
Computers in Industry 144 (2023) 103786

A
0
n

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.sciencedirect.com/journal/computers-in-industry

Deep learning based hierarchical classifier for weapon stock aesthetic quality
control assessment
Víctor Manuel Vargas a,∗, Pedro Antonio Gutiérrez a, Riccardo Rosati b, Luca Romeo c,
Emanuele Frontoni c, César Hervás-Martínez a

a Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain
b Department of Information Engineering, Marche Polytechnic University, Ancona, Italy
c University of Macerata, Macerata, Italy

A R T I C L E I N F O

Keywords:
Hierarchical classification
Ordinal classification
Deep learning
Aesthetic quality control
Convolutional neural networks

A B S T R A C T

In the last years, multiple quality control tasks consist in classifying some items based on their aesthetic
characteristics (aesthetic quality control, AQC), where usually the aspect of the material is not measurable
and is based on expert observation. Given the increasing amount of images in this domain, deep learning
(DL) models can be used to extract and classify the most discriminative patterns. Frequently, when trying
to evaluate the quality of a manufactured product, the categories are naturally ordered, resulting in an
ordinal classification problem. However, the ordinal categories assigned by an expert can be arranged in
different levels that somehow model a hierarchy of the AQC task. In this work, we propose a DL approach
to improve the classification performance in problems where categories are naturally ordered and follow a
hierarchical structure. The proposed approach is evaluated on a real-world dataset that defines an AQC task
and compared with other state-of-the-art DL methods. The experimental results show that our hierarchical
approach outperforms the state-of-the-art ones.
1. Introduction

In the real world, many tasks involve the classification of a given
manufactured item depending on its quality. In some cases, this quality
is referred to the absence of defects that could impact the capabili-
ties of the product. While these quality control tasks are crucial for
some business-to-business industries where any defect can represent
a prominent quality problem, there are other scenarios like business-
to-consumer industries, where the aesthetic quality is more important,
like in the automotive or weapons industry. In this context, the finished
product must guarantee high performance not only at the mechanical
level but also at the aesthetic one according to the expectations of the
customer, with the aim to make a manufactured item with excellent
perceived quality (Stylidis et al., 2020). The aesthetic quality control
(AQC) (Ouzounis et al., 2021) tasks can be defined as a subset of
general quality control (QC) (Wagersten et al., 2011) problems where
only the aesthetic quality is evaluated. This task is usually done by an
expert technician that classifies each of the items one by one merely
using its expert knowledge and focusing on qualitative and subjective
analyses. However, using machine learning techniques, a decision sup-
port system can be constructed to predict the label of each item. In some
cases, the data available to classify these elements come in the shape
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of images. Deep learning techniques are more suitable for this kind of
data, given that, using Convolutional Neural Networks (CNN) (Hansen
et al., 2018; Akshayarathna et al., 2021; Zhang et al., 2020), features
can be automatically extracted from images without prior knowledge
of each particular challenge related to the problem. CNN is a deep
neural network model which uses convolution operations to extract
higher-level features from the pixels of the input images. Also, they
have mechanisms (pooling layers) to reduce the dimensionality of the
input data to avoid overfitting and improve the convergence of the
model. In recent works, some industrial (Villalba-Diez et al., 2019;
Villalba-Díez et al., 2020; Rosati et al., 2021; Pazzaglia et al., 2021)
and Internet of Things (Elsisi et al., 2021) problems have been tackled
using these methods, including inspection of laser welding defects on
batteries (Yang et al., 2020), damage prediction for steel beams (Onchis
and Gillich, 2021), industrial object visual detection (Ge et al., 2020),
predictive maintenance for motors (Kiangala and Wang, 2020), and
damage-type identification in structures (Agrawal and Chakraborty,
2022), among others. In Chiarello et al. (2021), the authors defined
different challenges that can be solved combining Engineering Design
and Computer Science techniques.
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Also, when trying to evaluate the quality of a manufactured product
(AQC task), the categories usually show a natural order (i.e. the first
category represents the worst quality while the last class indicates the
maximum quality). Thus, the problem should be considered an ordinal
classification problem instead of a standard nominal classification one.
Ordinal classification problems (Gutierrez et al., 2016; Vargas et al.,
2022; Cao et al., 2020) are those problems where the variable that
we aim to predict is selected from a group of categories that follow
a natural order which is inherent to the real problem that is being
solved. In some aspects, ordinal classification, which is also named
ordinal regression, is similar to standard regression problems. However,
in regression, the objective variable is continuous, while in ordinal
classification it is discrete and finite so that it must belong to one of the
categories which are defined for each problem. This kind of problems
are present in numerous research areas. For example, there are multiple
recent works related to biomedicine that used an ordinal approach to
solve the proposed problem (Durán-Rosal et al., 2021; Albuquerque
et al., 2021).

In these terms, a classification problem can be defined as the
problem of predicting the real class 𝑦 from input data 𝐱 ∈  ⊆ R𝐾 . The
real class 𝑦 belongs to a set of categories  = {1,2,3,4,… ,𝑄},
where 𝑄 is the total number of labels of the problem. An ordinal
classification problem can be defined as a special case of a classification
problem where the labels follow a natural order. Thus, these labels
satisfy the expression: 1 ≺ 2 ≺ 3 ≺ 4 ≺ ... ≺ 𝑄. The precedence
(≺) operator indicates that categories follow a specific order but, in
contrast to regression, the distance between them is not quantifiable.
Therefore, the distance between two different pairs of adjacent classes
does not have to be the same. The aforementioned inherent order can
be expressed as an integer number using the function (⋅), so that
(𝑞) = 𝑞 and 𝑞 = 1,… , 𝑄.

This kind of problem can be tackled as a standard classification
problem, discarding the subsequent order between categories. How-
ever, the ordinal information can be used to improve the classification
performance by reducing the error in distant classes, which are the most
important errors in these problems. Thus, misclassifying a pattern in an
adjacent class in a problem with 10 classes is way less important than
classifying it in the furthest category.

The AQC we tackle in our work, as well as the main challenge
we aim to solve, is originated from a specific company’s demand.
A well-known weapon manufacturer has collected for some time a
decent number of images of the wooden stocks that they equip in their
shotguns or rifles. For each of the images, they took two high-quality
photographs from each side of the stock. All the images were made
using the same lighting conditions and camera so that they are uniform.
An expert technician labelled each stock according to the aesthetic
quality of the wood which was employed to make it. Therefore, they
built a dataset that can be used to construct and train a deep learning
model that tries to predict the quality of a given stock from an input
image. As will be described in Section 3, the existing ordinal labels are
structured hierarchically, having macro classes and micro labels, where
every macro class contain three sub-classes or micro classes.

Hence, the aim of this work is to propose a hierarchical approach
that simplifies, generalises and automatises the AQC task by using
multiple ordinal CNN models to predict hierarchically the final label
in two steps: one for the macro label and one for the micro. A similar
approach was introduced in a previous work (Sánchez-Monedero et al.,
2018), where, in a medical application, an initial prediction was done
to obtain a positive or negative result, and, a posterior classification
determined different grades when the first result was positive. How-
ever, in this work, instead of using a binary classifier for the first step,
an ordinal classifier with four classes is used. For the second step,
three different ordinal classifiers are employed to obtain the micro
label. A combination of the labels obtained in both steps results in
the final label. Concerning the challenges introduced in Chiarello et al.
2

(2021), in this work, we try to tackle Challenge 13, Redesign ad-hoc
Data Science methods, and Challenge 20, Automatic data labelling.
Our motivation is justified by the facts (i) to redesign and automatise
standard QC task procedure in order to properly perform in a specific
context and (ii) to mitigate the inter-subject variability of the overall
AQC annotation procedure while providing classification that could be
more suitable for supporting the expert human operator.

The rest of the manuscript is structured as follows: in Section 2
some previously proposed ordinal methods are described, in Section 3
the aforementioned dataset is characterised, in Section 4 the proposed
method is described, in Section 5 the model and the design of the ex-
periments are illustrated, in Section 6 the results of all the experiments
are shown and compared, including an statistical analysis, and, finally,
in Section 7 the conclusions of this work are summarised.

2. Related works

The AQC tasks are usually based on classifying images and thus sev-
eral state-of-the-art works employed standard DL algorithms (Kao et al.,
2017). The general aim is to automatise the overall QC analysis that
is strictly human dependent, subjective and not directly measurable.
However, the AQC poses additional real challenges: the annotation pro-
cedure exhibit a different level of complexity and scales. Approaching
this problem with a nominal DL classification method (which does not
exploit class order) may lead to a lower generalisation performance,
especially between widely distant classes, which represents a significant
error from the industrial perspective. Moreover, a single model for
learning the entire annotation may not be able to capture the different
scales and magnitudes of the ordinal QC classes which usually discloses
a hierarchical structure.

In this section, we describe three methods that were proposed in
previous works to improve the classification performance for ordi-
nal problems, as well as two hierarchical methods based on Error
Correcting Output Codes (ECOC).

The cumulative link models (CLM) are threshold models described
in Agresti (2010), which can be used to model the posterior proba-
bilities of a given ordinal problem. These kinds of models are based
on the concept of a latent variable (or a linear projection) and a set
of thresholds that separate different categories. In Vargas et al. (2019,
2020), the authors proposed to combine the CLM with a deep neural
network model. Thus, the aforementioned projection was obtained
from a convolutional neural network model and used to determine the
final class of each sample.

Also, in de la Torre et al. (2018) the authors proposed to use
a different loss function for the optimisation process to exploit the
order information of the problem. In these terms, they defined the
Quadratic Weighted Kappa (QWK) loss function which is based on the
Kappa index and applied it to train models with a standard softmax
output. Said loss function uses a penalisation matrix which applies a
higher error to the prediction when the class obtained is far from the
ground truth label. This loss function was also used by the authors
of Vargas et al. (2020), and they both checked that the performance
for ordinal problems improved when using this loss function instead of
the standard categorical cross-entropy loss.

Then, in Zhang et al. (2021), Vargas et al. (2022) the authors
proposed a method to represent the labels in a soft manner instead
of using the standard one-hot encoding. To do that, they also used a
custom loss function. In this case, they modified the standard cross-
entropy loss adding a regularisation term. The standard cross-entropy
loss is often defined as:

𝐿(𝐱) =
𝑄
∑

𝑞=1
ℎ(𝑞)[− log 𝑝(𝑦 = 𝑞|𝐱)], (1)

where ℎ(𝑞) = 𝛿𝑦,𝑞 , 𝑦 is the ground truth class and 𝛿𝑦,𝑞 is the Dirac delta,
which equals to 1 for 𝑞 = 𝑦, and 0 otherwise. Thus, the regularisation
can be applied to the ℎ(𝑞) term, turning it into a soft distribution

′
instead of being 0 or 1. This soft term is denoted as ℎ (𝑞) and defined
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as ℎ′(𝑞) = (1 − 𝜂)𝛿𝑦,𝑞 + 𝜂𝑓 (𝑥), where 𝑓 (𝑥) is the density or probability
function of a given distribution. Therefore, the regularisation term can
be sampled from a uniform distribution

( 1
𝑄

)

, in the most simple case,
r from other distributions like Poisson, binomial or exponential (Liu
t al., 2020). In Vargas et al. (2022), the authors used a beta distribu-
ion to obtain these soft labels and they proved that using this kind
f distribution improved the performance over other state-of-the-art
pproaches. Given that the beta distribution has two parameters that
ust be fixed (𝑎 and 𝑏), they also proposed a method to analytically
etermine them based on the number of classes of the problem.

Even though the described methods were proved to improve the
erformance of ordinal classification problems, none of them included
he possibility of having a hierarchical structure implicit in the cate-
ories of the problem. When dealing with complex problems that are
ierarchically labelled, using a method that exploits these hierarchical
tructures can lead to better classification performance and lower cost
rrors. In these terms, the ECOC approach (Dietterich and Bakiri,
994) was proposed as a method to decompose a multi-class problem
nto multiple binary problems that can be solved independently using
ifferent models. Then, the predictions of each model are combined
ike in any ensemble. This method has been used in several previous
orks (Bora et al., 2020) in combination with CNN models. Although

his approach is not originally hierarchical, a hierarchical approach can
e easily derived from it, given that the codes generated for each of
he labels can include the hierarchical dependencies of those classes.
o do that, the codes can be simply composed of 𝑄𝑖 bits for each of
he hierarchical levels, where 𝑄𝑖 is the number of classes in level 𝑖.
he bits corresponding to the correct label on each of the levels will be
ctive while the others will remain zero. In this way, the hierarchical
tructure is encoded in the generated codes. However, this approach
oes not take into account the ordinal information, given that each
f the bits is going to be one or zero without taking into account the
est of the bits. Therefore, to address this problem, in Barbero-Gómez
t al. (2022), the authors proposed a method to generate the ECOC
odes in an ordinal way, resulting in better classification performance
or ordinal problems. However, in this case, the hierarchical structure
f the labels is not represented by the codes. Also, it is worth noting
hat the ECOC approach usually will spend more time for the training
rocess, given that they decompose the original multi-class problem in
ultiple binary problems, and each of them is trained using all the

raining samples.
Taking into account the characteristics of the approaches described,

n this work, we propose to combine the described ordinal methods
ith a new hierarchical classification approach that aims to predict

he correct label for an ordinal problem in two separate steps. In these
erms, our method is further described in Section 4.

. Problem formulation

The weapons manufacturing industry is an important industry that
an benefit from machine learning techniques for AQC. Concretely,
here is a well-known manufacturer who makes different types of
eapons, including shotguns and rifles. Most of these weapons equip a
ooden stock that can be classified depending on the aesthetic quality
f the wood that was used to make it. Since the manufacturing of
ooden parts is made by external suppliers, the company carries out
n AQC for defining whether the items comply with the quality re-
uirements. Therefore, different quality categories follow an order that
s determined by the AQC problem. Apart from following an ordinal
elation, these categories are grouped in four macro classes: 1, 2, 3,
nd 4. The macro classes can be easily classified by an expert. However,
ach of these macro classes contains several micro labels (-, ⋅, +) which

are harder to classify. Combining both types of labels (i.e. different
scale), the proposed problem contains 10 ordinal categories: 1, 2−, 2,
+, 3−, 3, 3+, 4−, 4, 4+ (note that the first class has not been divided

into micro labels because the company usually produces model series
3

with higher quality classes). Fig. 1 shows the hierarchical structure of
the classes in a more detailed manner.

In the last years, the aforementioned weapons manufacturer has
been collecting different images of the stocks they have been pro-
ducing. These images have been taken from both sides of the stock
and using the same camera and lighting conditions. In this way, the
dataset includes high-quality images that were labelled according to
the categories described before. Currently, the dataset comprises a total
of 2120 1000 × 500 colour images belonging to 1060 different stocks.
Table 1 shows the distribution of all the samples across the different
categories described.

To use these images to train a CNN model, they have been resized
to 470 × 270 and the background has been replaced with black plain
olour. Fig. 2 shows some images from the dataset including their class
abel.

In the next section, the proposed method to train a classifier follow-
ng this hierarchical structure and the strategy to obtain the final label
or each sample are described.

. Proposed method

In this section, the proposed hierarchical methodology is shown.
he description of the hierarchical method is divided into two parts:
1) the ensemble architecture and the method to combine the predic-
ions obtained from the individuals models, and (2) the architecture
f the deep network that is used for each individual model that the
ierarchical structure contains.

.1. Ensemble architecture

In this work, we propose a new hierarchical method to build a
lassifier for the hierarchical ordinal problem described in Section 3.
he main idea behind this method is to do a multi-step classification,
here, in the first step, we try to distinguish the macro classes (1, 2, 3
r 4, in this case) and, in the second step, we aim to classify the micro
lasses (-, ⋅ or +). Completely independent models are used for each
tep: for the first step, a single model is used to derive the macro class.
n the second step, one separate model is used to determine the micro
lass for each of the aforementioned macro classes. Therefore, for this
roblem, four different models are used to obtain the final prediction.
he number of models can vary for other problems where the number
f classes or their hierarchy is different.

The model used to predict the macro class is defined as 𝑓𝑀 (𝐱) → 𝑦𝑀 ,
here 𝑦𝑀 is the predicted macro label. On the other hand, the models
sed to predict the micro classes are denoted as 𝑓𝑚𝑖

(𝐱) → 𝑦𝑚𝑖
, where

th classifier is associated with macro class 𝑖, and 𝑦𝑚𝑖
is the micro

label predicted by the classifier associated with 𝑖th macro class. The
predictor 𝑦𝑀 is trained using all the samples in the training set, but
these samples are labelled using only their macro class. In the same
way, the classifiers 𝑦𝑚𝑖

are trained using only the samples that belong
to the 𝑖th macro class and they are labelled using only the micro
labels. Therefore, the complete hierarchical model can be defined as a
ensemble model which is composed of 4 independent classifiers, whose
decision function can be defined as:

𝑓 (𝐱) =
{

𝑓𝑀 (𝐱), if (𝑓𝑀 (𝐱)) = 1,
𝑓𝑀 (𝐱) ∪ 𝑓𝑚𝑖

(𝐱), if (𝑓𝑀 (𝐱)) > 1,
(2)

where 𝑖 = (𝑓𝑀 (𝐱)), and (⋅) represents the order of any given ordinal
lass. Therefore, the final labels predicted by the hierarchical model
an be denoted as:

=

{

𝑦𝑀 , if (𝑦𝑀 ) = 1,
𝑦𝑀 ∪ 𝑦𝑚𝑖

, if (𝑦𝑀 ) > 1,
(3)

where 𝑖 = (𝑦𝑀 ).
Taking into account the problem tackled in this work, 𝑦𝑀 ∈

{1, 2, 3, 4}, and 𝑦 ∈ {−, ⋅,+}, where 𝑖 ∈ {2, 3, 4}.
𝑚𝑖
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Fig. 1. Hierarchical classes structure.
Table 1
Stocks dataset classes distribution.

Label 1 2− 2 2+ 3− 3 3+ 4− 4 4+

Images 165 148 212 177 179 306 344 208 275 106
Fig. 2. Cropped dataset images from class 1 (top-left), 2 (top-right), 2+ (bottom-left) and 3+ (bottom-right).
Fig. 3. Hierarchical models structure.
Fig. 3 illustrates the hierarchical scheme that has been described. On
the left side, the models considered for this approach are defined, fol-
lowed by the training procedure and the way that the final predictions
are obtained.

4.2. Deep network architectures

In order to obtain more robust results regarding the proposed hier-
archical methods, three different well-known architectures have been
used: VGG-16 (Simonyan and Zisserman, 2014), ResNet-101 (He et al.,
2016) and DenseNet-121 (Huang et al., 2017). In this way, we can
4

prove that the proposed methodology is not architecture dependent,
and it can work with any CNN model.

Also, the convolutional parts of the models use the pre-trained Im-
ageNet weights instead of adjusting them from a random initialisation.
Therefore, only the top part of the model needs to be adjusted. This
optimisation approach, named transfer learning, is commonly used to
train deep models as it speeds up the training process and improves
convergence. For the top part of the model, a 50% dropout is performed
before two dense layers with 4096 units. In the output layer, two
different functions have been employed:
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• Softmax function, which is the standard output function for clas-
sification tasks.

• Cumulative link models (described in Section 2), that enhance
ordinal classification performance. In this case, two different link
functions have been used: logit and probit.

The VGG-16, ResNet-101 and DenseNet-121 contain 266M (251M
rainable), 67M (25M trainable) and 493M (486M trainable) parame-
ers, respectively. There are some fixed parameters due to the transfer
earning approach. It is worth noting that the ResNet-101 has less
arameters compared to the other alternatives. However, the residual
eural network architectures have demonstrated having an outstanding
eneralisation capability with a reduced number of parameters.

. Experiments

In this Section, the experiments that have been conducted are
etailed, including a description of the data partitions used along with
he optimisation and evaluation processes followed.

.1. Experimental design

The models described in Section 4.2 are evaluated following a
oldout scheme, where 80% of the whole set is used to adjust the
odel while the remaining 20% forms the test set. From the training

et, another 15% of the samples are taken for the validation set, which
s used to stop the training process when the model performance stops
mproving. All the experiments are repeated 30 times using different

seeds to create the data partitions and initialise the model parameters.
In this way, we obtain robust results from the point of view of a
statistical analysis.

When using the hierarchical approach, different loss functions can
be employed for the model which predicts the macro class and the
models that predict the micro class. The experiments are performed
using different loss functions to guide the optimisation algorithm:

• Categorical cross-entropy (CCE): the standard CCE is commonly
used for nominal classification problems where classes do not
follow any order.

• QWK Loss: the quadratic weighted kappa loss function that was
described in Section 2.

• Beta regularised categorical cross-entropy (CCE-Beta): the uni-
modal regularised CCE that was described in Section 2.

In this way, we test different loss functions combinations. Also, the
output function can vary from one model to the others, leading to using
an ordinal output like the CLM in the first step and the standard softmax
in the second.

Regarding the proposed hierarchical methods, different methodolo-
gies are used for the first classifier, where 4 classes are considered:
C1 = {1}, C2 = {2−, 2, 2+}, C3 = {3−, 3, 3+} and C4 = {4−, 4, 4+}, and the
econd classifier, which considers only three different classes (−, ⋅,+).

These methodologies are listed below and summarised in Table 2:

1. Hierarchical baseline. Softmax in the output layer and the stan-
dard CCE for both the first classifier and the next three classi-
fiers.

2. Hierarchical CLM with logit link in the output layer and Beta
regularised cross-entropy as loss function for the first and the
subsequent classifiers.

3. Hierarchical CLM with probit link in the output layer and Beta
regularised cross-entropy as loss function for the macro and the
micro classifiers.

4. Hierarchical CLM with logit link in the output layer and Beta
regularised cross-entropy loss for the first model and softmax
function with the standard CCE loss for the micro models of the
5

second stage.
5. Hierarchical CLM with probit link in the output layer and Beta
regularised cross-entropy loss for the first model and softmax
function with the standard CCE loss for the micro models of the
second stage.

6. Hierarchical CLM with logit link in the output layer for the first
and the next three models and QWK loss function for all of them.

7. Hierarchical CLM with probit link in the output layer and QWK
loss function for the first and the second stage.

Models described in items 4 and 5 use an ordinal output function
and an ordinal loss function for the first models, which tries to distin-
guish between 4 classes, and a nominal approach, for the next three
models. Even though the problem that is solved in the second step
is ordinal too, the number of classes is too small to benefit from the
advantages of using an ordinal approach. Therefore, using a nominal
approach for these models has been considered as a good alternative
and is going to be compared with the rest of the experiments that have
been proposed.

For comparison purposes, the non-hierarchical alternatives previ-
ously proposed in the literature (see Section 2) are also run. In these
cases, the number of classes considered is 10. These alternatives are
listed below and summarised in Table 3:

8. Baseline. Softmax function in the output layer and the standard
CCE as loss function.

9. CLM with logit link (Vargas et al., 2020) in the output layer and
Beta regularised CCE (Vargas et al., 2022) as loss function.

10. CLM with probit link (Vargas et al., 2020) in the output layer
and Beta regularised CCE (Vargas et al., 2022) as loss function.

11. CLM with logit link (Vargas et al., 2020) in the output layer and
QWK loss function (de la Torre et al., 2018).

12. CLM with probit link (Vargas et al., 2020) in the output layer
and QWK loss function (de la Torre et al., 2018).

13. ECOC with codes that represent the hierarchical structure of the
classes (Dietterich and Bakiri, 1994). In this case, each code is
composed of 7 bits, where the first 4 bits are related to the macro
class and the last 3 bits represent the micro class (e.g. for class
2+, 0100 001).

14. ECOC with codes that contain the ordinal information of the
labels (Barbero-Gómez et al., 2022). They are composed of 𝑄−1
bits and each bit 𝑞 is set to 1 when the class that the code is
associated to is higher than 𝑞 (e.g. for class 2+, which is the 4𝑡ℎ
class, 𝑞 = 4, 111 000 000).

The optimisation algorithm used for all the experiments is the Adam
lgorithm with a learning rate of 0.01. Taking into account the size of
he dataset, the mini-batch size is fixed to 16. The model is trained
or a maximum of 50 epochs. However, the early stopping strategy
tops the training process when the validation loss stops improving.
his strategy uses a patience value of 15, which determines the number
f epochs without validation loss improvements before stopping the
raining process.

. Results

In this section, the results of the experiments described in Section 5
re shown. To better analyse the performance, we have considered
everal evaluation metrics over the 10-class problem:

• Quadratic weighted kappa (QWK) (de la Torre et al., 2018),
defined in Section 2.

• Minimum sensitivity (MS) (Caballero et al., 2010; Cruz-Ramírez
et al., 2014). It represents the lowest percentage of patterns cor-
rectly predicted as belonging to each class, concerning the total
number of examples in that class. The MS is useful to guarantee
that all the classes are decently classified and can be calculated
as:

MS = min
{

𝑆𝑞 =
𝑛𝑞𝑞 ; 𝑞 = 1,… , 𝑄

}

, (4)

𝑛𝑞∙
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Table 2
Hierarchical experiments types. Number of classes refers to the classes considered for each task.

Macro loss Macro output # classes Micros loss Micros output # classes

1 CCE Softmax 4 CCE Softmax 3, 3, 3
2 CCE Beta CLM Logit 4 CCE Beta CLM Logit 3, 3, 3
3 CCE Beta CLM Probit 4 CCE Beta CLM Probit 3, 3, 3
4 CCE Beta CLM Logit 4 CCE Softmax 3, 3, 3
5 CCE Beta CLM Probit 4 CCE Softmax 3, 3, 3
6 QWK CLM Logit 4 QWK CLM Logit 3, 3, 3
7 QWK CLM Probit 4 QWK CLM Probit 3, 3, 3
1
t

𝐶

w
t
a
b
f

Table 3
Different sets of non-hierarchical experiments. The ECOC alternatives (13 and 14)
consist of 7 and 9 binary tasks respectively, given that the multi-class problem is
decomposed in multiple binary tasks.

Loss Output # classes

8 CCE Softmax 10
9 CCE Beta CLM Logit 10
10 CCE Beta CLM Probit 10
11 QWK𝐿 CLM Logit 10
12 QWK𝐿 CLM Probit 10
13 CCE Softmax 2 (7 tasks)
14 CCE Softmax 2 (9 tasks)

where 𝑛𝑞𝑞 and 𝑛𝑞∙ are, respectively, the number of samples cor-
rectly classified in category 𝑞, and the total number of patterns
predicted as class 𝑞.

• Mean absolute error (MAE) (Cruz-Ramírez et al., 2014). It is the
average absolute deviation of the predicted class from the true
class (number of categories in the ordinal scale). It can be defined
as:

MAE = 1
𝑁

𝑁
∑

𝑖=1
|(𝑦𝑖) − (𝑦̂𝑖)|, (5)

where (𝑦𝑖) and (𝑦̂𝑖) are the order of the true and predicted
labels for the 𝑖th sample.

• Correctly Classified Rate (CCR) or Accuracy. It is the standard
metric for classification and determines the ratio of test samples
that have been correctly classified.

QWK, MS and CCR should be maximised, while MAE should be min-
imised.

Then, taking into account the aforementioned metrics, the results
of the experiments with the three different architectures are shown in
Tables 4–6. The experiments that are marked as hierarchical were run
using the proposed hierarchical approach, while the non-hierarchical
methods were run for comparison purposes.

From a solely descriptive point of view, the results show that the
hierarchical method achieved the best results for CCR, MAE and MS
for all the architectures. However, the non-hierarchical model that
uses the Beta regularised cross-entropy with the CLM logit resulted in
better performance for the QWK metric. For the VGG-16 models, the
hierarchical alternative which uses the Beta regularised cross-entropy
for the macro model combined with the CLM with logit link, and the
standard cross-entropy loss with the standard softmax output for the
micro models obtained the best results. In the case of the ResNet-101
architecture, the best results regarding MS and MAE were produced
by the same alternative that achieved the best results in VGG-16.
However, the best value for CCR was obtained when using the standard
cross-entropy loss and the softmax for both, the macro and the micro
models. Finally, when using the DenseNet-121 architecture, the best
results are achieved with the standard cross-entropy and the softmax
function for both steps. Also, in Fig. 4, a boxplot is represented for each
of the metrics considered for the architecture that obtained the best
results (i.e. ResNet-101). For a more in depth comparison, the boxplots
corresponding to the other model architectures have been added in
6

Appendix B. f
As we mentioned in Section 2, the computational cost of the pro-
posed hierarchical approach should be lower than the cost associated
with the ECOC approaches. To confirm that fact, the mean time re-
quired to complete both experiments was compared for each of the
architectures. In these terms, for the VGG-16 architecture, the hierar-
chical approach took 20 s while the ECOC needed 45 seconds per epoch.
For the ResNet-101 model, the first took 27 s and the second 91 s. For
the DenseNet-121 model, they took 23 s and 51 s respectively.

To sum up, the following conclusions can be obtained from the
results tables:

• Our hierarchical approaches obtained the best results for MS,
MAE and CCR considering all the model architectures.

• Our hierarchical model that uses the CCE Beta + CLM Logit for the
macro task and CCE + Softmax for the micro classifiers obtained
the best performance in most of the cases. The second best
alternative is the hierarchical model which uses CCE + Softmax
for both steps.

• The computational cost of the proposed hierarchical approach is
lower than the cost associated with the ECOC approaches.

Even though the hierarchical method obtained the best performance
for most of the metrics in all the model architectures, in the next sec-
tion, a statistical analysis is performed to check whether the differences
obtained are significant.

6.1. Statistical analysis

In this section, a statistical analysis has been performed to deter-
mine which of the tested alternatives are significantly better than the
others. Also, we aim to check whether the proposed approach obtains
better results than the baseline approach and previously proposed
methods. To do that, we considered all the model architectures and
each of the metrics was analysed separately.

First, for each of the four analysed metrics, a Kolmogorov–Smirnov
(Massey Jr., 1951) test was performed to check whether the 30 test
values obtained, for each method and architecture, from the different
seeds are normally distributed. The test confirmed that the values are
normally distributed (𝑝-value < 0.001) for all the metrics and method-
ologies and architectures, except for the MS metric when using the
QWK loss. Therefore, an Analysis of variance II (ANOVA II) (Miller Jr.,
1997) test, where the factors considered are the methodology applied
and the model architecture used, was performed for each of the metrics.
It is worth noting that the statistical tests where performed using 90
points for each method (30 for each architecture).

First, the CCR metric was considered. 𝐶𝐶𝑅𝑖𝑗 , (𝑖 = 1,… , 12; 𝑗 =
, 2, 3) denotes all the methodologies considered. The observations fit
he following equation:

𝐶𝑅𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗 + 𝜖𝑖𝑗𝑘, 𝑘 = 1,… , 30, (6)

here 𝜇 is the fixed effect that is common to all the populations, 𝛼𝑖 is
he effect associated with the 𝑖th level of the first factor, 𝛽𝑗 is the effect
ssociated with the 𝑗th level of the second factor, 𝛾𝑖𝑗 is the interaction
etween the 𝑖th level of the first factor and the 𝑗th level of the second
actor, and the term 𝜖𝑖𝑗𝑘 is the influence of the random effects in the
inal result. The results of this test are shown in Table 7.
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Table 4
Mean results for the test set and 30 executions using the VGG-16 architecture. The Hier. column indicates whether the method uses the proposed
hierarchical methodology or not.

Hier. Macro loss Macro output Micros loss Micros output QWK↑ MS↑ MAE↓ CCR↑

1 Yes CCE Softmax CCE Softmax 0.8921 0.2311 0.7435 0.5129
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.9088 0.1778 0.7058 0.4908
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.9099 0.1782 0.7012 0.4937
4 Yes CCE Beta CLM Logit CCE Softmax 0.9055 𝟎.𝟐𝟒𝟎𝟎 𝟎.𝟔𝟗𝟒𝟕 𝟎.𝟓𝟐𝟑𝟖
5 Yes CCE Beta CLM Probit CCE Softmax 0.9033 0.1893 0.7057 0.5230
6 Yes QWK CLM Logit QWK CLM Logit 0.9056 0.1349 0.7097 0.5031
7 Yes QWK CLM Probit QWK CLM Probit 0.9062 0.1334 0.7152 0.4948

8 No CCE Softmax – – 0.8713 0.1643 0.8253 0.4839
9 No CCE Beta CLM Logit – – 𝟎.𝟗𝟏𝟗𝟐 0.2152 0.7121 0.4478
10 No CCE Beta CLM Probit – – 0.9161 0.2110 0.7299 0.4389
11 No QWK CLM Logit – – 0.9106 0.0000 0.7370 0.4544
12 No QWK CLM Probit – – 0.9123 0.0000 0.7358 0.4517
13 No CCE Softmax - - 0.8735 0.1552 0.8625 0.4666
14 No CCE Softmax - - 0.8852 0.0457 0.8420 0.4313
Fig. 4. Boxplots for all the test metrics using the ResNet-101 architecture. Methods are identified with the numbers defined in Table 5.
When the 𝑝-value represented in the ANOVA table is smaller than
.01, the factor effect is statistically significant at a level of confidence
f 99%. The results obtained from this test reported that the methodol-
gy and the architectures used significantly influence the test accuracy
alue obtained. Also, there is an interaction between both factors that
lso influences the final result.

Given that there are significant differences in mean CCR depending
n the methodology considered, a post-hoc HSD Tukey’s (Tukey, 1949)
est was performed to compare the mean CCR values in the test set
etween all the methodologies. The results of this test are summarised
n Table 8. It groups the methodologies into four different subsets
ccording to their performance such that the elements within a subset
re not significantly different between them, while the differences
7

etween members of different groups are significant. The first subset
contains the worst methodologies while the last subset groups the best
ones.

The results in Table 8 depict that the ordinal methodologies tend
to reduce the accuracy even though they improve the performance
regarding ordinal metrics. However, using the proposed hierarchi-
cal approach, the accuracy metric is statistically improved, obtaining
higher values than the standard nominal approach. In this case, the best
methodology was the hierarchical one that used the standard categor-
ical cross-entropy loss and the softmax output for both, the macro and
the micro models. However, there are no significant differences with
the hierarchical methods which use the Beta regularised CCE and the
CLM with logit or probit link for the macro model, and the standard

CCE + softmax for the micro models. The fact that using a nominal
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Table 5
Mean results for the test set and 30 executions using the ResNet-101 architecture. The Hier. column shows whether the method uses the
proposed hierarchical methodology or not.

Hier. Macro loss Macro output Micros loss Micros output QWK↑ MS↑ MAE↓ CCR↑

1 Yes CCE Softmax CCE Softmax 0.9080 0.2310 0.6647 𝟎.𝟓𝟒𝟕𝟗
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.9165 0.2221 0.6737 0.5075
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.9155 0.2036 0.6863 0.5031
4 Yes CCE Beta CLM Logit CCE Softmax 0.9129 𝟎.𝟐𝟒𝟔𝟗 𝟎.𝟔𝟔𝟏𝟐 0.5408
5 Yes CCE Beta CLM Probit CCE Softmax 0.9108 0.2126 0.6765 0.5352
6 Yes QWK CLM Logit QWK CLM Logit 0.9065 0.0429 0.7599 0.4500
7 Yes QWK CLM Probit QWK CLM Probit 0.9059 0.0953 0.7586 0.4517

8 No CCE Softmax – – 0.9002 0.1981 0.7050 0.5318
9 No CCE Beta CLM Logit – – 0.9215 0.1910 0.7162 0.4427
10 No CCE Beta CLM Probit – – 𝟎.𝟗𝟐𝟑𝟗 0.2314 0.7075 0.4435
11 No QWK CLM Logit – – 0.9091 0.0000 0.8078 0.4166
12 No QWK CLM Probit – – 0.9169 0.0000 0.7461 0.4357
13 No CCE Softmax - - 0.8120 0.0010 1.1705 0.3306
14 No CCE Softmax - - 0.8228 0.0000 1.0966 0.3395
Table 6
Mean results for the test set and 30 executions using the DenseNet-121 architecture. The Hier. column indicates whether the method uses the
proposed hierarchical methodology or not.

Hier. Macro loss Macro output Micros loss Micros output QWK↑ MS↑ MAE↓ CCR↑

1 Yes CCE Softmax CCE Softmax 0.8880 𝟎.𝟏𝟗𝟖𝟖 𝟎.𝟕𝟐𝟔𝟏 𝟎.𝟓𝟐𝟕𝟔
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.8924 0.1508 0.7869 0.4560
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.8912 0.1506 0.7910 0.4631
4 Yes CCE Beta CLM Logit CCE Softmax 0.8888 0.1551 0.7621 0.5031
5 Yes CCE Beta CLM Probit CCE Softmax 0.8827 0.1703 0.7825 0.4997
6 Yes QWK CLM Logit QWK CLM Logit 0.8823 0.0906 0.8380 0.4344
7 Yes QWK CLM Probit QWK CLM Probit 0.8859 0.0933 0.8234 0.4435

8 No CCE Softmax – – 0.7696 0.0299 1.1420 0.4081
9 No CCE Beta CLM Logit – – 0.8867 0.1548 0.9041 0.3663
10 No CCE Beta CLM Probit – – 𝟎.𝟖𝟗𝟗𝟐 0.1797 0.8314 0.4049
11 No QWK CLM Logit – – 0.8710 0.0000 1.0047 0.3467
12 No QWK CLM Probit – – 0.8790 0.0000 0.9606 0.3608
13 No CCE Softmax - - 0.8776 0.1773 0.8390 0.4707
14 No CCE Softmax - - 0.8921 0.1148 0.7996 0.4651
Table 7
Results of the ANOVA II test for the CCR metric. SS stands for Sum of Squares, DF refers to the Degrees of Freedom, MSq are the Mean Squares,
and F is the F-ratio.
Source SS DF MSq F 𝑝-value

Corrected model 3.843 41 0.094 42.924 < 0.001
Intercept 267.244 1 267.244 122396.130 < 0.001
Method 2.252 13 0.173 79.338 < 0.001
Model 0.346 2 0.173 79.255 < 0.001
Method * Model 1.245 26 0.048 21.923 < 0.001
Error 2.659 1218 0.002
Total 273.746 1260
Corrected total 6.502 1259
Table 8
Results of the post-hoc HSD Tukey’s test for the CCR metric.

Hier. Macro loss Macro out Micro loss Micro out Subsets

1 2 3 4

11 No QWK CLM Logit – – 0.4059
14 No CCE Softmax – – 0.4120
12 No QWK CLM Probit – – 0.4161
9 No CCE Beta CLM Logit – – 0.4189
13 No CCE Softmax – – 0.4226
10 No CCE Beta CLM Probit – – 0.4289
11 Yes QWK CLM Logit QWK CLM Logit 0.4625
12 Yes QWK CLM Probit QWK CLM Probit 0.4633 0.4633
8 No CCE Softmax – – 0.4746 0.4746
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.4848 0.4848
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.4866
5 Yes CCE Beta CLM Probit CCE Softmax 0.5193
4 Yes CCE Beta CLM Logit CCE Softmax 0.5226
1 Yes CCE Softmax CCE Softmax 0.5295

𝑝-values 0.060 0.080 0.052 0.975
8
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Table 9
Results of the post-hoc HSD Tukey’s test for the QWK metric.

Hier. Macro loss Macro out Micro loss Micro out Subsets

1 2 3 4

8 No CCE Softmax – – 0.8470
13 No CCE Softmax – – 0.8544 0.8544
14 No CCE Softmax – – 0.8667
11 No QWK CLM Logit – – 0.8952
1 Yes CCE Softmax CCE Softmax 0.8960
6 Yes QWK CLM Logit QWK CLM Logit 0.8982
5 Yes CCE Beta CLM Probit CCE Softmax 0.8989 0.8989
7 Yes QWK CLM Probit QWK CLM Probit 0.8993 0.8993
12 No QWK CLM Probit – – 0.9007 0.9007
4 Yes CCE Beta CLM Logit CCE Softmax 0.9024 0.9024
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.9056 0.9056
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.9059 0.9059
9 No CCE Beta CLM Logit – – 0.9091 0.9091
10 No CCE Beta CLM Probit – – 0.9130

𝑝-values 0.916 0.198 0.076 0.065
Table 10
Results of the post-hoc HSD Tukey’s test for the MS metric.

Hier. Macro loss Macro out Micro loss Micro out Subsets

1 2 3 4 5 6 7

11 No QWK CLM Logit – – 0.000
12 No QWK CLM Probit – – 0.000
14 No CCE Softmax – – 0.080
6 Yes QWK CLM Logit QWK CLM Logit 0.090 0.090
7 Yes QWK CLM Probit QWK CLM Probit 0.107 0.107
8 No CCE Softmax – – 0.1308 0.1308
13 No CCE Sofmtax – – 0.166 0.166
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.178 0.178
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.184 0.184 0.184
9 No CCE Beta CLM Logit – – 0.187 0.187 0.187
10 No CCE Beta CLM Probit – – 0.207 0.207 0.207
5 Yes CCE Beta CLM Probit CCE Softmax 0.208 0.208 0.208
4 Yes CCE Beta CLM Logit CCE Softmax 0.214 0.214
1 Yes CCE Softmax CCE Softmax 0.220

𝑝-values 1.000 0.667 0.064 0.220 0.063 0.179 0.173
approach for the second phase achieves better results is due to the lower
number of labels in the micro-tasks.

The same statistical analysis has been performed for the QWK
metric. The ANOVA II test also reported significant differences for the
different factors (𝑝-value < 0.001) and a significant interaction between
them. Therefore, the results of the post-hoc HSD Tukey’s test for the
different methods considered are shown in Table 9.

In this case, the results show that the best methodology is the non-
hierarchical one that uses the Beta regularised cross-entropy and the
CLM with logit link in the output. However, there are no significant
differences with the other methods in the same group. The worst
results were obtained by the standard nominal approach and the ECOC
methods. The ordinal and hierarchical methodologies highly improved
the performance concerning the standard nominal approach.

Following the same methodology, the MS metric was analysed.
Again, the ANOVA II test performed over the MS test results reported
that there are significant differences between the methodologies and
between the different architectures. Moreover, there is a significant in-
teraction between these two factors. Therefore, a posthoc HSD Tukey’s
Test taking into account the methodologies was performed and the
results are shown in Table 10.

In this case, the same hierarchical approach that performed the best
for the CCR metric also obtained the best MS results.

By analysing the composition of each of the seven subsets, some
conclusions can be obtained:

1. The non-hierarchical methodologies that use the QWK loss func-
tion fail to classify at least one of the classes, obtaining always
a value of 0 for the minimum sensitivity. Therefore, they should
9

be discarded even though they perform well regarding the other
metrics.

2. The hierarchical approach solves the problem related to the
QWK loss: all the classes are represented in the final predictions.

3. Five out of seven methods grouped in the best three subsets are
hierarchical, including the three methods that obtained the best
average performance.

Finally, for the MAE metric, the same analysis was performed. The
ANOVA II test reported significant differences between the methods
considered and the architectures tested (𝑝-value < 0.001). Also, there
is a significant interaction between factors (𝑝-value < 0.001) Then, a
post-hoc HSD Tukey’s test was performed to determine which meth-
ods achieve better performance. The results of this test are given in
Table 11.

The results in this table show that the best mean result was obtained
by the hierarchical methodology which employs the Beta regularised
cross-entropy loss with the CLM Logit in the first model and the
CCE with softmax for the others. However, there are no significant
differences with the other methods in group 1. Also, the table shows
that most of the methods in group 1 are hierarchical methods. The
last four groups only contain non-hierarchical methods and the ECOC
approaches. Therefore, the overall results with hierarchical methods are
better than the ones obtained by the corresponding non-hierarchical
ones.

After comparing the different methods using the post-hoc tests,
the three model architectures were compared too. The post-hoc HSD
Tukey’s test shown that the VGG-16 and the ResNet-101 are not sig-
nificantly different and they both are significantly better than the
DenseNet-121 concerning the QWK and MS metrics. For the CCR
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Table 11
Results of the post-hoc HSD Tukey’s test for the MAE metric.

Hier. Macro loss Macro out Micro loss Micro out Subsets

1 2 3 4 5 6 7 8

4 Yes CCE Beta CLM Logit CCE Softmax 0.706
1 Yes CCE Softmax CCE Softmax 0.711 0.711
5 Yes CCE Beta CLM Probit CCE Softmax 0.722 0.722 0.722
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.722 0.722 0.722
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.726 0.726 0.726
10 No CCE Beta CLM Probit – – 0.756 0.756 0.756 0.756
7 Yes QWK CLM Probit QWK CLM Probit 0.766 0.766 0.766 0.766
6 Yes QWK CLM Logit QWK CLM Logit 0.769 0.769 0.769
9 No CCE Beta CLM Logit – – 0.778 0.778
12 No QWK CLM Probit – – 0.814 0.814
11 No QWK CLM Logit – – 0.850 0.850
8 No CCE Softmax – – 0.891 0.891
14 No CCE Softmax – – 0.913 0.913
13 No CCE Softmax – – 0.957

𝑝-values 0.063 0.086 0.113 0.084 0.791 0.590 0.995 0.442
Table A.12
Results of the post-hoc HSD Tukey’s test for the model and the CCR metric.

Model Subsets

1 2 3

DenseNet-121 0.4393
ResNet-101 0.4626
VGG-16 0.4797

𝑝-values 1.000 1.000 1.000

Table A.13
Results of the post-hoc HSD Tukey’s test for the model and the QWK
metric.
Model Subsets

1 2

DenseNet-121 0.8776
VGG-16 0.8987
ResNet-101 0.9006

𝑝-values 1.000 0.624

metric, the ResNet-101 is significantly better than the other two archi-
tectures, which also are significantly different between them. Finally,
regarding the MAE, the VGG-16 architecture achieved the best mean
results. The complete statistical comparison of the architectures can be
found in Appendix A.

Therefore, taking into account all the metrics, some general conclu-
sions can be derived:

1. The proposed hierarchical methodologies perform significantly
better concerning the CCR, MS and MAE metrics, while the non-
hierarchical ones achieve better results for the QWK. However,
there are no significant differences concerning QWK with most
of the other methodologies.

2. Using an ordinal loss function and output function for the macro
classifier and the standard nominal approach for the micro
classifier usually obtained the best results.

3. The ResNet-101 obtained the best results followed by the VGG-
16 architecture. Nevertheless, the proposed methodology ob-
tains a significant performance enhancement for all architectures
tested. Therefore, the proposed method can be generalised to
different types of architectures.

7. Conclusions and future work

In this work, we have proposed an ordinal hierarchical method
that is aimed to solve tasks where the labels follow are structured
in different levels and naturally ordered. Then, we have applied this
10
Table A.14
Results of the post-hoc HSD Tukey’s test for the model and the MS metric.
Model Subsets

1 2

DenseNet-121 0.1190
VGG-16 0.1519
ResNet-101 0.1562

𝑝-values 1.000 0.734

Table A.15
Results of the post-hoc HSD Tukey’s test for the model and the MAE metric.

Model Subsets

1 2 3

VGG-16 0.7443
ResNet-101 0.7736
DenseNet-121 0.8565

𝑝-values 1.000 1.000 1.000

method to solve an AQC task related with the manufacturing industry.
In particular, the problem relies on classifying wooden stocks based on
the aesthetic quality of the wood used to manufacture them. Differently
from other metric quality control task that are usually solved with
nominal CNN approach, the considered AQC task is characterised by
different scale of labels (macro and micro). Taking into account the
complexity and the challenges that originated from the considered task,
our main contribution lies in the proposal of a hierarchical approach
that is specifically tailored for learning ordinal classes in two separate
phases. In the first one, a single model was used to predict the macro
label of each pattern. In the second one, one model was used for
each macro label to predict the corresponding micro class. Moreover,
it was combined with an ordinal loss regularisation and an output
layer based on the CLM to encourage an ordinal classification. Different
alternatives were tested with three different model architectures and
the experimental results showed that the hierarchical methods obtained
the best results for most of the metrics and architectures. In general
terms, the hierarchical approaches obtained better results than other
state-of-the-art non-hierarchical approaches. The main benefit of the
described approach is that it improves the performance of this kind of
tasks at the same time that it simplifies the problem by dividing the
classification task into multiple models. From a practical perspective,
this ensures a greater flexibility of the DSS to also provide individual
predictions for each macro class. This fact may support the human
operator to classify different level of grades, and eventually focus
the attention only on the classification of specific level (i.e. macro
classes). Moreover the proposed approach ensures a greater accuracy
for classifying samples in the overall 10 classes, but maintaining, at
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Fig. B.5. Boxplots for all the test metrics using the VGG-16 architecture. Methods are identified with the numbers defined in Table 4.
the same time, misclassification errors close to the correct class, which
is a relevant aspect for the industrial production domain.

Given that the proposed approach improved the classification per-
formance compared to the non-hierarchical methodologies, in future
works, the same methodology could be applied to other types of hi-
erarchical problems. Its applications include but are not limited to any
other type of QC problem, which includes AQC but also other problems
related to the overall quality of a product from the engineering point
of view. The only limitation of the proposed approach is that the
labels must follow a natural order and must also be decomposed hi-
erarchically. However, there are some problems where the hierarchical
structure can be inferred from the characteristics of the problem. Also,
the proposed methodology can be extended to other areas different
from the industry. For example, predicting the age of people from
photographs of their faces can be a hierarchical ordinal problem if the
age ranges are divided into sub-groups (as in the case of clinical risk
based on age and disease (Romeo and Frontoni, 2022)).
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Appendix A. Model architectures statistical comparison

In addition, to complete the statistical analysis performed in Sec-
tion 6.1, the three model architectures considered in our work are

compared using statistical tests. During the general statistical analysis,
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Fig. B.6. Boxplots for all the test metrics using the DenseNet-121 architecture. Methods are identified with the numbers defined in Table 6.
he ANOVA II tests reported significant differences between the archi-
ectures for all the metrics. Therefore, a post-hoc HSD Tukey’s test is
erformed for each of the metrics.

First of all, the statistical test was performed for the accuracy metric.
he results of the post-hoc test are shown in Table A.12. The two best
rchitectures for the CCR metric are the VGG-16 and the ResNet-101.
hey are significantly better than the DenseNet-121 model.

For the QWK metric, the same analysis is performed. The results are
hown in Table A.13, and, this time, they show that all the architectures
re significantly different. The DenseNet-121 model is, again, the worst,
ut, in this case, the VGG-16 and the ResNet-101 show significant
ifferences and the residual network is better.

Then, the minimum sensitivity metric values are analysed. The
esults of the post-hoc test are shown in Table A.14. In this case, the
onclusions are the same that were obtained for the accuracy metric.
he ResNet-101 and the VGG-16 architectures obtained the best results
nd are significantly better than the DenseNet-121.

Finally, the MAE metric is analysed. The results are shown in
able A.15. Again, the results are similar: the ResNet-101 and the VGG-
6 models obtained the best results. The differences between the results
btained using these two architectures and the results obtained using
he DenseNet-121 model are significant.

Therefore, from these tests, we can conclude that the best model
rchitecture is ResNet-101, given that it is significantly better than the
ther alternatives regarding the QWK metric, and it is as good as the
GG-16 model considering the other metrics.

ppendix B. Boxplots of VGG-16 and DenseNet-121

In this appendix, the boxplots corresponding to the results of the
GG-16 and DenseNet-121 architectures are shown. Fig. B.5 shows the
oxplots for each metric for the VGG-16 architecture, while Fig. B.6
12

hows the boxplots for the DenseNet-121 architecture.
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