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A B S T R A C T

An approximate analytical solution is obtained to detect the along-wind and cross-wind coupled oscillations of
wind turbine towers, in the neighbourhood of a 1:1 internal resonance. The obtained formulas are general, and
they are applied to the NREL 5-MW reference wind turbine. It is shown that the coupled solution is branched
(by a pitchfork bifurcation) from the main uncoupled along-wind oscillation. The coupled motion is initially
stable, but for increasing excitation amplitudes it becomes unstable in favour of quasi-periodic solutions, a fact
that is particularly dangerous from a practical point of view and so must be avoided. The critical threshold
is determined for varying excitation amplitude, and the analytical solution is checked by means of numerical
simulations.
1. Introduction

One of the challenges for current and future generations is to reduce
the carbon footprint and to achieve climate neutrality. This has been
realized by major international institutions (e.g. the European Green
New Deal [1]) and requires the production of energy from renewable
fonts. Wind [2,3] seems to be the most productive green source when
compared with hydropower, solar, biomass, geothermal, etc., see for
example [4].

In the field of wind turbines engineering a lot of attention has been
devoted to the fluid(flow)-structure interactions [5], since this is a very
complex problem, not yet fully understood. Studies have been done
by considering blades only [6] or the full machine [7], and mainly
dealing with refined numerical methods [8], sometimes also providing
comparisons with experimental results [9].

Another promising field of research is FOWTs, which are one of
the future directions since the onshore fields for wind turbines are
almost totally exploited. The combined presence of aerodynamic [10],
structural, hydrodynamics and mooring problems (and control, in-
deed) poses challenges for modelling [11] and understanding their
behaviour [12], and asks for comprehensive theoretical, numerical and
experimental [13] analyses.

Despite the large interest recently dedicated to those aspects, struc-
tural problems still deserve adequate attention and deep investiga-
tion [14]. Many aspects have been addressed, from life cycle assess-
ment [15] to long-term extreme load predictions [16] to load due
to waves in offshore turbines [17] to erection and maintenance [18]
to vibration [19] and performance [20] control to structural health
monitoring [21], just to name few.

E-mail address: lenci@univpm.it.

In addition to static buckling [22], that however seems to be quite
well understood, at least from a theoretical point of view, it is in the
realm of dynamical analysis that the major problems arise [23], since
excessive vibrations lead to fatigue issues [24].

Dagli et al. [25] studied the dynamics of an offshore wind tur-
bine tower using a numerical analysis considering wind, wave and
earthquake forces. Hu et al. [26] performed an important experimental
campaign of tall offshore monopile steel wind turbine towers under
wind, wave and current during the erection stage. Comparison with
numerical results is also reported. Quilligan et al. [27] developed
a dynamical model aimed at obtained the fragility curves, i.e. the
probability of reaching a limit state as a function of the wind speed.
They compared steel and concrete towers, and considered two different
heights.

Wang et al. [28] considered a mixed flexible–rigid multi-body model
to predict the dynamic performance of a wind turbine system, focusing
on the thin-walled beam theory for the tower and the rotor. Harte
et al. [29] investigated the along-wind forced vibration response of an
onshore wind turbine including the effect of the soil–structure interac-
tion. A very interesting review of structural problems arising in wind
turbine towers, including dynamical ones, is reported in [30], while
several aspects of dynamic analysis and design have been discussed
in [31].

All previous works, and many others indeed, are based on linear
analyses (at least for the structural components), so assuming that the
displacements are small and the material is linearly elastic, and thus
possibly missing important phenomena due to the nonlinearity at the
structural level.
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Nomenclature

Abbreviations (listed in alphabetic order)

CM Centre of mass
dof Degrees of freedom
FEM Finite elements method
FOWT Floating offshore wind turbine
FRC Frequency response curve
MTSM Multiple times scale method
MW Mega watt
NREL National renewable energy laboratory
NS Neimark–Sacker
ODE Ordinary differential equation
SN Saddle–node
PF Pitchfork

Notations/Symbols (listed in order of appearance)

𝑥 along-wind horizontal direction
𝑦 cross-wind horizontal direction
𝑧 vertical axis
𝑡 time
𝑥̄(𝑡) displacement along 𝑥
𝑦̄(𝑡) displacement along 𝑦
𝛼(𝑡) rotation around 𝑧 (yaw rotation)
𝑥𝐶𝑀 (𝑡) displacement along 𝑥 of CM
𝑦𝐶𝑀 (𝑡) displacement along 𝑦 of CM
𝑑 distance between tower and CM
𝐸𝑘𝑖𝑛 kinetic energy
𝑀 mass of the system
𝐼𝑝 mass moment of inertia
𝐸𝑒𝑙 elastic energy
𝐾̄𝛼 linear stiffness for rotation
𝐾̄ linear stiffness for translation
𝐾̄3 nonlinear stiffness for translation
𝛿 magnitude of the horizontal displacement
𝑓 (𝑡) force acting on the system
𝑊 work done by the force 𝑓 (𝑡)
𝐿 Lagrangian function
𝐶̄𝑥,𝑦,𝛼 damping coefficient along 𝑥, 𝑦 and 𝛼
𝐼𝑝 dimensionless moment of inertia
𝜔𝑥 natural frequency along 𝑥
𝑘𝛼 dimensionless linear stiffness for rotation
𝑘3 dimensionless nonlinear stiffness for trans-

lation
𝑐𝑥,𝑦,𝛼 dimensionless damping coefficient along 𝑥,

𝑦 and 𝛼
𝑥(𝜏) dimensionless displacement along 𝑥
𝑦(𝜏) dimensionless displacement along 𝑦
𝜏 dimensionless time
𝑓 (𝜏) dimensionless force acting on the system
𝑄 force on top of the wind tower
𝑠̄(𝑧) horizontal displacement of the tower
𝜃 rotation of the tower
𝐸𝐼𝑎 bending stiffness of the tower
𝐻 height of the tower
𝐺𝐼𝑡 torsional stiffness of the tower
𝐺 shear modulus
𝐸 Young modulus
𝜈 Poisson coefficient
2

𝜔1,2,3 dimensionless natural frequencies
𝜀 small bookkeeping parameter
𝑥1,2,3 asymptotic expansions of 𝑥(𝜏)
𝑦1,2,3 asymptotic expansions of 𝑦(𝜏)
𝛼1,2,3 asymptotic expansions of 𝛼(𝜏)
𝑇0 fast time
𝑇1,2,... slow times
𝑐𝑐𝑥,𝑦,𝛼 rescaled version of 𝑐𝑥,𝑦,𝛼
𝐹 amplitude of the harmonic excitation
𝜔 (circular) frequency of the harmonic excita-

tion
𝐼 imaginary unit
𝜎𝑒 external detuning parameter
𝜎𝑖 internal detuning parameter
𝐴𝑥(𝑇2) complex amplitude of the first order oscilla-

tion along 𝑥
𝐴̄𝑥(𝑇2) complex conjugate of 𝐴𝑥(𝑇2)
𝐴𝑦(𝑇2) complex amplitude of the first order oscilla-

tion along 𝑦
𝐴̄𝑦(𝑇2) complex conjugate of 𝐴𝑦(𝑇2)
𝑎𝑥(𝑇2) real amplitude of the first order oscillation

along 𝑥
𝜙𝑥(𝑇2) phase of the first order oscillation along 𝑥
𝑎𝑦(𝑇2) real amplitude of the first order oscillation

along 𝑦
𝜙𝑦(𝑇2) phase of the first order oscillation along 𝑦
𝑎𝑥0 amplitude of the periodic oscillation along

𝑥
𝜙𝑥0 phase of the periodic oscillation along 𝑥
𝑎𝑦0 amplitude of the periodic oscillation along

𝑦
𝜙𝑦0 phase of the periodic oscillation along 𝑦
𝑓 auxiliar parameter used in (65)
𝐺̂ gradient matrix of the modulation equations
𝜆𝑖 eigenvalues of 𝐺̂
𝑎𝑥0,𝑐𝑟 critical value of 𝑎𝑥0 for peak of the FRC
𝜎𝑒,𝑐𝑟 critical value of 𝜎𝑒 for peak of the FRC
Parameters not listed above are directly reported in Appendix.

The nonlinear dynamics of a wind turbine tower due to the material,
i.e. plasticity, which is needed for investigating collapses [32] and ulti-
mate limit state analysis, has been considered in [33] by a rigid-plastic
model.

This research is interested in the serviceability limit state, so that
the system works in the linear elastic regime. However, geometrical
nonlinearity is considered, since the new wind turbines are very slender
and prone to nonlinear effects, that have not yet adequately been
investigated.

The nonlinear dynamics of blades have been studied in [34] by
numerical models applied to the geometrically exact beam theory. Dai
et al. [35] addressed the same problem, but with a focus on fluctuating
wind loads and by using a Galerkin approximation. Geometric nonlin-
earities of the blades are also considered in [36]. In [37] the blades are
parked (i.e. they do not rotate) and a continuum model is used.

Sapountzaki et al. [38] used a geometrically nonlinear dynamical
model for the wind tower and considered columns of variable cross-
section founded either on the surface or on a monopile foundation
system subjected to wind and seismic excitations. This work seems to
be one of the few that considered the nonlinear behaviour of the pile.

As it is well known [39], geometric nonlinearities in structural
components may lead to many phenomena and behaviours missed in
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the linear realm, that are potentially dangerous if not properly taken
into account or, on the contrary, that are beneficial if adequately
exploited. Among many others (e.g. chaos, multistability, etc.), in this
work the internal resonance is investigated, where the closeness of two
natural frequencies causes nonlinear mode coupling, while the modes
remain uncoupled in the linear regime.

The 1:2 internal resonance of wind turbine blades has been studied
in [40] by using a Galerkin modal reduction and finally considering a
2 dof system; only numerical simulations are reported. Different types
of internal resonance, including combination one, have been analysed
in [41] using a 4 dof Galerkin model, considering also analytical
solutions obtained by the MTSM.

To the best of the author’s knowledge, internal resonance of the
wind turbine tower has not been previously investigated, even though
the symmetrical cross-section automatically induces two natural fre-
quencies that are very close between each other and thus a 1:1 internal
resonance naturally arises. It is then expected that along-wind and
cross-wind oscillations, that are decoupled in the linear regime, inter-
act in the nonlinear range, which is an unwanted phenomenon since
it induces strong vibrations that negatively affect the fatigue life of
the tower. For a general treatment of the 1:1 internal resonance the
paper [42] is referred to.

The novelty and the main contribution of this work is that it
investigates for the first time (to the best of the author’s knowledge)
the 1:1 internal resonance of wind towers. Thus, it is aimed to fill the
previously highlighted gap of knowledge, and is particularly relevant
for industry, which has to take this phenomenon into account for a safe
and sustainable design, with a reliable lifetime prediction, and for the
policymakers, that have to include it in future codes for design.

This work is organized as follows. In Section 2 a simplified, but
accurate, nonlinear model of the wind turbine tower is obtained, and
the main hypotheses upon which this study is based on are illustrated.
The occurrence of 1:1 internal resonance is highlighted in Section 3,
and then it is investigated analytically in Section 4. The obtained
formulas are very general, and in Section 5 they are illustrated with the
NREL 5-MW reference wind turbine [43], including comparison with
numerical simulations. Section 6 summarizes the main results and ends
the work.

2. The mechanical model and governing equations

The dynamics of the wind turbine tower illustrated in Fig. 1 are
studied. It is assumed that the tower is axially rigid so that the nacelle
can only translate horizontally, along-wind in the 𝑥 direction and
across-wind in the 𝑦 direction (see Fig. 1a). The nacelle is connected
to the top of the tower, and can rotate around the vertical axis 𝑧
(yaw rotation). The rotations around the 𝑥 and 𝑦 axes are neglected.
It is assumed that the wind force is always along the 𝑥-axis: this is
reasonable because the yaw is assumed to be small. Furthermore, the
wind force acts on the CM, whose horizontal coordinates are (see
Fig. 1b):

𝑥𝐶𝑀 (𝑡) = 𝑥̄(𝑡) + 𝑑 cos(𝛼(𝑡)), (1)
𝑦𝐶𝑀 (𝑡) = 𝑦̄(𝑡) + 𝑑 sin(𝛼(𝑡)),

where 𝑑 is the horizontal distance between the vertical axis of the tower
and CM, 𝛼(𝑡) the yaw rotation around the vertical axis 𝑧, positive if anti-
clockwise, 𝑥̄(𝑡) and 𝑦̄(𝑡) the horizontal displacements of the top of the
tower (Fig. 1b).

With the above assumptions, the kinetic energy is given by

𝐸𝑘𝑖𝑛 =
𝑀
2
(𝑥̇2𝐶𝑀 + 𝑦̇2𝐶𝑀 ) +

𝐼𝑝
2
𝛼̇2, (2)

here 𝑀 is the modal mass of the (first) vibration mode of the tower–
acelle–rotor blades system (see Section 2.1 for more details), 𝐼𝑝 the
ass moment of inertia with respect to the vertical axis passing through

he axis of the tower, and dot means derivative with respect to the
3

hysical time 𝑡. The considered model has the three mechanical dof
̄(𝑡), 𝑦̄(𝑡) and 𝛼(𝑡).

The elastic energy is given by

𝑒𝑙 =
𝐾𝛼
2

𝛼2 + 𝐾̄
2
𝛿2 +

𝐾̄3
4
𝛿4 +… , (3)

here 𝛿 =
√

𝑥̄2 + 𝑦̄2 is the total displacement of the top of the tower
(Fig. 1b). Terms higher than 𝛿4 are neglected because only moderately
large displacements are investigated, and a third order approximation
is enough. Since it is assumed that 𝛼 is small, only the linear stiffness 𝐾𝛼
n rotation is considered. 𝐾̄ and 𝐾̄3 are the linear and nonlinear stiffness

of the displacements, and can be computed as shown in Section 2.1.
The work done by the force 𝑓 (𝑡) due to the wind (or by other actions,

.g. the oscillation of the buoy in floating offshore wind turbine) is
iven by

= 𝑓 (𝑡)𝑥𝐶𝑀 (𝑡). (4)

From the stationarity of the Lagrangian function 𝐿 = 𝐸𝑘𝑖𝑛 −𝐸𝑒𝑙 +𝑊
t is possible to obtain the three equations of motions

̈̄𝑥 + 𝐶̄𝑥 ̇̄𝑥 −𝑀𝑑[𝛼̇2 cos(𝛼) + 𝛼̈ sin(𝛼)] + 𝐾̄𝑥̄ + 𝐾̄3𝑥̄(𝑥̄2 + 𝑦̄2) = 𝑓 (𝑡), (5)
̈̄𝑦 + 𝐶̄𝑦 ̇̄𝑦 −𝑀𝑑[𝛼̇2 sin(𝛼) − 𝛼̈ cos(𝛼)] + 𝐾̄𝑦̄ + 𝐾̄3𝑦̄(𝑥̄2 + 𝑦̄2) = 0, (6)

𝑀𝑑2 + 𝐼𝑝)𝛼̈ + 𝐶̄𝛼 𝛼̇ −𝑀𝑑[ ̈̄𝑥 sin(𝛼) − ̈̄𝑦 cos(𝛼)] + 𝐾̄𝛼𝛼 = −𝑓 (𝑡)𝑑 sin(𝛼), (7)

here the damping, which is assumed to be linear in all degrees of
reedom, is added. 𝐶̄𝑥, 𝐶̄𝑦 and 𝐶̄𝛼 are the damping coefficients.

It is worth noting that there are nonlinearities in the inertia and
n the (translational) stiffnesses. Along 𝑦 there is no excitation (see
6)), according to the previous hypothesis on the wind direction. The
orsional–translational behaviour has been studied in [44], but focusing
nly on the tower and in the linear regime, using FEM and assuming
arthquake excitations.

Since the goal is an analytical treatment of the problem, it is conve-
ient to work with dimensionless quantities. Introducing the following
imensionless parameters and variables

𝑝 =
𝐼𝑝

𝑀𝑑2
, 𝜔𝑥 =

√

𝐾̄
𝑀

, 𝑘𝛼 =
𝐾̄𝛼

𝐾̄𝑑2
, 𝑘3 =

𝐾̄3𝑑2

𝐾̄
,

𝑐𝑥 =
𝐶̄𝑥

2𝜔𝑥𝑀
, 𝑐𝑦 =

𝐶̄𝑦

2𝜔𝑥𝑀
, 𝑐𝛼 =

𝐶̄𝛼

2𝜔𝑥𝑀𝑑2
,

𝑥(𝜏) =
𝑥̄(𝑡)
𝑑

, 𝑦(𝜏) =
𝑦̄(𝑡)
𝑑

, 𝜏 = 𝜔𝑥𝑡, 𝑓 (𝜏) =
𝑓 (𝑡)
𝐾̄𝑑

, (8)

the Eqs. (5)–(7) become

𝑥̈ + 2𝑐𝑥𝑥̇ − [𝛼̇2 cos(𝛼) + 𝛼̈ sin(𝛼)] + 𝑥 + 𝑘3𝑥(𝑥2 + 𝑦2) = 𝑓 (𝜏), (9)

𝑦̈ + 2𝑐𝑦𝑦̇ − [𝛼̇2 sin(𝛼) − 𝛼̈ cos(𝛼)] + 𝑦 + 𝑘3𝑦(𝑥2 + 𝑦2) = 0, (10)

1 + 𝐼𝑝)𝛼̈ + 2𝑐𝛼 𝛼̇ − [𝑥̈ sin(𝛼) − 𝑦̈ cos(𝛼)] + 𝑘𝛼𝛼 = −𝑓 (𝜏) sin(𝛼), (11)

here now dot means derivative with respect to the dimensionless time
. Note that 𝜔𝑥 is the physical natural (linear) circular frequency in the
direction, that is decoupled from 𝑦 and 𝛼 in the linear regime (see

orthcoming Section 3). The parameters are 𝐼𝑝, 𝑘𝛼 , 𝑘3 and the damping
oefficients 𝑐𝑥, 𝑐𝑦 and 𝑐𝛼 .

To obtain the numerical solutions of forthcoming Section 5.1 it is
eeded to rearrange the previous equations to have only one second
rder derivative on the left hand side of each equation:

𝑥̈ = −𝑥(𝑥2 + 𝑦2)𝑘3 + 𝛼̇2 cos(𝛼) − 2𝑐𝑥𝑥̇ − 𝑥 + 𝑓 (𝜏)

+ 1
𝐼𝑝

[(− sin(𝛼)𝑥 + cos(𝛼)𝑦) sin(𝛼)(𝑥2 + 𝑦2)𝑘3

(− sin(𝛼)𝑥 + cos(𝛼)𝑦) sin(𝛼) − sin(𝛼)𝛼𝑘𝛼

− 2𝑐𝑥𝑥̇ sin(𝛼)2 + 2𝑐𝑦𝑦̇ sin(𝛼) cos(𝛼) − 2𝑐𝛼 𝛼̇ sin(𝛼)], (12)
𝑦̈ = −𝑦(𝑥2 + 𝑦2)𝑘3 + 𝛼̇2 sin(𝛼) − 2𝑐𝑦𝑦̇ − 𝑦

+ 1 [(− cos(𝛼)𝑦 + sin(𝛼)𝑥) cos(𝛼)(𝑥2 + 𝑦2)𝑘3
𝐼𝑝
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𝑠

Fig. 1. (a) The mechanical model and (b) top view, schematic and coordinates.
𝑥

(− cos(𝛼)𝑦 + sin(𝛼)𝑥) cos(𝛼) + cos(𝛼)𝛼𝑘𝛼

− 2𝑐𝑦𝑦̇ cos(𝛼)2 + 2𝑐𝑥𝑥̇ sin(𝛼) cos(𝛼) + 2𝑐𝛼 𝛼̇ cos(𝛼)], (13)

𝛼̈ = 1
𝐼𝑝

[(cos(𝛼)𝑦 − sin(𝛼)𝑥)(𝑥2 + 𝑦2)𝑘3

+ cos(𝛼)𝑦 − sin(𝛼)𝑥 − 𝑘𝛼𝛼

+ 2𝑐𝑦𝑦̇ cos(𝛼) − 2𝑐𝑥𝑥̇ sin(𝛼) − 2𝑐𝛼 𝛼̇]. (14)

2.1. The translational and rotational stiffnesses

To compute the stiffnesses 𝐾̄ and 𝐾̄3, the wind turbine tower is
considered as a cantilevered vertical beam with an horizontal force 𝑄
on the top; because of the axial symmetry it is possible to consider a
planar problem, with transversal displacement denoted 𝑠̄(𝑧).

Neglecting the axial and the shear deformations, the beam can be
considered as an ‘‘elastica’’ [45], which is governed by the equations

̄′ = sin 𝜃,

𝐸𝐼𝑎𝜃
′′ +𝑄 cos 𝜃 = 0, (15)

where prime denotes derivative with respect to spatial vertical coor-
dinate 𝑧, 𝜃 is the deflection angle and 𝐸𝐼𝑎 the bending stiffness of the
beam. The boundary conditions are 𝑠̄(0) = 0 and 𝜃(0) = 0 (fixed bottom).
Although a closed form solution of (15) is available, for the scope of the
this work an asymptotic expansion is enough. The computations give

𝑄 =
𝐸𝐼𝑎
𝐻2

[

3 𝛿
𝐻

+ 108
35

( 𝛿
𝐻

)3
+ 48357

13475

( 𝛿
𝐻

)5
+⋯

]

, (16)

where 𝛿 = 𝑠̄(𝐻) is the top displacement, so that the elastic energy is

𝐸𝑒𝑙 =
1
2
3𝐸𝐼𝑎
𝐻3

𝛿2 + 1
4
108
35

𝐸𝐼𝑎
𝐻5

𝛿4 + 1
6
48357
13475

𝐸𝐼𝑎
𝐻7 𝛿6 +… . (17)

By comparing (3) with (17) it is immediate to conclude that

𝐾̄ =
3𝐸𝐼𝑎
𝐻3

, 𝐾̄3 =
108
35

𝐸𝐼𝑎
𝐻5

. (18)

It follows that

𝑘3 =
𝐾̄3𝑑2

𝐾̄
= 36

35

( 𝑑
𝐻

)2
, 𝑓 (𝜏) = 𝑓 (𝑡) 𝐻2

3𝐸𝐼𝑎
𝐻
𝑑
, (19)

The tower is considered as a cantilever also with respect to its
torsional behaviour, but now within a linear realm since the tower
4

is much more rigid in torsion than in bending, because of its tubular
cross-section. It follows

𝐾̄𝛼 =
𝐺𝐼𝑡
𝐻

, (20)

where 𝐺𝐼𝑡 is the torsional stiffness, so that

𝑘𝛼 =
𝐾̄𝛼

𝐾̄𝑑2
=

𝐺𝐼𝑡
𝐸𝐼𝑎

(𝐻
𝑑

)2
. (21)

For cross-sections with a polar symmetry 𝐼𝑡 = 2𝐼𝑎. If the material is
isotropic 𝐺 = 𝐸∕(2+2𝜈) (𝐸 being the Young modulus and 𝜈 the Poisson
coefficient), and thus

𝑘𝛼 = 1
(1 + 𝜈)

(𝐻
𝑑

)2
. (22)

Since in real applications 𝑑 << 𝐻 , it follows that 𝑘𝛼 is a large
dimensionless number.

In above developments there are two main assumptions:

• the cross-section of the tower is constant. This represents a good
approximation of the real case, certainly catching the order of
magnitude of the stiffness, by considering the average cross-
section. For a more detailed analysis of a non-constant cross-
section [46] is refer to;

• the junction between the tower and the nacelle is perfect. In
practice there is a stiffness also in the joint, likely related to the
yaw control systems, which however can be easily taken into
account in the proposed formulation, and often are negligible
with respect to the considered one when the tower is very slender.

3. The natural frequencies

To compute the natural frequencies of the proposed model, the
linear unforced undamped version of (9)–(11) is considered:

̈ + 𝑥 = 0, (23)

𝑦̈ + 𝛼̈ + 𝑦 = 0, (24)

(1 + 𝐼𝑝)𝛼̈ + 𝑦̈ + 𝑘𝛼𝛼 = 0. (25)

It is observed that in the linear regime the along-wind displacement
𝑥 is independent of the cross-wind displacement 𝑦 and rotation 𝛼, which
instead are coupled between each other.

The three natural frequencies are

𝜔 = 1, (26)
1
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(
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4

𝜔2,3 =

√

√

√

√

√

1 + 𝐼𝑝 + 𝑘𝛼 ∓
√

(1 + 𝐼𝑝)2 + 𝑘𝛼(2 − 2𝐼𝑝 + 𝑘𝛼)

2𝐼𝑝
. (27)

For very large values of the rotational stiffness 𝑘𝛼 (see the comment
after Eq. (22)) the following asymptotic development holds:

𝜔2 = 1 − 1
2𝑘𝛼

+
3 − 4𝐼𝑝
8𝑘2𝛼

+… , (28)

3 =

√

𝑘𝛼
√

𝐼𝑝
+ 1

2
√

𝐼𝑝
√

𝑘𝛼
+

4𝐼𝑝 − 1

8
√

𝐼𝑝𝑘
3∕2
𝛼

+… , (29)

o that it is concluded that 𝜔3 is very large, while 𝜔1 ≈ 𝜔2 and a 1:1
nternal resonance occurs [42,47], with a detuning 𝜔1 −𝜔2 ≈

1
2𝑘𝛼

+… .
s it is well known, it entails a coupling and complex behaviour, that
equires to take into account the nonlinear terms, which is the goal of
he next section.

. The nonlinear problem

To address the nonlinear problem the MTSM is used [47], up to the
hird order. Although it provides an approximate solution, that can fail
or large excitation amplitudes [48] (this is the main limitation of the
roposed analytical solution), it is appealing since it gives analytical
xpressions that are easy to manage and accurate enough for small
nd moderate displacements. If there is an interest to study large
isplacements, the proposed solution must be extended to fifth (or
igher) order terms, without any conceptual difficulty but with more
omputations.

According to the MTSM the solution is sought after in the form

𝑥(𝜏) = 𝜀𝑥1(𝑇0, 𝑇2,…) + 𝜀2𝑥2(𝑇0, 𝑇2,…) + 𝜀3𝑥3(𝑇0, 𝑇2,…)+

𝑦(𝜏) = 𝜀𝑦1(𝑇0, 𝑇2,…) + 𝜀2𝑦2(𝑇0, 𝑇2,…) + 𝜀3𝑦3(𝑇0, 𝑇2,…)+

𝛼(𝜏) = 𝜀𝛼1(𝑇0, 𝑇2,…) + 𝜀2𝛼2(𝑇0, 𝑇2,…) + 𝜀3𝛼3(𝑇0, 𝑇2,…) + , (30)

where 𝑇0 = 𝜏 and 𝑇𝑖 = 𝜀𝑖𝜏 are the slow times. Note that it has
been shown (computations not reported, but standard in the realm of
MTSM) that the solution does depend on 𝑇1, and thus this dependence
is omitted in (30). Furthermore, it is assumed that the damping is small,

𝑐𝑥 = 𝜀2𝑐𝑐𝑥, 𝑐𝑦 = 𝜀2𝑐𝑐𝑦, 𝑐𝛼 = 𝜀2𝑐𝑐𝛼 , (31)

and that the external excitation is small and harmonic,

𝑓 (𝜏) = 𝜀3𝐹 cos(𝜔𝑇0) = 𝜀3 𝐹
2
(

𝑒𝐼𝜔𝑇0 + 𝑒−𝐼𝜔𝑇0
)

, (32)

here 𝜔 is the (circular) frequency of the external excitation and 𝐼 the
maginary unit.

The assumption that the force due to the wind is harmonic is of
ourse very rough, and corresponds to taking only one term in the
ourier series approach used in [27] for the wind force. It can be
sed for the oscillatory part of the wind, this being supported by the
act that close to the resonance, the most dangerous case which is of
nterest in this work, the system response is mainly influenced only by
‘‘single’’ (the resonant one) frequency, among the many contained in

he wind force, as the structure somehow acts as a filter. In any case,
his hypothesis is enough to illustrate the occurrence of coupled along-
ind and cross-wind nonlinear oscillations, which is the main goal of

his work.
Although explicit reference is made to wind thrust, the excitation

an come also from other sources, like for example earthquake, waves
n offshore applications, etc. (see for example [25] or other works
uoted in the introduction).

The worst case situation is considered, i.e. when there is a resonance
etween the natural (internal) and the external frequencies. More
recisely, it is assumed that

2 2
5

= 𝜔1 + 𝜀 𝜎𝑒 = 1 + 𝜀 𝜎𝑒, (33)
here 𝜎𝑒 ≈ 𝜔 − 𝜔1 is the external detuning parameter, measuring the
requency mismatch.

It is also assumed to be closed to the 1:1 internal resonance, which
ccurs for 𝑘𝛼 very large, as it is in common cases (see Section 3). In
articular,

= 𝜔1 = 𝜔2 + 𝜀2𝜎𝑖, (34)

here 𝜎𝑖 ≈ 𝜔1 − 𝜔2 is the internal detuning parameter. From (28) it
ollows 𝜀2𝜎𝑖 ≈ 1∕2𝑘𝛼 .

Based on the previous assumptions, the following relations hold:

𝜔𝑇0 = 𝑇0 + 𝜀2𝑇0𝜎𝑒 = 𝑇0 + 𝜎𝑒𝑇2,

𝜔𝑇0 = (𝜔2𝑇0 + 𝜎𝑖𝑇2) + 𝜎𝑒𝑇2 = 𝜔2𝑇0 + (𝜎𝑖 + 𝜎𝑒)𝑇2,

1𝑇0 = 𝜔2𝑇0 + 𝜀2𝑇0𝜎𝑖 = 𝜔2𝑇0 + 𝜎𝑖𝑇2,

2𝑇0 = 𝜔1𝑇0 − 𝜎𝑖𝑇2. (35)

hey will be used in the following.
Inserting the previous expressions in (9)–(11), taking into account

he chain derivative rule and equating to zero each power of 𝜀, a
equence of successive problems is obtained and discussed in the fol-
owing subsections.

.1. First order problem

The first order problem is given by

𝜕2𝑥1
𝜕𝑇 2

0

+ 𝑥1 = 0,

𝜕2𝑦1
𝜕𝑇 2

0

+
𝜕2𝛼1
𝜕𝑇 2

0

+ 𝑦1 = 0,

1 + 𝐼𝑝)
𝜕2𝛼1
𝜕𝑇 2

0

+
𝜕2𝑦1
𝜕𝑇 2

0

+ 𝑘𝛼𝛼1 = 0. (36)

t is exactly the problem (23)–(25), and the solution is given by

1(𝑇0, 𝑇2) = 𝐴𝑥(𝑇2)𝑒𝜔1𝐼𝑇0 + 𝐴̄𝑥(𝑇2)𝑒−𝜔1𝐼𝑇0 ,

𝑦1(𝑇0, 𝑇2) = 𝐴𝑦(𝑇2)𝑒𝜔2𝐼𝑇0 + 𝐴̄𝑦(𝑇2)𝑒−𝜔2𝐼𝑇0 ,

𝛼1(𝑇0, 𝑇2) = 𝑐1𝑦1(𝑇0, 𝑇2), (37)

here bar stands for the complex conjugate, 𝜔1 = 1 (see (26)), 𝜔2 is
iven by (27), and 𝑐1 is reported in Appendix. Since 𝑐1 ≈ 𝜔1 − 𝜔2, it is
mall because of the closeness to the 1:1 internal resonance. Thus, the
otation has a much smaller amplitude than the cross-wind translation.

.2. Second order problem

The second order problem is given by

𝜕2𝑥2
𝜕𝑇 2

0

+ 𝑥2 = 𝛼1
𝜕2𝛼1
𝜕𝑇 2

0

+
(

𝜕𝛼1
𝜕𝑇0

)2
=

= −
2(𝜔2

2 − 1)2

𝜔2
2

[

𝐴2
𝑦𝑒

2𝜔𝑦𝐼𝑇0 + 𝐴̄2
𝑦𝑒

−2𝜔𝑦𝐼𝑇0
]

,

𝜕2𝑦2
𝜕𝑇 2

0

+
𝜕2𝛼2
𝜕𝑇 2

0

+ 𝑦2 = 0,

(1 + 𝐼𝑝)
𝜕2𝛼2
𝜕𝑇 2

0

+
𝜕2𝑦2
𝜕𝑇 2

0

+ 𝑘𝛼𝛼2 = 𝛼1
𝜕2𝑥1
𝜕𝑇 2

0

=

=

(

−1 + 1
𝜔2
𝑦

)

[

𝐴̄𝑥𝐴̄𝑦𝑒
−𝐼(1+𝜔2)𝑇0

+𝐴𝑥𝐴𝑦𝑒
𝐼(1+𝜔2)𝑇0 + 𝐴𝑥𝐴̄𝑦𝑒

𝐼(1−𝜔2)𝑇0 + 𝐴̄𝑥𝐴𝑦𝑒
𝐼(−1+𝜔2)𝑇0

]

. (38)

It is noted that there are no secular terms on the right hand sides of
(38), i.e. no terms proportional to 𝑒±𝐼𝑇0 on the right hand side of the
first equation and to 𝑒±𝐼𝜔2𝑇0 on the right hand side of the second and

third equations. This is a consequence of the assumed independence of
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𝑇1, and entails that there is no need to use solvability conditions. The
second order solutions are then (the dependence of 𝐴𝑥 and 𝐴𝑦 on 𝑇2 is
omitted to simplify the formulas):

𝑥2(𝑇0, 𝑇2) = 𝑐2
(

𝐴2
𝑦𝑒

2𝐼𝜔2𝑇0 + 𝐴̄2
𝑦𝑒

−2𝐼𝜔2𝑇0
)

,

2(𝑇0, 𝑇2) = 𝑐3
(

𝐴𝑥𝐴𝑦𝑒
𝐼(1+𝜔2)𝑇0 + 𝐴̄𝑥𝐴̄𝑦𝑒

−𝐼(1+𝜔2)𝑇0
)

+ 𝑐4
(

𝐴̄𝑥𝐴𝑦𝑒
𝐼(−1+𝜔2)𝑇0 + 𝐴𝑥𝐴̄𝑦𝑒

𝐼(1−𝜔2)𝑇0
)

,

2(𝑇0, 𝑇2) = 𝑐5𝑐3
(

𝐴𝑥𝐴𝑦𝑒
𝐼(1+𝜔2)𝑇0 + 𝐴̄𝑥𝐴̄𝑦𝑒

−𝐼(1+𝜔2)𝑇0
)

+ 𝑐6𝑐4
(

𝐴̄𝑥𝐴𝑦𝑒
𝐼(−1+𝜔2)𝑇0 + 𝐴𝑥𝐴̄𝑦𝑒

𝐼(1−𝜔2)𝑇0
)

, (39)

where 𝑐2 − 𝑐6 are reported in Appendix. Note that the singularity of 𝑐6
for 𝜔2 ≈ 1 = 𝜔1 is only apparent since in 𝛼2 the constant 𝑐6 is multiplied
by 𝑐4 and the denominator simplifies.

4.3. Third order problem

The third order problem is given by

𝜕2𝑥3
𝜕𝑇 2

0

+ 𝑥3 = −𝑘3𝑥1(𝑥21 + 𝑦21) − 2𝑐𝑐𝑥
𝜕𝑥1
𝜕𝑇0

+ 𝛼1
𝜕2𝛼2
𝜕𝑇 2

0

+ 𝛼2
𝜕2𝛼1
𝜕𝑇 2

0

+ 2
𝜕𝛼1
𝜕𝑇0

𝜕𝛼2
𝜕𝑇0

− 2
𝜕2𝑥1

𝜕𝑇2𝜕𝑇0
+ 𝐹

2
(

𝑒𝐼𝜔𝑇0 + 𝑒−𝐼𝜔𝑇0
)

= ⋯ =

= 𝐻1𝑒
3𝐼𝑇0 +𝐻2𝑒

𝐼𝑇0 + 𝐻̄1𝑒
−3𝐼𝑇0 + 𝐻̄2𝑒

−𝐼𝑇0 ,

𝜕2𝑦3
𝜕𝑇 2

0

+
𝜕2𝛼3
𝜕𝑇 2

0

+ 𝑦3 = −𝑘3𝑦1(𝑥31 + 𝑦21) − 2𝑐𝑐𝑥
𝜕𝑦1
𝜕𝑇0

+ 𝛼1

(

𝜕𝛼1
𝜕𝑇0

)2

+
𝛼21
2

𝜕2𝛼1
𝜕𝑇 2

0

− 2
𝜕2(𝑦1 + 𝛼1)
𝜕𝑇2𝜕𝑇0

= ⋯ =

= 𝐻3𝑒
3𝐼𝜔2𝑇0 +𝐻4𝑒

𝐼𝜔2𝑇0 + 𝐻̄3𝑒
−3𝜔2𝐼𝑇0 + 𝐻̄4𝑒

−𝐼𝜔2𝑇0 ,

(1 + 𝐼𝑝)
𝜕2𝛼3
𝜕𝑇 2

0

+
𝜕2𝑦3
𝜕𝑇 2

0

+ 𝑘𝛼𝛼3 = −2𝑐𝑐𝛼
𝜕𝛼1
𝜕𝑇0

+ 𝛼2
𝜕2𝑥1
𝜕𝑇 2

0

+ 𝛼1
𝜕2𝑥2
𝜕𝑇 2

0

+
𝛼21
2

𝜕2𝑦1
𝜕𝑇 2

0

− 2
𝜕2[𝑦1 + (1 + 𝐼𝑝)𝛼2]

𝜕𝑇2𝜕𝑇0
= ⋯ =

= 𝐻5𝑒
3𝐼𝜔2𝑇0 +𝐻6𝑒

𝐼𝜔2𝑇0 + 𝐻̄5𝑒
−3𝐼𝜔2𝑇0 + 𝐻̄6𝑒

−𝐼𝜔2𝑇0 , (40)

here the expressions of 𝐻1 −𝐻6 are reported in Appendix.
Contrarily to the second order problem, now there are secular

erms on the right hand side of the previous equations. This requires
he solvability conditions, that are given by (the minus is just for
onvenience, and of course does not affect the results)

= −𝐻2 = 2𝐼
𝜕𝐴𝑥
𝜕𝑇2

+ 2𝐼𝑐𝑐𝑥𝐴𝑥 + (𝑐1𝑐4𝑐6(2𝜔2 − 1)2 + 𝑘3)𝐴̄𝑥𝐴
2
𝑦𝑒

−2𝐼𝜎𝑖𝑇2

+ 3𝑘3𝐴2
𝑥𝐴̄𝑥 + [𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3]𝐴𝑥𝐴𝑦𝐴̄𝑦 −

𝐹
2
𝑒𝐼𝜎𝑒𝑇2 , (41)

= −𝐻4 − 𝑐1𝐻6 = 2𝐼𝜔2[𝑐21𝐼𝑝 + (1 + 𝑐1)2]
𝜕𝐴𝑦

𝜕𝑇2
+ 2𝐼𝜔2(𝑐𝑐𝑦 + 𝑐21𝑐𝑐𝛼)𝐴𝑦

+ (𝑐1𝑐4𝑐6 + 𝑘3)𝐴2
𝑥𝐴̄𝑦𝑒

−2𝐼𝜎𝑖𝑇2 + [2𝑐21 (𝑐1 + 2𝑐2)𝜔2
2 + 3𝑘3]𝐴2

𝑦𝐴̄𝑦

+ [𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3]𝐴𝑥𝐴̄𝑥𝐴𝑦. (42)

The previous are two complex equations in the two complex unknowns
𝐴𝑥(𝑇2) and 𝐴𝑦(𝑇2), by means of which the first order and the second
order solutions are obtained through (37) and (39).

4.4. Modulation equations

It is customary [47] to deal with real variables, introducing ampli-
tudes and phases by means of

𝐴𝑥(𝑇2) =
1
2
𝑎𝑥(𝑇2)𝑒𝐼[𝜎𝑒𝑇2+𝜙𝑥(𝑇2)],

𝐴𝑦(𝑇2) =
1
2
𝑎𝑦(𝑇2)𝑒

𝐼[(𝜎𝑒+𝜎𝑖)𝑇2+𝜙𝑦(𝑇2)], (43)

here now the four real unknowns are 𝑎𝑥(𝑇2), 𝑎𝑦(𝑇2), 𝜙𝑥(𝑇2) and 𝜙𝑦(𝑇2).
sing the expressions (43) the first and second order solutions become
6

o

(use is made of (35), the dependence on 𝑇2 is omitted to simplify the
formulas)

𝑥1 = 𝑎𝑥 cos(𝑇0 + 𝜎𝑒𝑇2 + 𝜙𝑥) = 𝑎𝑥 cos(𝜔𝑡 + 𝜙𝑥),

𝑦1 = 𝑎𝑦 cos[𝜔2𝑇0 + (𝜎𝑒 + 𝜎𝑖)𝑇2 + 𝜙𝑦] = 𝑎𝑦 cos(𝜔𝑡 + 𝜙𝑦),

𝛼1 = 𝑐1𝑦1,

2 = ⋯ =
𝑎2𝑦
2
𝑐2 cos(2𝜔𝑡 + 2𝜙𝑦),

𝑦2 = ⋯ =
𝑎𝑥𝑎𝑦
2

[𝑐3 cos(2𝜔𝑡 + 𝜙𝑥 + 𝜙𝑦) + 𝑐4 cos(𝜙𝑥 − 𝜙𝑦)],

𝛼2 = ⋯ =
𝑎𝑥𝑎𝑦
2

[𝑐3𝑐5 cos(2𝜔𝑡 + 𝜙𝑥 + 𝜙𝑦) + 𝑐4𝑐6 cos(𝜙𝑥 − 𝜙𝑦)], (44)

that better clarify that 𝑎𝑥(𝑇2) and 𝑎𝑦(𝑇2) are amplitudes and 𝜙𝑥(𝑇2)
and 𝜙𝑦(𝑇2) phases of the first order harmonic oscillation, and that
the second order solution vanishes for 𝑎𝑦 = 0, i.e. for single mode
along-wind oscillation (see Section 4.5).

Inserting (43) in (41)–(42) separating the real and imaginary parts
and rearranging, the following four real modulation equations are
obtained:
𝑑𝑎𝑥
𝑑𝑇2

= −𝑐𝑐𝑥𝑎𝑥 +
𝑐1𝑐4𝑐6(2𝜔2 − 1)2 + 𝑘3

8
sin[2(𝜙𝑥 − 𝜙𝑦)]𝑎𝑥𝑎2𝑦

− 𝐹
2
sin(𝜙𝑥), (45)

[𝑐21𝐼𝑝 + (1 + 𝑐1)2]𝜔2
𝑑𝑎𝑦
𝑑𝑇2

= −(𝑐𝑐𝑦 + 𝑐21𝑐𝑐𝛼)𝜔2𝑎𝑦

−
𝑐1𝑐4𝑐6 + 𝑘3

8
sin[2(𝜙𝑥 − 𝜙𝑦)]𝑎2𝑥𝑎𝑦, (46)

𝑎𝑥
𝑑𝜙𝑥
𝑑𝑇2

=
3𝑘3
8

𝑎3𝑥 +
𝑐1𝑐4𝑐6(2𝜔2 − 1)2 + 𝑘3

8
cos[2(𝜙𝑥 − 𝜙𝑦)]𝑎𝑥𝑎2𝑦

+
𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3

8
𝑎𝑥𝑎

2
𝑦 − 𝜎𝑒𝑎𝑥 −

𝐹
2
cos(𝜙𝑥), (47)

[𝑐21𝐼𝑝 + (1 + 𝑐1)2]𝜔2𝑎𝑦
𝑑𝜙𝑦

𝑑𝑇2
=

𝑐1𝑐4𝑐6 + 𝑘3
8

cos[2(𝜙𝑥 − 𝜙𝑦)]𝑎2𝑥𝑎𝑦

+
𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3

8
𝑎2𝑥𝑎𝑦 +

2𝑐21𝜔
2
2(𝑐1 + 2𝑐2) + 3𝑘3

8
𝑎3𝑦

− [𝑐21𝐼𝑝 + (1 + 𝑐1)2]𝜔2(𝜎𝑖 + 𝜎𝑒)𝑎𝑦. (48)

.5. Single mode along-wind oscillation

Since the excitation is only in the 𝑥 direction, it is reasonable to
oresee that there exists a single mode solution involving displacements
nly along-wind, i.e. a solution with 𝑎𝑦(𝑇2) = 0. In this case (45) and
47) become, respectively,
𝑑𝑎𝑥
𝑑𝑇2

= −𝑐𝑐𝑥𝑎𝑥 −
𝐹
2
sin(𝜙𝑥),

𝑎𝑥
𝑑𝜙𝑥
𝑑𝑇2

=
3𝑘3
8

𝑎3𝑥 − 𝜎𝑒𝑎𝑥 −
𝐹
2
cos(𝜙𝑥), (49)

which are the classical modulation equations for the Duffing oscilla-
tor [47]. Eq. (46) is automatically satisfied. Also (48) is satisfied since
all terms are multiplied by 𝑎𝑦. However, eliminating first the common
factor 𝑎𝑦, and only after assuming 𝑎𝑦 = 0, it is obtained

[𝑐21𝐼𝑝 + (1 + 𝑐1)2]𝜔2
𝑑𝜙𝑦

𝑑𝑇2
=

𝑐1𝑐4𝑐6 + 𝑘3
8

cos[2(𝜙𝑥 − 𝜙𝑦)]𝑎2𝑥

+
𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3

8
𝑎2𝑥 − [𝑐21𝐼𝑝 + (1 + 𝑐1)2]𝜔2(𝜎𝑖 + 𝜎𝑒), (50)

hich is the equation that governs the slow time evolution of 𝜙𝑦(𝑇2). It
s needed only from a mathematical point of view, since when 𝑎𝑦(𝑇2) =

the behaviour of 𝜙𝑦(𝑇2) is unessential from an engineering point of
iew, see (44).

Although this is the most intuitive solution, as clearly said in the
ntroduction the main goal of this work is to look for the existence of
ther, in particular coupled along-wind and cross-wind, solutions.
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4.6. Periodic solutions

Periodic solutions of the physical problem correspond to equilib-
rium solutions of the modulations Eqs. (45)–(48), which are obtained
by assuming that 𝑎𝑥(𝑇2) = 𝑎𝑥0, 𝑎𝑦(𝑇2) = 𝑎𝑦0, 𝜙𝑥(𝑇2) = 𝜙𝑥0 and 𝜙𝑦(𝑇2) =
𝜙𝑦0 are constants. This gives

0 = −𝑐𝑐𝑥𝑎𝑥0 +
𝑐1𝑐4𝑐6(2𝜔2 − 1)2 + 𝑘3

8
sin[2(𝜙𝑥0 − 𝜙𝑦0)]𝑎𝑥0𝑎2𝑦0

− 𝐹
2
sin(𝜙𝑥0), (51)

= −(𝑐𝑐𝑦 + 𝑐21𝑐𝑐𝛼)𝜔2𝑎𝑦0 −
𝑐1𝑐4𝑐6 + 𝑘3

8
sin[2(𝜙𝑥0 − 𝜙𝑦0)]𝑎2𝑥0𝑎𝑦0, (52)

0 =
3𝑘3
8

𝑎3𝑥0 +
𝑐1𝑐4𝑐6(2𝜔2 − 1)2 + 𝑘3

8
cos[2(𝜙𝑥0 − 𝜙𝑦0)]𝑎𝑥0𝑎2𝑦0

+
𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3

8
𝑎𝑥0𝑎

2
𝑦0 − 𝜎𝑒𝑎𝑥0 −

𝐹
2
cos(𝜙𝑥0), (53)

0 =
𝑐1𝑐4𝑐6 + 𝑘3

8
cos[2(𝜙𝑥0 − 𝜙𝑦0)]𝑎2𝑥0𝑎𝑦0

+
𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3

8
𝑎2𝑥0𝑎𝑦0 +

2𝑐21𝜔
2
2(𝑐1 + 2𝑐2) + 3𝑘3

8
𝑎3𝑦0

− [𝑐21𝐼𝑝 + (1 + 𝑐1)2]𝜔2(𝜎𝑖 + 𝜎𝑒)𝑎𝑦0, (54)

which are four real nonlinear algebraic equations in the four real
unknowns 𝑎𝑥0, 𝑎𝑦0, 𝜙𝑥0 and 𝜙𝑦0.

From (52) and (54) it follows

sin[2(𝜙𝑥0 − 𝜙𝑦0)] = −
8(𝑐𝑐𝑦 + 𝑐21𝑐𝑐𝛼)𝜔2

𝑐1𝑐4𝑐6 + 𝑘3
1
𝑎2𝑥0

, (55)

cos[2(𝜙𝑥0 − 𝜙𝑦0)] = −
𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3

𝑐1𝑐4𝑐6 + 𝑘3
−

2𝑐21𝜔
2
2(𝑐1 + 2𝑐2) + 3𝑘3
𝑐1𝑐4𝑐6 + 𝑘3

𝑎2𝑦0
𝑎2𝑥0

+
8[𝑐21𝐼𝑝 + (1 + 𝑐1)2]𝜔2(𝜎𝑖 + 𝜎𝑒)

𝑐1𝑐4𝑐6 + 𝑘3
1
𝑎2𝑥0

. (56)

The identities

tan[2(𝜙𝑥0 − 𝜙𝑦0)] =
sin[2(𝜙𝑥0 − 𝜙𝑦0)]
cos[2(𝜙𝑥0 − 𝜙𝑦0)]

,

sin[2(𝜙𝑥0 − 𝜙𝑦0)]2 + cos[2(𝜙𝑥0 − 𝜙𝑦0)]2 = 1, (57)

are now considered. Using (55)–(56), from (57)1 it is possible to
compute the phase difference 𝜙𝑥0 − 𝜙𝑦0 once 𝑎𝑥0 and 𝑎𝑦0 are known.
rom (57)2 the next equation is obtained

1𝑎
4
𝑥0 + 𝑑2𝑎

4
𝑦0 + 𝑑3𝑎

2
𝑥0𝑎

2
𝑦0 + 𝑑4𝑎

2
𝑥0 + 𝑑5𝑎

2
𝑦0 + 𝑑6 = 0, (58)

where the coefficients 𝑑𝑖, 𝑖 = 1,… , 6, are reported in Appendix. By
means of the (58), that no longer contains 𝜙𝑥0 − 𝜙𝑦0, it is possible to
compute 𝑎𝑥0 = 𝑎𝑥0(𝑎𝑦0), so it is named (amplitudes) coupling equation.
Note that it is independent of the excitation amplitude 𝐹 , but depends
on the excitation frequency, since the coefficients 𝑑𝑖, 𝑖 = 4,… , 6, depend
on 𝜎𝑒.

The unknowns are 𝑎2𝑥0 and 𝑎2𝑦0, and only the positive roots are
of physical interest since they are amplitudes of motion. Since it is
quadratic in these unknowns, it is clear that there are at most 2
solutions 𝑎𝑥0 = 𝑎𝑥0(𝑎𝑦0).

It is worth to remark that, since only two out of four equations are
considered up to now, this is a necessary condition for the overall solu-
tions, i.e. it is not yet guaranteed that all 𝑎𝑥0 = 𝑎𝑥0(𝑎𝑦0) actually exists.
To further support this consideration, it is noted that the excitation
amplitude 𝐹 has not yet been considered, and the full solution of course
will depend on it.

From (51) and (53) it follows

sin(𝜙𝑥0) = −
2𝑐𝑐𝑥𝑎𝑥0

𝐹
+

𝑐1𝑐4𝑐6(2𝜔2 − 1)2 + 𝑘3
4𝐹

sin[2(𝜙𝑥0 − 𝜙𝑦0)]𝑎𝑥0𝑎2𝑦0,

(59)

cos(𝜙 ) =
3𝑘3 𝑎3 +

𝑐1𝑐4𝑐6(2𝜔2 − 1)2 + 𝑘3 cos[2(𝜙 − 𝜙 )]𝑎 𝑎2
7

𝑥0 4𝐹 𝑥0 4𝐹 𝑥0 𝑦0 𝑥0 𝑦0
+
𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3

4𝐹
𝑎𝑥0𝑎

2
𝑦0 −

2𝜎𝑒𝑎𝑥0
𝐹

. (60)

Inserting in (59)–(60) the expressions of sin[2(𝜙𝑥0−𝜙𝑦0)] and cos[2(𝜙𝑥0−
𝜙𝑦0)] given by (55) and (56) it is noted that on the right hand side
there are expressions that depend on 𝑎𝑥0 and 𝑎𝑦0 only. Considering the
following identities:

tan(𝜙𝑥0) =
sin(𝜙𝑥0)
cos(𝜙𝑥0)

,

sin(𝜙𝑥0)2 + cos(𝜙𝑥0)2 = 1, (61)

nd using (59) and (60), from (61)1 it is obtained 𝜙𝑥0 as a function of
𝑥0 and 𝑎𝑦0, while from (61)2 the following equation is obtained

1𝑎
8
𝑥0 + 𝑒2𝑎

6
𝑥0𝑎

2
𝑦0 + 𝑒3𝑎

4
𝑥0𝑎

4
𝑦0 + 𝑒4𝑎

2
𝑥0𝑎

6
𝑦0 + 𝑒5𝑎

8
𝑦0

+ 𝑒6𝑎
6
𝑥0 + 𝑒7𝑎

4
𝑥0𝑎

2
𝑦0 + 𝑒8𝑎

2
𝑥0𝑎

4
𝑦0 + 𝑒9𝑎

6
𝑦0

+ 𝑒10𝑎
4
𝑥0 + 𝑒11𝑎

2
𝑥0𝑎

2
𝑦0 + 𝑒12𝑎

4
𝑦0 = 16𝐹 2(𝑐1𝑐4𝑐6 + 𝑘3)2𝑎2𝑥0, (62)

here the coefficients 𝑒𝑖, 𝑖 = 1,… , 12, have long expressions that are
eported in Appendix. It is quartic in the unknowns 𝑎2𝑥0 and 𝑎2𝑦0, and
hus there are at most 4 solutions 𝑎𝑥0 = 𝑎𝑥0(𝑎𝑦0), that depend on the
xcitation amplitude 𝐹 .

Summarizing, giving all the parameters (and in particular 𝐹 and 𝜎𝑒,
.e. amplitude and frequency of the external excitation), it is possible to
olve the two nonlinear algebraic Eqs. (58) and (62), and to compute
𝑥0 and 𝑎𝑦0; note that, according to the nonlinear nature of problem,
ultiple solutions may exist for the same parameters (examples will

he reported in the following), up to 2 × 4 = 8. Then, for each solution
f (58) and (62), 𝜙𝑥0 and 𝜙𝑦0 are computed by means of (57)1 and
61)1, and then 𝑥(𝑡), 𝑦(𝑡) and 𝛼(𝑡) are known, up to the second order.

Before ending this subsection, it is noted that the single mode
long-wind solution (𝑎𝑦0 = 0) is simply given by

sin(𝜙𝑥0) = −
2𝑐𝑐𝑥𝑎𝑥0

𝐹
,

cos(𝜙𝑥0) = 𝑎𝑥0
3𝑘3𝑎2𝑥0 − 8𝜎𝑒

4𝐹
, (63)

from which

𝜎𝑒 =
3
8
𝑘3𝑎

2
𝑥0 ±

√

𝐹 2 − 4𝑐𝑐2𝑥𝑎
2
𝑥0

2𝑎𝑥0
. (64)

From the previous expressions 𝑎𝑥0 and 𝜙𝑥0 can be easily determined.
ince 𝑎𝑦0 = 0, it remains to compute 𝜙𝑦0, which is a solution of

cos[2(𝜙𝑥0 − 𝜙𝑦0)] = 𝑓,

= −
𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3

𝑐1𝑐4𝑐6 + 𝑘3
+

8[𝑐21𝐼𝑝 + (1 + 𝑐1)2]𝜔2(𝜎𝑖 + 𝜎𝑒)
𝑐1𝑐4𝑐6 + 𝑘3

1
𝑎2𝑥0

, (65)

that comes from (56). Two different cases may occur:

• |𝑓 | ≤ 1. In this case 𝜙𝑦0 exists and can be computed by (65);
• |𝑓 | > 1. In this case (65) is impossible, and thus no 𝜙𝑦0 exists.

The dynamics of 𝜙𝑦(𝑇2) is then governed by (50). This situation
has only a mathematical interest, since for 𝑎𝑦 = 0 the behaviour
of 𝜙𝑦 is unessential from an engineering point of view, see (44).

.7. Stability and bifurcations

To study the stability of the solutions obtained in Section 4.6 it is
ecessary to solve the Eqs. (45)–(48) with respect to their derivates
only the first one is already in this format), and then to compute
he gradient 𝐺̂ of the right hand side, which is a 4 × 4 matrix, in
orrespondence of 𝑎𝑥0, 𝑎𝑦0, 𝜙𝑥0 and 𝜙𝑦0. This can be easily done, but it
s not reported since the expressions are very long and complex. In the
ingle mode along-wind case 𝑎𝑦 = 0 it simplifies to:

̂ =

⎡

⎢

⎢

⎢

⎢

−𝑐𝑐𝑥 0 − 𝐹
2 cos(𝜙𝑥) 0

0 𝐺22 0 0
3
4𝑘3𝑎𝑥 +

𝐹
2

cos(𝜙𝑥)
𝑎2𝑥

0 𝐹
2

sin(𝜙𝑥)
𝑎𝑥

0

⎤

⎥

⎥

⎥

⎥

, (66)
⎣ 𝐺41 0 −𝐺44 𝐺44⎦
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Fig. 2. The analytical solution paths for 𝐹 = 4. Grey is the single mode along-wind solution, black the along-wind and cross-wind coupled stable solution.
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Table 1
The mechanical parameters of the NREL 5-MW reference wind turbine.
parameter value dimension

𝐻 90 m
𝑑 1.9 m
𝑀 523730 kg
𝐼𝑝 3.94857 × 106 kg m2

𝜈 (steel) 0.3

where the expressions of 𝐺22, 𝐺14 and 𝐺34 are reported in Appendix.
The stability is determined by the four eigenvalues 𝜆𝑖 of 𝐺̂:

• If all 𝜆𝑖 have real part lesser than zero, then the physical periodic
solution is stable;

• If at least one 𝜆𝑖 has a real part larger than zero, than the physical
periodic solution is unstable.

Thus, the stability is governed by the sign of max𝑅𝑒(𝜆𝑖).
By varying one (or more) parameter of the system, the transition

from stability to instability occurs at max𝑅𝑒(𝜆𝑖) = 0, which is then the
condition to have a bifurcation.

There are different types of bifurcations: if, when max𝑅𝑒(𝜆𝑖) = 0,
also 𝐼𝑚(𝜆𝑖) = 0 (namely the eigenvalue is real), then a SN or PF
bifurcation occurs; if, on the other hand, 𝐼𝑚(𝜆𝑖) ≠ 0, a NS bifurcation
happens, and at a physical level a quasi-periodic solution appears. All
these cases are seen to occur in Section 5.

A special attention deserves the stability of the single mode along-
wind solution. The four eigenvalues of (66) are (use is made of (63))

𝜆1 =
(𝑐1𝑐4𝑐6 + 𝑘3) sin[2(𝜙𝑥0 − 𝜙𝑦0)]

4𝜔2[𝑐21𝐼𝑝 + (1 + 𝑐1)2]
𝑎2𝑥0,

𝜆2,3 = −𝑐𝑐𝑥 ±
1
8

√

−(3𝑘3𝑎2𝑥0 − 8𝜎𝑒)(9𝑘3𝑎2𝑥0 − 8𝜎𝑒),

𝜆4 = −
(𝑐1𝑐4𝑐6 + 𝑘3) sin[2(𝜙𝑥0 − 𝜙𝑦0)]𝑎2𝑥0 + 8𝜔2(𝑐21𝑐𝑐𝛼 + 𝑐𝑐𝑦)

8𝜔2[𝑐21𝐼𝑝 + (1 + 𝑐1)2]
. (67)

Looking for along-wind and cross-wind coupled solutions branching
from the single mode along-wind one, it is needed to solve (58) and
(62) for 𝑎𝑦0 = 0:

𝑑1𝑎
4
𝑥0 + 𝑑4𝑎

2
𝑥0 + 𝑑6 = 0,

9𝑘23𝑎
6
𝑥0 − 48𝑘3𝜎𝑒𝑎4𝑥0 + 64(𝑐𝑐2𝑥 + 𝜎2𝑒 )𝑎

2
𝑥0 = 16𝐹 2. (68)

Note that the latter can also be obtained directly by (63). Given 𝐹 , these
are two equations in the two unknowns 𝑎𝑥0 and 𝜎𝑒, that determine the
branching point from the single mode along-wind solution, which is of
major interest for this study.

Long but simple computations show that in the correspondence of
this branching point 𝜆4 = 0, in perfect agreement with the fact that it is
a bifurcation point. Actually, it corresponds to a PF bifurcation, since
the branched solution depends on 𝑎2𝑦0 and thus it is symmetric with
respect to the set 𝑎𝑦0 = 0 (see forthcoming Fig. 2c).

5. Results

To illustrate the previous findings the NREL 5-MW reference wind
turbine [43] is considered. It has the mechanical properties reported in
Table 1 and has been used, among other, also in [27,30,34].

The expressions obtained in Section 2 give the dimensionless pa-
rameters of Table 2, where the selected damping coefficients are also
reported. From the previous values the parameters reported in Table 3
follow. Note that 𝜎𝑖 is very small, and thus close to the perfect 1:1
internal resonance 𝜎𝑖 = 0.

For 𝐹 < 3.677728 there are no branching solutions, and only the
along-wind vibration occurs. Slightly above, the solution for 𝐹 = 4 is
reported in Figs. 2 and 3.
9

Table 2
The dimensionless parameters of the consid-
ered Wind Turbine.
parameter value

𝑘3 0.00045841
𝑘𝛼 1725.974856
𝐼𝑝 2.08846
𝑐𝑐𝑥 0.05
𝑐𝑐𝑦 0.05
𝑐𝑐𝛼 0.05

Table 3
The parameters considered in the reference
example.
parameter value

𝜔2 0.99971
𝜔3 28.7561
𝜎𝑖 0.000289916
𝑐1 0.00058008422
𝑐2 2.24375 × 10−7

𝑐3 4.49994
𝑐4 −2.824886 × 10−14

𝑐3𝑐5 −3.37463 × 10−7

𝑐4𝑐6 −3.36091 × 10−7

Fig. 3. A 3D illustration of the single mode (grey) and coupled branching (black)
solutions for 𝐹 = 4.

The branching from the single mode along-wind solution is quite
evident, and occurs by a PF bifurcation at 𝑎𝑥0 = 29.616295 and 𝜎𝑒 =
0.105391. The branched solution is always stable, and reconnects to
the single mode solution in another (reverse) PF bifurcation at 𝑎𝑥0 =
37.731845 and 𝜎𝑒 = 0.227144. In between the two PFs, the single mode
along-wind solution is unstable, and this is the most important, and
dangerous, effect of the coupling. The safety limit is that in correspon-
dence of the first PF, which is lower than the peak of the FRC of the
single mode solution, at 𝑎𝑥0 = 40, that in principle could be reached
without the coupling due to the internal resonance.

A more involved, and more unsafe, situation occurs for increasing
excitation amplitude. For 𝐹 = 7 the solution is reported in Figs. 4 and
5.

The PF bifurcation occurs at 𝑎𝑥0 = 32.525846 and 𝜎𝑒 = 0.086578,
and by increasing 𝜎𝑒 the branched solution undergoes a reverse SN
bifurcation at 𝑎𝑥0 = 35.6902605 and 𝜎𝑒 = 0.30203, where it loses
stability. The path then continues for decreasing 𝜎𝑒, up to another SN
at 𝑎𝑥0 = 30.760698 and 𝜎𝑒 = 0.28978 where it regains stability. Soon
after, at 𝑎𝑥0 = 29.537844 and 𝜎𝑒 = 0.301 it undergoes a NS bifurcation,
where it loses again stability (this stable path is very short and barely
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Fig. 4. The analytical solution paths for 𝐹 = 7. Grey is the single mode along-wind solution, black the along-wind and cross-wind coupled stable solution, red the along-wind and
cross-wind coupled unstable solution.



Renewable and Sustainable Energy Reviews 187 (2023) 113698S. Lenci
Fig. 5. A 3D illustration of the single mode (grey), coupled branching stable (black)
and coupled branching unstable (red) solutions for 𝐹 = 7.

visible in Fig. 4), up to another NS bifurcation at 𝑎𝑥0 = 66.6643045 and
𝜎𝑒 = 0.7915. Between the two NS bifurcations the system undergoes a
quasi-periodic along-wind and across-wind coupled oscillation, which
is particularly risky in terms of durability due to fatigue; an example is
reported in forthcoming Fig. 11. The final stable path reconnects to the
single mode solution by a reverse PF bifurcation at 𝑎𝑥0 = 69.572440 and
𝜎𝑒 = 0.826523, just below the peak of the FRC that occurs at 𝑎𝑥0 = 70
and 𝜎𝑒 = 0.842333.

By further increasing the excitation amplitude the qualitative be-
haviour does not change significantly, even if the branching path is
more wavy (see Figs. 6 and 7 for 𝐹 = 10).

As already mentioned, and as it is clear from the previous pictures,
the critical threshold that cannot be overcome for safety is given by
the first PF bifurcation, where the branching coupled solution is born.
In Fig. 8 it is reported how this limit depends on 𝐹 . For comparison,
the value of the second reverse PF (in red) and of the peak of the FRG
(dashed black) are also reported. This latter can be computed by (64)
and is given by

𝑎𝑥0,𝑐𝑟 =
𝐹

2𝑐𝑐𝑥
, 𝜎𝑒,𝑐𝑟 =

3𝑘3𝐹 2

32𝑐𝑐2𝑥
. (69)

They almost coincide.
It is noted that the critical threshold is slowly increasing for varying

𝐹 , which is easier to reach for large excitation amplitudes and thus is
very dangerous. For 𝐹 < 3.677728 the critical threshold is the peak
point of the FRC.

To end this section it is worth to remark that coupled solutions
that do not branch from the single mode solution, i.e. isolated coupled
solutions, have not been found. However, it cannot be excluded that
they exist for different values of the parameters, i.e. for different wind
turbine towers.

5.1. Comparison with numerical simulations

To check the analytical approximate solution it is compared with
some numerical solutions of the governing Eqs. (9)–(11), or better (12)–
(14). To have reliable results, numerical solutions are obtained both
by a self-made code in C++ and by using a software with built-in
algorithms for numerical solutions of ODEs.

An example is reported in Fig. 9 for 𝐹 = 7 and 𝜎𝑒 = 0.17. An excel-
lent agreement is observed, both at qualitative and quantitative level,
for the along-wind 𝑥 and cross-wind 𝑦 oscillations. For the rotation 𝛼,
that as expected has a smaller amplitude, the first order solution is not
accurate enough because of the non harmonic behaviour of 𝛼. However,
it captures the order of magnitude of the rotation amplitude, and thus
it is in any case useful from an engineering point of view.
11
To further check the analytical solution, the bifurcation diagram for
𝐹 = 10 is reported in Fig. 10. It has been obtained by a brute-force
algorithm, and so it reports only the stable solutions.

Comparing Fig. 10 with its counterpart Fig. 6 it is observed that
there is an excellent agreement between numerical and analytical
results, which is further confirmed quantitatively by the fact that PF
bifurcation occurs at 𝜎𝑒,𝑐𝑟 = 0.093236 and 𝑎𝑥0,𝑐𝑟 = 36.001482 (analytical)
versus 𝜎𝑒,𝑐𝑟 = 0.09 and 𝑎𝑥0,𝑐𝑟 = 36.31 (numerical).

The excellent agreement between the analytical and numerical eval-
uations of the PF critical threshold holds for all values of 𝐹 , as can
be seen in Fig. 8, where the blue and black curves are practically
undistinguishable. This is a robust check of the reliability of the pro-
posed analytical solution for detecting the born and the occurrence of
along-wind and cross-wind coupled oscillations.

Remarkably, in part of the unstable branch of Fig. 10, the numerical
solution is a quasi-periodic motion, as expected after a NS bifurcation.
An example of this latter is reported in Fig. 11, where the quasi-
periodicity is confirmed by the fact that the Poincaré points lay on a
closed curve.

6. Conclusions

The along-wind and cross-wind coupled oscillations in the nonlinear
dynamics of a wind turbine tower have been investigated in corre-
spondence with the 1:1 internal resonance due to the axial-symmetric
cross-section of the column.

A three dof simplified model has been initially obtained, taking into
account the two horizontal translations and the rotation around the
vertical axis of the wind turbine tower.

After having introduced dimensionless equations, that are easier to
handle without loss of generality, an analytical approximation of the
nonlinear oscillations has been obtained using the MTSM, taking into
account internal and external resonances, which are the worst cases and
thus of major relevance for applications.

The solution has been obtained by solving two algebraic nonlinear
equations, one of the second order and the other of the fourth order.
Thus, the solution can be easily obtained.

Although the proposed solution is valid for any wind turbine tower,
the NREL 5-MW reference wind turbine, which is frequently considered
in the renewable energy research field, has been used as an example.

The existence of an along-wind and cross-wind coupled solution
branching from the single mode along-wind solution, through a PF
bifurcation, has been shown. A parametric analysis obtained by varying
the frequency of the external excitation (the oscillating part of the
wind) has been reported, and the related FRCs have been illustrated.
It has been shown how the coupled solution changes by increasing the
excitation amplitude, and how it can have a quite complex behaviour
and can lose stability by SN and NS bifurcations.

Attention has been focused on the branching point, which is the
critical limit for the safe use of the wind turbine system. It has been
shown that it weakly depends on the excitation amplitude.

The approximate analytical solution has been compared with nu-
merical simulations to check its reliability. A very good agreement has
been observed, suggesting that the proposed solution can be profitably
used for the analysis and design of wind turbine systems.

Although in the work reference is explicitly made to the force due
to the wind, the proposed model is able to consider also the excitation
coming from the sea waves (and mooring lines) in FOWT: It is sufficient
to add on the right-hand side of (5)–(7) the translation and rotational
inertia due to the motion of the buoy, and the same analysis applies.
The same is true for earthquake excitations.

It is hoped that, once further deeply investigated and fully un-
derstood, this phenomenon will be properly considered by the wind
industry and by the related policymakers.

The proposed study is based on various hypotheses (i) on the
mechanical model (a 3 dof system is considered and no other higher
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Fig. 6. The analytical solution paths for 𝐹 = 10. Grey is the single mode along-wind solution, black the along-wind and cross-wind coupled stable solution, red the along-wind
and cross-wind coupled unstable solution.
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Fig. 7. A 3D illustration of the single mode (grey), coupled branching stable (black)
and coupled branching unstable (red) solutions for 𝐹 = 10.

order normal modes of the tower are included, no vertical motion of
the nacelle is considered, the excitation is harmonic, the rotation has
no nonlinearities, no interactions with the blades has been taken into
account, etc.) and (ii) on the solution (the amplitude is not large so that
the third order MTSM solution is reliable). Although all of them look
realistic, further development consists of checking what will happen
when these assumptions are relaxed, in particular if coupled solutions
still exist. It is not expected that this can be done analytically since the
model will become much more complex, and it will require the heavy
use of numerical simulations, thus losing the simplicity and generality
of the proposed approach.

In addition to the previous one, another development is absolutely
needed, namely the comparison of the proposed findings with exper-
imental data coming from monitoring of real (or laboratory) wind
turbine towers, to assess the relevance of the investigated phenomenon.
Very preliminary checks look promising (Fig. 2 A of [49] shows the
same qualitative behaviour illustrated in Fig. 9d), but a systematic
comparison is necessary and left for future works.
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Appendix

The expressions of various parameters used in the text are reported
in the following.

𝑐1 = −1 + 1
𝜔2
2

. (A.1)

𝑐2 = 2
(𝜔2

2 − 1)2

𝜔2
2(4𝜔

2
2 − 1)

,

𝑐3 =
(𝜔2

2 − 1)3

𝜔2
2[𝜔2(𝜔2 + 2)(𝜔2 + 1)2𝐼𝑝 − 𝜔2(𝜔2 + 2)𝑘𝛼 − (𝜔2 + 1)2]

,

𝑐4 =
(𝜔2

2 − 1)3

𝜔2
2[𝜔2(𝜔2 − 2)(𝜔2 − 1)2𝐼𝑝 − 𝜔2(𝜔2 − 2)𝑘𝛼 − (𝜔2 − 1)2]

,

𝑐5 = −
𝜔2(𝜔2 + 2)
(𝜔2 + 1)2

,

𝑐6 = −
𝜔2(𝜔2 − 2)
(𝜔2 − 1)2

. (A.2)

𝐻1 = −
[

𝑐1𝑐3𝑐5𝐴𝑥𝐴
2
𝑦(2𝜔2 + 1)2𝑒−2𝐼𝜎𝑖𝑇2 + 𝑘3𝐴𝑥(𝐴2

𝑥 + 𝐴2
𝑦𝑒

−2𝐼𝜎𝑖𝑇2 )
]

,

𝐻2 = −
[

2𝐼
𝜕𝐴𝑥
𝜕𝑇2

+ 2𝐼𝑐𝑐𝑥𝐴𝑥 + (𝑐1𝑐4𝑐6(2𝜔2 − 1)2𝐴̄𝑥𝐴
2
𝑦)𝑒

−2𝐼𝜎𝑖𝑇2

+ 𝑐1(𝑐3𝑐5 + 𝑐4𝑐6)𝐴𝑥𝐴𝑦𝐴̄𝑦 + (3𝐴2
𝑥𝐴̄𝑥 + 2𝐴𝑥𝐴𝑦𝐴̄𝑦 + 𝐴̄𝑥𝐴

2
𝑦𝑒

−2𝐼𝜎𝑖𝑇2 )𝑘3

−𝐹
2
𝑒𝐼𝜎𝑒𝑇2

]

,

𝐻3 = −
[ 3
2
𝑐31𝜔

2
2𝐴

3
𝑦 + 𝑘3𝐴𝑦(𝐴2

𝑦 + 𝐴2
𝑥𝑒

2𝐼𝜎𝑖𝑇2 )
]

,

𝐻4 = −
[

2(1 + 𝑐1)𝐼𝜔2
𝜕𝐴𝑦

𝜕𝑇2
+ 2𝐼𝑐𝑐𝑦𝜔2𝐴𝑦 +

1
2
𝑐31𝜔

2
2𝐴

2
𝑦𝐴̄𝑦

𝑘3
(

2𝐴𝑥𝐴̄𝑥𝐴𝑦 + 3𝐴2
𝑦𝐴̄𝑦 + 𝐴2

𝑥𝐴̄𝑦𝑒
2𝐼𝜎𝑖𝑇2

)]

,

𝐻5 = −
[

𝑐1𝜔
2
2

( 𝑐1
2

+ 4𝑐2
)

𝐴3
𝑦 + 𝑐3𝑐5𝐴

2
𝑥𝐴𝑦𝑒

2𝐼𝜎𝑖𝑇2
]

,

𝐻6 = −
[

2𝐼(1 + 𝑐1(1 + 𝐼𝑝))𝜔2
𝜕𝐴𝑦

𝜕𝑇2
+ 2𝐼𝑐𝑐𝛼𝑐1𝜔2𝐴𝑦

+1
2
𝑐1𝜔

2
2(3𝑐1 + 8𝑐2)𝐴2

𝑦𝐴̄𝑦 + 𝑐4𝑐6𝐴
2
𝑥𝐴̄𝑦𝑒

2𝐼𝜎𝑖𝑇2 + (𝑐4𝑐6 + 𝑐3𝑐5)𝐴𝑥𝐴̄𝑥𝐴𝑦

]

.

(A.3)

𝑑1 = (𝑐1𝑐3𝑐5 + 𝑘3)[𝑐1(𝑐3𝑐5 + 2𝑐4𝑐6) + 3𝑘3],

𝑑2 = [2𝑐21𝜔
2
2(𝑐1 + 2𝑐2) + 3𝑘3]2,

𝑑3 = 2[𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3][2𝑐21𝜔
2
2(𝑐1 + 2𝑐2) + 3𝑘3],

𝑑4 = −16𝜔2(𝜎𝑒 + 𝜎𝑖)[𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3][𝑐21𝐼𝑝 + (1 + 𝑐1)2],

𝑑5 = −16𝜔2(𝜎𝑒 + 𝜎𝑖)[2𝑐21𝜔
2
2(𝑐1 + 2𝑐2) + 3𝑘3][𝑐21𝐼𝑝 + (1 + 𝑐1)2],

𝑑6 = 64𝜔2
2[(𝜎𝑒 + 𝜎𝑖)2[𝑐21𝐼𝑝 + (1 + 𝑐1)2]2 + (𝑐21𝑐𝑐𝛼 + 𝑐𝑐𝑦)2]. (A.4)

𝑒1 = 9𝑘23(𝑐1𝑐4𝑐6 + 𝑘3)2,

𝑒2 = −24𝑐1𝑐4𝑐6𝑘3𝜔2(𝜔2 − 1)(𝑐1𝑐4𝑐6 + 𝑘3)[𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3],

𝑒3 = −12𝑐24𝑐
2
6𝑘3𝜔

2
2(2𝜔2 − 1)2𝑐51

− 8𝑐4𝑐6𝜔2
2[3(2𝜔

2
2 − 2𝜔2 + 1)𝑘23 + 3𝑐2𝑐4𝑐6(2𝜔2 − 1)2𝑘3

− 2𝑐4𝑐6(𝜔2 − 1)2(𝑐3𝑐5 + 𝑐4𝑐6)2]𝑐41
− 4𝑘3𝜔2

2[3𝑘
2
3 + 12𝑐2𝑐4𝑐6(2𝜔2

2 − 2𝜔2 + 1)𝑘3
− 16𝑐24𝑐

2
6 (𝜔2 − 1)2(𝑐3𝑐5 + 𝑐4𝑐6)]𝑐31

− 2𝑘23[−32𝑐
2
4𝑐

2
6𝜔

3
2(𝜔2 − 2) + (4𝑐24𝑐

2
6 + 12𝑐2𝑘3)𝜔2

2 − 9𝑐24𝑐
2
6 (4𝜔2 − 1)]𝑐21

− 36𝑐4𝑐6𝑘33(2𝜔
2
2 − 2𝜔2 + 1)𝑐1 − 18𝑘43,

𝑒4 = 8𝑐1𝑐4𝑐6𝜔2(𝜔2 − 1)(𝑐1𝑐4𝑐6(2𝜔2 − 1)2 + 𝑘3)(𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3)

× (2𝑐21𝜔
2
2(𝑐1 + 2𝑐2) + 3𝑘3),

𝑒5 = (𝑐1𝑐4𝑐6(2𝜔2 − 1)2 + 𝑘3)2(2𝑐21𝜔
2
2(𝑐1 + 2𝑐2) + 3𝑘3)2,

2
𝑒6 = −48𝑘3𝜎𝑒(𝑐1𝑐4𝑐6 + 𝑘3) ,
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Fig. 8. (a) The critical threshold (black curve), corresponding to the first PF bifurcation, as a function of 𝐹 . For comparison are also reported the peak values (dashed curves),
the second reverse PF bifurcation (red) and the numerically obtained PF (blue, almost undistinguishable from the theoretical one).

Fig. 9. The phase space trajectories of the first order analytical (black) and numerical (blue) solutions for 𝐹 = 7 and 𝜎𝑒 = 0.17.
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Fig. 10. The numerical solution paths for 𝐹 = 10. Grey is the single mode along-wind solution, black the along-wind and cross-wind coupled stable solution.
𝑒

𝑒

𝐺

𝑒7 = 16𝜔2(𝑐1𝑐4𝑐6𝑘3)[3𝑐4𝑐6𝑘3(2𝜔2 − 1)2(𝜎𝑒 + 𝜎𝑖)(1 + 𝐼𝑝)𝑐31
+ (24𝑐4𝑐6𝑘3(𝜎𝑒 + 𝜎𝑖)𝜔2

2 + 4𝑐4𝑐6((𝑐3𝑐5 + 𝑐4𝑐6)𝜎𝑒 − 6𝑘3(𝜎𝑒 + 𝜎𝑖)

+ 3(𝜎𝑒 + 𝜎𝑖)(1 + 𝐼𝑝)𝑘23 + 6𝑐4𝑐6(𝜎𝑒 + 𝜎𝑖)𝑘3 − 𝑐4𝑐6𝜎𝑒(𝑐3𝑐5 + 𝑐4𝑐6))𝜔2)𝑐21
𝑘3(12𝑐4𝑐6(𝜎𝑒 + 𝜎𝑖)𝜔2

2 − 4𝑐4𝑐6(𝜎𝑒 + 3𝜎𝑖)𝜔2 − 𝑐4𝑐6(5𝜎𝑒 − 3𝜎𝑖)

+ 6𝑘3(𝜎𝑒 + 𝜎𝑖))𝑐1 + 3𝑘23(𝜎𝑒 + 𝜎𝑖)],

𝑒8 = −16(𝑐1𝑐4𝑐6(2𝜔2 − 1)2 + 𝑘3)[2𝑐4𝑐6𝜔2
2(2(𝜎𝑒 + 𝜎𝑖)(𝑐3𝑐5 + 𝑐4𝑐6)(1 + 𝐼𝑝)𝜔2

− 2(𝜎𝑒 + 𝜎𝑖)(𝑐3𝑐5 + 𝑐4𝑐6)(1 + 𝐼𝑝) − 𝜎𝑒)𝑐41
+ 2𝜔2

2(4𝑐4𝑐6(𝜎𝑒 + 𝜎𝑖)(𝑐3𝑐5 + 𝑐4𝑐6 + 𝑘3(1 + 𝐼𝑝))𝜔2

− (4𝑐4𝑐6(𝜎𝑒 + 𝜎𝑖)(1 + 𝐼𝑝) + 𝜎𝑒)𝑘3
− 2𝑐4𝑐6(2(𝜎𝑒 + 𝜎𝑖)(𝑐3𝑐5 + 𝑐4𝑐6) + 𝑐2𝜎𝑒))𝑐31
− 4𝜔2

2(−𝑐4𝑐6(𝜎𝑒 + 𝜎𝑖)(𝑐3𝑐5 + 𝑐4𝑐6 + 4𝑘3)𝜔2

+ (4𝑐4𝑐6(𝜎𝑒 + 𝜎𝑖) + 𝑐2𝜎𝑒)𝑘3 + 𝑐4𝑐6(𝜎𝑒 + 𝜎𝑖)(𝑐3𝑐5 + 𝑐4𝑐6))𝑐21
+ 𝑐4𝑐6𝑘3(8𝜔2

2(𝜎𝑒 + 𝜎𝑖)(𝜔2 − 1) − 3𝜎𝑒)𝑐1 − 3𝑘23𝜎𝑒],

𝑒 = −16𝜔 (𝑐 𝑐 𝑐 (2𝜔 − 1)2 + 𝑘 )2(𝜎 + 𝜎 )(2𝑐2𝜔2(𝑐 + 2𝑐 ) + 3𝑘 )
15

9 2 1 4 6 2 3 𝑒 𝑖 1 2 1 2 3
× (𝑐21𝐼𝑝 + (1 + 𝑐1)2),

10 = 64(𝑐𝑐2𝑥 + 𝜎2𝑒 )(𝑐1𝑐4𝑐6 + 𝑘3)2,

11 = −128𝜔2(𝑐1𝑐4𝑐4 + 𝑘3)(𝑐1𝑐4𝑐6(2𝜔2 − 1)2 + 𝑘3)

× (𝜎𝑒(𝜎𝑒 + 𝜎𝑖)(𝑐21𝐼𝑝 + (1 + 𝑐1)2) − 𝑐𝑐𝑥(𝑐21𝑐𝑐𝛼 + 𝑐𝑐𝑦)),

𝑒12 = 64𝜔2
2(𝑐1𝑐4𝑐6(2𝜔2 − 1)2 + 𝑘3)2

× ((𝜎𝑒 + 𝜎𝑖)2(𝑐1𝐼2𝑝 + (1 + 𝑐1)2)2 + (𝑐21𝑐𝑐𝛼 + 𝑐𝑐𝑦)2). (A.5)

𝐺22 = −
(𝑐1𝑐4𝑐6 + 𝑘3) sin[2(𝜙𝑥 − 𝜙𝑦)]𝑎2𝑥 + 8𝜔2(𝑐21𝑐𝑐𝛼 + 𝑐𝑐𝑦)

8𝜔2[𝑐21𝐼𝑝 + (1 + 𝑐1)2]
,

41 =
(𝑐1𝑐4𝑐6 + 𝑘3) cos[2(𝜙𝑥 − 𝜙𝑦)] + 𝑐1(𝑐3𝑐5 + 𝑐4𝑐6) + 2𝑘3

4𝜔2[𝑐21𝐼𝑝 + (1 + 𝑐1)2]
𝑎𝑥,

𝐺44 =
(𝑐1𝑐4𝑐6 + 𝑘3) sin[2(𝜙𝑥 − 𝜙𝑦)]

2 2
𝑎2𝑥. (A.6)
4𝜔2[𝑐1𝐼𝑝 + (1 + 𝑐1) ]
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Fig. 11. The numerical quasi-periodic solution for 𝐹 = 10 and 𝜎𝑒 = 0.35, so that 𝑇 = 2𝜋∕𝜔 = 2𝜋∕(1 + 𝜎𝑒) = 4.6542. (a), (c) and (e) time history of 𝑥(𝑡), 𝑦(𝑡) and 𝛼(𝑡). (b), (d) and (e)
hase portraits (grey) and Poincaré map points (black) of 𝑥(𝑡), 𝑦(𝑡) and 𝛼(𝑡).
eferences

[1] Green new deal. 2019, URL https://commission.europa.eu/strategy-and-policy/
priorities-2019-2024/european-green-deal/delivering-european-green-deal_en.

[2] Lee J, Zhao F. Global wind report. Tech. rep., Global Wind Energy Council; 2021.
[3] Future of wind: Deployment, investment, technology, grid integration and

socio-economic aspects (A Global Energy Transformation paper). Tech. rep.,
International Renewable Energy Agency (IRENA); 2019.

[4] Renewable energy. 2021, Office of Energy Efficiency & Renewable Energy, URL
https://www.energy.gov/eere/renewable-energy.

[5] Patel YR. FSI in wind turbines: A review. Int J Recent Contrib Eng Sci IT (iJES)
2020;8(3):37–50. http://dx.doi.org/10.3991/ijes.v8i3.16595.

[6] Roul R, Kumar A. Fluid-structure interaction of wind turbine blade using four
different materials: Numerical investigation. Symmetry 2020;12(9). http://dx.doi.
org/10.3390/sym12091467.

[7] Hsu M, Bazilevs Y. Fluid–structure interaction modeling of wind turbines:
Simulating the full machine. Comput Mech 2012;50:821–33. http://dx.doi.org/
10.1007/s00466-012-0772-0.

[8] Wang L, Quant R, Kolios A. Fluid structure interaction modelling of horizontal-
axis wind turbine blades based on CFD and FEA. J Wind Eng Ind Aerodyn
2016;158:11–25. http://dx.doi.org/10.1016/j.jweia.2016.09.006.

[9] Grinderslev C, González Horcas S, Sørensen NN. Fluid–structure interaction
simulations of a wind turbine rotor in complex flows, validated through field
experiments. Wind Energy 2021;24(12):1426–42. http://dx.doi.org/10.1002/we.
2639.

[10] Micallef D, Rezaeiha A. Floating offshore wind turbine aerodynamics: Trends
and future challenges. Renew Sustain Energy Rev 2021;152:111696. http://dx.
doi.org/10.1016/j.rser.2021.111696.

[11] Otter A, Murphy J, Pakrashi V, Robertson A, Desmond C. A review of modelling
techniques for floating offshore wind turbines. Wind Energy 2022;25(5):831–57.
http://dx.doi.org/10.1002/we.2701.

[12] Chen P, Chen J, Hu Z. Review of experimental-numerical methodologies and
challenges for floating offshore wind turbines. J Mar Sci Appl 2018;122:576–88.
http://dx.doi.org/10.1007/s11804-020-00165-z.
16
[13] Subbulakshmi A, Verma M, Keerthana M, Sasmal S, Harikrishna P, Kapuria S.
Recent advances in experimental and numerical methods for dynamic analysis of
floating offshore wind turbines — An integrated review. Renew Sustain Energy
Rev 2022;164:112525. http://dx.doi.org/10.1016/j.rser.2022.112525.

[14] Xie F, Aly A-M. Structural control and vibration issues in wind turbines:
A review. Eng Struct 2020;210:110087. http://dx.doi.org/10.1016/j.engstruct.
2019.110087.

[15] Gkantou M, Rebelo C, Baniotopoulos C. Life Cycle Assessment of tall onshore
hybrid steel wind turbine towers. Energies 2020;13(15). http://dx.doi.org/10.
3390/en13153950.

[16] Agarwal P, Manuel L. Simulation of offshore wind turbine response for long-term
extreme load prediction. Eng Struct 2009;31(10):2236–46. http://dx.doi.org/10.
1016/j.engstruct.2009.04.002.

[17] Marino E, Nguyen H, Lugni C, Manuel L, Borri C. Irregular nonlinear wave
simulation and associated loads on offshore wind turbines. J Offshore Mech Arct
Eng 2015;137(2). http://dx.doi.org/10.1115/1.4029212, 021901.

[18] Veljkovic M, Feldmann M, Naumes J, Pak D, Simões L, da Silva L, Rebelo C.
9 - wind turbine tower design, erection and maintenance. In: Sørensen JD,
Sørensen JN, editors. Wind energy systems. Woodhead publishing series in
energy, Woodhead Publishing; 2011, p. 274–300. http://dx.doi.org/10.1533/
9780857090638.2.274.

[19] Malliotakis G, Alevras P, Baniotopoulos C. Recent advances in vibration control
methods for wind turbine towers. Energies 2021;14(22). http://dx.doi.org/10.
3390/en14227536.

[20] Yang J, Fang L, Song D, Su M, Yang X, Huang L, et al. Review of con-
trol strategy of large horizontal-axis wind turbines yaw system. Wind Energy
2021;24(2):97–115. http://dx.doi.org/10.1002/we.2564.

[21] Yang B, Sun D. Testing, inspecting and monitoring technologies for wind turbine
blades: A survey. Renew Sustain Energy Rev 2013;22:515–26. http://dx.doi.org/
10.1016/j.rser.2012.12.056.

[22] Ma Y, Martinez-Vazquez P, Baniotopoulos C. Buckling analysis for wind turbine
tower design: Thrust load versus compression load based on energy method.
Energies 2020;13(20). http://dx.doi.org/10.3390/en13205302.

https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb2
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb3
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb3
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb3
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb3
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb3
https://www.energy.gov/eere/renewable-energy
http://dx.doi.org/10.3991/ijes.v8i3.16595
http://dx.doi.org/10.3390/sym12091467
http://dx.doi.org/10.3390/sym12091467
http://dx.doi.org/10.3390/sym12091467
http://dx.doi.org/10.1007/s00466-012-0772-0
http://dx.doi.org/10.1007/s00466-012-0772-0
http://dx.doi.org/10.1007/s00466-012-0772-0
http://dx.doi.org/10.1016/j.jweia.2016.09.006
http://dx.doi.org/10.1002/we.2639
http://dx.doi.org/10.1002/we.2639
http://dx.doi.org/10.1002/we.2639
http://dx.doi.org/10.1016/j.rser.2021.111696
http://dx.doi.org/10.1016/j.rser.2021.111696
http://dx.doi.org/10.1016/j.rser.2021.111696
http://dx.doi.org/10.1002/we.2701
http://dx.doi.org/10.1007/s11804-020-00165-z
http://dx.doi.org/10.1016/j.rser.2022.112525
http://dx.doi.org/10.1016/j.engstruct.2019.110087
http://dx.doi.org/10.1016/j.engstruct.2019.110087
http://dx.doi.org/10.1016/j.engstruct.2019.110087
http://dx.doi.org/10.3390/en13153950
http://dx.doi.org/10.3390/en13153950
http://dx.doi.org/10.3390/en13153950
http://dx.doi.org/10.1016/j.engstruct.2009.04.002
http://dx.doi.org/10.1016/j.engstruct.2009.04.002
http://dx.doi.org/10.1016/j.engstruct.2009.04.002
http://dx.doi.org/10.1115/1.4029212
http://dx.doi.org/10.1533/9780857090638.2.274
http://dx.doi.org/10.1533/9780857090638.2.274
http://dx.doi.org/10.1533/9780857090638.2.274
http://dx.doi.org/10.3390/en14227536
http://dx.doi.org/10.3390/en14227536
http://dx.doi.org/10.3390/en14227536
http://dx.doi.org/10.1002/we.2564
http://dx.doi.org/10.1016/j.rser.2012.12.056
http://dx.doi.org/10.1016/j.rser.2012.12.056
http://dx.doi.org/10.1016/j.rser.2012.12.056
http://dx.doi.org/10.3390/en13205302


Renewable and Sustainable Energy Reviews 187 (2023) 113698S. Lenci
[23] Zuo H, Bi K, Hao H. A state-of-the-art review on the vibration mitigation of
wind turbines. Renew Sustain Energy Rev 2020;121:109710. http://dx.doi.org/
10.1016/j.rser.2020.109710.

[24] Liao D, Zhu S-P, Correia JA, De Jesus AM, Veljkovic M, Berto F. Fatigue
reliability of wind turbines: Historical perspectives, recent developments and
future prospects. Renew Energy 2022;200:724–42. http://dx.doi.org/10.1016/j.
renene.2022.09.093.

[25] Dagli BY, Tuskan Y, Gokkus U. Evaluation of offshore wind turbine tower
dynamics with numerical analysis. Adv Civ Eng 2018;2018:3054851. http://dx.
doi.org/10.1155/2018/3054851.

[26] Yu H, Jian Y, Charalampos B, Xinger W, Xiaowei D. Dynamic analysis of
offshore steel wind turbine towers subjected to wind, wave and current loading
during construction. Ocean Eng 2020;216:108084. http://dx.doi.org/10.1016/j.
oceaneng.2020.108084.

[27] Quilligan A, O’Connor A, Pakrashi V. Fragility analysis of steel and concrete
wind turbine towers. Eng Struct 2012;36:270–82. http://dx.doi.org/10.1016/j.
engstruct.2011.12.013.

[28] Wang J, Qin D, Lim TC. Dynamic analysis of horizontal axis wind turbine by
thin-walled beam theory. J Sound Vib 2010;329(17):3565–86. http://dx.doi.org/
10.1016/j.jsv.2010.03.011.

[29] Harte M, Basu B, Nielsen S. Dynamic analysis of wind turbines including soil-
structure interaction. Eng Struct 2012;45:509–18. http://dx.doi.org/10.1016/j.
engstruct.2012.06.041.

[30] Hernandez-Estrada E, Lastres-Danguillecourt O, Robles-Ocampo JB, Lopez-
Lopez A, Sevilla-Camacho PY, Perez-Sariñana BY, Dorrego-Portela JR. Consid-
erations for the structural analysis and design of wind turbine towers: A review.
Renew Sustain Energy Rev 2021;137:110447. http://dx.doi.org/10.1016/j.rser.
2020.110447.

[31] Basu B. Tower design and analysis. In: Tong W, editor. Wind power generation
and wind turbine design. WIT transactions on state-of-the-art in science and
engineering, vol. 44, WIT Press; 2010, p. 527–57. http://dx.doi.org/10.2495/
978-1-84564-205-1/16.

[32] Ma Y, Martinez-Vazquez P, Baniotopoulos C. Wind turbine tower collapse cases:
A historical overview. Proc Inst Civ Eng - Struct Build 2019;172(8):547–55.
http://dx.doi.org/10.1680/jstbu.17.00167.

[33] Gesualdo A, Iannuzzo A, Penta F, Monaco M. Nonlinear dynamics of a wind
turbine tower. Front Mech Eng 2019;14:342–50. http://dx.doi.org/10.1007/
s11465-019-0524-3.

[34] Qian X, Gao Z, Zhang Z, Wang T. Geometric nonlinear dynamic response of
wind turbines with different power performance. E3S Web Conf 2021;271:01005.
http://dx.doi.org/10.1051/e3sconf/202127101005.

[35] Dai L, Xia D, Chen C. Regular and nonlinear dynamics of horizontal Axis
wind turbine blades subjected to fluctuating wind loads. Energy Procedia
2017;110:529–36. http://dx.doi.org/10.1016/j.egypro.2017.03.180, 1st Interna-
tional Conference on Energy and Power, ICEP2016, 14-16 December 2016, RMIT
University, Melbourne, Australia.
17
[36] Lee D, Hodges DH, Patil MJ. Multi-flexible-body dynamic analysis of horizontal
Axis Wind Turbines. Wind Energy 2002;5(4):281–300. http://dx.doi.org/10.
1002/we.66.

[37] Jiang B, Hui Y, Yang Q, Hua X. Nonlinear dynamic analysis of parked large
wind turbine blade considering harmonic inertial excitation using continuum
mathematical model. Thin-Walled Struct 2022;181:110128. http://dx.doi.org/10.
1016/j.tws.2022.110128.

[38] Sapountzakis EJ, Dikaros IC, Kampitsis AE, Koroneou AD. Nonlinear response of
wind turbines under wind and seismic excitations with soil–structure interaction.
J Comput Nonlinear Dynam 2015;10(4). http://dx.doi.org/10.1115/1.4027697,
041007.

[39] Lenci S, Rega G. Global nonlinear dynamics for engineering design and system
safety. Springer International Publishing; 2019, http://dx.doi.org/10.1007/978-
3-319-99710-0.

[40] Larsen J, Nielsen S. Non-linear dynamics of wind turbine wings. Int J Non-Linear
Mech 2006;41(5):629–43. http://dx.doi.org/10.1016/j.ijnonlinmec.2006.01.003.

[41] Yuan G, Wang Y. Internal, primary and combination resonances of a wind
turbine blade with coupled flapwise and edgewise motions. J Sound Vib
2021;514:116439. http://dx.doi.org/10.1016/j.jsv.2021.116439.

[42] Clementi F, Lenci S, Rega G. 1:1 internal resonance in a two D.O.F. complete
system: A comprehensive analysis and its possible exploitation for design.
Meccanica 2020;55:1309–32. http://dx.doi.org/10.1007/s11012-020-01171-9.

[43] Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind
turbine for offshore system development. Technical report NREL/TP-500-38060,
National Renewable Energy Laboratory; 2009.

[44] Makarios T, Efthymiou E, Baniotopoulos C. On the torsional–translational re-
sponse of wind turbine structures. Arab J Sci Eng 2016;41:1241–9. http://dx.
doi.org/10.1007/s13369-015-1911-7.

[45] Villaggio P. Mathematical Models for Elastic Structures. Cambridge University
Press; 1997, http://dx.doi.org/10.1017/CBO9780511529665.

[46] Lenci S, Clementi F, Mazzilli C. Simple formulas for the natural frequencies of
non-uniform cables and beams. Int J Mech Sci 2013;77:155–63. http://dx.doi.
org/10.1016/j.ijmecsci.2013.09.028.

[47] Nayfeh AH, Mook DT. Nonlinear oscillations. John Wiley & Sons; 1995, http:
//dx.doi.org/10.1002/9783527617586.

[48] Lenci S. An asymptotic approach for large amplitude motions of generic nonlinear
systems. Internat J Engrg Sci 2023;192:103928. http://dx.doi.org/10.1016/j.
ijengsci.2023.103928.

[49] Sander A, Meinhardt C, Thoben K-D. Monitoring of offshore wind turbines under
wave and wind loading during installation. In: Papadrakakis M, Fragiadakis M,
C. P, editors. Proceedings of EURODYN 2020 - XI international conference on
structural dynamics. Athens, Greece; 22–24 June 2020, p. 2189–205.

http://dx.doi.org/10.1016/j.rser.2020.109710
http://dx.doi.org/10.1016/j.rser.2020.109710
http://dx.doi.org/10.1016/j.rser.2020.109710
http://dx.doi.org/10.1016/j.renene.2022.09.093
http://dx.doi.org/10.1016/j.renene.2022.09.093
http://dx.doi.org/10.1016/j.renene.2022.09.093
http://dx.doi.org/10.1155/2018/3054851
http://dx.doi.org/10.1155/2018/3054851
http://dx.doi.org/10.1155/2018/3054851
http://dx.doi.org/10.1016/j.oceaneng.2020.108084
http://dx.doi.org/10.1016/j.oceaneng.2020.108084
http://dx.doi.org/10.1016/j.oceaneng.2020.108084
http://dx.doi.org/10.1016/j.engstruct.2011.12.013
http://dx.doi.org/10.1016/j.engstruct.2011.12.013
http://dx.doi.org/10.1016/j.engstruct.2011.12.013
http://dx.doi.org/10.1016/j.jsv.2010.03.011
http://dx.doi.org/10.1016/j.jsv.2010.03.011
http://dx.doi.org/10.1016/j.jsv.2010.03.011
http://dx.doi.org/10.1016/j.engstruct.2012.06.041
http://dx.doi.org/10.1016/j.engstruct.2012.06.041
http://dx.doi.org/10.1016/j.engstruct.2012.06.041
http://dx.doi.org/10.1016/j.rser.2020.110447
http://dx.doi.org/10.1016/j.rser.2020.110447
http://dx.doi.org/10.1016/j.rser.2020.110447
http://dx.doi.org/10.2495/978-1-84564-205-1/16
http://dx.doi.org/10.2495/978-1-84564-205-1/16
http://dx.doi.org/10.2495/978-1-84564-205-1/16
http://dx.doi.org/10.1680/jstbu.17.00167
http://dx.doi.org/10.1007/s11465-019-0524-3
http://dx.doi.org/10.1007/s11465-019-0524-3
http://dx.doi.org/10.1007/s11465-019-0524-3
http://dx.doi.org/10.1051/e3sconf/202127101005
http://dx.doi.org/10.1016/j.egypro.2017.03.180
http://dx.doi.org/10.1002/we.66
http://dx.doi.org/10.1002/we.66
http://dx.doi.org/10.1002/we.66
http://dx.doi.org/10.1016/j.tws.2022.110128
http://dx.doi.org/10.1016/j.tws.2022.110128
http://dx.doi.org/10.1016/j.tws.2022.110128
http://dx.doi.org/10.1115/1.4027697
http://dx.doi.org/10.1007/978-3-319-99710-0
http://dx.doi.org/10.1007/978-3-319-99710-0
http://dx.doi.org/10.1007/978-3-319-99710-0
http://dx.doi.org/10.1016/j.ijnonlinmec.2006.01.003
http://dx.doi.org/10.1016/j.jsv.2021.116439
http://dx.doi.org/10.1007/s11012-020-01171-9
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb43
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb43
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb43
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb43
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb43
http://dx.doi.org/10.1007/s13369-015-1911-7
http://dx.doi.org/10.1007/s13369-015-1911-7
http://dx.doi.org/10.1007/s13369-015-1911-7
http://dx.doi.org/10.1017/CBO9780511529665
http://dx.doi.org/10.1016/j.ijmecsci.2013.09.028
http://dx.doi.org/10.1016/j.ijmecsci.2013.09.028
http://dx.doi.org/10.1016/j.ijmecsci.2013.09.028
http://dx.doi.org/10.1002/9783527617586
http://dx.doi.org/10.1002/9783527617586
http://dx.doi.org/10.1002/9783527617586
http://dx.doi.org/10.1016/j.ijengsci.2023.103928
http://dx.doi.org/10.1016/j.ijengsci.2023.103928
http://dx.doi.org/10.1016/j.ijengsci.2023.103928
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb49
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb49
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb49
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb49
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb49
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb49
http://refhub.elsevier.com/S1364-0321(23)00555-5/sb49

	Along-wind and cross-wind coupled nonlinear oscillations of wind turbine towers close to 1:1 internal resonance
	Introduction
	The mechanical model and governing equations
	The translational and rotational stiffnesses

	The natural frequencies
	The nonlinear problem
	First order problem
	Second order problem
	Third order problem
	Modulation equations
	Single mode along-wind oscillation
	Periodic solutions
	Stability and bifurcations

	Results
	Comparison with numerical simulations

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix
	References


