighbors 
(KNN), Adaboost (ADA), Random Forest (RF), Extra Tree Regressor 
(ET), Decision Tree (DT), Support Vector Machine (SVM); DL algorithms 
included Multi-layer Perceptron (MLP). The related hyperparameters 
are reported in Table 5 and the evaluation of the metrics was computed 
both for the training and validation dataset. 

MAE =
1
N

∑N

n=1
|xi − yi| (1)  

MAPE =
1
N
(

∑N
n=1|xi − yi|

xi
(2)  

Where xi is the TSV recorded by the participant during the experiment, 
yi is the TSV measured by algorithms and N is the number of TSV 
samples for each participant. 

Fig. 7. Trend of tw measured using the iButton and the forehead temperature measured with the thermal camera, against the TSV collected during the experiment, 
for two participants. 

Table 4 
Parameters computed for each participant.  

Physiological Parameters Environmental 
parameters 

Personal 
parameters 

Skin temperature tw, tf ta [◦C], RH [%], tr 
[◦C], tL, tM, tH 

TSV 
HRV (Time- 

domain 
features) 

MEAN, MEDIAN, 
RMSSD, SDNN, 
PNN50, NN50, 
PNN20, NN20 

HRV (Frequency- 
domain 
features) 

VLF, LF, HF, LF/HF, 
HF/LF, TP 

HRV (Non linear- 
domain 
features) 

SD1, SD2, SD1*SD2  
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3. Results 

This chapter presents the results obtained: firstly, features selection 
were conducted to train the algorithms, according to the Correlation- 
Based Feature Selection and the predictor importance among each 
feature and the label (TSV). 

3.1. Feature selection results 

Fig. 8 shows all the Pearson’s correlation coefficient and Spearman’s 
rank correlation computed between the label of the ML algorithms, 
which is the TSV recorded by the participant during the experiment, and 
each feature of the dataset. As expected also from the state of the art, 
environmental parameters (tL, tM, tH, tr, ta) have a medium-to-high 
Pearson coefficient, indicating a correlation with the TSV; nonetheless, 
most of the HRV features exhibit low correlation with the TSV, except 
with LF/HF which exhibits medium correlation with TSV. The experi
ment is built to expose the participant to transient conditions of the 

indoor temperature, and therefore, relationships with physiological 
features cannot be easily retrieved. Skin temperatures (both tw and tf) 
also have medium correlation with the TSV. Moreover, according to 
Fig. 8, Spearman’s rank correlation between the features and the TSV, 
there are low and medium coefficients, that suggests that non-linear 
correlation are slightly present between the initial dataset and the 
TSV. As a result, features such as tL, tM, tH, tr, ta can be included in the 
dataset. 

Regarding feature selection using the predictor importance, results 
are showed in Fig. 9 (a-b). The higher the Gini index, the higher 
importance of the contribution of the feature in the estimation of the 
TSV; environmental quantities that presents highest Gini index are tL, tM, 
tH, tr, ta (Fig. 9a), while physiological parameters that have more 
importance are tw, tf, MEDIAN and MEAN. The limit of Gini index were 
set of 0.03. 

The combined evaluation of the results displayed in Fig. 8 and Fig. 9, 
is used to select features that will be included in the final dataset, which 
are tw, tf, MEDIAN, LF/HF, MEAN and tM. To check multicollinearity, 
correlation matrix (Table 6) was computed, and the results indicated 
that MEAN and MEDIAN are characterized by a high correlation (R =
99.8 %), therefore the variable MEDIAN is kept out of the dataset. 

The identified features were then used to build three different groups 
of datasets, which differentiate based on the measured skin temperature, 
in order assess whether skin temperature can improve TC measurement, 
and also to compare different methodologies to measure skin tempera
ture. The first dataset (D1) consists of environmental parameters, HRV 
features and forehead temperature. The second dataset (D2) is made up 
environmental parameter, the selected HRV features and wrist temper
ature; the third dataset (D3) is made of wrist temperature, forehead 
temperature, environmental quantity and HRV features. These 4 data
sets will be then used to predict the label, which is the TSV. The char
acteristics of which each dataset is composed are shown in Table 7. 

3.2. Machine learning results 

In Table 8, there are the results of the algorithms, in terms of MAE 
and MAPE, applied to the training dataset. It is possible to appreciate 
that the algorithm that provides better results, that do not involve 
overfitting, are the ETC, MLP and DT. Table 9 shows the performance of 
each algorithm in the measurement of the TSV for each participant, 
computed by applying the LOSO validation method. The table shows 
that, considering all the dataset and algorithms, the one that has higher 
performance is the DT, which provides an average MAE of 0.90 and an 

Table 5 
Hyperparameters of the ML algorithms developed in the current work.  

Algorithm Hyperparameters 

KNN  ⋅ N_neighbors: 1,3,5  
⋅ Metric: euclidian, manhattan  
⋅ Weights: uniform, distance 

RF  ⋅ n_estimators: 100  
⋅ random_state: None (default) 

ET  ⋅ n_estimators: 100  
⋅ random_state: 0 

ADA  ⋅ Base Estimator (base_estimator)  
⋅ n_estimators: 100  
⋅ Regressor: DecisionTreeRegressor(max_depth = 3)  
⋅ random_state: None (default) 

MLP  ⋅ hidden_layer_sizes: 6  
⋅ activation: identity  
⋅ solver: adam  
⋅ alpha: 0.1  
⋅ random_state: 1 

DT  ⋅ criterion: absolute_error  
⋅ max_depth: 3  
⋅ min_samples_leaf: 5  
⋅ random_state: 42 

SVM  ⋅ Kernel: RBF  
⋅ Gamma: [1e-3, 1e-4]  
⋅ C: 1, 10  

Fig. 8. Pearson and Spearman coefficients between the TSV and every parameter of the dataset, among all subjects.  
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average MAPE of 23.3 %, among the different tested dataset. 
When comparing performances among different dataset, which are 

characterized by a different set of physiological features but same 
environmental parameters, the one that exhibits best performance is D1 
which is made up by ST measured through the minimally invasive 
sensor, the air temperature measured at 0.6 m (tM) and HRV features 
(MAE: 1.03 and MAPE: 28.5 %). Generally, considering the comparison 
among the different datasets and algorithms, it is possible to have a best 
measure using the DT applied to D2 (MAE of 0.86 and MAPE 20.9 %), 
which slightly outperforms previous literature studies [19,36]. The 
comparison chart of the collected TSV against the measured TSV of the 
algorithm for the dataset D2 is displayed in Fig. 10. 

Fig. 9. Importance of the features among environmental parameters (a) and physiological parameters (b).  

Table 6 
Correlation matrix, performed by computing Pearson coefficient, between the 
chosen feature of the dataset.   

tw tf tM MEAN MEDIAN LF/HF 

tw 100      
tf 41.9 100     
tM 59.3 52.6 100    
MEAN 6.0 − 4.7 6.3 100   
MEDIAN 6.1 − 4.4 6.5 99.8 100  
LF/HF 20.5 − 4.4 13.0 14.3 13.9 100  

Table 7 
Final dataset selection and composition.  

Dataset 
name 

Description Selected features Label 

D1 Forehead temperature, HRV, 
Environmental 

tf tM MEAN LF/ 
HF 

TSV 

D2 Wrist temperature, 
Environmental, HRV 

tw tM MEAN LF/ 
HF 

D3 Forehead temperature, Wrist 
temperature, 
Environmental, HRV 

tf, 
tw 

tM MEAN LF/ 
HF  

Table 8 
Performance metrics of each algorithm on the training dataset, expressed 
through MAE and MAPE.   

Training dataset - MAE (TSV unit)   

KNN RF ET ADA MLP DT Average 
D1 4.60E- 

03 
2.53E- 
03 

0.34 9.30E- 
13 

0.68 0.76 0.30 

D2 5.59E- 
03 

2.11E- 
03 

0.36 9.81E- 
14 

0.70 0.76 0.30 

D3 2.75E- 
03 

1.19E- 
03 

0.22 3.72E- 
13 

0.61 0.74 0.26 

Average 4.31E- 
03 

1.94E- 
03 

0.31 4.67E- 
13 

0.66 0.75  

Training dataset -MAPE (%)  
KNN RF ET ADA MLP DT Average 

D1 0.11 0.07 9.19 2.21E- 
11 

17.38 18.87 7.61 

D2 0.14 0.06 9.40 4.89E- 
12 

17.52 18.73 7.64 

D3 0.07 0.03 5.99 1.86E- 
11 

15.74 18.68 6.75 

Average 0.11 0.05 8.20 1.52E- 
11 

16.88 18.76   

Table 9 
Performance metrics of each algorithm on the validation dataset, expressed 
through MAE and MAPE.   

Validation dataset - MAE (TSV unit)   

KNN RF ET ADA MLP DT Average 

D1 1.07 1.08 1.21 0.97 0.96 0.91 1.03 
D2 1.22 1.17 1.41 1.01 0.96 0.86 1.10 
D3 1.21 1.21 1.55 0.98 0.99 0.94 1.15 
Average 1.17 1.15 1.39 0.98 0.97 0.90   

Validation dataset -MAPE (%)   
KNN RF ET ADA MLP DT Average 

D1 29.3 28.2 43.1 23.9 24.0 22.3 28.5 
D2 33.9 32.0 114.5 25.6 22.8 20.9 41.6 
D3 36.3 31.9 60.1 24.1 24.6 23.6 33.4 
Average 33.2 30.7 72.6 24.5 23.8 22.3   

N. Morresi et al.                                                                                                                                                                                                                                 



Measurement 224 (2024) 113897

11

4. Discussion 

The goal of this work is based on the necessity of measuring human 
TC through an innovative approach that comprises the measurement of 
physiological parameters (skin temperature, HRV) and environmental 
parameters, in the office settings, in order to find strategies and real-time 
sensor network that can help improving thermal stress in buildings. The 
experiment applies a transient change of the environmental condition of 
the indoor environment, trying to overcome the current status of liter
ature that present thermal comfort experiments in laboratory environ
ments, that are not always reproducible in a real-life context. The 
proposed measurement setup is composed of two sensors for measuring 
skin temperature (a minimally invasive sensor and a thermal camera), 
with the aim of introducing the skin temperature in the measurement of 
TC; these two devices are adaptable to different occupants (in terms of 
age, state of health, physical condition) but also to different types of 
environments, in addition to the office environment. Similarly, the 
wearable for measuring HRV can be used in different daily contexts. This 
aspect makes the measurement set-up adaptable for other studies for the 
measurement of TC, but also of other physiological quantities related to 
human well-being. Furthermore, this advantage detaches the current 
work from the state of the art where the proposed experimental pro
cedures are not compliant with real-life contexts [17]. Skin temperature 
(measured on the wrist and the forehead) acquired with the two sensors 
has a medium Pearson coefficient with the TSV, which is the index used 
to express thermal comfort and the label of the ML algorithms. There
fore, this research contributed to analyzing the physiological response to 
thermal stimuli, under uncontrolled conditions, of both skin tempera
ture and HRV features. This aspect separates the current paper from the 
scientific production that can be found in literature since it is known that 
thermal comfort can be quantified with the collection of physiological 
signals such as skin temperature and HRV. However, none of the liter
ature findings has provided a comfort measurement process based on ML 
and on datasets that included both of these physiological features in 
office context [17,18,20]. 

Moreover, the features extracted from HRV (MEAN, MEDIAN and 
LF/HF) proved to be good predictors for TSV, despite their medium–low 
linear correlation with TSV. This justifies the type of approach that 
implies the usage of ML, for quantifying TC starting from a heteroge
neous dataset, where the relationships between the input and output 
variables are not always easily deducible. In fact, by computing the 
Pearson coefficient it is possible to deduce the type of relationship be
tween the input data, and it is a methodology that suits if input 

parameters are continuous variables; on the other hand, predictor 
importance method is widely employed in regression problems, which is 
a quite tangled task, especially when features that build up the dataset 
are not linearly correlated. 

The proposed methodology aims at developing personalized TC 
model, using the LOSO validation as a training methodology: although 
the algorithms demonstrate a MAE of 0.8 and a MAPE of 21.3 % (for 
MLP), the LOSO approach excludes the possibility of overfitting of the 
algorithms, which could eventually occur in the case of models trained 
and tested on data collected from the same participant. These findings 
align with numerous instances in literature where MAE and MAPE have 
been utilized as validation metrics [50]. For instance, in reference [36], 
the authors devised multiple ML algorithms that achieved MAE and 
MAPE values of 1.2 and 20 %, respectively. In another study [51], a 
regression problem was addressed, resulting in a MAE of 0.71. These 
instances from the literature emphasize the efficacy of the methodology 
and techniques employed in the present study. The study also pointed 
out that, under uncontrolled conditions, skin temperature measured 
from both the forehead and the wrist has a medium correlation with 
thermal sensation; furthermore, another indicator suggesting a strong 
link between skin temperature and TC is expressed through the calcu
lation of predictor importance, which has the aim of finding which 
features in the dataset contribute best to the prediction of the label. This 
aspect also is reflected in the results of the ML algorithms trained on 
different datasets: D2 is the one that provides the greatest performance; 
in this case, the dataset is made up of the environmental parameters and 
the wrist temperature [33]. 

5. Conclusions 

The presented research was developed to measure occupants’ TC in 
the office environment, including skin temperature and HRV in the 
process, considering that literature reported the association of these 
parameters with the perceived TC. Recruited participants were sub
jected to a transient environment, by varying the air temperature of the 
test room in summer, as they were allowed to perform office activities, 
with the possibility of moving the arm where sensors were located. The 
data collected during the experiment are used to measure the TSV, using 
ML regression algorithms: the algorithm that has better performance is 
the DT, which provides an average MAE of 0.86 and an average MAPE of 
20.9 %. These results outperform the state-of-the-art findings as 
mentioned in the previous section [36,50,51]. As regards the compari
son among different datasets, characterized by a different set of 

Fig. 10. Example of the collected TSV from the participants during the experiment against the predicted TSV, obtained from the DT algorithm, applied to the 
dataset D2. 
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physiological features, the dataset that provides best performance is 
made of a combination of ST measured through a non-obtrusive sensor 
and air temperature. This measurement procedure demonstrates that the 
TSV of occupants can be measured in a real-life condition, using a sensor 
network that measures both physiological and environmental parame
ters. The current scientific investigation has set the stage for future ad
vancements that could offer a personalized and reliable methodology for 
quantifying thermal comfort. 
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