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Mode coupling in Dynamic Atomic Force Microscopy

Abhilash Chandrashekar,1, ∗ Pierpaolo Belardinelli,2 Stefano Lenci,2 Urs Staufer,1 and Farbod Alijani1, †

1Precision and Microsystems Engineering, TU Delft, Delft, The Netherlands
2DICEA, Polytechnic University of Marche, Ancona, Italy

(Dated: December 17, 2020)

Enhancing the signal-to-noise ratio in dynamic Atomic Force Microscopy (AFM) plays a key role in nanome-

chanical mapping of materials with atomic resolution. In this work, we develop an experimental procedure for

boosting the sensitivity of higher harmonics of an AFM cantilever without modifying the cantilever geometry

but instead by utilizing dynamical mode coupling between its flexural modes of vibration. We perform experi-

ments on different cantilevers and samples and observe that via nonlinear resonance frequency tuning, we can

obtain a frequency range where strong modal interactions lead up to 7 and 16 folds increase in the sensitivity

of the 6th and 17th harmonic while reducing sample indentation. We derive a numerical model that captures

the observed physics and confirms that nonlinear mode coupling can be held accountable for increasing the

amplitude of higher harmonics during tip-sample interactions.

I. INTRODUCTION

Dynamic Atomic Force Microscopy (AFM) has emerged as

a powerful tool for nanoscale imaging of matter in many tech-

nical and scientific application areas [1]. In dynamic AFM,

an oscillating microcantilever tip interacts intermittently with

the sample while being driven close to or at a resonance fre-

quency. Dynamic AFM is routinely used to characterize the

topography of samples with nanometer or even atomic res-

olution. Irrespective of the outstanding capabilities offered

by this AFM mode, the understanding of nanoscale processes

and quantification of material properties using AFM is yet far

from being well-established. One curbing reason for this is

that, in the conventional dynamic AFM experiments a single

drive frequency is used to scan the sample and the feedback

system maintains either the amplitude or the phase of oscil-

lations constant. As a result, the number of observable chan-

nels that are required to quantify the mechanical properties

of the sample are not sufficient. To overcome this limita-

tion, multi-frequency AFM techniques are being adopted [2].

These methods mainly use higher harmonics of the cantilever

deflection signal [3, 4] or the output signals of two or three

resonant modes [5, 6] to obtain complementary information

of the interacting sample. Other modes of multi-frequency

AFM are also available that use torsional harmonics [7] or in-

termodulation products [8] to probe sample properties.

To date, many studies have incorporated the aforemen-

tioned multi-frequency AFM techniques to map nanomechan-

ical properties of samples, ranging from polymeric [9, 10] to

biological substances[11, 12]. However, only a handful of

these works have looked into the possibilities for enhancing

the sensitivity of the higher order spectral components [13–

17]. Among them, a majority have exploited a phenomenon

known as internal resonance [18]. This condition occurs when

the ratio between two or more resonance frequencies of the

cantilever is a rational number, and results in strong coupling

between the interacting modes of vibration [19]. The signifi-
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cance of intermodal coupling arises from its correlation with

the effective spring constant of the resonant modes that can

be tuned either by modifying the geometry of the cantilever

[13, 15], or creating notches/ holes [16], or by adding concen-

trated mass at specific locations on the cantilever [17].

Here, in contrast to previous works, we propose a novel

technique to boost the signal-to-noise ratio (SNR) of higher

harmonics and higher order flexural mode of an AFM can-

tilever without the need to modify its geometry. By sweeping

the drive frequency in the spectral neighborhood of a reso-

nance, we find a frequency range where strong interactions

between the first three flexural modes of the cantilever sig-

nificantly increases the amplitude of higher harmonics. Us-

ing this technique, we are able to enhance the amplitude of

the 6th and the 17th harmonic up to 7 and 16 folds, respec-

tively. Interestingly, driving the cantilever in this frequency

range also results in a decreased sample indentation due to

the phase synchronization of the eigenmodes. These phenom-

ena are showcased at drive amplitudes comparable to set point

ratios used in conventional scanning operation, thereby high-

lighting the utility of the technique in dynamic AFM. To un-

derstand the physics behind our observations, we develop a

theoretical model comprising Multiple-Degrees of Freedom

(MDOF) and non-smooth nonlinear interactions between the

tip and the sample. Our simulations qualitatively conform

with the observed physics, and confirms that mode coupling

is responsible for the increase in the SNR of higher harmon-

ics. Our study also reveals the use of real-time temporal data

for identifying dynamical coupling in AFM applications. Be-

cause of its simplicity and ease of use, the proposed technique

has the potential to be utilised in a variety of multi-frequency

AFM techniques.

II. EXPERIMENTAL RESULTS

Our experiments are performed by using a commercial

AFM (JPK Nanowizard) and two separate acquisition elec-

tronics, namely a multi-lock-in amplifier from Intermodula-

tion products and a Field Programmable Gated Array (FPGA)

from National Instruments, to collect and analyze the can-
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FIG. 1: Schematic of the experimental setup and the acquired experimental nonlinear dynamic response. The response is

obtained with a commercial rectangular cantilever (NCLR) on a Silicon sample with an excitation amplitude of 0.013 V. (a)

The schematic of the setup employing two different data acquisition electronics, namely the multi-lock-in amplifier and an

FPGA device. The schematic details the initial static cantilever configuration η∗ and the dynamic configuration with the

cantilever vibrating about the elastostatic equilibrium u at the free end L of the cantilever. (b) The blue and the pink curves

indicate the nonlinear dynamic response obtained using the raw deflection signal and the lock-in signal. The forward and

reverse sweeps are combined into one curve.

tilever deflection data. We used a commercially available rect-

angular Silicon cantilever (NCLR, NanoWorld AG) and a flat

Silicon sample to perform the experiments. For each experi-

ment, the spring constant of the cantilever (k = 22.68 Nm−1),

its resonance frequency ( f0 = 164.52 kHz), and quality fac-

tor (Q = 428) are determined using the thermal calibration

method [20]. A schematic of the setup is shown in Fig. 1(a).

In order to obtain the nonlinear resonance response of the

AFM cantilever while interacting with the sample, we have

implemented a procedure where a standard force-distance

curve is first used to statically approach the sample surface

with a small set point of 2 nm. Next, the end condition of the

force-distance curve is preserved to hold the cantilever at the

precise fixed distance of η∗ =100 nm from the sample surface.

The latter operation is feasible using the feedback loop on the

z-piezo of the AFM, which stays active for a specific period of

time. While maintaining the static position (η∗), the drive fre-

quency ( fd) of the dither piezo is swept around the resonance

frequency from 163 kHz to 170 kHz ( f0=164.52 kHz). The re-

sulting change in vibrational amplitude is recorded using the

multi-lock-in amplifier and the FPGA, simultaneously. Addi-

tionally, during the entire sweep duration a specific excitation

y(t) is applied such that the reduction in vibrational amplitude

due to tip-sample interaction is maintained at 84%. This re-

duction is comparable with that of the amplitude set-point ra-

tios used during normal scanning operation in dynamic AFM

(See Fig. S1.1 in supplementary information S1). The out-

come of this procedure is shown in Fig. 1(b). It can be seen

that, when the deflection amplitude is increased, the resonance

curve first slightly bends to the left (spring softening) [21] and

as the tip further approaches the sample, the curve bends to-

wards the right side of the resonance (spring hardening). We

note that the presence of nonlinear attractive and repulsive

forces between the tip and the sample lie at the root of our

observation [22].

In Fig. 1(b) we also observe that the nonlinear resonance

curve obtained by using the lock-in amplifier (pink curve) is

different from the one obtained by analyzing the raw deflec-

tion signal using the FPGA (blue curve). Interestingly, we

observe a mismatch in the amplitudes of the two signals that

exacerbates at higher fd . The observed discrepancy hints at

the presence of higher-order spectral components that are es-

sentially eliminated when the lock-in amplifier is used. This is

because, the lock-in amplifier allows detection of a single fre-

quency component when sweeping fd around resonance and

effectively approximates the cantilever dynamics as a Single-

Degree of Freedom (SDOF) system. However, the FPGA

stores the real-time deflection signal and thus can efficiently

capture modal interactions that may exist around the reso-

nance.

To further investigate the cantilever’s nonlinear dynamic

response, we obtain the maximum and minimum of the de-

flection in an oscillatory cycle using the FPGA (see Fig. 2

(a)). We note that the cantilever deflection signal reaches a

maximum far away from the sample, whereas the minimum

shows that the tip is interacting with the sample. This seg-

regation reveals a broken symmetry in the response due to

the non-smooth nature of the contact between the tip and the

sample when fd is detuned from f0. To study the physi-

cal origin of this symmetry breaking response, we trace the

phase space trajectories of the cantilever in real-time when

moving from fd = 164.5 kHz to fd = 167 kHz (see Fig. 2(b)
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and (c)). The phase space trajectories are highly sensitive to

the presence of higher order modes and can be used to iden-

tify modal interactions [22]. In Fig. 2(b) we observe sim-

ple harmonic oscillations of the cantilever close to the free

air resonance ( fd = 164.5 kHz); however, at large detuning

( fd ≥ 166.4 kHz), the phase space warps and ripples ap-

pear on the periphery of the trajectory (Fig. 2(c)). To un-

derstand the origin of this phase space distortion, we per-

form Fast Fourier Transform (FFT) of the temporal data (See

Fig. 2(d) and (e)), and observe that the frequency content of

the signal at fd=164.5 kHz involves only f0 and few of its

higher harmonics. But, when applying FFT on the time signal

taken at fd=167 kHz, an additional resonance peak appears at

f2 =1020 kHz (see Fig. 2(e)), suggesting the activation of the

second eigenmode of the cantilever. In essence, this shows

that the phase space distortions are a direct result of activa-

tion of higher order vibration modes and that the presence of

higher harmonics has trivial effect on these trajectories (see

Fig . A.1 of Appendix A for details).

To elaborate on our observation, we note that for the can-

tilever used in the experiments, the frequency ratio f2/ f0 ≈
6.2 is close to the factor 6. Therefore, by tuning the nonlinear

resonance frequency (via sweeping fd), we can reach a 6:1 in-

ternal resonance in the frequency range fd ∈ [165,166] kHz,

where the contribution of the second mode becomes apparent.

The resulting mode coupling enhances the SNR of specific

harmonics that are close to the interacting eigenmode. In par-

ticular, we observe a 7 fold increase in the SNR of the 6th har-

monic compared to its amplitude near the free air resonance

(refer to Fig. 2(d) and (e)).

Interestingly, this modal interaction is not only character-

ized by an increase in the strength of harmonics, but it is

also accompanied by a reduced sample indentation when com-

pared to normal scanning operations with similar amplitude

set-point ratios at fd = f0. As we sweep fd around resonance

we observe a decrease in the minimum amplitudes in the fre-

quency range between 165< fd < 166 kHz which is associated

with a decrease in the sample indentation. Such properties

make the frequency range over which mode coupling occurs,

an ideal range of excitation for the mapping of nanomechan-

ical properties. Therefore, we label this region as the "sweet

spot". This lower sample indentation is highlighted in the in-

set of Fig. 2(a), and can be formally described as a gradual

curving of the nonlinear dynamic curve in its deflection min-

ima forming a convex shape. It may be intuitively thought that

the increased coupling should increase the interaction force

and, as a consequence, increase the sample indentation. How-

ever, in the sweet spot, the phases of the interacting modes

synchronize in such a way that there is a reduced sample in-

dentation (See Fig. C 1 in Appendix). This dynamic feature is

similar to what has been previously reported in dynamically

tuned trapezoidal cantilevers [15].

To investigate the repeatability of the observed phenom-

ena, we performed additional set of experiments using a

TAP190Al-G rectangular cantilever on a Highly Oriented Py-

rolytic Graphite (HOPG) sample, a TAP300Al-G rectangular

cantilever on a nanocrystalline diamond island and finally a

TAP150AL-G rectangular cantilever on a Polystyrene island.

We found that the "sweet spot" is not a unique feature that be-

longs to a particular sample-cantilever configuration (see sec-

tion B of supplementary information S1 for details). These in-

teresting observations highlight the role of higher eigenmodes

and mode coupling in AFM applications.

III. MODELING AND SIMULATIONS

In order to underpin the physics behind our experimen-

tal observation and to further understand the nature of the

mode coupling, we develop a theoretical model based on a

non-smooth two-degree of freedom system. The derivation

of the model can be found in Appendix B.The model uti-

lizes the long range nonlinear Van der Waals (VdW) and Der-

jaguin–Muller–Toporov (DMT) contact forces to describe the

tip-sample interactions Fts(z) as follows [23, 24]

Fts (z) =



















FvdW =−
HR

6z2
for z > a0

FDMT =−
HR

6a0
2
+

4

3
E∗√R(a0 − z)3/2

for z ≤ a0.

(1)

Here, H stands for the Hamaker constant, R the tip ra-

dius, a0 the intermolecular distance, and E∗ the effective

Young’s modulus. The tip-surface interaction is purely attrac-

tive (FVdW) when the separation distance z is larger than the

intermolecular distance a0. If z is smaller than a0 the inter-

action is governed by contact mechanics (FDMT). This non-

smoothness in the interaction force mediates an energy chan-

nel between different modes of the cantilever and acts as the

root cause of our observation.

To obtain the equations of motion, we model the AFM

cantilever as a continuous dynamical system using the Euler-

Bernoulli beam theory. We discretize the model by projecting

the cantilever deflection onto its linear eigenmodes (computed

near free air resonance) and employ the Galerkin approach to

obtain a system of ordinary differential equations as follows

[22]

¨̃qi +Di (z̄) ˙̃qi +Kiq̃i =−Ci −Fts,i (z̄)+BiΩ̄
2ȳsin

(

Ω̄τ
)

. (2)

The cantilever deflection, splitted across the generalized coor-

dinates q̄i (i = 1,2, ...N, with N being the number of general-

ized coordinates), is written in Eq. (2) on a reference system

attached to the cantilever (See Fig. 1(a)). The coupling be-

tween the generalized coordinates occurs through the relation,

z̄ = 1−
n

∑
i=1

q̃i − ȳsinΩ̄τ . In addition, equation (2) is made di-

mensionless with respect to the equilibrium gap width (η∗)

and the fundamental frequency of the cantilever (ω0 = 2π f0)

in the absence of the tip-sample interaction. The amplitude of

the dither piezo is given by ȳ and the dotted quantities repre-

sent derivatives with respect to the rescaled time τ (τ = ω0 t).

Additionally, modal damping Di(z̄) has been explicitly added

to Eq. (2). In particular, we consider a piecewise model [23]

that accounts for the dissipation mechanism when the tip is in
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the raw deflection signal of the cantilever. (a) Experimental frequency response curve; the blue and green curves represent the

maximum and minimum position of the tip, respectively. The forward and reverse sweeps are combined into one curve. The

inset highlights the gradual curving of the nonlinear dynamic response in a specific range of drive frequency. The sweet spot

frequency range is highlighted using dashed lines. (b)-(c) Phase space trajectories at 164.5 kHz and 167 kHz of drive frequency

showing the influence of the second eigenmode in the cantilever oscillations. (d)-(e) Frequency spectra of raw deflection signal
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air (D̃att
i ) or when it is in contact with the sample (D̃

rep
i ). Fi- nally, the coefficients Ki, Ci, and Bi represent the modal stiff-
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ness, static deflection, and mode participation factor, respec-

tively. The final discretized equation is then simulated using

pseudo arc-length continuation technique to fit the experimen-

tal data [25].

The simulations performed using the two-mode VdW-DMT

model qualitatively describe our experimental observations.

In Fig. 3(a) the blue and green nonlinear dynamic response

curves represent the maximum and minimum deflection of the

cantilever similar to what is observed in experiments. Re-

ferring to Fig. 3(a), the gradual curving of the minimum re-

sponse (green curve) occurs when the simulation parameters

of the coupled oscillator system are tuned to produce a 6:1

internal resonance condition, confirming the presence of this

unconventional internal resonance at a few kHz of detuning

(see section C of supplementary information S1 for details) .

Adding to this, the theoretical nonlinear dynamic curves high-

light the influence of the higher order modes in the distortion

of the phase space trajectory. Similar to the experimental re-

sults, the periodic orbit exhibits simple harmonic motion close

to free air resonance (Fig. 3(b)), which becomes distorted by

detuning fd to higher frequencies. The distortion gradually

increases in depth, in accordance with the contribution given

by the second mode of vibration (Figs. 3(c)-(e)).
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signal is low pass filtered with different cut off frequencies to

identify the contribution from the second (orange curve) and

the third flexural mode (blue curve), respectively.

Although the two-mode model accurately predicts the dom-

inance of the second mode at large detunings and explains

the physics behind the curving of the nonlinear dynamic re-

sponse in the sweet spot, it masks the effect of any further

couplings that may exist among higher modes of vibration. In

particular as depicted in Fig. 4, at fd = 165.5 kHz we observe

an increase in the number of ripples on the periphery of the

phase space (blue curve). We note that this additional distor-

tion of the phase space is accompanied with 16 folds increase
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the 6th and the 17th harmonic increase in a specific frequency

range highlighted by the orange section due to intermodal

coupling. Thereafter, only the 6th harmonic amplitude

increases due to increased tip-sample interaction and

dominance of the second mode of vibration.

in the amplitude of the 17th harmonic that is closely located

to the third flexural mode of the cantilever ( f3 ≈ 17.5 f0). To

prove our hypothesis about the influence of the third flexural

mode, we low-pass filter the experimental data up to the 16th

harmonic and observe that the resulting phase space (orange

curve) closely matches with that of the simulated trajectory

obtained using the two mode approximation model shown in

Fig. 3(c). Although including an additional mode in the nu-

merical model (with consequent increase of the complexity in

the simulations) could capture completely the dynamics ob-

served in experiments, it would not add physical insights for

the observations stated in this article.

Finally, as an extensive outlook on the various stages of in-

fluence of higher-order modes as fd is detuned from f0, we

report in Fig. 5 the variation of the 6th and 17th harmonic as a

function of fd . At first, when fd is close to f0, the amplitude of

the harmonics generated due to tip-sample forces is relatively

low and comparable with the strength of the signals observed

during normal tapping mode scanning operation. In the low

frequency range (green region of Fig. 5) the entire cantilever

dynamics can be well approximated as a SDOF system. With

increased detuning, when fd lies in the sweet spot (orange re-

gion), there is sharp increase in the contribution of the second

and third eigenmode in the cantilever motion and the dynam-

ics is governed by the three flexural modes of the cantilever.

In this region the amplitude of the 6th and 17th harmonic in-

crease by 7 and 16 folds respectively as a consequence of an

enhanced mode coupling both with the second and the third

eigenmode. Upon further detuning, we observe the continu-

ous increase of SNR of the 6th harmonic but at the expense of

an increased sample indentation. At the same time, the large

resonance frequency tuning brings the amplitude of the 17th
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harmonic to drop gradually, until the third mode contribution

completely disappears. In the violet region of Fig. 5, the dy-

namics is fully governed by the first and the second mode only.

Additionally, by increasing the amplitude of the excitation, the

sweet spot widens by few kHz while the physics remains un-

altered. However, this increase in the sweet spot range comes

at the expense of larger set point ratio (see Fig. S1.5 of sup-

plementary information S1 for details).

Currently, the methodology provides significant improve-

ment in SNR of higher harmonics for single point mea-

surements and could be implemented in techniques that ex-

tract the nanomechanical properties of samples at several pre-

determined pixels. However, in order to integrate the tech-

nique with conventional scanning operation there are a few

limitations that still need to be addressed. In particular, as a

first step, the algorithm routine used to capture the raw de-

flection signal and tune nonlinear resonance frequency has

to be integrated into the AFM’s controller in order to han-

dle the data processing at imaging speeds. Such integration

also helps tackling the issue of choosing the right drive fre-

quency within the sweet spot for samples comprising multi-

ple materials. Secondly, since the sweet spot is driven be-

yond the bifurcation point into a bi-stable region , a thorough

study has to be performed to understand the influence of noise

and feedback settings on the robustness of sweet spot dur-

ing imaging [26, 27]. In this aspect, our technique can be

incorporated together with novel feedback architectures such

as modulated time delay control [29] that have already been

successfully used to control the cantilever oscillations in the

bi-stable regime and reduce perturbation-induced jumps dur-

ing the scanning operation. Finally, it is important to consider

the influence of the geometric and modal characteristics of the

cantilever used for performing the measurements. The tech-

nique reported in this article has been showcased with stan-

dard rectangular cantilevers and is applicable to cantilevers

with the second and the third bending modes close to 6 f0 and

17 f0, respectively.

IV. CONCLUSION

In summary, we propose a technique to actively tune

the nonlinear resonance frequency of AFM cantilevers to

achieve high SNR of harmonics at low sample indentation

compared to conventional dynamic AFM operations. We

discuss the influence of higher order modes on the phase

space trajectories of the cantilever as a function of the detuned

frequency and highlight the presence of a sweet spot in a

specific frequency range around resonance where there is a

significant increase in the amplitude of higher harmonics, due

to strong modal interactions. We use a two mode nonlinear

non-smooth model to qualitatively describe our experiments

and explain the observed physics. The model reinforces

the idea of mode coupling as the phenomenon behind the

increase in the amplitude of higher harmonics and the lower

sample indentation. Finally, given the ease of use and utility,

we anticipate that this experimental technique can be used

together with various multi-frequency AFM techniques to

study nanomechanical properties of organic and inorganic

samples without the need for specialized cantilevers. Our

technique can also be easily employed in multi-frequency

scanning operations to obtain images of the higher harmonics

with increased sensitivity, which is an essential requirement

in dynamic AFM applications.
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APPENDIX

Appendix A: Influence of harmonics on phase space trajectories

In this section, we study the influence of harmonics and

higher order modes on the phase space trajectories and present

additional results to corroborate our findings. In particular,

we focus on the warping of the phase space trajectories and

its insensitivity towards higher harmonics. Figure.A.1 shows

the experimental phase space trajectories and the associated

frequency spectra at several distinct excitation frequencies.

The data is extracted from the nonlinear frequency response

curve Fig. 2 (a). The time data is digitally low pass filtered

at different stages with different cut off frequencies to un-

derstand the influence of higher order spectral components.

At first, we choose a frequency point close to the resonance

at fd = 164.4 kHz and obtain the phase space and the corre-

sponding frequency spectra as shown in Fig. A.1(a) and (b).

The data is digitally low pass filtered with a cut off frequency

of 3.5 MHz. Looking at Fig. A.1 (a), the frequency spectra

clearly shows the presence of several higher harmonics and in

particular the 6th and the 17th harmonics are of special interest

since they are closer to the second and third flexural modes of

the cantilever and thus show more contrast in AFM imaging

operations. Referring to these figures, even when the higher

harmonics are present in the cantilever deflection, the phase

space trajectories remain approximately circular and show no

signs of warping (see Fig. A.1(b)).

In the next step of the analysis, we choose the frequency

point fd = 165.5 kHz reported in Fig. 4 but low pass filter the

time data with two different cut off frequencies namely 1.1

MHz (upto the 7th harmonic) (Fig. A.1(c)-(d)) and 2.65 MHz

(upto the 16th harmonic) (Fig.A.1(e)-(f)), respectively. From

the frequency spectra of Fig. A.1(c), we see that by includ-

ing spectral components only until the second mode, we see a
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FIG. A.1: Influence of harmonics and higher order eigenmodes on phase space trajectories. (a)-(b) Discrete frequency spectra

and the associated phase space trajectory at fd = 164.4 kHz. (c)-(d) Discrete frequency spectra and the associated phase space

trajectory at fd = 165.5 kHz. The time data is low pass filtered to include the first 7 harmonics of the cantilever. (e)-(f) Discrete

frequency spectra and the associated phase space trajectory at fd = 165.5 kHz. The time data is low pass filtered to include the

first 16 harmonics of the cantilever.

gradual warping of the phase space with characteristic ripples

appearing on its periphery (see Fig. A.1(d)). Furthermore, by

including the spectral components up to the 16th harmonic

(see Fig. A.1(e)), we see that the shape of the phase space

trajectory is unaltered (see Fig. A.1(f)). However, if the time

data at this particular frequency point was not low pass filtered

then it would have resembled the phase space shown in Fig. 4.

This analysis shows the insensitivity of the phase space trajec-

tories to higher harmonics and further highlights the utility of

phase space orbits as tools for probing the presence of higher

order eigenmodes and modal interactions in dynamic AFM

applications.

Appendix B: Theoretical model

Here, we obtain the dynamical equation for the AFM ini-

tially resting in a static equilibrium at a distance η∗ from the

sample (see Fig. B.1). The mathematical framework to de-

velop the continuous model for the AFM cantilever is within

the Euler-Bernoulli beam theory assumptions. The AFM can-

tilever has length L, mass density ρ , Young’s modulus E ,

area moment of inertia I , and cross-section area A. The

beam is clamped at x = 0 and free at x = L. The cantilever

deflection is expressed in a non-inertial reference frame at-

tached to the base, and excited with harmonic motion y(t) =
Ysin(Ωt) via a dither piezo, where Y and Ω are the ampli-

tude and frequency of excitation, respectively. The static de-

flection due to tip-sample forces at η∗ is given by w∗(x) (see

Fig. B.1(a)). Finally, the instantaneous tip-sample distance is

z(t) = η∗−u(L, t)− y(t) where u(x, t) is the dynamic deflec-

tion of the cantilever as shown in Fig. B.1(b). The vibrations

about the elastostatic equilibrium are governed by the equa-

tion [23]:

ρAü(x, t)+EI(u′′′′(x, t)+w∗′′′′(x)) = Fts(z(t))δ (x−L)

+ρAΩ2Y sin(Ωt).
(B1)

We discretize Eq. (B1) by projecting it onto linear mode

shapes φi(x) computed around the cantilever static configura-

tion. For this, we approximate the response as

u(x, t) =
n

∑
i=1

φi(x)qi(t) (B2)

with qi(t) being the generalized time dependent coordinate
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FIG. B.1: A schematic of the AFM. (a) Initially statically deflected configuration. (b) Dynamic configuration with the

cantilever vibrating about its elastostatic equilibrium.

for the i-th mode of vibration. We then substitute Eq. (B2)

in Eq. (B1) and by utilizing the Galerkin procedure we take

the inner products with the same shape functions employed in

the discretization. The final discretized dimensionless set of

nonlinear ordinary differential equations are:

¨̃qi+Di (z̄) ˙̃qi +Kiq̃i =−Ci −Fts,i (z̄)+BiΩ̄
2ȳsin

(

Ω̄τ
)

. (B3)

where z̄ is the dimensionless tip-sample separation distance

given by

z̄ = 1−
n

∑
i=1

q̃i − ȳsinΩ̄τ . (B4)

Replacing Eq. (B4) in the tip-sample interaction force (Eq.

(1)) obtains

Fts,i (z̄) =

{

Ci/z̄2, for z̄ > ā0

Ci/ā2
0 +Gi (ā0 − z̄)3/2

, for z̄ ≤ ā0.
(B5)

where the coefficients arising in Eqs. (B3),(B5) are defined as

Ki =
ωi

2

ω0
2

, Ci =−
HRφi

2 (L)

6ρAη∗3ω0
2
∫ L

0
φi

2 (x)dx

,

Bi =
φi (L)

∫ L

0
φi (x)dx

∫ L

0
φi

2 (x)dx

, Gi =
4E∗√Rη∗φi

2 (L)

3ρAω0
2
∫ L

0
φi

2 (x)dx

.

(B6)

In the presented formulation the generalized coordinates q̃i

are normalized with respect to the value of the mode shape

at the free end of the cantilever (q̃i = φi (L)qi). The over-

dot in Eq. (B3) means differentiation with respect to the di-

mensionless time, namely τ = ω0t where ω0 is the fundamen-

tal frequency of the cantilever. The amplitude and frequency

of the excitation, Y and Ω are related to their dimensionless

counterparts through ȳ = Y/η∗ and Ω̄ = Ω/ω0, respectively.

Finally, ā0 = a0/η∗ is the dimensionless conjugate of the in-

termolecular distance a0. Note that the modal damping Di (z̄)
has been considered in Eq. (B3). Similar to Ref. [23], we

consider a piecewise model that accounts for the dissipation

mechanisms while the tip is in air (D̃att
i ) or in contact with the

sample (D̃
rep
i ):

Di (z̄) =







































Di
att =

D̃att
i

ω0ρA

∫ L

0
φi

2 (x)dx

, for z̄ > ā0

Di
rep =

D̃
rep
i

ω0ρA

∫ L

0
φi

2 (x)dx

, for z̄ ≤ ā0.

(B7)

In our simulations we restrict ourselves to a two-degree-of-

freedom model, that means we limit Eq.( B3) to i = 2. In

this case the coupled set of nonlinear differential equations

become:























































¨̃q1 +Datt
1

˙̃q1 +K1q̃1 =−C1 −
C1

(

1− q̃1− q̃2 − ȳsinΩ̄τ
)2

+B1Ω̄2ȳsin
(

Ω̄τ
)

¨̃q2 +Datt
2

˙̃q2 +K2q̃2 =−C2 −
C2

(

1− q̃1− q̃2 − ȳsinΩ̄τ
)2

+B2Ω̄2ȳsin
(

Ω̄τ
)

.

(B8)







































¨̃q1 +D
rep
1

˙̃q1 +K1q̃1 =−C1 −C1/ā2
0

−G1

(

ā0 −
(

1− q̃1− q̃2 − ȳsinΩ̄τ
))3/2

+B1Ω̄2ȳsin
(

Ω̄τ
)

¨̃q2 +D
rep
2

˙̃q2 +K2q̃2 =−C2 −C2/ā2
0

−G2

(

ā0 −
(

1− q̃1− q̃2 − ȳsinΩ̄τ
))3/2

+B2Ω̄2ȳsin
(

Ω̄τ
)

.

(B9)

where Eq.(B8) and (B9) shall be integrated with conditions
(

1− q̃1− q̃2 − ȳsinΩ̄τ
)

≤ ā0 and
(

1− q̃1− q̃2 − ȳsinΩ̄τ
)

>
ā0, respectively.

The simulation parameters used in Eq.(B8) and (B9) to ob-

tain the results presented in Fig.3 are provided in the supple-

mentary information S2.
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Appendix C: Phase synchronization at internal resonance

We reported a reduction in sample indentation in Fig. 2(a)

when fd is detuned to coincide with the sweet spot. In this ap-

pendix, we utilize the simulations from our two mode VdW-

DMT model described in Eq. (B9) and show that the phase

synchronization between the eigenmodes is responsible for

the aforementioned reduction in sample indentation. Fig-

ure. C.1 shows the time signals of the first (blue) and sec-

ond (orange) flexural modes extracted from the same simula-

tions reported in Fig. 3. The signals are extracted at different

excitation frequencies from the nonlinear frequency response

curve to track the variation of phase difference between the

two modes. At resonance fd = f0 (see Fig. C.1(a)) the phase

difference between the two modes is ≈ 90◦. However, when

fd is detued to enter the sweet spot (see Fig. C.1(b)-(c)), the

phase difference changes drastically such that the two modes

interact almost in out-of-phase motion. The phase difference

between the two modes is found to be 152.11◦ to 163.38◦ as

fd is swept from 165.5 kHz to 166 kHz, respectively. This

out-of-phase motion between the two eigenmodes interfere

destructively, resulting in a reduced sample indentation. Fi-

nally, when fd is out of the sweet spot range the phase differ-

ence gradually shrinks to 32.4◦ at 167 kHz (see Fig. C.1(d)).

This reduction in phase difference causes the two modes to

interfere constructively and therefore results in larger indenta-

tion at higher excitation frequencies.
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FIG. C.1: Simulations depicting Auto phase synchronization

between first (blue) and second (orange) flexural modes in

the sweet spot. To aid with the visualization, the amplitudes

of the time signals are normalized with respect to their

corresponding maximum value in a given time period. (a) At

resonance, the first and second flexural mode oscillations

start with a phase difference of 90◦ (b)-(c) The phase

difference between the two eigenmodes in the sweet spot at

165.5 kHz and 166 kHz, respectively.(d) the phase difference

between the two modes out of the sweet spot at 167 kHz.

[1] Y. F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-

Martin, A. Engel, C. Gerber, and D. J. Müller, Imaging modes

of atomic force microscopy for application in molecular and

cell biology, Nature Nanotechnology 12, 295 (2017).

[2] R. Garcia and E. T. Herruzo, The emergence of multifrequency

force microscopy, Nature nanotechnology 7, 217 (2012).

[3] R. Hillenbrand, M. Stark, and R. Guckenberger, Higher-

harmonics generation in tapping-mode atomic-force mi-

croscopy: Insights into the tip–sample interaction, Applied

Physics Letters 76, 3478 (2000).

[4] M. Stark, R. W. Stark, W. M. Heckl, and R. Guckenberger,

Spectroscopy of the anharmonic cantilever oscillations in

tapping-mode atomic-force microscopy, Applied Physics Let-

ters 77, 3293 (2000).

[5] E. T. Herruzo, A. P. Perrino, and R. Garcia, Fast nanomechan-

ical spectroscopy of soft matter, Nature communications 5, 1

(2014).

[6] D. Martinez-Martin, E. T. Herruzo, C. Dietz, J. Gomez-Herrero,

and R. Garcia, Noninvasive protein structural flexibility map-

ping by bimodal dynamic force microscopy, Phys. Rev. Lett.

106, 198101 (2011).

[7] O. Sahin, Time-varying tip-sample force measurements and

steady-state dynamics in tapping-mode atomic force mi-

croscopy, Physical Review B 77, 115405 (2008).

[8] D. Platz, E. A. Tholén, D. Pesen, and D. B. Haviland, Inter-

modulation atomic force microscopy, Applied Physics Letters

92, 153106 (2008).

[9] R. Garcia and R. Proksch, Nanomechanical mapping of soft

matter by bimodal force microscopy, European Polymer Jour-

nal 49, 1897 (2013).

[10] P.-A. Thorén, R. Borgani, D. Forchheimer, I. Dobryden, P. M.

Claesson, H. G. Kassa, P. Leclère, Y. Wang, H. M. Jaeger, and

D. B. Haviland, Modeling and measuring viscoelasticity with

dynamic atomic force microscopy, Physical Review Applied

10, 024017 (2018).

[11] A. Raman, S. Trigueros, A. Cartagena, A. P. Stevenson,

M. Susilo, E. Nauman, and S. A. Contera, Mapping nanome-

chanical properties of live cells using multi-harmonic atomic

force microscopy, Nat Nanotechnol 6, 809 (2011).

[12] M. Dong, S. Husale, and O. Sahin, Determination of protein

structural flexibility by microsecond force spectroscopy, Nature

nanotechnology 4, 514 (2009).



10

[13] O. Sahin, Time-varying tip-sample force measurements and

steady-state dynamics in tapping-mode atomic force mi-

croscopy, Physical Review B 77, 115405 (2008).

[14] R. Potekin, S. Dharmasena, D. M. McFarland, L. A. Bergman,

A. F. Vakakis, and H. Cho, Cantilever dynamics in higher-

harmonic atomic force microscopy for enhanced material char-

acterization, International Journal of Solids and Structures 110-

111, 332 (2017).

[15] A. Keyvani, H. Sadeghian, M. S. Tamer, J. F. L. Goosen,

and F. van Keulen, Minimizing tip-sample forces and enhanc-

ing sensitivity in atomic force microscopy with dynamically

compliant cantilevers, Journal of Applied Physics 121, 244505

(2017).

[16] O. Sahin, G. Yaralioglu, R. Grow, S. F. Zappe, A. Atalar,

C. Quate, and O. Solgaard, High-resolution imaging of elastic

properties using harmonic cantilevers, Sensors and Actuators

A: Physical 114, 183 (2004).

[17] H. Li, Y. Chen, and L. Dai, Concentrated-mass cantilever en-

hances multiple harmonics in tapping-mode atomic force mi-

croscopy, Applied Physics Letters 92, 151903 (2008).

[18] A. H. Nayfeh and D. T. Mook, Nonlinear oscillations (John

Wiley & Sons, 2008).

[19] Ata Keskekler, Oriel Shoshani, Martin Lee, Herre S. J. van der

Zant, Peter G. Steeneken, and Farbod Alijani. Enhancing non-

linear damping by parametric-direct internal resonance, 2020.

[20] J. E. Sader, J. W. M. Chon, and P. Mulvaney, Calibration of rect-

angular atomic force microscope cantilevers, Review of Scien-

tific Instruments 70, 3967 (1999).

[21] E. Rull Trinidad, T. Gribnau, P. Belardinelli, U. Staufer, and

F. Alijani, Nonlinear dynamics for estimating the tip radius in

atomic force microscopy, Applied Physics Letters 111, 123105

(2017).

[22] A. Chandrashekar, P. Belardinelli, U. Staufer, and F. Alijani,

Robustness of attractors in tapping mode atomic force mi-

croscopy, Nonlinear Dynamics 97, 1137 (2019).

[23] S. I. Lee, S. W. Howell, A. Raman, and R. Reifenberger, Non-

linear dynamic perspectives on dynamic force microscopy, Ul-

tramicroscopy 97, 185 (2003).

[24] R. García and A. San Paulo, Attractive and repulsive tip-sample

interaction regimes in tapping-mode atomic force microscopy,

Phys. Rev. B 60, 4961 (1999).

[25] H. Dankowicz and F. Schilder, Recipes for Continuation, Com-

putational Science and Engineering (Society for Industrial and

Applied Mathematics, 2013).

[26] Andrew N Round and Mervyn J Miles. Exploring the conse-

quences of attractive and repulsive interaction regimes in tap-

ping mode atomic force microscopy of DNA. Nanotechnology,

15 (2004).

[27] Robert W. Stark. Bistability, higher harmonics, and chaos in

AFM. Materials Today, 13 (2010).

[28] Hendrik Holscher and Udo D. Schwarz. Theory of ampli-

tude modulation atomic force microscopy with and without

q-control. International Journal of Non-Linear Mechanics,

42(4):608 – 625, 2007. Special Issue Micro-and Nanoscale

Beam Dynamics.

[29] Ilham Kirrou and Mohamed Belhaq. Control of bistability in

non-contact mode atomic force microscopy using modulated

time delay. Nonlinear Dynamics, 81(1):607–619, 2015.


