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Abstract. In this paper, we establish the existence of a nonnegative non-
trivial weak solution for a fractional critical (p, q)-Laplacian problem
with discontinuous nonlinearity. The approach is based on suitable vari-
ational methods.
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1. Introduction

In this paper, we focus on the existence of nonnegative weak solutions for the
following fractional problem:{

(−Δ)s1
p u + (−Δ)s2

q u ∈ [f(u), f(u)] + |u|q∗
s2

−2u in Ω,
u = 0 in R

N\Ω,
(1.1)

where Ω ⊂ R
N is a smooth bounded domain, 0 < s1 < s2 < 1, 1 < p < q <

N
s2

, q∗
s2

:= Nq
N−s2q is the fractional critical exponent, f ∈ L∞

loc(R) and

f(t) := lim
ε→0

ess inf
|t−τ |<ε

f(τ)

and
f(t) := lim

ε→0
ess sup

|t−τ |<ε

f(τ).

For α ∈ (0, 1) and t ∈ (1,∞), the fractional (α, t)-Laplacian operator (−Δ)α
t

is defined up to a normalizing positive constant by setting

(−Δ)α
t u(x) := 2P.V.

∫
RN

|u(x) − u(y)|t−2

|x − y|N+αt
(u(x) − u(y))dy,

for all u : RN → R smooth enough. We stress that fractional and nonlocal
operators are currently studied in the literature due to their importance in
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the description of several physical phenomena; see [5,22] for more details.
When the nonlinearity f : R → R is continuous, (1.1) falls within the realm
of the fractional (p, q)-Laplacian problems of the type{

(−Δ)s1
p u + (−Δ)s2

q u = g(x, u) in Ω,
u = 0 in R

N\Ω,
(1.2)

where g(x, t) is a Carathéodory function in Ω ×R with subcritical or critical
growth as |t| → ∞. For problems like (1.2), several existence and multiplicity
results appeared in the recent literature; see [8,14,27] and also [4,6,9,30] for
problems in R

N . We notice that the fractional operator (−Δ)s1
p + (−Δ)s2

q in
(1.1) is nonhomogeneous in the sense that does not exist any σ ∈ R such that

[(−Δ)s1
p + (−Δ)s2

q ](tu) = tσ[(−Δ)s1
p + (−Δ)s2

q ](u) for all t > 0.

The fractional (p, q)-Laplacian operator can be considered as the fractional
counterpart of the (p, q)-Laplacian operator −Δp −Δq, which appears in the
study of reaction-diffusion problems arising in biophysics, plasma physics,
and chemical reaction design; see [20]. More precisely, the prototype for these
problems can be written in the form

ut = div[D(u)∇u] + c(x, u), D(u) := |∇u|p−2 + |∇u|q−2. (1.3)

In this context, the function u in (1.3) denotes a concentration, div[D(u)∇u]
represents the diffusion with a diffusion coefficient D(u), and c(x, u) corre-
sponds to the reaction term related to source and loss processes. Some inter-
esting existence and multiplicity results for (p, q)-Laplacian problems can be
found in [10,12,24,29,35,38] and the references therein. On the other hand,
the functional associated to the (p, q)-Laplacian operator is a particular case
of the following double-phase functional

Fp,q(u; Ω) :=
∫

Ω

(|∇u|p + a(x)|∇u|q) dx,

where 0 ≤ a(x) ∈ L∞(Ω), which was introduced by Zhikov [39,40] to describe
the behavior of strongly anisotropic materials in the context of homogeniza-
tion phenomena. We also recall that, from a regularity point of view, Fp,q

belongs to the class of nonuniformly elliptic functionals with nonstandard
growth conditions of (p, q)-type, according to Marcellini’s terminology. We
refer the interested reader to [32,33] for a more detailed discussion about
double-phase variational problems.

Along this paper, we assume that the nonlinearity f : R → R is a
measurable function such that f(t) = 0 if t ≤ 0 and satisfies the following
conditions:

(f1) There are C > 0 and r ∈ (q, q∗
s2

) such that

|f(t)| ≤ C(1 + |t|r−1) for all t ∈ R.

(f2) There exists θ ∈ (q, q∗
s2

) such that

0 ≤ θF (t) ≤ tf(t) for all t ∈ R,

where F (t) :=
∫ t

0
f(τ) dτ .
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(f3) There is β > 0 that will be fixed later, such that

H(t − β) ≤ f(t) for all t ∈ R,

where H is the Heaviside function, i.e.,

H(t) :=
{

1 if t > 0,
0 if t < 0.

(f4) lim supt→0
f(t)
tq−1 = 0.

A typical example of a function satisfying the conditions (f1)–(f4) is given
by

f(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t ∈ (−∞, β
2 ),

1 if t ∈ Q ∩ [β
2 , β],

0 if t ∈ (R\Q) ∩ [0, β],∑m
k=1

|t|qk−1

βqk−1 if t > β, m ≥ 1 and qk ∈ (q, q∗
s2

).

Note that the above function has an uncountable set of discontinuity points.
We emphasize that elliptic boundary value problems involving discontinuous
nonlinearities have been widely investigated by several authors; see [1–3,11,
16,25,26] and the references therein. These problems can be used to deal
with free-boundary problems arising in mathematical physics, such as the
obstacle problem, the seepage surface problem and the Elenbaas equation;
see [17–19]. On the other hand, in nonlocal fractional framework, only a few
papers considered nonlinear problems with discontinuous nonlinearities (see
for instance [7,13,23,37]) but none of them involves the fractional (p, q)-
Laplacian operator. Strongly motivated by this fact, in this paper we aim
to obtain a first result for a critical fractional (p, q)-Laplacian problem with
discontinuous nonlinearity. More precisely, our main result can be stated as
follows.

Theorem 1.1. Assume that (f1)–(f4) hold. Then, (1.1) admits a nonnega-
tive nontrivial weak solution, namely, there exists a couple (u, ρ) where u ∈
W s2,q

0 (Ω)\{0} is a nonnegative function such that∫∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+s1p

dxdy

+
∫∫

R2N

|u(x) − u(y)|q−2(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+s2q

dxdy

=
∫

Ω

ρϕ dx +
∫

Ω

|u|q∗
s2

−2uϕ dx for all ϕ ∈ W s2,q
0 (Ω),

and ρ ∈ L
r

r−1 (Ω) satisfies

ρ(x) ∈ [f(u(x)), f(u(x))] a.e. in Ω.

Moreover, the set {x ∈ Ω : u(x) > β} has positive measure.

The proof of Theorem 1.1 is obtained by following the strategy used in
[25]. More precisely, we combine the mountain pass theorem for non differen-
tiable functionals [21,28] and invoke the concentration-compactness lemma
by Lions [31] in the fractional setting; see [4,14,34]. However, due to the



288 Page 4 of 17 V. Ambrosio and D. Di Donato MJOM

nonlocal character of the involved nonlocal operators, several calculations
performed throughout the paper are much more elaborated with respect to
the case s1 = s2 = 1 considered in [25]. Moreover, we are able to cover the
case 1 < p < q which has not been attacked in [25] (where the authors as-
sumed 2 ≤ p < q). Therefore, Theorem 1.1 extends and improves Theorem
1.1 in [25].

The paper is organized as follows. In Sect. 2 we fix the notations and
we collect some preliminary results about the fractional Sobolev spaces and
critical point theory for locally Lipschitz continuous functionals. In Sect. 3
we provide the proof of Theorem 1.1.

2. Preliminaries

Let s ∈ (0, 1) and p ∈ (1,∞). Assume N > sp. Denote by Ds,p(RN ) the
completion of C∞

c (RN ) with respect to

[u]ps,p :=
∫∫

R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy,

or equivalently

Ds,p(RN ) := {u ∈ Lp∗
s (RN ) : [u]s,p < ∞},

where p∗
s := Np

N−sp is the fractional critical exponent. Let us introduce the
fractional Sobolev space

W s,p(RN ) := {u ∈ Lp(RN ) : [u]s,p < ∞}
endowed with the norm

‖u‖s,p :=
(
[u]ps,p + |u|pp

) 1
p .

It is well-known that W s,p(RN ) is continuously embedded into Lt(RN ) for
all t ∈ [p, p∗

s ] and compactly embedded into Lt(BR) for all t ∈ [p, p∗
s) and for

all R > 0 (see [22]). Let

Ss,p := inf
u∈Ds,p(RN )\{0}

[u]ps,p

|u|pp∗
s

.

Let us introduce the space

W s,p
0 (Ω) := {u ∈ W s,p(RN ) : u = 0 in R

N\Ω}
equipped with the norm

‖u‖0,s,p := [u]s,p.

We observe that W s,p
0 (Ω) is continuously embedded into Lt(RN ) for all t ∈

[p, p∗
s ] and compactly embedded into Lt(RN ) for all t ∈ [p, p∗

s); see [22]. Below
we recall the relation between W s1,p

0 (Ω) and W s2,q
0 (Ω) when 0 < s1 < s2 < 1

and 1 < p ≤ q.
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Lemma 2.1. [14, Lemma 2.2] Let 0 < s1 < s2 < 1, 1 < p ≤ q and Ω ⊂ R
N

be a smooth bounded domain in R
N , where N > s2q. Then, W s2,q

0 (Ω) ⊂
W s1,p

0 (Ω) and there exists a constant C = C(|Ω|, N, p, q, s1, s2) > 0 such that

‖u‖0,s1,p ≤ ‖u‖0,s2,q, for all u ∈ W s2,q
0 (Ω).

In view of Lemma 2.1, we deduce that the right space to study (1.1) is
W s2,q

0 (Ω). To deal with the critical growth of the nonlinearity in (1.1), we
will use the following variant of the concentration-compactness lemma [31]
established in [34] (see also [4,14] for related results).

Lemma 2.2. [34, Theorem 2.5] Let s ∈ (0, 1) and p ∈ (1,∞). Let (un) be a
bounded sequence in W s,p

0 (Ω). Then, up to a subsequence, there exists u ∈
W s,p

0 (Ω), two Borel regular measures μ and ν, J denumerable, xj ∈ Ω, νj ≥ 0,
μj ≥ 0 with μj + νj > 0, j ∈ J , such that

un ⇀ u in W s,p
0 (Ω), un → u in Lp(Ω),∫

RN

|un(x) − un(y)|p
|x − y|N+sp

dxdy
∗
⇀ μ, |un|p∗

s
∗
⇀ ν,

μ ≥
∫
RN

|u(x) − u(y)|p
|x − y|N+sp

dxdy +
∑
j∈J

μjδxj
, μj := μ(xj),

ν = |u|p∗
s +

∑
j∈J

νjδxj
, νj := ν(xj),

μj ≥ Ss,pν
p

p∗
s

j for all j ∈ J,

where δxj
is the Dirac mass at xj.

Hereafter, we collect some results about critical point theory for locally
Lipschitz continuous functionals; see [19,21,28] for more details.

Let X be a real Banach space endowed with the norm ‖ ·‖. A functional
I : X → R is locally Lipschitz continuous (in short, I ∈ Liploc(X,R)) if for
each u ∈ X we can find an open neighborhood V := Vu ⊂ X of u and some
constant K := Ku > 0 such that

|I(v1) − I(v2)| ≤ K‖v1 − v2‖ for all v1, v2 ∈ V.

Let I ∈ Liploc(X,R). The generalized directional derivative of I at u ∈ X in
the direction v ∈ X is defined as

I0(u; v) := lim sup
h→0 σ↓0

I(u + h + σv) − I(u + h)
σ

.

Therefore, I0(u; ·) is continuous, convex and its subdifferential at z ∈ X is
given by

∂I0(u; z) := {μ ∈ X∗ : I0(u; v) ≥ I0(u; z)〈μ, v − z〉 for all v ∈ X},

where 〈·, ·〉 is the duality pairing between X∗ and X. The generalized gradient
of I at u ∈ X is

∂I(u) := {μ ∈ X∗ : 〈μ, v〉 ≤ I0(u; v) for all v ∈ X}.
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Because I0(u; 0) = 0, ∂I(u) is the subdifferential of I0(u; ·) at 0. We also
have the following facts:

∂I(u) ⊂ X∗ is convex, not empty and weak ∗ -compact,

λ(u) := min{‖μ‖X∗ : μ ∈ ∂I(u)},

∂I(u) = {I ′(u)} if I ∈ C1(X,R).

A point u0 ∈ X is a critical point of I if 0 ∈ ∂I(u0). A number c ∈ R is a
critical value of I if there exists a critical point u0 ∈ X such that I(u0) = c.
We say that I satisfies the nonsmooth Palais–Smale condition at level c ∈ R

(nonsmooth (PS)c-condition for short), if every sequence (un) ⊂ X such that
I(un) → c and λ(un) → 0 has a (strongly) convergent subsequence. We recall
the following variant of the mountain pass lemma.

Theorem 2.3. [19,28] Let X be a real Banach space and I ∈ Liploc(X,R)
with I(0) = 0. Assume that there exist α, r > 0 and e ∈ X such that

(i) I(u) ≥ α for all u ∈ X such that ‖u‖ = r,
(ii) I(e) < 0 and ‖e‖ > r.

Let

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) and Γ := {γ ∈ C0([0, 1],X) : γ(0) = 0 and I(γ(1)) < 0}.

Then c ≥ α and there is a sequence (un) ⊂ X (named a nonsmooth (PS)c-
sequence) such that

I(un) → c and λ(un) → 0.

If, in addition, I satisfies the nonsmooth (PS)c-condition, then c is a critical
value of I.

Finally, we have the following result.

Proposition 2.4. [19,28] Let Ψ(u) :=
∫
Ω

F (u) dx. Then, Ψ ∈ Liploc(Lp+1(Ω),R)
and ∂Ψ(u) ⊂ L

p
p−1 (RN ). Moreover, if ρ ∈ ∂Ψ(u), we have

ρ(x) ∈ [f(u(x)), f(u(x))] for a.e. x ∈ Ω.

3. Proof of Theorem 1.1

We will look for nonnegative weak solutions of (1.1) by finding critical points
of the Euler–Lagrange functional I : W s2,q

0 (Ω) → R given by

I(u) := Q(u) − Ψ(u),

where
Q(u) :=

1
p
‖u‖p

0,s1,p +
1
q
‖u‖q

0,s2,q − 1
q∗
s2

∫
Ω

(u+)q∗
s2 dx,

and
Ψ(u) :=

∫
Ω

F (u) dx.

Note that I ∈ Liploc(W
s2,q
0 (Ω),R) and

∂I(u) = {Q′(u)} − ∂Ψ(u) for all u ∈ W s2,q
0 (Ω),
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where

Q′(u)ϕ =
∫∫

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+s1p

dxdy

+
∫∫

R2N

|u(x) − u(y)|q−2(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+s2q

dxdy

−
∫

Ω

(u+)q∗
s2

−1ϕ dx.

Lemma 3.1. The functional I satisfies the (PS)c condition for

c <

(
1
θ

− 1
q∗
s2

)
S

N
s2q
s2,q.

Proof. Let (un) ⊂ W s2,q
0 (Ω) be a (PS)c-sequence of I, namely

I(un) → c and λ(un) → 0. (3.1)

Take (wn) ⊂ ∂I(un) such that

‖wn‖∗ = λ(un) = on(1),

and
wn = Q′(un) − ρn,

where ρn ∈ ∂Ψ(un).

Claim 1. (un) is bounded in W s2,q
0 (Ω).

We observe that (f2) gives

1
θ
ρn(x)un(x) ≥ 1

θ
f(un(x))un(x) ≥ F (un(x))

for all n ∈ N and for a.e. x ∈ Ω.

Then we have

c + 1 + ‖u‖0,s2,q ≥ I(un) − 1

θ
〈wn, un〉

≥ 1

p
‖un‖p

0,s1,p
+

1

q
‖un‖q

0,s2,q
− 1

q∗
s2

∫
Ω

(u+
n )q

∗
s2 dx −

∫
Ω

F (un)dx

− 1

θ
‖un‖p

0,s1,p
− 1

θ
‖un‖q

0,s2,q
+

1

θ

∫
Ω

(u+
n )q

∗
s2 dx +

1

θ

∫
Ω

ρnundx

=

(
1

p
− 1

θ

)
‖un‖p

0,s1,p
+

(
1

q
− 1

θ

)
‖un‖q

0,s2,q

+

∫
Ω

(
1

θ
ρnun − F (un)

)
dx +

(
1

θ
− 1

q∗
s2

) ∫
Ω

(u+
n )q

∗
s2 dx

≥
(

1

p
− 1

θ

)
‖un‖p

0,s1,p
+

(
1

q
− 1

θ

)
‖un‖q

0,s2,q

+

(
1

θ
− 1

q∗
s2

) ∫
Ω

(u+
n )q

∗
s2 dx

≥
(

1

q
− 1

θ

)
‖un‖q

0,s2,q
,
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where we have used θ > q > p. Therefore, (un) is bounded in W s2,q
0 (Ω). Note

that, by Lemma 2.1, (un) is also bounded in W s1,p
0 (Ω). Up to a subsequence,

we may assume that

un ⇀ u in W s2,q
0 (Ω),

un → u in Lt(RN ) for all t ∈ [1, q∗
s2

),

un → u a.e. in R
N .

(3.2)

Claim 2. u−
n → 0 in W s2,q

0 (Ω) and (u+
n ) is a (PS)c-sequence for I. Here

x+ := max{x, 0} and x− := min{x, 0} for x ∈ R.

Using 〈wn, u−
n 〉 = on(1), f(t) = 0 for t ≤ 0, and observing that

|x − y|t−2(x − y)(x− − y−) ≥ |x− − y−|t for all x, y ∈ R and t > 1,

we deduce that

on(1) =
∫∫

R2N

|un(x) − un(y)|p−2

|x − y|N+s1p
(un(x) − un(y))(u−

n (x) − u−
n (y))dxdy

+
∫∫

R2N

|un(x) − un(y)|q−2

|x − y|N+s2q
(un(x) − un(y))(u−

n (x) − u−
n (y))dxdy

≥
∫∫

R2N

|u−
n (x) − u−

n (y)|p
|x − y|N+s1p

dxdy +
∫∫

R2N

|u−
n (x) − u−

n (y)|q
|x − y|N+s2q

dxdy

which implies that u−
n → 0 in W s2,q

0 (Ω). In particular, (u+
n ) is bounded in

W s2,q
0 (Ω). Combining I(un) → c, un = u+

n + u−
n , u−

n → 0 in W s2,q
0 (Ω), and

the Brezis–Lieb lemma [15], we obtain

c + on(1) = I(un) = I(u+
n ) + on(1),

that is I(u+
n ) → c. Let us now show that λ(u+

n ) → 0. Take φ ∈ W s2,q
0 (Ω) such

that ‖φ‖0,s2,q ≤ 1. Let s ∈ {s1, s2} and t ∈ {p, q}. Define

An :=
∣∣∣
∫∫

R2N

|un(x) − un(y)|t−2

|x − y|N+st
(un(x) − un(y))(φ(x) − φ(y))dxdy

−
∫∫

R2N

|u+
n (x) − u+

n (y)|t−2

|x − y|N+st
(u+

n (x) − u+
n (y))(φ(x) − φ(y))dxdy

∣∣∣.
In light of λ(un) → 0, to prove that λ(u+

n ) → 0, it suffices to verify that
An → 0. Let us recall the following inequalities (see [36]):

〈|x|t−2x − |y|t−2y, x − y〉 ≤
{

C(|x| + |y|)t−2|x − y| if t > 2,
C|x − y|t−1 if 1 < t ≤ 2,

(3.3)

for all x, y ∈ R
N . Assume t > 2. Using the first relation in (3.3), x−x+ = x−

for all x ∈ R, the Hölder inequality, u−
n → 0 in W s,t

0 (Ω) and (u+
n ) is bounded

in W s,t(RN ), we see that

An ≤ C

∫∫
R2N

[|un(x) − un(y)| + |u−
n (x) − u−

n (y)|]t−2

|x − y|N+st
|u−

n (x) − u−
n (y)||φ(x)

− φ(y)|dxdy

≤ C[un]t−2
s,t [u−

n ]s,t[φ]s,t ≤ C[u−
n ]t−2

s,t → 0.
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Suppose 1 < t ≤ 2. Then, exploiting the second relation in (3.3), x−x+ = x−

for all x ∈ R, the Hölder inequality and u−
n → 0 in W s,t

0 (Ω), we have that

An ≤ C

∫∫
R2N

|u−
n (x) − u−

n (y)|t−1

|x − y|N+st
|φ(x) − φ(y)|dxdy ≤ C[u−

n ]t−1
s,t [φ]s,t

≤ C[u−
n ]t−1

s,t → 0.

Therefore, An → 0 and so (u+
n ) is a (PS)c-sequence for I. Thus we may

assume that un ≥ 0 in R
N for all n ∈ N. Clearly, u ≥ 0 in R

N .

Claim 3. It holds ∫
Ω

u
q∗

s2
n dx →

∫
Ω

uq∗
s2 dx.

Invoking Lemma 2.2, we can find a denumerable set J , sequences (xj) ⊂
Ω, (μj), (νj) ⊂ [0,∞), j ∈ J , such that μj + νj > 0 and∫

RN

|un(x) − un(y)|q
|x − y|N+s2q

dxdy
∗
⇀ μ, u

q∗
s2

n
∗
⇀ ν, (3.4)

and we have

μ ≥
∫
RN

|u(x) − u(y)|q
|x − y|N+s2q

dxdy +
∑
j∈J

μjδxj
,

ν = uq∗
s2 +

∑
j∈J

νjδxj
,

Ss2,qν

q
q∗
s2

j ≤ μj for all j ∈ J.

(3.5)

Fix j ∈ J . For ρ > 0, define ψρ(x) := ψ(x−xj

ρ ), where ψ ∈ C∞
c (RN ) is such

that 0 ≤ ψ ≤ 1, ψ = 1 in B1(0), ψ = 0 in R
N\B2(0) and |∇ψ|∞ ≤ 2. Since

(unψρ) is bounded in W s2,q
0 (Ω), we have

on(1) = 〈wn, unψρ〉

=

∫∫
R2N

|un(x) − un(y)|p−2

|x − y|N+s1p
(un(x) − un(y))(un(x)ψρ(x) − un(y)ψρ(y))dxdy

+

∫∫
R2N

|un(x) − un(y)|q−2

|x − y|N+s2q
(un(x) − un(y))(un(x)ψρ(x) − un(y)ψρ(y))dxdy

−
∫
Ω

u
q∗

s2
n ψρdx −

∫
Ω

ρnψρundx,

whence∫∫
R2N

|un(x) − un(y)|p
|x − y|N+s1p

ψρ(x)dxdy +
∫∫

R2N

|un(x) − un(y)|q
|x − y|N+s2q

ψρ(x)dxdy

= −
∫∫

R2N

|un(x) − un(y)|p−2

|x − y|N+s1p
(un(x) − un(y))(ψρ(x) − ψρ(y))un(y)dxdy

−
∫∫

R2N

|un(x) − un(y)|q−2

|x − y|N+s2q
(un(x) − un(y))(ψρ(x) − ψρ(y))un(y)dxdy

+
∫

Ω

u
q∗

s2
n ψρdx +

∫
Ω

ρnψρundx + on(1).

(3.6)
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Notice that, by (3.4) and (3.5),∫∫
R2N

|un(x) − un(y)|p
|x − y|N+s1p

ψρ(x)dxdy ≥ 0 for all n ∈ N,

lim
n→∞

∫∫
R2N

|un(x) − un(y)|p
|x − y|N+s2q

ψρ(x)dxdy

=
∫
RN

ψρdμ ≥
∫∫

R2N

|u(x) − u(y)|p
|x − y|N+s2q

dxdy + μj .

(3.7)

On the other hand, using the Hölder inequality and the boundedness of (un)
in W s1,p

0 (Ω),
∣∣∣
∫∫

R2N

|un(x) − un(y)|p−2

|x − y|N+s1p
(un(x) − un(y))(ψρ(x) − ψρ(y))un(y)dxdy

∣∣∣

≤ [un]p−1
s1,p

(∫∫
R2N

|ψρ(x) − ψρ(y)|p
|x − y|N+s1p

|un(y)|pdxdy

) 1
p

≤ C

(∫∫
R2N

|ψρ(x) − ψρ(y)|p
|x − y|N+s1p

|un(y)|pdxdy

) 1
p

.

Thanks to [4, Lemma 2.3], we see that

lim
ρ→0

lim
n→∞

∫∫
R2N

|ψρ(x) − ψρ(y)|p
|x − y|N+s1p

|un(y)|pdxdy = 0,

and so

lim
ρ→0

lim
n→∞

∫∫
R2N

|un(x) − un(y)|p−2

|x − y|N+s1p
(un(x) − un(y))(ψρ(x)

−ψρ(y))un(y)dxdy = 0. (3.8)

In a similar fashion,

lim
ρ→0

lim
n→∞

∫∫
R2N

|un(x) − un(y)|q−2

|x − y|N+s2q
(un(x) − un(y))(ψρ(x)

−ψρ(y))un(y)dxdy = 0. (3.9)

Now, by (f1), we see that

0 ≤ ρn(x) ≤ C(1 + (un(x))r−1) for all n ∈ N and for a.e. x ∈ Ω. (3.10)

Hence, ∣∣∣
∫

B2ρ(0)

ρnψρundx
∣∣∣ ≤ C

[∫
Ω

ψρundx +
∫

Ω

ψρu
r
ndx

]

and exploiting (3.2) and the fact that ψ has compact support, we infer

lim
ρ→0

lim
n→∞

∫
B2ρ(0)

ρnψρundx = 0.(3.11)

Finally, due to (3.4) and (3.5), we have

lim
n→∞

∫
Ω

u
q∗

s2
n ψρdx =

∫
Ω

ψρdν =
∫

Ω

uq∗
s2 ψρdx + νj . (3.12)
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Combining (3.6)–(3.12), we obtain μj ≤ νj which together with (3.5) yields

νj ≥ Ss2,qν

q
q∗
s2

j , that is, νj = 0 either νj ≥ S
N

s2q
s2,q. If the relation νj ≥ S

N
s2q
s2,q

holds for some j ∈ J , then

c = lim inf
n→∞

[
I(un) − 1

θ
〈wn, un〉

]

≥ lim inf
n→∞

(
1
θ

− 1
q∗
s2

)∫
Ω

u
q∗

s2
n dx

≥ lim inf
n→∞

(
1
θ

− 1
q∗
s2

)∫
Ω

u
q∗

s2
n ψρdx

≥
(

1
θ

− 1
q∗
s2

) ∫
Ω

ψρdν,

and letting ρ → 0 we find

c ≥
(

1
θ

− 1
q∗
s2

)
S

N
s2q
s2,q

which gives a contradiction. Therefore, νj = 0 for all j ∈ J , and this proves
the claim.

Claim 4. un → u in W s2,q
0 (Ω).

Note that Claim 3 and the Brezis–Lieb lemma [15] yield
∣∣∣∣
∫

Ω

u
q∗

s2
−1

n (un − u) dx

∣∣∣∣ ≤
∫

Ω

|un|q∗
s2

−1|un − u| dx ≤ |un − u|q∗
s2

|un|q
∗
s2

−1

q∗
s2

= on(1).

(3.13)
On the other hand, (3.10) and the boundedness of (un) in Lr(Ω) ensure that
(ρn) is bounded in Lr/(r−1)(Ω) because
∫

Ω

|ρn|r/(r−1)dx ≤ C

∫
Ω

(1+ |un|r−1)r/(r−1) dx ≤ C1

∫
Ω

(1+ |un|r) dx ≤ C1|Ω|+C2.

Hence, by Hölder inequality, we have that∫
Ω

ρn(un − u) dx ≤ |ρn|r/(r−1)|un − u|r,

and exploiting Claim 3 and the boundedness of (ρn) in L
r

r−1 (Ω), we arrive
at ∫

Ω

ρn(un − u) dx = on(1). (3.14)

Now, since (un −u) is bounded in W s2,q
0 (Ω) and ‖wn‖ = on(1), we know that

〈wn, un − u〉 = on(1). Let us recall the following inequalities (see [36]):

|x − y|t ≤
{

C〈|x|t−2x − |y|t−2y, x − y〉 if t ≥ 2,

C[〈|x|t−2x − |y|t−2y, x − y〉] t
2 (|x|t + |y|t) 2−t

2 if 1 < t < 2,

(3.15)
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for all x, y ∈ R
N . In particular, 〈|x|t−2x−|y|t−2y, x−y〉 ≥ 0 for all x, y ∈ R

N

and t > 1. Then, using (3.13) and (3.14), we have that

0 ≤
∫∫

R2N

|un(x) − un(y)|q−2(un(x) − un(y))((un(x) − u(x)) − (un(y) − u(y)))

|x − y|N+s2q
dxdy

−
∫∫

R2N

|u(x) − u(y)|q−2(u(x) − u(y))((un(x) − u(x)) − (un(y) − u(y)))

|x − y|N+s2q
dxdy

≤
∫∫

R2N

|un(x) − un(y)|p−2(un(x) − un(y))((un(x) − u(x)) − (un(y) − u(y)))

|x − y|N+s1p
dxdy

−
∫∫

R2N

|u(x) − u(y)|p−2(u(x) − u(y))((un(x) − u(x)) − (un(y) − u(y)))

|x − y|N+s1p
dxdy

+

∫∫
R2N

|un(x) − un(y)|q−2(un(x) − un(y))((un(x) − u(x)) − (un(y) − u(y)))

|x − y|N+s2q
dxdy

−
∫∫

R2N

|u(x) − u(y)|q−2(u(x) − u(y))((un(x) − u(x)) − (un(y) − u(y)))

|x − y|N+s2q
dxdy

=

∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))((un(x) − u(x)) − (un(y) − u(y)))

|x − y|N+s1p
dxdy

+

∫∫
R2N

|un(x) − un(y)|q−2(un(x) − un(y))((un(x) − u(x)) − (un(y) − u(y)))

|x − y|N+s2q
dxdy

−
∫
Ω

u
q∗

s2
−1

n (un − u) dx −
∫
Ω

ρn(un − u)dx + on(1)

= 〈wn, un − u〉 + on(1) = on(1),

from which∫∫
R2N

|un(x) − un(y)|q−2(un(x) − un(y))((un(x) − u(x)) − (un(y) − u(y)))

|x − y|N+s2q
dxdy

−
∫∫

R2N

|u(x) − u(y)|q−2(u(x) − u(y))((un(x) − u(x)) − (un(y) − u(y)))

|x − y|N+s2q
dxdy → 0.

Now, if q ≥ 2, it follows from the first relation in (3.15) that ‖un−u‖0,s2,q → 0.
When 1 < q < 2, we use the second relation in (3.15) and the boundedness
of (un) in W s2,q

0 (Ω) to deduce that ‖un −u‖0,s2,q → 0. In conclusion, un → u
in W s2,q

0 (Ω). �
The next lemma will be used to choose the constant β > 0 in (f3).

Lemma 3.2. (i) There are v ∈ W s2,q
0 (Ω) and T > 0 such that

max
t∈[0,T ]

I(tv) < c. (3.16)

(ii) There are γ, τ > 0 such that I(u) ≥ τ for all u ∈ W s2,q
0 (Ω) with

‖u‖0,s2,q = γ.
(iii) There is e ∈ W s2,q

0 (Ω) such that ‖e‖0,s2,q > γ and I(e) < 0.

Proof. Take v ∈ C∞
0 (Ω) such that v ≥ 0, v ≡ 0 and ‖v‖0,s2,q = 1. Let us

consider the continuous function g : [0,∞) → R defined as

g(t) :=
tp

p
‖v‖p

0,s1,p +
tq

q
− tq

∗
s2

q∗
s2

|v|q
∗
s2

q∗
s2

.

It is easy to check that g is increasing in (0, t∗) for some t∗ > 0. Since
g(t) = o(t) as t → 0, we can select T > 0 such tat
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(1) T < t∗,
(2) maxt∈[0,T ] g(t) ≤ g(T ) < c,
(3) g(T ) − T

∫
Ω

v dx < 0.
In order to prove (i), we observe that

I(tv) =
1
p
‖tv‖p

0,s1,p +
1
q
‖tv‖q

0,s2,q − 1
q∗
s2

∫
Ω

|tv|q∗
s2 dx −

∫
Ω

F (tv) dx

≤ tp

p
‖v‖p

0,s1,p +
tq

q
− tq

∗
s2

q∗
s2

∫
Ω

|v|q∗
s2 dx

= g(t) ≤ max
τ∈[0,T ]

g(τ) ≤ g(T ) < c for all t ∈ [0, T ].

Consequently, (3.16) holds.
Using the growth assumptions on f and the Sobolev embeddings, we

deduce that there are C1, C2, C3 > 0 such that

I(u) ≥ C1‖u‖q
0,s2,q − C2‖u‖q∗

s2
0,s2,q − C3‖u‖r

0,s2,q.

Recalling that q < r < q∗
s2

, we easily deduce that (ii) is valid.
Finally, we prove (iii). Using (f3), we see that

I(Tv) =
1
p
‖Tv‖p

0,s1,p +
1
q
‖Tv‖q

0,s2,q − 1
q∗
s2

∫
Ω

(Tv)q∗
s2 dx −

∫
Ω

F (Tv) dx

= g(T ) −
∫

Ω

F (Tv) dx

≤ g(T ) −
∫

Ω

(Tv − β)+dx.

Since
∫
Ω
(Tv − β)+dx → ∫

Ω
Tv dx as β → 0, there exists β > 0 small such

that I(Tv) < 0. �

Now we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. In light of Lemmas 3.1 and 3.2, we can apply The-
orem 2.3 to infer that (1.1) admits a nonnegative weak solution (u, ρ) ∈
W s2,q

0 (Ω) × L
r

r−1 (Ω). Finally, we verify that the set

{x ∈ Ω : u(x) > β}
has positive measures. Suppose, by contradiction, that u(x) ≤ β a.e. in Ω.
Then, since u is a solution of (1.1), we deduce that

‖u‖p
0,s1,p + ‖u‖q

0,s2,q =
∫

Ω

ρu dx +
∫

Ω

uq∗
s2 dx.

Now, using (f1), we have

‖u‖q
0,s2,q ≤ ‖u‖p

0,s1,p + ‖u‖q
0,s2,q

=
∫

Ω

ρu dx +
∫

Ω

uq∗
s2 dx

≤ C

∫
Ω

(u + ur) dx +
∫

Ω

uq∗
s2 dx
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≤ [C(β + βr) + βq∗
s2 ]|Ω|.

Since I(u) = c > 0, we can find M > 0 such that ‖u‖0,s2,q ≥ M and so

Mq ≤ [C(β + βr) + βq∗
s2 ]|Ω|.

The above inequality is impossible if we choose β > 0 sufficiently small and
thus we get a contradiction. The proof of Theorem 1.1 is now complete.
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[36] Simon, J.: Régularité de la solution d’un problème aux limites non linéaires.
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