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Abstract
Public space is usually conceived as where people live, perceive, and interact with other
people. The environment affects people in several different ways as well. The impact of
environmental problems on humans is significant, affecting all human activities, including
health and socio-economic development. Thus, there is a need to rethink how space is used.
Dealingwith the important needs raised by climate emergency, pandemic and digitization, the
contributions of this paper consist in the creation of opportunities for developing generative
approaches to space design and utilization. It is proposed GREEN PATH, an intelligent
expert system for space planning. GREEN PATH uses human trajectories and deep learning
methods to analyse and understand human behaviour for offering insights to layout designers.
In particular, a Generative Adversarial Imitation Learning (GAIL) framework hybridised
with classical reinforcement learning methods is proposed. An example of the classical
reinforcement learning method used is continuous penalties, which allow us to model the
shape of the trajectories and insert a bias, which is necessary for the generation, into the
training. The structure of the framework and the formalisation of the problem to be solved
allow for the evaluation of the results in terms of generation and prediction. The use case is a
chosen retail domain that will serve as a demonstrator for optimising the layout environment
and improving the shopping experience. Experiments were assessed on shoppers’ trajectories
obtained from four different stores, considering two years.
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Abbreviations
Acronym Description

ADE Average Displacement Error
ADTW Average Dynamic Time Warping

AI Artificial Intelligence
ALCSS Average Longest Common Subsequence

BC Behavioural Cloning
CDF-AUC Cumulative Distribution Function Area Under the Curve

CST Cumulative Stopping Time
DCB Dynamic Context Beliefs
DTW Dynamic Time Warping

FoWM Fog of War Map
GAE General Advantage Estimation
GAN Generative Adversarial Network
GAIL Generative Adversarial Imitation Learning
HBA Human Behaviour Analysis
HMM Hidden Markov Model
ICT Information and Communication Technology
IRL Inverse Reinforcement Learning
KPI Key Performance Indicator

LCSS Longest Common Subsequence
LSTM Long Short-Term Memory

RMSProp Root Mean Square Propagation
RC-GAN Recurrent Conditional Generative Adversarial Network

ReLU Rectified Linear Unit
RNN Recurrent Neural Network
RTLS Real-Time Location System
STC Similar Trajectories Count
TP Trajectory Prediction

UWB Ultra-Wideband
WGAN Wasserstein Generative Adversarial Network

1 Introduction

The convergence of heightened focus on quality of life, well-being, and societal climate
resilience, alongside the transformative impact of the ongoing global COVID-19 pandemic,
has created an opportunity for us to reconsider how we plan and design spaces. Besides,
architectural design features such as shape or building orientation have a significant influence
on energy loads and their trade-offs [26]. This creates various new challenges to re-imagine
the way of designing, operating, and using these common areas, thus bringing attention to
analysing the behaviour of people who interact and live in public spaces. Tuan [41] states
that “place is space infused with human meaning” and argues for two important concepts
that humans are rooted in place and possess and cultivate a sense of place. The impact of
environmental problems on humans is significant, affecting all human activities, including
health and socio-economic development. Thus, there is a need to rethink how space is used.
A well-designed public space matches the multiple needs of everyday and one-time users
and it should respect the European guidelines that advocate sustainable issues for planning.
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Providing planners with Information and Communication Technologies (ICT) tools that can
facilitate the definition of guidelines or protocols for their investigation should be fundamental
to determining the significance of such areas for society [32].

1.1 Challenges

Given such a premise, and considering the recent literature in the field, the design of public
space starts fromwhat occurs in that environment. Understanding the behaviours, actions and
attitudes of people living in that space outperforms the standard rules of design that usually
are applied. Human Behaviour Analysis (HBA) has positive outcomes from the prediction,
generation, and simulation of human behaviour [19]. Human trajectory is a research area in
HBA; when humans move in a given environment, they intuitively follow unwritten social
rules [34]. Their behaviour also strongly depends on the type of environment in which they
operate (e.g.,malls, parks, or sidewalks). Predicting human behaviour by trajectory prediction
is a burdensome task in several aspects. Recent research on computer vision has addressed
these challenges by overcoming these limitations. Among them, the most important are the
following [12]:

– Socially acceptable movements. Some paths are physically possible but are usually not
performed to complywith implicit social rules, such as respectingminimum interpersonal
distance.

– Human-space interaction. The surrounding environment affects human actions. Obsta-
cles and objects all have, in one way or another, an effect on human behaviour. It is,
therefore, important to model these interactions and try to describe them.

– Human-human interaction. Human trajectories depend heavily on how the people around
thembehave. A human being can predict the behaviour of other people and, consequently,
make movements to avoid them.

– Multimodality. In HBA, since human behaviour is unpredictable, the possible behaviours
are several and the correct solutions are different.

– Generalisability. A method should be evaluated for its ability to predict the entire distri-
bution of possible human trajectories.

The solution to this problem concerns many practical applications, ranging from data
visualisation to simulation applications. It is possible to deduce if a specific configuration of
the environment models human behaviour and how it influences Key Performance Indicators
(KPIs). If there is an environment with physical, social or semantic limits and constraints,
it is possible to correctly predict or simulate the flow of human trajectories for a specific
period and generalisable mode. State-of-the-art approaches are primarily based on the use
of Generative Adversarial Neural Networks (GANs) or Long Short Term Memory (LSTM)
[4], [12] in crowded environments [30], and most of them do not model user behaviour in the
surrounding environment but merely generate acceptable and realistic trajectories. In [34],
we have filled this gap by proposing and defining newmethods andmetrics to help understand
trajectories. In particular, new deep learning models based on LSTM and GAN architectures
are used in both unimodal and multimodal contexts.

However, frameworks based on Inverse Reinforcement Learning (IRL) closely approx-
imate trajectories produced by humans [17], [46], and Generative Adversarial Imitation
Learning (GAIL) is proven to be a powerful and practical approach for learning sequential
decision-making policies [13]. GAIL allows us to find a correlation between objects present

123



74390 Multimedia Tools and Applications (2024) 83:74387–74411

in the scene and proximity to the search target. It is possible to find an analogy between the
search for a certain category of products inside the retail space and the correlation of these
products with others close by.

1.2 Nature and scope

In this regard, this paper aims to presentGREENPATH(GREENspacePlanningbyprediction
and generAtion of Trajectories of Humans) a system for the creation of opportunities for
developing resilient and regenerative approaches to public space design and utilization. The
goal of GREEN PATH is not merely the design of a space, but also the creation of a new
model more sustainable, more agile, and smarter and can generate human trajectories in
an environment with complex constraints. GREEN PATH uses human trajectories and deep
learning methods to analyse and understand human behaviour for offering insights to layout
designers.

In this regard, the paper aims to propose a predictive and generative model that can handle
an environment with complex constraints. In particular, it proposes a framework based on the
work of [46] hybridised with classical reinforcement learning methods, such as continuous
penalties, which allow for modelling the shape of the trajectories and inserting a bias in the
training necessary for the generation. The structure of the framework and the formalisation of
the problem to be solved allow for the evaluation of the results in two aspects: prediction and
generation. Generation refers to the creation of trajectories from scratch, with determined
points of origin. These trajectories are completely new, and the evaluation is done on quality
and efficiency. The efficiency is similar to human efficiency, while the quality indicates the
ability to create realistic trajectories and is evaluated by comparing the generated trajectories
with those of the test set. Forecasting refers to the prediction of future paths for real trajectories
that have already started. From this point of view, the geometric proximity of the generated
points to the real ones is verified.

The approach has been applied to real scenarios, and the experiments were assessed on
four datasets derived from different stores over two years. The behaviour of 10.4 million
visitors was analysed, as described in [8, 29].

1.3 Contributions

GREEN PATH will make extensive use of AI for automatizing i) human behaviour under-
standing and forecasting through the creation of a widely generalizable system that allows to
generation of human trajectories trajectories from zero, ii) space interpretation and virtual-
ization, in fact, a representation of the state that can be easily expanded to different contexts.
Largely inspired by the Dynamic Context Beliefs (DCB) of Yang et al. [46] and taking inspi-
ration from the videogame world, a dynamic representation system has been developed iii)
content creation and human-space interaction with the verification and resolution of the prob-
lem concerning the form of the reward existing in the work carried out by Yang et al. [46], in
particular as regards the formulation of the reward function. Finally, iv) design and arrange-
ment. While a manually tagged dataset is used for training, this does not exclude that the
source of the states may be different. Since the state is based on exploration, it is possible
to generalize its creation during the deployment phase and also carry it out through other
methods, such as visual input from a robot.

The paper is organised as follows. Section 2 provides an overview of state-of-the-
art approaches for trajectory prediction and generation. Section 3 presents the proposed
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approach, which is based on GAIL. Section 4 presents a comparison between our approach
and several state-of-the-art algorithms, along with a detailed analysis of our framework. Lim-
itations are presented in Section 5. In Section 6, conclusions and discussions are presented
while future directions for this research have been proposed in the last Section 7.

2 Related works

Human trajectories are information-rich features that can help in understanding the envi-
ronment, giving an idea about the interactions between objects and ongoing events [28].
Modelling human behaviour has overwhelming potential, especially from an economic and
strategic point of view. When people walk in a space, they adhere to a huge number of
unwritten trivial rules and observe social practices [20]. For instance, if they move inside a
space, they respect their paths and yield to other nearby people to have their right of way.
The competence to model these unwritten rules and apply them to predict, understand and
generate users’ movements in an environment is extremely worthwhile for the design of
intelligent tracking systems in smart environments. This problem appears challenging since
several issues arise for the prediction and generation of human actions, taking into account
such common sense behaviour [1].

Tracking people to understand human behaviour has a long tradition in computer vision
literature [31], [21], [45], [39]. However, recently, predictive models have gained increased
interest [44], [43]. Trajectory prediction is achieved by modelling and learning human-
space [3], [14] or human-human interactions [33], [24].

Predictive models of pedestrian dynamics have been developed by encoding the coupled
nature of multi-pedestrian interactions using game theory and deep-learning-based visual
analysis to estimate person-specific behaviour parameters [24], [22]. In particular, the authors
used concepts from game theory to model the intertwined decision-making processes of
multiple pedestrians.Moreover, theyusedvisual classifiers to learn amapping frompedestrian
appearance to behaviour parameters.

Social acceptability has been inspected using data-driven techniques based on Recurrent
NeuralNetworks (RNNs). [1] proposed amodel called Social LSTM,which can learn general
human movement and predict future trajectories. The proposed model can simultaneously
predict the paths of all the people in a scene, considering the common sense rules and
social conventions that humans generally adopt as they operate in public environments. In
particular, the author introduced a “social” pooling layer that allows LSTMs of spatially
proximal sequences to share their hidden states.

Bartoli et al. [4] extended the work of Alahi et al. [1] by defining “context-aware” pooling
that allows the model to deal with static objects in the region around a person. In particular,
their approach is based on the LSTM network that can learn and predict human movement
in crowded environments.

To address the limitations of the aforementioned works, Gupta et al. [12] exploited
GANs to generate multiple socially acceptable trajectories, given an observed past. These
behaviours concern socially accepted motion trajectories in crowded spaces. Their model is
called “Social GAN” since they addressed the multimodality of trajectories.

Kothari et al. [20] define trajectory predictions as “given the past trajectories of all humans
in a scene, forecast the future trajectories which conform to the social norms”. To focus on
learning the social interactions that affect humanmotion, the authors assume that there do not
exist any physical constraints in the scenes. They also focus on short-term human trajectory
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forecasting (next 5 secs). [47] presents early experimental results obtained including social
information in their convolutionalmodel using occupancy grids andmaps. These experiments
empirically showed that occupancymethods are ineffective in representing social information
and did not improve their results.

These works are milestones for human-human interactions. Moreover, their purpose is
to predict micro-trajectories, i.e. the precise generation of points following the current one.
While the interest of this work is mainly related to macro-trajectories, as stated in the Intro-
duction section, this paper also focuses on multimodality and human-space interaction.

In this regard, Kim et al. [17] proposed a framework for socially adaptive path planning
in dynamic environments. In particular, they used an IRL module that adopted a set of
trajectories generated by an expert for learning expert behaviour with several state features.

In [46], the authors proposed the first IRL model for learning the internal reward function
and policy used by humans during a visual search. The purpose of this work was to reproduce
the trajectory of the human gaze as it searches for a given object within the image. The
theoretical basis of this work is the association that the human mind makes between objects
that are necessary for or related to the achievement of a given goal.

A bottleneck of reinforcement learning is that it concerns the optimisation of a predefined
reward function [38]. The design of a suitable reward function can be arduous in complex
environments. Imitation learning approaches have proven to close this gap by learning how to
perform tasks directly from expert demonstrations [15]. Among these, GAIL is a model-free
imitation learning method that is highly efficient [13].

In this context, Li et al. [23] proposed an algorithm that can deduce the latent structure
of expert demonstrations in an unsupervised manner. Their method, based on GAIL, can not
only emulate complex behaviours but also learn interpretable and essential representations
of behavioural data as visual demonstrations. The domain of application was autonomous
driving to mimic human behaviours related to driving a vehicle. The results obtained were
fair, despite the difficulty of the task. The most interesting part of this work was the improve-
ments to GAIL performance using a modified version of the Wasserstein loss [2], often used
on GANs since it allows to eliminate some problems, such as vanishing gradients or the pos-
sibility of getting stuck in a minimum location. They also used “reward augmentation” [6],
which consists of adding an a priori reward, which models a bias to be reflected in the model
training, to the reward provided by the discriminator [6].

The work of Ferracuti et al. [7] concerns the retail environment and uses Real-Time
Locating System (RTLS) tags to collect human trajectory data. The tags were used to infer
visitors’ preferred paths and their segmentation. In the same context, Paolanti et al. [28]
presented a smart mechatronic system (sCREEN, Consumer REtail ExperieNce) for indoor
navigation assistance. The system is based on a new Hidden Markov Model (HMM) to
represent shoppers’ shelf/category attraction and usual retail scenarios (shelf-out-of-stock
and modification of store layout).

In [5], the authors proposed a unified deep learning framework for the generation and
analysis of driving scenario trajectories and validated its effectiveness in a principled way. To
model and generate scenarios of trajectories with different lengths, they have developed two
approaches. Firstly, they adapted a Recurrent Conditional Generative Adversarial Network
(RC-GAN) by conditioning the length of the trajectories. Then, they designed an architecture
based on a Recurrent Autoencoder with GANs to obviate the variable length issue, wherein
they trained a GAN to learn/generate the latent representations of original trajectories.

Based on the idea proposed by [46], this paper attempts to solve the generation of trajec-
tories inside a store. Assuming that the elements of the scene in the case of gaze prediction
are similar to the categories near the customer in the case of movements inside a store, it is
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also possible to generalise the forecasting of trajectories starting from paths already partially
formed. In this way, it is possible to understand, for example, the path taken by a customer
starting from any point to go to each of the categories in the store. It also allows the manage-
ment of different cases and trajectories in such a way as to foresee any possible behaviour
andmovement of the customer, by relying on statistical data for an estimate of the probability
of purchase or interest in each category. Marketing strategies can be developed for specific
customers, which can also be applied in real-time.

3 Materials andmethods

GREENPATH exploits an advanced intelligence systemmade of RTLS tags to collect human
trajectory data, which, analyses, monitors, and understands everything that happens inside
the target area. GREEN PATH provides alternatives in the design process. Following the
idea presented in [46], we propose a GAIL framework to predict human trajectories in real
environments. The framework aims to model such behaviour by a state representation that
considers the influence of the environment on the short-term decision-making process of the
user. A sparse matrix is adopted, which comprises C channels and has a fixed dimension
of 47 × 47. Every channel contains a representation of the position of a certain category in
the target store. Our dataset consists of data collected from four stores that are encoded in
this way. For each location, we have several points related to the tags. These tags are placed
on a shopping cart or a basket; hence, their points need to be split into trajectories. The
framework is comprehensively evaluated on the “Shopper trajectories dataset”, a publicly
available dataset. The overall framework of GREEN PATH is depicted in Fig. 1.

Fig. 1 GREEN PATH workflow
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Fig. 2 Layout of the four stores for which the “Shopper trajectories dataset” has been collected

3.1 Shopper trajectories dataset

The dataset used in this work was acquired from four different stores in Germany and Indone-
sia, measuring the behaviour of 10.4 million shoppers over two years, as described in [8]. The
data were collectedwith a tracking system based onUltraWideband (UWB) technology, with
tags embedded in shopping carts. The UWB is suitable for applications where positioning
accuracy is a critical issue [7]. This technology uses some UWB antennas that are suitably
placed in a fixed area and battery-powered tags that can freely move in the area [28]. Figure 2
represents the layout of the four stores for which the “Shopper trajectories dataset” has been
collected.

Table 1 reports the number of data points for each dataset. The number of trajectories in
a dataset is approximately proportional to the number of data points.

Table 1 Datasets and number of
data points

Total data points

Store1 1,867,920

Store2 3,945,842

Store3 6,416,000

Store4 212,341
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3.2 GAIL framework

The GAIL framework [13] is an imitation learning approach similar to inverse reinforcement
learning but formally different since it does not explicitly attempt to recover the reward
function. In this case, the reward function created is different from the implicit and hidden
functions of the expert. The intuition is to create a “judge” (discriminator) that indicates to
the agent what he should and should not do based on the data obtained from an expert. The
reward increases the more the agent approaches what the judge deems correct.

Our framework (see Fig. 3) consisted of three networks: the discriminator, the agent (the
generator) and the critic. The critic and agent networks shared one layer of feature extraction.
The discriminator and the agent have an identical structure, unlike the Scanpath Prediction
case, where there were some small differences in padding and kernel size. There were four

Fig. 3 Our GAIL framework
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layers of 128, 64, 32 and 1 filters, respectively, all with a kernel of 3 × 3 size and zero-
padding of 1, except the first layer, which will have a reflection padding. This choice was
experimentally dictated by the presence of higher probabilities (for the generator) and rewards
(for the discriminator) along all the edges, which implies that zero-padding for the padding of
the states is not the most suitable choice. The critic will share the first layer with the generator
network. In this work, some convolution layers were added, with the same dimensions as
the previous layer to be downsampled but with a stride of 2, to reduce the size of the output
maps. This choice allowed better effectiveness of downsampling since it allows the network
to learn additional parameters to increase generalisationwithout eliminating informationwith
a predefined method, such as the maximum function. This approach is often recommended
when using GANs, even if it has a greater number of parameters to train. The three networks
used a dropout of 0.2 on most layers, and the activation function from Rectified Linear Unit
(ReLU) to Leaky ReLU was replaced to avoid the problem of dying ReLU. The generator
and critic networks were initialized through a Xavier (also called “Glorot”) initialisation [9],
while the standard PyTorch initialisation was preferred for the discriminator since it would
still be effective. RootMean Squared Propagation (RMSProp)was chosen as the optimiser for
training the discriminator, a choice derived for reasons of greater effectiveness demonstrated
in cases of loss that used gradient penalties [11, 25]. Finally, regarding the loss, tests were
carried out with the Wasserstein Generative Adversarial Network (WGAN) version with
gradient penalty and with the normal GAN version, which also has a gradient penalty centred
at 0, and applied only to real data, since the literature guarantees better convergence and
generalisation using this method [16, 25, 35]. We concatenated the chosen task and the
output on every layer, as already done in [46]. In this way, we obtained a correlation between
the chosen task and the action taken by the agent. In Fig. 3, it can also be seen that C = 30,
whereas, there are only seven tasks. Not all categories were considered for the possible
tasks, as many of them did not have that many customers with considerable Cumulative
Stopping Time (CST). C also includes the Fog of War Map (FoWM), detailed later, and a
further map that contains the previous positions of the agent. The actor and critic networks
were trained using proximal policy optimisation [37], with a learning rate of 0.00001 and a
discount factor of 0.9, and advantages were estimated using General Advantage Estimation
(GAE) [36]. Other hyperparameters were set to be equal to the original paper’s suggested
values. The discriminator was trained using the standard GAN loss [10], with a learning rate
of 0.00005.

3.2.1 Preprocessing

To obtain good results, it is mandatory to choose a proper splitting strategy that correctly
models our requirements. The goal was a generalised framework that, given a certain map
and a target category, generates a user trajectory towards that category. Therefore, the chosen
splitting strategy should be related to an inferred task of the customers. To infer such tasks, we
evaluated a CST, i.e. the time during which the points of a tag were stationary near a certain
category. Then, we split the trajectory when the CST exceeded a certain threshold. We chose
the last stopping point as the last point of the trajectory. We then initialised another trajectory
by using the same ending point of the previous trajectory as a starting position. In this way,
we also obtained a good generalisation for the generated trajectories, as they did not depend
on the initialisation. We also split the trajectories when they reached a selected entrance or
exit area. Lastly, after doing this separation, we had to filter and discretise these points in a
47 × 47 grid. To decrease the number of points, we also used sampling by considering only
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points that have at least a Euclidean distance of 3 (calculated on the grid), but not greater
than 5, with the previous point on the trajectory.

We formalised the environment as a Markov decision process; therefore, we had to define
our trajectories as a set of state-action couples. In our case, the state was the portion of the
store that the customer had seen so far, which was expressed as a map with zeroes in all the
positions. We were inspired by video-games and the military concept of the “fog of war”.
Hence, we dynamically upgraded the current state by following the exploration of the agent.
If the agent decides to move to a certain location, the current state moves to a new state that
has actual map values within a radial area from the new position. At the k-th step, we have a
cumulative map that has the real categories’ values on the explored area and zeroes elsewhere
(the “fog of war”). To further augment the information of the agent, we added a FoWM as
a new channel in the current states matrix. This map has ones at the points that were not
explored by the customer.

3.2.2 Reward augmentation

The action space is also a 47 × 47 matrix; hence, the agent can theoretically go everywhere
on the map at every step. We have experimentally observed that using a hard constraint on
the movement of the agent leads to a bad convergence of the overall framework. Therefore,
we chose to adopt a “reward augmentation” method, as in [23], that models a soft constraint.
We penalised the agent if he chose to move to a point farther than a preset φ radius. Thus,
we assigned him a penalty formulated as (1):

P0 = max(0, λP0(

√
(xi−1 − xi )2 + (yi−1 − yi )2 − φ)) (1)

This penalty is always non-negative and is subtracted from the final reward. The parameter
λP0 is a constant that controls the influence of the penalty; we set it to a value of 0.1, and
φ was set to 5. We can also apply similar penalties for movements that are too close to the
current position (see (2)):

P1 = max(0, λP1(φNear −
√

(xi−1 − xi )2 + (yi−1 − yi )2)) (2)

In our configuration, λP1 was 0.1 and φNear was 1. It should be noted that these two
penalties did not add a real bias in the training, as our preprocessing already sampled for
points thatwere at a distance between 3 and 5 from the previous points. Hence, theyweremore
similar to the “reward shaping” proposed by Ng et al. [27] than the “reward augmentation” of
Li et al. [23]. However, we noticed that the dataset had a lot of noise and points that were often
located on shelves or walls. Thus, we added a biasing penalty that discouraged the agent from
moving towards these “un-walkable” points. This penalty cannot be directly formalised as a
non-constant and convex function, but we can use the distance between the current position
and the “un-walkable” point as a value multiplied by a parameter λP2 that we set to 0.1.
Another biasing penalty added to improve the linearity of the generated trajectory (and to
make the framework more resilient to noise) was a penalty applied to the maximum angle
of movement. Consider three points on the trajectory: p1(x1, y1), p2(x2, y2) and p3(x3, y3),
with p3 being the movement that the agent desires to make. We calculate the angle θ0 as
formulated in (3):

θ0 = arctan2(�xθ0 ,�yθ0) (3)

�xθ0 denotes the difference between x1 and x2, �yθ0 is the difference between y1 and y2.
We calculate θ1 as follows in (4):
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θ1 = arctan2(�xθ1 ,�yθ1) (4)

Like before,�xθ1 is the difference between x2 and x3, and�yθ1 is the difference between
y2 e y3. In (5), the absolute value:

�θ = |θ1 − θ0| (5)

We will have the angle between the two lines. This angle is the angle variation of the last
movement. We convert it to degrees, and if we obtain a value greater or equal to 180, we will
use the explementary angle since we need the inner angle. We express the final penalty as
(6):

P2 = max(0, λP3(�θ − θMax )) (6)

Where λP3 was set to 0.01 because this penalty was more biasing than the others. All these
penalties hybridised our method with pure reinforcement learning. The final reward will be
the difference between the discriminator’s result and the penalties.

4 Results and discussions

In the following section, for the evaluation of the obtained results, two different aspects were
examined. The first goal was to achieve a search efficiency similar to human efficiency. Our
taskwas to imitate human behaviour and not reach the task zone in the fewest number of steps.
Therefore, our reward formulation must adhere to this requirement. Yang et al. [46] used the
logarithm of the sigmoid function applied to the result of the discriminator. This function
produces only non-positive values; hence, it is trivial to infer that the agent performing the
actions will be encouraged to complete the task as soon as possible to minimise the total
cost of the trajectory. For the generation, we will use the Target Fixation Probability AUC
in the same way as Yang et al. [46]. For this metric, we will only need to change the name
of the curve since in our domain, the term “Fixation” loses its meaning, and we will simply
refer to it as the Cumulative Distribution Function AUC or CDF-AUC. We will compare the
results with those obtained by splitting the test set into two parts and using the first part as if
they were generated trajectories. This allows us to have a ground truth to which we aim to
approximate or, in the case of metrics related to quality, even surpass. We will refer to the
results obtained using this method as “Human." Surpassing the “Human" results in terms of
quality metrics does not mean moving away from good imitation. Quality metrics measure
the similarity between the generated trajectories and the test set trajectories, indicating a
measure of generalization. The "Human" value is only a reference point that, depending on
the extracted trajectories, may not be optimal. As the lower limit, we will use trajectories
generated with the untrained framework, resulting in completely random points. The values
obtained in this way, which we will call “Random," represent the values we aim to distance
ourselves from. Finally, we will use the network trained through Behavioural Cloning (BC)
as the last reference to evaluate the difference achieved with this method. The trajectories
generated with BC will all have real initialization. We call our method Trajectory Prediction
(TP).

Figure 4 represents this behaviour using the cumulative distribution function curve. For
each step, the relative cumulative probability of reaching the target can be obtained. We
compared our method with the efficiency of the human trajectories in the test set and with
an untrained generator that created random trajectories. To have another imitation learning
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Fig. 4 Cumulative distribution function using logsigmoid activation

method that can be used for comparison, we also trained our generator with the behavioural
cloning approach. In Fig. 4 and Table 2, a super-human performance in the efficiency of
search can be seen for our method using a logsigmoid activation. Three different initialisation
methods, namely Preset, Real and Random, were used. These methods specified which point
should be taken as the first point of the trajectory. “Preset” considers a predefined point,
such as a point near the checkout, “Real” chooses the first points from real trajectories of the
dataset and “Random” picks a random point in the store. All the experiments were performed
using an Nvidia GeForce RTX 2080 Ti GPU (11GB ofmemory) on a 48-CPULinuxmachine
with Intel(R) Xeon(R) Silver 4214 CPU@ 2.20GHz and 220GB of RAM. The codebase has
been developed in Python 3, using the Pytorch library for deep learning. Details about Python
requirements are given in the codebase.

Table 2 CDF-AUC results with
logsigmoid reward activation

Source CDF-AUC

Human 21.873

Random 4.139

BC 8.072

TP (Preset) 20.912

TP (Real) 23.735

TP (Random) 22.722

The bold value signifies the best result
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Fig. 5 Cumulative Distribution Function using a linear activation

To overcome the limitations of a non-positive reward, we proposed to use a linear acti-
vation. In this, we directly used the output of the discriminator before the sigmoid function
to formulate a reward function that had both positive and negative values. The discriminator
was trained using the loss proposed by Goodfellow et al. [10], and therefore, its output before
the last activation was small and centred on zero. Results of this method are shown in Fig. 5
and Table 3. Our method showed curves that matched more accurately than the human curve,
particularly while using the Real initialisation.

The second aspect analysed was the quality of generated trajectories. It was not so trivial
to evaluate the quality of a trajectory that was generated completely from scratch without a
ground truth. In this work, we proposed to use metrics like Dynamic Time Warping (DTW)

Table 3 CDF-AUC results with
linear activation

Origine CDF-AUC

Human 21.873

Random 4.139

BC 8.072

TP (Preset) 15.999

TP (Real) 20.792

TP (Random) 18.743

The bold value signifies the best result
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and Longest Common SubSequence (LCSS) to compare how a certain trajectory is similar
to the ones from the test set that have the same task [40].

The DTW distance between two trajectories A and B is calculated according to (7):

DTW (A, B) = min(DTW (i − 1, j),

DTW (i, j − 1),

DTW (i − 1, j − 1))

+ d(Ai , Bj )

(7)

Where: DTW (i, j) is the DTW distance between prefixes of and B up to positions i and j ,
Ai and Bj are elements at positions i and j , d(Ai , Bj ) is the local distance between Ai and
Bj . The LCSS (Longest Common Subsequence) similarity between two sequences A and B
is calculated according to (8)[42]:

LCSS(A, B) = |LCS(A, B)|
min(|A|, |B|) (8)

Where:

LCS(A, B) is the Longest Common Subsequence of A and B,

|A| and |B| are the lengths of sequences A and B.

To calculate an Average DTW distance (ADTW) and an Average LCSS similarity
(ALCSS), we chose a generated trajectory and a trajectory from the test set and extracted
a subset from each of them that has a starting point near the other (if they exist and if they
have more than four points). We repeated this for every trajectory of the test set and every
generated trajectory. As a distance function, we used Euclidean distance normalised with two
times the diagonal of the store image. Our implementation of LCSS had relaxed constraints: a
single point is in common if the Euclidean distance in the discretised grid is less than or equal
to

√
2. Then, we normalised the length of the longest common subtrajectory using the length

of the generated trajectory. We calculated Similar Trajectories Count (STC) as the number
of generated trajectories that match with (distance less than

√
2) at least 50% of the points

on a trajectory in the test set. In Table 4, it can be seen that our method had better results
than the BC algorithm. The results of the Real and Preset initialisations were also very close
to the human results. Human values were taken by splitting the test set into two parts and
then comparing one half to the other. It should be noted here that human results were only
a reference value and they were not the best result that can be obtained; as these measures
evaluate similarity between trajectories, a value higher than the metrics for the human results
does not indicate a bad generalisation.

Although our work aims mainly to generate trajectories from zero, we can also use it to
forecast existing trajectories. To evaluate the results of this task, we split every test trajectory
into two parts and then used the first half to predict the second one. We compared the
predicted trajectories with the real ones using Average Displacement Error (ADE) and Final
Displacement Error (FDE), two widely used metrics for forecasting trajectories [18].

ADE is a common metric used to evaluate the accuracy of trajectory predictions in the
field of computer vision and robotics. It measures the average Euclidean distance between
the predicted positions and the ground truth positions of objects over a sequence of time
steps. ADE is calculated as shown in (9):

ADE = 1

N

N∑
i=1

√
(xi − x̂i )2 + (yi − ŷi )2 (9)
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Table 4 Results of similarity
measures

Results

Source ADTW ↓ ALCSS ↑ STC ↑
Human 0.478 0.463 0.114

Random 2.274 0.122 0.005

BC 0.782 0.304 0.072

TP (Preset) 0.611 0.441 0.102

TP (Real) 0.527 0.417 0.094

TP (Random) 0.477 0.429 0.023

The bold values signify the best results

where N is the number of time steps, (xi , yi ) are the ground truth positions, and (x̂i , ŷi )
are the predicted positions at time step i . A lower value means that the predicted positions
are closer to the ground truth positions on average over the entire trajectory. FDE is another
important metric used to evaluate trajectory predictions, particularly at the final time step. It
measures the Euclidean distance between the predicted final position and the ground truth
final position of an object. FDE is calculated as shown in (10):

FDE =
√

(xN − x̂N )2 + (yN − ŷN )2 (10)

where N is the final time step, (xN , yN ) is the ground truth final position, and (x̂N , ŷN ) is
the predicted final position. For ADE, a lower value means that the predicted positions are
closer to the ground truth positions on average over the entire trajectory. In other words,
a lower ADE indicates that the trajectory predictions are more accurate. For FDE, a lower
value means that the predicted final position is closer to the ground truth final position. This is
particularly important when evaluating the accuracy of predictions at the end of a trajectory.
A lower FDE indicates better accuracy in predicting the final destination of an object.

In Table 5, we can see how our framework obtained better results than the behaviour
cloningmethod.Moreover, it differed considerably from the results of the random prediction.
However, metrics like ADE and FDE do not consider multimodality, as they compare a
forecast with only one of the possible real trajectories. So, these metrics should be used only
for a qualitative comparison. Qualitative results on prediction and forecasting are available
in the appendix.

5 Limitations

The limitations of the proposed approach primarily revolve around its generalization capa-
bilities concerning stores with significant differences in layout and size. The need for a

Table 5 Forecasting results Results

Source ADE FDE

Random 0.133 0.141

BC 0.058 0.053

TP 0.033 0.035

The bold values signify the best results
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predefined fixed number of cells for the map discretization can have varying impacts on the
categorization of items, depending on the layout of each specific store. Another limitation is
that the collected dataset takes into consideration only shoppers with either a shopping cart
or a trolley, which can exhibit considerably different behaviour from a shopper without.

6 Conclusions

In this paper, it is proposed GREEN PATH, an intelligent expert system for space planning
that employs a GAIL framework for modelling human trajectories in an environment. This
work allowed for both generating trajectories from scratch and predicting the future patterns
of a person from existing trajectories. The system is a predictive and generativemodel that can
handle an environmentwith complex constraints, such as those in retail. In particular, aGAIL-
based framework has been hybridised with classical reinforcement learning methods, such as
continuous penalties, which allow for modelling the shape of the trajectories and inserting a
bias in the training. The system is also very general, and the data can be constructed inmultiple
ways. Depending on the chosen reward, we can either enhance or emulate the behaviour of
a human being. This paper focused on the second aspect, as it was more interesting for
our purposes. Finally, the experimental results clearly show the feasibility of the proposed
method as well as its generalisability, since state is based on the exploration, it is possible
to generalize its creation during the deployment phase and also carry it out through other
methods, such as visual input from a robot. Therefore, with such a framework, it is possible
to develop a store simulator where we can predict customer behaviour with different layouts
and shelf positions.

7 Future works

Future works will be devoted to improving the results based on the limitations highlighted
in Section 5. A higher number of stores in the dataset will surely be mandatory for this task.
However, if the analysis focused on a single store, the framework could provide better results
if it were trained with fewer stores with many trajectories. This topic should be subject to
further analysis. On the framework side, the implementation of different state and action
spaces that could provide better results should be taken into consideration. A new paradigm
of space design will be achieved. There will be an increased number of public spaces that
will re-arrange their layout following the data collected by GREEN PATH. Managers will
increase their knowledge of space utilization, data will be shared at a worldwide scale to
define a shared protocol among designers. These technologies could also be integrated into
a user-intuitive framework, designed around the challenges previously described, ultimately
enabling a system that can be integrated seamlessly into existing spaces, even for other
domains, without the need to fully re-engineer the existing environments for visitors.

Appendix

A - Generated trajectories

The following Figures aim to describe the qualitative results of generated trajectories. They
refer to the main categories of the store’s target. The dataset is collected in different important
supermarkets. In particular, Fig. 6 depicts an example of a generated trajectory with a task
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Fig. 6 Generated trajectory with “meat” task and “random” initialization

that considers the meat category with random initialization. The trajectory starts at a random
point near the cashout, passes through the store and then arrives in the task zone passing
around the cold department.

Figure 7 represents another example. The category chosen for this task is beer with real
initialization. In this case, the actor has not found the task zone in themaximum time specified.
It changed its mind many times and explored various categories without finding the beer, that
is located in the left-bottom zone.

Fig. 7 Generated trajectory with “beer” task and “real” initialization
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Fig. 8 Generated trajectory with “fish” task and “real” initialization

Fig. 9 Generated trajectory with “fish” task and “first” initialization
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Fig. 10 Generated trajectory with “fish” task and “random” initialization

Fig. 11 Generated trajectory with “breakfast” task and “first” initialization
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Fig. 12 Generated trajectory with “grocery” task and “first” initialization

Another important category in the stores in which our experiments have been assessed is
fish. Thus, Fig. 8 shows the generated trajectory with “fish” task and “real” initialization. In
this example, it is shown how the constraints for walls are soft. The agent crosses a wall to
reach the task area. This is not a problem in our case, because what we want is to analyze
behaviours in a certain context, rather than a realistic one. However, these constraints can be
easily hardened in post-processing. Figure 9, instead, depicts the generated trajectory with
“fish” task and “first” initialization. Hence, the actor shows a relatively complex behaviour
changing its main direction several times. Figure 10 is the last example for this category that
shows the generated trajectory with “fish” task and “random” initialization. The generator
chooses a relatively longer path instead of the trivial one.

Following, the category devoted to breakfast products, Fig. 11 aims at representing the
generated trajectory with the breakfast task and first initialization. The actor changed his
mind in the first steps and then he arrived easily at the task zone.

Finally, Fig. 12 reports the generated trajectory with “grocery” task and “first” initializa-
tion. Many customers choose to go through the central corridor, the actor correctly modelled
such behaviour.

B - Forecasted trajectories

In this section, qualitative results for forecasted trajectories are reported for a complete anal-
ysis of the proposed approach. The evaluation has been performed for the most significative
categories in the store taken into exam. Figure 13 is an example of a forecasted trajectory
with “beer” task.

Figure 14 is the one devoted to the breakfast category. In particular, it depicts the forecasted
trajectory with the “breakfast” task. In this case, forecasting the trajectory is not similar.
However, it is not fair to say that this forecasting is "wrong". It clearly shows another behaviour
that can be real, taking into account multimodality.
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Fig. 13 An example of a forecasted trajectory with “beer” task

Fig. 14 Forecasted trajectory with “breakfast” task
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Fig. 15 A successfully forecasted trajectory with “meat” task

Then, Fig. 15 shows a successfully forecasted trajectory with the “meat” task.
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