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Abstract

Nowadays identifying techniques aimed at a rational use of electric power has

become even more important than the production of energy itself. This is caused

by different factors, as the progressive saturation of the Italian electricity grid,

which is increasingly subject to connection requests, mainly due to the devel-

opment of plants which exploit renewable energy sources. This work suggests a

new approach based on the combination of the optimizer and the simulator de-

veloped in the MATLAB/Simulink environment, in order to reduce the energy

costs in buildings during the summer while taking into consideration the user

comfort. The electrical consumption of the entire building is taken into consid-

eration is here examined with the aim of applying an air-conditioning system.

The goal is to find, the day before,which is the optimal hourly scheduling of

the set points that must be applied the next day, taking into consideration all

external conditions; weather conditions and the hourly energy price. In order

to achieve this objective, the control variables, that have been changed, are

the room temperature set points and the flow water temperature set point. As

required by the UNI EN ISO 7730:2006 standard, comfort measurement was

calculated with the PPD (Predicted Percentage of Dissatisfied) index. Different

scenarios were investigated as well. The results show that there is an aver-
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age of 16-17% potential cost saving, while maintaining a high level of comfort.

The study was carried out by simulating a real office building in Italy, and the

comparisons are shown regarding the actual settings applied to it.

Keywords: Optimization, Simulation, Energy cost,

1. Introduction

The building sector is the biggest/most important user of energy and CO2

emitter in the European Union (EU) and is responsible for about 40% of the

EU’s total final energy consumption and CO2 emissions. As a consequence, the

cornerstone of the European energy policy has an explicit orientation to the5

conservation and rational use of energy in buildings as the energy performance

of building directive (EPBD) 2002/91/EC and its recast (EPBD) 2010/31/EU

indicate [8] [9] . The EPBD’s main objective is to promote the cost-effective im-

provement of the overall energy performance of buildings. In Europe, member

states have set an energy savings target of 20% by 2020 and 27% by 2030, mainly10

through energy efficiency measures. A number of methodologies for optimizing

real-time performance, automated fault detection and isolation were developed

in IEA-Annex 25 [10]. Moreover, amongst worldwide scale organizations, the

International Organization for Standardization (ISO), the European Commit-

tee for Standardization (CEN) and the International Energy Agency (IEA) have15

complementary provided strategic and operational directions towards the imple-

mentation of energy efficiency improvements in buildings [11].

Finding proper techniques for a rational use of electrical energy has become,

nowadays, even more important than the production of energy itself, because the

Italian power grid is gradually becoming saturated and affected by many con-20

nection requests coming mostly from plants exploiting renewable energies. The

present energy consumption which is necessary to the thermal comfort achieve-

ment of rooms and clean water represents almost 30% of the national energetic

consumption and it is responsible for almost 25% of the national CO2 emission,

which is one of the principal cause of greenhouse effect and temperature heating25
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[4].

An involvement is crucial to reach a new equilibrium, in harmony with the

environment and respectful of future generation’s rights. According to the latest

Italian Energy Strategy Plan, a change in terms of energetic consumption and

rational use of energy is necessary and is considered crucial in order to pursue30

sustainable economic growth.

The conventional measures that can be employed to improve energy per-

formance in buildings can be classified into those that immediately relate to

the building envelope i.e., the constructional elements, and those relating to

the operation of energy systems used for heating, cooling, ventilation, hot wa-35

ter supply, etc.[12]. Apart from "conventional" measures, energy management

techniques combined with innovative environmental technologies and advanced

materials and systems may, if properly applied, affect drastically the process of

saving energy in the building sector. A critical aspect in the design but also

in the operational phase of a building, when renovation or retrofit actions are40

needed, is the evaluation and adjustment of the alternative measures based on

a set of criteria such as energy consumption, environmental performance, in-

vestment cost, operational cost and indoor environment quality, security, social

factors, etc. [12]. In some cases, the aforementioned criteria are in contrast

or interrelate in a non-linear way, making the problem of reaching a globally45

optimal solution generally infeasible; researching for such optimal solution is

usually attempted via two main approaches.

So it is clear that in order to reduce the consumption of electricity, it is

necessary to change the consumption of buildings. The solutions can therefore

be two:50

- Envelope and plants retrofitting, which leads to a scenario of high savings

at the cost of high investments and therefore to a long payback period;

- Automation and intelligence through smart buildings, which leads to medium

savings with low investment hence short payback period.

In fact, with more than 10 buildings the payback period is around 3 years, which55
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is lower than the payback period of retrofitting solutions which is around 15-20

years.

Therefore, monitoring the energy consumed in buildings, especially public

buildings, is critical in order to reduce the consumption. In a smart building it

is possible to control heating, ventilation, air conditioning, lighting, presence,60

security and other systems. With sensors, actuators and microchips, it is possi-

ble to collect and manage data according to a business’ functions and services.

Thanks to appropriate optimization, control and diagnostics algorithms,it is

possible to minimize the environmental impact of buildings.

In the scientific literature various studies are presented regarding the opti-65

mization methodologies for the energy management of buildings. In accordance

with the European Directive on building performance (EPBD) 2010/31 / EU

[13], the next target, starting from 2021, will be the diffusion of almost zero

energy buildings. The EU Delegated Regulation 244/2012 [14] establishes that

an intermediate step towards this final goal is the so-called "cost optimization"70

where the level of energy efficiency guaranteed is optimal in terms of costs.

There are numerous methods for the energy optimization, as GAs is the most

popular, mainly because they do not usually converge to local minima and al-

low to explore large domains of solutions with a feasible computational burden

while using single or multi-objective approaches (i.e. with two or more contrast-75

ing functions be optimized) [15] [16]. In the case of multi-objective functions,

the optimization is implemented through the use of the pareto front [17]. The

selection of the optimal solution on the pareto front is indicated by balancing

the will and needs of the parties concerned, respecting the weights given to the

different objective functions. Multi-objective approaches are very suitable for80

solving this problem, but this case study preferred to use a single-lens approach

in order to compare the two different algorithms used(NSGA-II and Surrogate

method).

This article describes a possible strategy of optimization with the surrogate

method suitable for smart buildings, which was compared the NSGA-II opti-85

mization algorithm. Both focused on the energy consumption reduction and
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Figure 1: Case study: Smart Building at ENEA, building F40

minimization of unhappy residents percentage due to thermal discomfort. This

percentage was determined by PMV index (Predicted Mean Vote) and PPD

index (Predicted Percentage of Dissatisfied) [5] in the current regulation UNI

EN ISO 7730:2006.90

2. Description

A real office building located at ENEA (Casaccia Research Centre, Rome,

Italy) was examined as a case study (Figure1). The building has an L-shaped

structure, it is oriented 15◦ north-east and it was built between 1970 and 1972

and it is formed by three floors and a heating plant in the basement. There are95

41 offices of different size with a floor area ranging from 14 to 36 m2, 2 EDP

rooms of about 20 m2 each, 4 Laboratories, 1 Control Room and 2 Meeting

Rooms, for a total of 1277,3 m2. Each office room has from one up to two

occupants. Each room and laboratory is equipped with fan-coils with on-off fan

speed which is controlled by a room thermostat with hysteresis. The heating100

plant is a traditional natural gas boiler. The building is equipped with an

advanced monitoring system aimed at collecting data revealing both external

and internal conditions, electrical and thermal energy consumption. In order

to simulate the variables of interest, a MATLAB Simulink simulator based on
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HAMBASE [5, 6] model was developed. The control variables are:105

- Zone set point which can be set using thermostats in each room;

- Flow set point which can be set by means of special instrumentation in

the building’s thermal power plant.

In fact, the variables that can be set in the simulator are actually modifiable in

the modeled building. Simulink was used to both model the described building,110

together with all its thermal and electrical components and simulate the be-

havior of the F40 building was used the HAMBASE software, which exploited

the internal temperature model, the relative humidity of the indoor air and the

energy consumption required for the heating and cooling of a multi-zone build-

ing. The purpose of the software developed is to simulate the energy saving115

strategies and control logics in order to maximize energy savings, and therefore

to minimize the cost. The outputs are:

- environmental comfort;

- euros.

The following section will describe the simulator, but for more details regarding120

the different specifications of the simulator,the reader can refer to other more

detailed articles [7].

2.1. Description of simulator

Simulink is the software chosen to model the building and all its thermal and

electrical components (heating system, fan coil power supply network, lighting125

network). Simulink is a software dedicated to modeling, simulation, and anal-

ysis of dynamic systems, which is closely integrated with MATLAB. On the

other hand, HAMBASE (Heat, Air and Moisture model for building and sys-

tem evaluation) purposely helped to simulate the behavior of the F40 building.

The HAMBASE software uses the model of the internal temperature, relative130

humidity of the internal air, and energy consumption required for the heating
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and cooling of a multi-zone building. The purpose of the software developed is

to allow to simulate energy saving strategies and control logic, having as output

of the simulation itself two main parameters such as:

- Internal environmental parameters, such as internal temperature and rel-135

ative humidity that identify the environmental comfort;

- Aggregate parameters such as electricity and methane consumption that

identify the energy expenditure,calculated in terms of euro spent.

The parameters received as input from the simulator are different, the most

significant for the purposes of calculating the two functions PPD and euro are140

flow set point and zone temperature set point. These two decision-making vari-

ables certainly can determine the value of the total objective function, however,

they are not the only ones that have a direct influence on the value of the ob-

jective function. Indeed, there are other parameters that affecting the function,

but they are not set dynamically. These parameters are mainly six: the national145

unit price curve (PUN) that determines the dynamism of the energy price; the

external climatic conditions that affect the trend of consumption and the cli-

matic conditions inside the building; the external and internal humidity; energy

parameters to best simulate the energy absorption of the building; the activities

and occupation of the different areas and rooms of the building; and other pa-150

rameters. In output, a multiplicity of values regarding the thermal conditions

and consumption of the building is obtained, but for what concerns the use of

the simulator in this case, it will stop to specify only the output values of the

PPD (Predicted Percent Dissatisfied) and the cost (e), calculated respectively

by the two subsystems of the simulator Subsystem Comfort Meter and Subsys-155

tem Dynamic Pricing highlighted in Figure 2. In fact in the following figure we

can see an idea of the general scheme of the simulator and in particular a zoom

on the two subsystem that will be described in detail in the next sections.
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Figure 2: General scheme of the simulator

2.1.1. Subsystem Comfort Meter

The thermo-hygrometric comfort indices given back by the simulator are in

line with the UNI EN ISO 7730:2006 standard, which specifies the methods for

predicting the overall thermal sensation and the degree of discomfort (thermal

dissatisfaction) of people. The Danish scholar Fanger established two equations

described in detail in UNI EN ISO 7730:2006 for the evaluation of thermo-

hygrometric well-being. PMV expresses the level of satisfaction of a large sample

of people working in the same building and expressing their thermal sensation

through a psychophysical scale (Figure 3). In the following Figure 3 it is possible

to see the ranges of possible values that the PMV index can accept, if the thermal

enviroment is neutral the values will be 0, but if the people are warm or cold

the value will be respectively positive or negative. The PPD can be computed

using PMV model, in fact they are experimentally related through the following

formula:

8

Pre-
Prin

t V
ers

ion

https://doi.org/10.1016/j.enbuild.2020.109963



Figure 3: PMV and evaluation of the thermal environment

PPD = 100− 95 ∗ e−(0,03353∗PVM4+0,2179∗PVM2) (1)

It should be noted that it is not possible to use PMV and PPD evaluation160

indices in all working conditions but only when certain parameters are included

in the following ranges (Figure 4). Figure 4 reports the ranges through which it

is possible to apply the PMV and PPD indices,in terms of energy metabolism,

thermal insulation of clothing present and the air temperature and velocity.

Figure 4: Limits of applicability of the PMV-PPD criterion

Among the variables characterizing the building model, there are four vari-165

ables that were set to their typical values. These variables are: metabolism (70

[W/m2]), external work (0 [W/m2]), clothing (1 [0.18oC]), and air velocity (0.1

[m/s]). The convergence (Figure 2) of four input channels was performed during
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the modelling of this subsystem. These channels are:

- Ta = air temperature [◦C], simply the temperature perceived inside the170

room;

- Ts = radiant temperature [◦C], i.e. the temperature of the walls inside

the room, including the ceiling and floor;

- Rh = relative humidity inside;

- c_pmv = comfort meter.175

When appropriately processed with a function that takes into account both the

inputs and the limits of applicability of the criterion, these channels produce

three different output channels in output, which, however, can only be traced

back to the PPD:

- PMV = expected average score (for each zone);180

- PMV_mean = average expected average score (average of values for each

zone);

- PPD = expected percentage of dissatisfaction [%].

2.1.2. Subsystem Dynamic Pricing

The Subsystem relative to the simulation of the cost of the consumed energy185

is modelled as in Figure 2 where two inputs can be examined:

- Q_e_tot= total electric power consumed[W], which is calculated as the

sum of fan-coil ventilation consumption, lighting consumption and heat

pump consumption (electric power supplied)

Q_e_tot = Q_e_fan+Q_e_light+Q_e (2)

- PUN = single national electricity price [e/MWh], i.e. the reference price

of electricity on the Italian electricity exchange (IPEX, Italian Power Ex-

change);
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and 4 outputs properly calculated as:190

- E_cost_flat = cost of energy consumed with static price [e];

- E_cost_flat_h = cost of energy consumed with static price sampled hour

by hour [e/h];

- E_cost_dyn = cost of energy consumed with dynamic price [e];

- E_cost_dyn_h = cost of energy consumed with dynamic price sampled195

from hour to hour [e/h].

By looking at the inputs and outputs of this subsystem, it is possible to iden-

tify the consequences, since the multiplications between the amount of energy

consumed[W] and its cost [e] ordered the variables in terms of magnitude and

measure. The attention was drawn by the values of dynamic cost, in particular200

those sampled from hour to hour.

2.2. Description of problem

The optimization problem is the minimization of the cost while maintaining

adequate comfort level inside the buildings. The problem analyzed is a multi-

objective problem considering the cost and the PPD.205

min(x1,x2){E_cost_dyn_h+ PDD/12} (3)

The constraints of the problem are the following:

• 21 ≤ x1 ≤ 25

• 8 ≤ x2 ≤ 12

Where:

- x1 is the zone set-point. It is a vector of 24 elements (one for each our of210

the day). It can change from 22 to 25 Celsius degree;

- x2 is the flow set-point. It is a vector of 24 elements (one for each our of

the day). It can change from 8 to 12 Celsius degree ;
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Figure 5: Trend of objective function when X1 is equal to 23

Figure 6: Trend of objective function when X2 is equal to 10
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The analysis of the objective function was carried out while changing one

decision variable at a time (zone set-point and flow set-point), setting it progres-215

sively to each single value assumable, respecting the constraints of the problem

and define the baseline to calculate the efficiency of optimization systems.

The behaviour of the objective function is reported in Figure 5 and 6, varying

x2 and x1 respectively. The trend of the objective function both compared to

X1 and X2 has several local minima, this highlights the complexity of the220

problem and the difficulty to find global optimum. Each simulation is about

a single day in which it is possible to set the different set-points from hour to

hour. This made the system dynamic and efficient in the vision of a hypothetical

functioning in reality. The simulator processes,as input data, both the values of

the set up decision variables and the final states of the simulator returned by225

the optimization system.

3. The genetic method for smart building

The NSGA-II is a genetic algorithm proposed by Kalyanmoy Deb in 2000 and

represents an advanced revision of the NSGA, Deb himself, dating from 1994.

This algorithm is part of the family of elite evolutionary algorithms, which is230

distinguishes from non-elitarians by passing from one generation to the next

without lost good solutions. The abbreviation NSGA (Non dominated Sorting

Genetic Algorithm) emphasizes how solutions for the optimization problem are

ordered in accordance with the concept of non-dominance.

NSGA-II provides that all solutions of a population are classified according235

to a dominance order. Non-dominated population solutions will have rank 1.

Solutions that are not dominated by the entire population, except for those

with rank 1, will have rank 2 and so on. The computational complexity of

this procedure is the sum of the complexities required to identify each non-

dominated set. It is important to notice that once the first non-dominated240

set is identified, the number of remaining solutions will be smaller than the

original number of individuals in the population, hence the classifications after
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Figure 7: Example of sorting by rank with population to 10 individuals

the first one will require less computational complexity. The entire classification

process has O(MN2) complexity, with M number of targets and N size of

population. Figure 7 shows an example of ordering by levels, of a population of245

10 individuals, in a problem of minimization of two target functions. Assigning

a rank to all solutions means the the crowded distance is assigned, which is a

value that indicates how much a solution is isolated. The aim is to preserve

the diversity of solutions on the same non-dominated front, thus maintaining

a good distribution. They are ordered iteratively in a worsening order with250

respect to each target function. Extreme results with the best and worst fitness

are assigned at an infinite crowding distance. The others were assigned with a

value proportional to the distance between the i-solution and the previous and

subsequent solutions.

When comparing two solutions the rank is compared first, if they have the255

same rank the crowding distance is compared. It is possible to notice how the

steps that the NSGA-II performs are the same as those of any genetic algorithm:

Steps of the Genetic Method (NSGA-II) GM

1 Population initialization;260
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2 Rank assignment and crowding distance;

3 Application genetic operators

4 A union of father and daughter generation;

5 Rank assignment and crowding distance;

6 Selection of the best;265

7 Return to step 3 until the stop condition is met.

4. The surrogate method for smart building

The Surrogate Method solves the optimization problem by using the gradient

method. This procedure presents an iterative structure that, in each cycle, transforms270

the original problem with discrete decision variables, into an optimization problem

with continuous decision variables. The last problem is known as Surrogate. Subse-

quently, the gradient estimate, which allows to update the solution, is performed in

the discrete field. The transition from the discrete problem to the continuous prob-

lem occurs at each cycle of the algorithm and the update of the surrogate solution275

is obtained through the variation of the objective function computed in the discrete

state.

The Surrogate Method gives good results in various application areas, such as the

lot sizing problems or the urban traffic, failing to find the solution good/sub-optimal

original discrete problem and reaching the very fast convergence [1], [2], [3].280

The steps sequence of the algorithm is reported in Figure 1.

Vector Z = (X1, X2) is an 2N -dimensional decision vector (N is equal to 24 where

each component denotes the degree for zone flow set-point for each hour of the day,

subject to the capacity constraints Ad and Jd(Z) is the cost incurred when the state

is Z. The integer capacity constraint is relaxed and a resulting surrogate problem is285

obtained.

The basic idea of this method is to solve a continuous optimization problem by

stochastic approximation methods and establish the fact that when (and if) a solution

of the relaxed problem ρ∗ is obtained it can be mapped into a discrete point z =

f(ρ∗) ∈ Ad which is in fact the solution of our problem.290
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Note however, that the sequence {ρk}, k = 1, 2, . . . generated by an iterative scheme

for solving the relaxed problem consists of real-valued solutions which are unfeasible,

since the actual system involves only discrete resources. Thus, a key feature of the

Surrogate algorithm is that at every step k of the iteration scheme, the discrete state

is updated through zk = fk(ρk) as ρk is updated. This has two advantages:295

- the cost of the original system is continuously adjusted (in contrast to an ad-

justment that would only be possible at the end of the Surrogate optimization

process);

- it gives the possibility to make use of information typically employed to obtain

cost sensitivities from the actual operating system at every step of the process.300

Note that there is an additional operation: the {zk} corresponds to feasible states

based on which one can evaluate estimates ∇Lc(ρk), calculated on actual system

zk (not the surrogate state ρk, see step 3 of Fig. 1). We can therefore see that

this scheme is intended to combine the advantages of stochastic approximation type

of algorithm with the ability to obtain sensitivity estimates with respect to discrete305

decision variables.

Figure 8 shows how the optimizer works, focusing on the interaction between the

surrogate method and the simulator.

5. Results analysis

Each simulation is about a single day in which it is possible to set the different310

set-points every hour. This made the system dynamic and efficient in the vision of a

hypothetical functioning in reality.

The simulator takes in input both the values of the decision variables that were

set up and the final states of the simulator returned by the optimization system. The

goal of the problem is to minimize a multi objective function with cost and comfort315

(euro [e] and PPD [%]). To evaluate the efficiency of the algorithm, the combination of

set-points with which the F40 building is currently air-conditioned during the summer

season was taken into consideration:

• Zone set_point = 22◦C;

• Flow set_point = 10◦C;320
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Algorithm 1 The Surrogate Method
1: Initialize ρ0 = z0 satisfying the constraints . ρ0 is a continuous vector, z0 is a

discrete vector,

. both of dimension M + 1

2: Initialize ρ∗ = ρ0, z∗ = z0 . ρ∗ is the optimal solution of the continuous problem

3: Initialize h = 0

4: while ((k ≤ K) ∨ (h ≤ H)) do . K and H integer parameters

. Form the selection set S(ρk) (steps 5-13):

. S(ρk) is a set of discrete vectors

5: Initialize I= {1, ...,M} and v = ρ - bρc . I is the set of M integers, v is a

continuous vector

. the component v[i] is the decimal part of the ρ[i] component

6: while I 6= ∅ do

7: i = argminj∈I (v[j])

8: y[i] = v[i]

9: Wi =
∑

j∈I ej . Wi integer vector, ej the versor with j-th component

equal to 1

10: v = v − y[i]Wi

11: I = I\{i}

12: end while

13: S(ρk) = {Wi − bρc, i = 0, ..,M}

. Transform the continuous problem to the discrete problem

. D is the set of the discrete vectors that satisfy the constraints

14: zk = f(ρk) = argmind∈D ‖d− ρk‖ . Transformation function f

. Gradient estimate

15: ∇OF (ρk) = [∇1OF, ....,∇MOF ]T . OF Objective function declared in (3),

. where ∇jOF (ρk) = OF (p)−OF (q)

. where k satisfies p− q = ej and p, q ∈ S(ρk),

. Update state

16: ρk+1 = f [ρk − ηk∇OF (ρk)]. . ηk is the step size of the gradient method

. Optimal solution update

17: if OF (ρk) ≤ OF (ρ∗) then

18: ρ∗ = ρk

19: h = 0

20: else

21: h = h+ 1

22: end if

23: end while

. Return the optimal solution z∗

24: Return z∗ = argminzk OF (zk).
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Figure 8: General scheme of the proposed approach

which were kept constant throughout the simulation period. The simulations were

performed by taking three different initial internal temperatures: T 0 = 21; 23; 25[◦C].

It is possible to observe the results obtained by simulating the real functioning of

the building, without any kind of optimization (RC Real Case, with static set-point),

in comparison with the optimized one, in which each simulation involved changing325

the flow set-point and the zone set-point in specific ranges. In table 1 and table 2 a

comparison between Real Case (RC), Surrogate Method (SM) and genetic algorithm

(NSGA−2) is reported, considering the average trend in a day. In particular in table 1

the values of the average objective function are reported, for the three different initial

temperatures. On the other hand, in table2 reports the average improvement given by330

the optimization methods. The best performances are given by the Surrogate Method

when the initial temperature is equal to 23
◦
.

In Fig.9, Fig.10, Fig.11 the trend of the objective function for the two optimization

methods is shown during the 24-hours. The biggest gap occurs in the early hours of

the afternoon when the Surrogate Method provides better performances. When the335

initial temperature is equal to 25
◦
the trend of the optimization methods is different
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Table 1: Average results

Initial

temperature
RC SM NSGA-2

ECOST

(¬)

PPD

(%)
ECOST PPD ECOST PPD

21◦C 22.74 6.17 20.4 7 20.64 7.1

23◦C 29.84 6.74 21.36 8.27 23.52 8.25

25◦C 36.84 10.82 30 11.9 32.64 10.9

Table 2: Objective function

Initial

temperature
RC SM NSGA-2

OF

(¬)

Saving

(%)
OF Saving OF Saving

21◦C 1.46 - 1.44 10.4 1.45 9.2

23◦C 1.8 - 1.58 28.3 1.67 21.2

25◦C 2.44 - 2.23 18.6 2.28 11.4

because it is more difficult to satisfy users when the initial temperature is higher.

Figure 9: Trend of objective function when T 0 = 21
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Figure 10: Trend of objective function when T 0 = 23

Figure 11: Trend of objective function when T 0 = 25
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6. Conclusion

Through this study it was possible to identify and understand two different opti-

mization strategies applied smart buildings, which aim to reduce energy consumption340

and, at the same time, minimize the percentage of unsatisfied occupants caused by

thermal discomfort. Furthermore, this combination of simulator and optimizer will be

used for experiments in the field of local energy communities, which is one of the last

topics of the system research of the ENEA Research Center, whose goal is to achieve

autonomy, sustainability and efficiency with respect to today’s energy needs.345

On average, a theoretical saving of 16.5% was found compared to the reference case,

in particular the two algorithms, NSGA-II and Surrogate Method, brought respectively

an average theoretical saving of 13.9% and 19.1%, even though it would be more

correct and consistent to consider and analyze the three cases separately. As a matter

of fact, for the first two cases it was examined the Surrogate Method is more efficient,350

obtaining much better results, while in the last case (T 0=25◦C) the NSGA-II algorithm

is competitive in finding an excellent solution during the first hours of the simulation,

even though Surrogate Method is once again the most efficient throughout the day. It

is here used the term theoretical savings because the strategy was not applied to the

actual building. In this regard, it is appropriate to make some considerations to have355

a better understanding of the differences that may arise in dealing with a problem of

this type compared to the case simulated:

- The results obtained are the result of simulations which, although accurate, do

not reproduce the exact behaviour of the F40 building;

- The external climatic conditions, taken as input from the simulator, are not the360

result of a forecast but are a record of the conditions revealed in 2013 season.

This implies the need of extremely accurate weather forecasts;

- The trend of the PUN, taken as an input from the simulator, represents energy

prices dating back to 2013 in the same period of the simulation;

- The PPD index used to evaluate the percentage of dissatisfied personnel, al-365

though imposed by the regulations, is a subjective index and difficult to calcu-

late in reality since it depends on parameters such as metabolism and clothing,

specific to each individual;
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In conclusion it can be stated that the two algorithms have both led to economic

savings without losing sight of PPD and that however a different and innovative ap-370

proach as that of the Surrogate Method gave the possibility to obtain better results

than a classic approach such as that with NSGA-II. Right this way, we are already

working to perform the integration with the optimizer will be upgraded so that the

different values of the zone set-points of the 15 different climate zones of the building

can be managed individually. In addition, we are working on a new version of the sim-375

ulator that integrates the PV (PhotoVoltaic) and a storage for an even more effective

management of energy consumption. Finally, to validate the solutions proposed in a

real case, this strategy will be applied to the F40 smart building.
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