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Abstract

In the last years, data lakes are emerging as an effective and an efficient support for information

and knowledge extraction from a huge amount of highly heterogeneous and quickly changing data

sources. Data lake management requires the definition of new techniques, very different from the

ones adopted for data warehouses in the past. In this scenario, one of the most challenging issues to

address consists in the extraction of topic-guided (i.e., thematic) views from the (very heterogeneous

and often unstructured) sources of a data lake. In this paper, we propose a new network-based

model to uniformly represent structured, semi-structured and unstructured sources of a data lake.

Then, we present a new approach to, at least partially, “structuring” unstructured data. Finally, we

define a technique to extract topic-guided views from the sources of a data lake, based on similarity

and other semantic relationships among source metadata.

Keywords: Data Lakes, Unstructuted Data Sources, Metadata Management, Thematic Views,

Semantic Similarities, DBpedia

1 Introduction

In the last years, data lakes have emerged as an effective and efficient answer to the problem of ex-

tracting information and knowledge from a huge amount of highly heterogeneous and quickly changing

data sources (Fang 2015).

Data lake management requires the definition of new techniques, very different from the ones

adopted for data warehouses in the past. These techniques may exploit the large set of metadata

always supplied with data lakes, which represent their core and the main tool allowing them to be a

very competitive framework in the big data era. In such a way, it is possible to guarantee an effective

and efficient management of data source interoperability. As a proof of this, the main data lake

companies are performing several efforts in this direction (see, for instance, the metadata organization

proposed by Zaloni, one of the market leaders in the data lake field (Oram 2015)). For this reason,
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the definition of new models and paradigms for metadata representation and management represents

an open problem in the data lake research field.

The extraction of thematic (or topic-guided) views from data sources is one of the main issues to

address in a scenario comprising many data sources extremely heterogeneous in their format, structure

and semantics (Aversano et al. 2010). This consists in the construction of views concerning one or

more topics of interest for the user, obtained by extracting and merging data coming from different

sources. The problem has been largely investigated in the past for structured and semi-structured

data sources stored in a data warehouse (Wu et al. 2009; Castano and Antonellis 1999; Palopoli et al.

2000, 2003a,c,b), and this witnesses its extreme relevance. However, it is esteemed that, currently,

more than 80% of data sources are unstructured (Corbellini et al. 2017). As a consequence, it is just

this type of source that represents the main actor of the big data scenario and, consequently, of data

lakes.

In this paper, we aim at providing a contribution in this setting. Indeed, we propose a supervised

approach to extracting thematic views from highly heterogeneous sources of a data lake. Our approach

represents all the data lake sources by means of a suitable network model. Indeed, networks are very

flexible structures that allow the modeling of almost all phenomena that researchers aim at investi-

gating (Bouadjenek et al. 2016). Our model starts from the considerations and the ideas proposed

by data lake companies. In particular, it starts from the general metadata classification also used

by Zaloni (Oram 2015). In this classification, metadata are divided in three categories, namely: (i)

business metadata, which include business rules; (ii) operational metadata, which include information

automatically generated during data processing; (iii) technical metadata, which include information

about data format and schema. However, it complements them with new ideas and, being based on

network theory and semantics-driven approaches, it can benefit from all the results already found in

these fields. As a consequence, it can allow a large variety of sophisticated tasks that the currently

adopted metadata models do not guarantee. For instance, it allows the definition of a structure for

unstructured data. Thanks to this uniform representation of the data lake sources, the extraction of

thematic views from them can be performed by exploiting graph-based tools. We define “supervised”

our approach because it requires the user to specify the set T of topics that should be present in the

thematic view(s) to extract.

Our approach consists of two steps. The former is mainly based on the structure of involved

sources. It exploits several notions typical of (social) network analysis, such as the one of ego network,

which actually represents its core. An ego network is a network consisting of a focal node, called

ego, and the nodes, called alters, whom ego is directly connected to. The ego network comprises the

ties from the ego to the alters and the ones, if any, between the alters. The usage of ego network

is a key feature of our approach. This concept is inherited from Social Network Analysis. In our

case, it is justified by several past studies in Cooperative Information Systems that showed that the

neighborhood of a concept plays a key role in defining its meaning (Palopoli et al. 2003a, 2001; De Meo

et al. 2006). These studies are strictly related to the concept of homophily in Social Network Analysis

(McPherson et al. 2001). The latter step exploits a knowledge repository, which is used to discover

new relationships, other than synonymies, among metadata, with the purpose to refine the integration
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of different thematic views obtained after the first step. In this step, our approach relies on DBpedia1,

a project aiming to extract structured content from the information created in the Wikipedia project.

From the previous description it emerges that the main contribution of this paper is threefold.

Specifically:

• We introduce a new approach to “structuring” unstructured data. As for this aspect, we observe

that, certainly, in the past literature, several approaches to extract keywords from unstructured

data have been presented. See, for instance, RAKE - Rapid Automatic Keyword Extraction -

(Rose et al. 2010), LDA - Latent Dirichlet Allocation - (Blei et al. 2003), YAKE! - Yet Another

Keyword Extractor - (Campos et al. 2020) and TopicRank (Bougouin et al. 2013), just to cite

a few of them. However, all of them return a “flat” list of keywords. By contrast our approach

returns a hierarchy, similar to the one characterizing semi-structured sources, which makes it

possible to uniformly handle unstructured sources along with semi-structured and structured

ones.

• The approach to thematic view extraction we are proposing in this paper has been specifically

conceived to operate on current data lakes where, due to the number and the dimension of

present data sources, efficiency is a key issue. Indeed, as we will see in Subsection 6.6, the

computation time of our approach is small. Along with efficiency, the proposed approach can

extend to our, very complex, reference scenario some important features that, in the past, were

guaranteed only by approaches operating on structured and semi-structured data. These last

ones were characterized by a much higher computational complexity than our approach. In

particular, the features mentioned above are:

– it is very effective in enriching the global view obtained after the integration of two or more

separate views, as we will see in Subsection 6.5;

– it is capable of creating thematic views that put together homogeneous information even if

this last is sparse among several data sources, as we will show in Subsection 6.3;

– the information contained in the thematic views returned by our approach is very cohesive,

as we will see in Subsection 6.2.

• Our approach to thematic view extraction uses ego-networks as starting points for thematic

view extraction operations. As it will be clear in the following, this choice allows the concept of

interest to be put at the centre of the view extraction task and to focus the efforts in a targeted

manner. Furthermore, ego networks allow us to decide the desired connection strength in the

thematic view extracted. Indeed, by changing the level of neighborhood considered in the ego

network, it is possible to determine the minimum strength of the relationships existing between

the elements of the thematic view and the corresponding core.

This paper is organized as follows: in Section 2, we present related literature. In Section 3, first

we describe a unifying model for data lake representation; then, we present a technique to partially

structuring unstructured sources. In Section 4, we illustrate our approach to thematic view extraction.

1http://dbpedia.org/
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In Section 5, we present an example case. In Section 6, we describe several tests that we performed

to evaluate our approach. Finally, in Section 7, we draw our conclusions and have a look to future

developments of our research efforts in this field.

2 Related Literature

The new data lake scenario is characterized by several peculiarities that make it very different from

the data warehouse paradigm (Hai et al. 2016, 2018). In particular, differently from data warehouses,

data lakes: (i) store raw data in its native format (this could be structured, semi-structured and

unstructured); (ii) retain all the data; (iii) store data irrespective of volume and variety; (iv) can

be handled by several kinds of users and not only by business professionals; (v) have data that only

transforms when needed; (vi) perform configurations and re-configurations when required, in a highly

agile way; (vii) allow low-storage and economical reporting and analysis tasks. Hence, to operate

in the data lake scenario, it is necessary to adapt (if possible) the old algorithms conceived for data

warehouses or to define new approaches capable of handling and taking advantage of the specificities

of this new paradigm.

2.1 Approaches to metadata classification

In the literature, several metadata classifications have been proposed in the past. For instance, Bilalli

et al. (2016) present a tree-based classification. They split metadata into several categories, illustrate

a conceptual schema of the metadata repository and use RDF for metadata modeling. RDF stands

for Resource Description Framework (Lassila et al. 1998). It is a framework conceived to describing

resources and favoring data interchange on the Web. It facilitates data merging even if the underling

schemas differ. The strength of this model is undoubtedly its richness, whereas its weakness is its

complexity that cannot guarantee a fast processing of the corresponding data.

A metadata model well-suited for data lakes is proposed by Oram (2015). This is also the model

adopted by Zaloni2, one of the main commercial leaders in the data lake field. It divides metadata

based on their generation time or on the meaning and information they bring. In this latter case,

metadata can be classified in three categories, namely operational, technical and business metadata.

As will be clear in the following, our metadata model starts from this, but it goes much further. In

particular, we argue that the three classes are not independent from each other because there are

several intersections of them. Some of these intersections are particularly expressive and important;

for them, it provides a network-based representation rich enough to allow several interesting, but, at

the same time, not excessively complex, tasks in such a way as to prevent a slow processing.

Several metadata models and frameworks are widely adopted by the Linked Data (Heath and Bizer

2011) community (e.g., DCMI Metadata Terms and VoID). DCMI Metadata Terms (Dublin Core

Metadata Initiative 2012) is a set of metadata vocabularies and technical specifications maintained by

the Dublin Core Metadata Initiative. It includes generic metadata, represented as RDF properties,

on dataset creation, access, data provenance, structure and format. A subset was also published as

ANSI/NISO and ISO standards and as IETC RFC. The Vocabulary of Interlinked Datasets (VoID)

2https://www.zaloni.com/
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(Keith et al. 2011) is an RDF Schema vocabulary that provides terms and patterns for describing RDF

datasets. It is intended as a bridge between the publishers and the users of RDF data. It focuses on:

(i) general metadata, following the Dublin Core model; (ii) access metadata, describing how RDF data

can be accessed by means of several protocols; (iii) structural metadata, representing the structure

and the schema of datasets, mostly used for supporting querying and data integration for a variety of

scenarios (both in private or public sectors (Mouzakitis et al. 2017)).

2.2 Approaches to thematic view extraction

As for the structuring of unstructured sources, their querying and the extraction of thematic views

from them, most approaches presented in the past literature do not completely fit the data lake

paradigm. As a matter of fact, although researchers are increasingly focusing on issues concerning

unstructured data and on costs for its management (see, for instance, Hamadou and Ghozzi (2018);

Hai et al. (2018); Brackenbury et al. (2018); Klettke et al. (2017); Chen et al. (2016)), the amount of

work to be done in this context appears considerable.

As far as the thematic view3 extraction is concerned, Castano and Antonellis (1999) propose some

techniques for building views on semi-structured data sources based on some expected queries, the

analysis is ontology-driven and leads to the construction of reconciled views of the sources. Other

researchers focus on materialized views and, specifically, on throughput and execution time. They

a-priori define a set of well-known views and, then, materialize them. Finally, they show that the

complexity of the problem depends on the possibility that views store all the tuples satisfying the

corresponding definition. Two surveys on this issue can be found in Halevy (2001) and Abiteboul and

Duschka (1998). Wu et al. (2009) investigate the same problem but they focus on XML sources. They

adopt a model based on inverted lists and holistic algorithms which together have been established

as the prominent technique for evaluating queries on large persistent XML data. Bidoit et al. (2018)

propose an approach to statically and dynamically partition a large XML document, so as to distribute

the computing load among the machines of a MapReduce cluster. The approaches of Wang and Yu

(2012) and Hai et al. (2018) address the same issue by means of query rewriting. Specifically, the

authors of Wang and Yu (2012) transform a query Q into a set of new queries, evaluate them, and,

then, merge the corresponding answers to construct the materialized answer to Q. The approach

proposed by Hai et al. (2018), arguing that one of the most important tasks of data lakes is to provide

a unified querying interface, exploits logic-based methods for data integration exploiting declarative

mappings with a scalable big data query processing system. Bachtarzi and Bachtarzi (2015) propose

an approach to constructing materialized views for heterogeneous databases; it is based on a model-

driven technique for views definition and requires the presence of a static context along with the

pre-computation of some queries.

Another family of approaches exploits materialized views to perform tree pattern querying (Wang

et al. 2011) and graph pattern queries (Fan et al. 2016). In both approaches the authors present a

rewriting algorithm to find the best approximate answers. Unfortunately, all these approaches are well-

suited for structured and semi-structured data, whereas they are not scalable and lightweight enough

3Recall that, in database context, a view is the result of a query or a more complex extraction process that can be

exploited by users for further computations.
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to be used in a dynamic context or with unstructured data. An interesting advance in this area can

be found in Singh and Singh (2016). Here, the authors propose an incremental approach to addressing

the graph pattern query problem on both static and dynamic real-life data graphs. Furthermore, they

propose an efficient polynomial algorithm to generate the maximal contained rewriting, whenever

it exists. Other kinds of view are investigated in Biskup and Embley (2003) and Aversano et al.

(2010). In particular, Biskup and Embley (2003) propose a framework to extract information from

heterogeneous sources for particular predefined target views conceptually specified through ontologies.

Then the target is mapped to sources and expressed in the same modeling language. The authors

adopt a formal foundation to prove that when a source has a valid interpretation, the generated

mapping produces a valid interpretation for the part of the target loaded from the source. Instead,

Aversano et al. (2010) use virtual views to access heterogeneous data sources without knowing many

details of them. For this purpose, it creates virtual views of the sources themselves. The proposed

approach provides features for the automatic schema matching and schema merging. It exploits both

syntax-based and semantic-based techniques for performing this task.

Finally, semantic-based approaches have long been used to drive data integration in databases

and data warehouses (Garćıa-Moya et al. 2013; Janjua et al. 2013). More recently, in the context of

big data, a formal semantics has been specifically exploited to address issues concerning data vari-

ety/heterogeneity, data inconsistency and data quality in such a way as to increase understandability

(Hitzler and Janowicz 2013; Debattista et al. 2014; Konstantinou et al. 2017; Mouttham et al. 2012).

The proposed approaches identify interoperability deficiencies and find different solutions to address

it. The solutions are mainly based on self-contained graphs and data wrangling. The ultimate pur-

pose is the efficient integration and management of both structured and unstructured data sources

by aligning data silos and better managing evolving data models. For instance, in Hai et al. (2016),

the authors discuss a data lake system with a semantic metadata matching component for ontology

modeling, attribute annotation, record linkage and semantic enrichment. Farid et al. (2016) present

a system to discover and enforce expressive integrity constraints from data lakes. Similarly to what

happens in our approach, knowledge graphs, e.g. based on RDF, are used to drive integration. To

reach their objectives, these techniques usually rely on information extraction tools, e.g., Open Calais4

or KAYAK (Maccioni and Torlone 2018), that may assist in linking metadata to uniform vocabularies

(e.g., ontologies or knowledge repositories, such as DBpedia).

Starting from the previous description, we can identify some features that may characterize the-

matic view extraction approaches. These are: (i) the adoption of a materialized view; (ii) the ex-

ploitation of a holistic algorithm; (iii) the usage of inverted lists; (iv) the adoption of an ontology;

(v) the exploitation of tree patterns; (vi) the usage of query rewriting; (vii) the adoption of a multi-

dimensional data model. In Table 1, we present a classification of the approaches described above

based on these features.

4http://www.opencalais.com
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Paper Mat. View Holistic Alg. Inv. Lists Ontology Tree Pattern Query Rewr. Multid. Data Model

Castano and Antonellis (1999) x

Halevy (2001) x

Abiteboul and Duschka (1998) x

Wu et al. (2009) x x

Wang and Yu (2012) x x x

Bachtarzi and Bachtarzi (2015) x x

Wang et al. (2011) x

Fan et al. (2016) x x

Biskup and Embley (2003) x x

Singh and Singh (2016) x x

Aversano et al. (2010) x x x

Garćıa-Moya et al. (2013) x

Debattista et al. (2014) x

Konstantinou et al. (2017) x

Mouttham et al. (2012) x

Table 1: Classification of the thematic view extraction approaches based on the features considered

by them.

3 Preliminaries

In this section, we present some preliminary concepts and techniques necessary to understand our

approach to extracting thematic views. In particular, we illustrate our model to represent data lake

sources and our approach to “structuring” unstructured data. Actually, as we pointed out in the

Introduction, these are two further (even if collateral) contributions of our paper.

3.1 A unifying model for representing the metadata of data lake sources

In this subsection, we illustrate our network-based model to represent and handle the metadata of a

data lake, which we will use in the rest of this paper.

Our model represents a data lake DL as a set of m data sources: DL = {D1, D2, · · · , Dm}. A data

source Dk ∈ DL is provided with a rich setMk of metadata. We denote withMDL the repository of

the metadata of all the data sources of DL: MDL = {M1,M2, . . . ,Mm}.

3.1.1 Metadata classification

Following what it is said in Oram (2015), metadata can be divided into three categories, namely:

1. Business metadata, which include business rules (e.g., the upper and lower limit of a particular

field, integrity constraints);

2. Operational metadata, which include information automatically generated during data processing

(e.g., data quality, data provenance, executed jobs);

3. Technical metadata, which include information about data format and schema.

Based on this classification, we representMk as the union of three setsMB
k ∪MO

k ∪MT
k , related

to business, operational and technical metadata, respectively.

As an advancement of the model of Oram (2015), we observe that these three subsets are intersected

with each other (as shown in Figure 1). For instance, since business metadata contain all business

rules that are mainly expressed in terms of data fields, and since the data schema is included in
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the technical metadata, we can conclude that data fields represent the perfect intersection between

these two subsets. Analogously, technical metadata contain the data type and length, the possibility

that a field can be NULL or auto-incrementing, the number of records, the data format and some

dump information. These last three things are in common with operational metadata, which contain

information like sources and target location, and the file size as well. Finally, the intersection between

operational and business metadata represents information about the dataset license, the hosting server

and so forth (e.g. see the DCMI Metadata Terms).

Figure 1: Metadata classification.

In this paper, we focus on business and technical metadata. Indeed, they denote, at the intensional

level, the information content stored in the data lake sources and are those of interest for supporting

most tasks, including the ones described here. In particular, we focus on the intersection of the two

categories, which contains the data fields, both domain description and technical details. For instance,

in a structured database, this intersection contains the attributes of the tables. Instead, in a semi-

structured data source, it consists of the names of the (complex or simple) elements and attributes of

the schema. Finally, in an unstructured source, it could consist of a set of keywords generally used to

give an idea of the source content.

3.1.2 A network-based model for business and technical metadata

We indicate by MBT
k the intersection between MB

k and MT
k . We denote by Ok the set of all the

objects stored in MBT
k . The concept of “object” depends on the data source typology. For instance,

in a relational database, objects denote its tables and their attributes. In an XML document or in a

JSON one, objects include complex/simple elements and their attributes.

In order to represent MBT
k , our model relies on a suitable directed graph GBT

k = 〈Nk, Ak,Ωk〉.
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Definition 3.1 Given a set of labels Λ, a labeled direct graph G = 〈N,A,Ω〉 is a graph such that:

• N is the set of nodes;

• A is the set of arcs (ns, nt) from ns ∈ N to nt ∈ N ;

• Ω : A→ Λ is a mapping function s.t. Ω(a) = l ∈ Λ is the label of the arc a. 2

For each object okj ∈ Ok there exists a node nkj ∈ Nk. As there is a one-to-one correspondence

between a node of Nk and an object of Ok, in the following, we will use the two terms interchangeably.

The label lki = Ω(aki = (ns, nt)) represents the kind of relationship occurring between ns and nt. In

this work, we consider the following kinds of relationships:

• Structural relationship: it is used to represent the relationship between an object and its sub-

objects or between an object and the other ones structurally linked to it. For instance, it

is used to indicate the relationship between a relational table and its attributes, or foreign

keys relationships between tables, or, again, between a JSON complex object and its simple

objects, or, finally, between a simple object and its attributes. In order to refer to a uniform

representation of different structured sources (e.g., relational databases and XML documents),

hereby we denote all structural relationships by the same label “contains”.

• Definition relationship: it is represented by the label “lemmaOf” and denotes that the target

node is a lemma included in the source’s definition (or gloss). Again, its usage will be clear in

Section 3.2.

• Similarity relationship: it is denoted by the label “similarTo” and represents a form of similarity

between two objects. We will see an example of its semantics and usage in Section 3.2.

Many more relations could be defined by relying on more expressive dictionaries and/or defining

sub-properties (e.g., specific types of containment, or specific types of similarities), especially when

dealing with specific application domains. For the sake of generality, however, the approach described

in this paper sticks on such a minimal set, which is capable to account for both structural aspects

(“contains”), glossaries/definitions (“lemmaOf”, useful especially for unstructured sources) and simi-

larity.

Also, it is worth pointing out that our model enables a scalable and flexible representation and

management of the metadata of heterogeneous data lake sources. Indeed, adding a new data source

only requires the extraction of its metadata and their conversion to our model. Furthermore, the

integration of metadata regarding different data sources can be simply performed by adding suitable

arcs between the nodes for which there exists some relationship.

Similarly, GBT
k can be extended with external knowledge graphs (e.g., DBpedia). In the following,

we refer to an extension of GBT
k as GExt

k = GBT
k ∪ GE , where GE is an external knowledge graph.

An arc from a node of GBT
k to its corresponding node in GE will be labeled as “externalSource X”,

where X is the name of the external knowledge graph at hand.

9



3.2 Defining a structure for unstructured sources

Based on a generic graph representation, our model is perfectly fitted for representing and managing

both structured and semi-structured data sources. The highest difficulty regards unstructured data

because it is worth avoiding a flat representation. Indeed, a trivial way to represent this kind of

data sources consists in a set of simple elements, one for each keyword provided to denote the source

content. As a matter of fact, this kind of representation would make the reconciliation, and the next

integration, of an unstructured source with the other (semi-structured and structured) ones of the

data lake very difficult. Therefore, it is necessary to (at least partially) “structure” unstructured data.

Our approach to carrying out this task consists of four phases, namely: (1) creation of nodes; (2)

extraction of lexical similarities; (3) extraction of string similarities; (4) merging of similar nodes. We

describe these phases below.

• Phase 1. As first step, our approach creates a node representing the source as a whole and a node

for each keyword. Furthermore, it adds an arc (labeled “contains”) from the node associated

with the source to any node corresponding to a keyword5. Initially, there is no arc between two

keywords. To determine the arcs to add, the next phases are necessary.

• Phase 2. The goal of this phase is to handle lexical similarities. For this purpose it leverages

a suitable thesaurus. Taking the current trends into account, this should be a multimedia

thesaurus; for this purpose, in our experiments, we have adopted BabelNet (Navigli and Ponzetto

2012). In particular, for each node nk1 of the graph, corresponding to the keyword k1, our

approach adds a set of nodes representing its lemmas6. Then, for each lemma, we add an arc

with label “lemmaOf” linking nk1 to the node representing the lemma. A lexical similarity exists

between two nodes k1 and k2 if they have at least one common lemma in the thesaurus. In this

case, our approach adds an arc (with label “similarTo”) from the node nk1 to the node nk2 ,

and vice versa.

• Phase 3. Here, our approach derives similarities between keywords. A similarity between two

keywords k1 and k2 exists if the string similarity degree kd(k1, k2), computed by applying a

suitable string similarity metric on k1 and k2, is “sufficiently high” (see below). In this case,

it adds an arc from nk1 to nk2 and an arc from nk2 to nk1 . Both of them have “similarTo”

as label. We have chosen N-Grams (Kondrak 2005) as string similarity metric because we have

experimentally seen that it provides the best results in our context.

Now, we illustrate in detail what “sufficiently high” means and how our approach operates. Let

StrSim be the set of the string similarities for each pair of keywords of the source into consider-

ation. Each record in StrSim has the form 〈ki, kj , kd(ki, kj)〉. Our approach first computes the

maximum string similarity degree kdmax in StrSim. Then, it examines each string similarity

registered therein. If ((kd(ki, kj) ≥ thk · kdmax) and (kd(ki, kj) ≥ thkmin)), which implies that

5Here and in the following, to make the presentation smoother, we use the term “source” (resp., “keyword”) to denote

both the source (resp., a keyword) and the corresponding node associated with it.
6In this paper, we use the term “lemma” according to the meaning it has in BabelNet (Navigli and Ponzetto 2012).

Here, given a term, its lemmas are other objects (terms, emoticons, etc.) that contribute to specify its meaning.
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Figure 2: Overview of the approach to extracting thematic views.

the string similarity degree between ki and kj is among the highest ones in StrSim and that, in

any case, it is higher than or equal to a minimum threshold, then it concludes that there exists

a similarity between nki and nkj . We have experimentally set thk = 0.70 and thkmin = 0.50.

• Phase 4. This phase is devoted to merge similar nodes into a unique one. If an arc with label

“similarTo” between two nodes nk1 and nk2 exists, our approach merges these nodes into a

unique one, which inherits all the incoming and outgoing arcs of nk1 and nk2 . Finally, if two

or more arcs from nk1 to nk2 with the same label exist, our approach merges them and returns

only one arc with the same label7.

4 An approach to extracting thematic views

Our approach to extracting thematic views operates on a data lake DL whose data sources are repre-

sented by means of the model described in Section 3.1. It consists of two steps: view extraction and

semantic enrichment, as also summarized in Figure 2. The former is mainly based on the structure of

the sources at hand, the latter mainly focuses on the corresponding semantics. Before describing and

formalizing these two steps, we must introduce some background notions.

4.1 Background

Definition 4.1 Given a labeled direct graph G = 〈N,A,Ω〉 and a node n ∈ N , an Ego Network

E = 〈NE , AE ,ΩE〉 is a subgraph of G such that:

• AE = {aE = (ns, nt) | (ns = n ∧ (n, nt) ∈ A) ∨ ((n, ns) ∈ A ∧ (n, nt) ∈ A)};

• NE = {nE | (n, nE) ∈ AE} ∪ {n};

• ΩE(aE) = Ω(aE),∀aE ∈ AE 2

7Note that Phases 2 and 4 could be merged into a unique one, avoiding to define arcs with label “lemmaOf”. Here,

we maintain these arcs and both phases to keep the information about similarity between nodes for future uses.
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The node n is the ego of E, whereas the other nodes are the alters. The function ego(E) returns

the ego E, whereas alter(E) returns the set of the alters of E, i.e. alter(E) = NE \ ego(E). The

function en(n,G) returns the ego network E focused on n (i.e., n = ego(E)) from G.

Definition 4.2 Given two ego networks E1 = 〈N1, A1,Ω1〉 and E2 = 〈N2, A2,Ω2〉, the graft of E2 in

E1 is the ego network Eg = 〈Ng, Ag,Ωg〉 such that:

• Ng = N1 ∪N2 \ {ego(E2)};

• Ag = A1 ∪ {(ns, nt) | (ns = ego(E1)∧ (ego(E2), nt) ∈ A2)∨ ((ns, nt) ∈ A2 ∧ ns, nt ∈ alter(E2))};

• Ωg(a) =


Ω1(a), if a ∈ A1

Ω2(a), if a ∈ A2

Ω2(ego(E2), nt), if a = (ego(E1), nt) ∧ (ego(E2), nt) ∈ A2

2

The function graft(E1, E2) returns a new ego network Eg, which is the graft of the ego network

E2 in the ego network E1. The ego of Eg is equal to the ego of E1.

Definition 4.3 Given a labeled direct graph G = 〈N,A,Ω〉, the merge of ny ∈ N and nx ∈ N is a

labeled direct graph Gm = 〈Nm, Am,Ωm〉 such that:

• Nm = N \ {ny};

• Am = A ∪ {(ns, nx) | (ns, ny) ∈ A ∧ ns 6= nx} ∪ {(nx, nt) | (ny, nt) ∈ A ∧ nt 6= nx} \ {(ns, nt) |
(ns = ny ∨ nt = ny) ∧ (ns, nt) ∈ A}

• Ωm(a) =


Ω(ns, ny), a = (ns, nx) ∧ (ns, ny) ∈ A

Ω(ny, nt), a = (nx, nt) ∧ (ny, nt) ∈ A

Ω(a), otherwise

2

The function mergeNodes(G,n1, n2) returns a new graph Gm obtained from G by merging the

nodes n1 and n2. If G is an ego network and n1, n2 ∈ alter(G), then Gm is an ego network.

4.2 View extraction

At the beginning, our approach to extracting views from a data lake DL requires a set T = {T1, T2, · · · ,
Tl} of topics, representing the themes of interest for the user, and a dictionary Syn of synonyms

involving the objects stored in the sources of DL. This could be a generic thesaurus, such as BabelNet

(Navigli and Ponzetto 2012), a domain-specific thesaurus, or a dictionary obtained by taking into

account the structure and the semantics of the sources which the corresponding objects refer to, such

as the dictionaries produced by XIKE (De Meo et al. 2006), MOMIS (Bergamaschi et al. 2001) or

Cupid (Madhavan et al. 2001). Algorithm 1 describes the pseudo-code of our approach.
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Let Ti be a topic of T . Let Obji = {oi1 , oi2 , · · · , oiq} be the set of the objects in DL that are

synonymous (according to Syn) of Ti. Let Ni = {ni1 , ni2 , · · · , niq} be the nodes corresponding to

Obji. First, our approach constructs the ego networks Ei1 , Ei2 , · · · , Eiq having ni1 , ni2 , · · · , niq as the

corresponding egos (Algorithm 1, Steps 2-5). Then, it merges all the egos into a unique node ni. In

this way, it obtains a unique ego network Ei, corresponding to Ti, from Ei1 , Ei2 , · · · , Eiq (Algorithm

1, Steps 7-9).

If a synonymy exists (according to Syn) between two alters belonging to different ego networks,

then these are merged into a unique node and the corresponding arcs linking them to the ego ni are

merged into a unique arc (Algorithm 1, Steps 10-14).

The previous task is performed for each Ti ∈ T , so that, at the end, we have a set E =

{E1, E2, · · · , El} of l ego networks.

At this point, all the nodes belonging to different ego networks in E that are synonyms (according

to Syn) are merged into a unique node. At the end, a (potentially disconnected) graph V is obtained.

V consists of g (1 ≤ g ≤ l) connected graphs {V1, · · · , Vg}, which represent potential views (Algorithm

1, Steps 17-22).

If g = 1, then there exists a unique thematic view comprising all the topics required by the user.

Otherwise, more views exist, each comprising some (but not all) of the topics of interest for the user.

Algorithm 1 Pseudo-code describing the first step of our approach (View extraction)
Input:

let DL be a data lake consisting of a set {D1, D2, · · · , Dm} of sources;

let GBT
k = 〈NBT

k , ABT
k ,ΩBT

k 〉 be the network-based representation of Dk ∈ DL;

let GBT
DL = {GBT

1 , GBT
2 , · · · , GBT

m };
let T = {T1, T2, · · · , Tl} be the set of topics;

let s(nx, ny) be true iff nx and ny are synonyms according to Syn.

Output:

the set V of views

1: for each Ti ∈ T do

2: find Ni = {ni1 , · · · , niq} such that ∀nix ∈ Ni∃GBT
x ∈ GBT

DL ∧ nix ∈ NBT
x ∧ s(Ti, nix ) == true

3: for each nix ∈ Ni do

4: Eix = en(nix , G
BT
x )

5: end for

6: Ei = Ei1

7: for k := 2 to q do

8: Ei = graft(Ei, Eik )

9: end for

10: for each nx, ny ∈ alter(Ei) do

11: if s(nx, ny) == true then

12: Ei = mergeNodes(Ei, nx, ny)

13: end if

14: end for

15: end for

16: E = {E1, E2, · · · , El}
17: V = 〈Nv , Av ,Ωv〉 =

⋃
i Ei

18: for each nx, ny ∈ Nv do

19: if s(nx, ny) == true then

20: V = mergeNodes(V, nx, ny)

21: end if

22: end for
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4.3 Semantic enrichment

This part starts by constructing the graph V Ext
i obtained by extending the view Vi with an external

knowledge graph GE semantically enriching Vi. Any suitable external graph, or set of graphs, can be

used for this purpose, e.g. dictionaries, glossaries, ontologies. In this paper, we rely on DBpedia, a

project aiming to extract structured content from the information created in the Wikipedia project

and now including more than 4.5 million terms represented as a knowledge graph in RDF.

For this purpose, first each node nij of Vi is linked to the corresponding entry nE
ij
∈ GE through

an arc with label “externalSource DBpedia”. In our scenario, such a DBpedia node nE
ij

is already

specified in the BabelNet entry corresponding to nij (or to any of its synonyms in Syn)8.

Then, for each nE
ij

considered above, it retrieves all the related concepts. In DBpedia, knowledge

is structured according to the Linked Data principles (Heath and Bizer 2011), i.e. as an RDF graph

built by triples. Each triple 〈s(ubject), p(roperty), o(bject)〉 states that a subject s has a property p,

whose value is an object o. Therefore, retrieving the related concepts for a given element x implies

finding all the triples where x is either the subject or the object.

The procedure to extend a view Vi ∈ V (see Algorithm 2) consists of the following tasks:

• Mapping: for each node nij ∈ Vi, its corresponding DBpedia entry nE
ij

is found. An arc from nij

to nE
ij

with label “externalSource DBpedia” is added to Vi (Algorithm 2, Steps 1-8);

• Extraction of triples: all the related triples 〈nE
ij
, p, o〉 and 〈s, p, nE

ij
〉, i.e., all the triples in which

nE
ij

is either the subject or the object, are retrieved (Algorithm 2, Step 12);

• Extension of views: for each retrieved triple 〈nE
ij
, p, o〉 (resp., 〈s, p, nE

ij
〉), Vi is extended: (i) by

defining a node (if not already existing) for the object o (resp., s), and (ii) by drawing an arc

from nE
ij

to o (resp., from s to nE
ij

) labeled as p (Algorithm 2, Steps 13-24).

The second and third tasks are recursively repeated for each new added node. The procedure

stops after a given number of iterations, defined in such a way as to limit the length of the external

incoming and outcoming paths of the nodes of Vi. The longer the path, the weaker the semantic link

between nodes.

The enrichment procedure is performed for all the views of V . It is particularly important if

|V | > 1 because the new derived relationships could help to merge the thematic views that have not

been merged during the view extraction phase. In particular, let Vi ∈ V and Vh ∈ V be two views

of V , and let V Ext
i and V Ext

h be the extended views corresponding to them. If there exist two nodes

nij ∈ V Ext
i ad nhk

∈ V Ext
h such that nij = nhk

9, then they can be merged in one node; in this way,

V Ext
i and V Ext

h become connected.

After all equal nodes of the views of V have been merged, all the views of V could be either merged

in one view or not. In the former case, the process terminates with success. Otherwise, it is possible

to conclude that no thematic view comprising all the topics specified by the user can be found. In this

8Whenever this does not happen, the mapping can be automatically provided by the DBpedia Lookup Service (http:

//wiki.dbpedia.org/projects/dbpedia-lookup).
9Here, two nodes are assumed to be equal if the corresponding names coincide.
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Algorithm 2 Pseudo-code describing the second step of our approach (Semantic enrichment)
Input:

Let V be the set of views obtained at the end of view extraction;

let GE be an external knowledge graph;

let NumIter be the number of iterations;

let findExternalNode(nij , G
E) be a function that, given a node nij , finds the corresponding node in the external graph GE ;

let findTriples(nE
ij

) be a function that retrieves from GE all RDF triples where the node nE
ij

is either subject or object.

Output:

the set V Ext of views

1: for each Vi=〈Nvi , Avi ,Ωvi 〉 ∈ V do

2: for each nij ∈ Nvi do

3: nE
ij

=findExternalNode(nij , G
E)

4: Nvi = Nvi ∪ {nE
ij
}

5: Avi = Avi ∪ {a′ = 〈(nij , n
E
ij

)}
6: Ωvi (a′) =“externalSourceGE ”

7: end for

8: end for

9: for k := 1 to NumIter do

10: for each Vi=〈Nvi , Avi ,Ωvi 〉 ∈ V do

11: V Ext
i = 〈NExt

vi
, AExt

vi
,ΩExt

vi
〉 = Vi

12: for each nij ∈ NExt
vi

do

13: Triples=findTriples(nij )

14: for each trk ∈ Triples do

15: if trk==〈nij , p, o〉 then
16: NExt

vi
=NExt

vi
∪ {o}

17: AExt
vi

=AExt
vi
∪ {a′ = (nij , o)}

18: ΩExt
vi

(a′)=p

19: end if

20: if trk==〈s, p, nij 〉 then
21: NExt

vi
=NExt

vi
∪ {s}

22: AExt
vi

=AExt
vi
∪ {a′ = (s, nij )}

23: ΩExt
vi

(a′)=p

24: end if

25: end for

26: end for

27: end for

28: end for

last case, our approach still returns the enriched views of V and leaves the user the choice to accept

of reject them.

The quality of the integration task strictly depends on: (i) the type of the properties of the

properties paths linking the merged views, (ii) their length, and (iii) their overall cost. For each

of these aspects, the user can tune specific parameters. As for (i), we manually evaluated DBpedia

properties in order to assess their meaningfulness when used to link concepts belonging to different

views. As a result, we evaluated some of the properties as non-significant and we filtered out them from

the procedure. For instance, among them we discarded http://dbpedia.org/ontology/country

because it is a property used to link a concept to its nation, and, as such, its semantics is too loose

as it could connect any two concepts referring to the same country. If necessary, in making our

decisions we could also use the results of semi-automatic approaches performing machine learning

based rankings (e.g., in Dessi and Atzori (2016)). As for (ii), we count the number of properties.

Finally, as for (iii), we consider the overall cost of each property in the path. In our tests, we always
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referred to a cost equal to 1, with the exception of the http://www.w3.org/2002/07/owl#sameAs

property, which states that two concepts are equivalent, and has weight 0.

Properties to be filtered out, as well as property weights, can be customized through a configuration

file.

5 An example case

In this section, we present an example case aiming to show the various steps of our approach. Here, we

consider: (i) a structured source, called Weather Conditions (W , in short); (ii) two semi-structured

sources, called Climate (C, in short) and Environment (E, in short); (iii) an unstructured source, called

Environment Video (V , in short), consisting of a YouTube video. The E/R schema of W and the XML

Schemas of C and E are not reported here for space limitations. However, the interested reader can find

them at the address http://daisy.dii.univpm.it/dl/datasets/thematicViews. The keywords of

V are: garden, flower, rain, save, earth, tips, recycle, aurora, planet, garbage, pollution, region,

life, plastic, metropolis, environment, nature, wave, eco, weather, simple, fineparticle, climate,

ocean, environmentawareness, educational, reduce, power, bike.

By applying the approach mentioned in Section 3, we obtain the corresponding representations in

our network-based model, shown in Figures 3, 4 and 510.

Figure 3: Network-based representations of Climate and Weather Conditions.

Assume, now, that a user specifies the following set T of topics of her interest: T = {Ocean,Area}.
First, our approach detects those terms (and, then, those objects) in the four sources that are synonyms

of Ocean and Area. As for Ocean, the only synonym present in the sources is Sea; as a consequence,

Obj1 comprises the node Ocean of the source V (V.Ocean11) and the node Sea of the source C

(C.Sea). An analogous activity is performed for Area. At the end of this task we have that Obj1 =

{V.Ocean,C.Sea} and Obj2 = {W.P lace, C.P lace, V.Region,E.Location}.
10In Figures 3 and 4, we do not show the arc labels for the sources C, W and E because all of them are “contains”

and their presence would have complicated the layout unnecessarily.
11Hereafter, we use the notation S.o to indicate the object o of the source S.

16

http://www.w3.org/2002/07/owl#sameAs


Figure 4: Network-based representations of Environment.

Figure 5: Network-based representations of Environment Video.
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Figure 6: Ego networks corresponding to V.Ocean, C.Sea, W.P lace, C.P lace, V.Region and

E.Location.

Our approach proceeds by constructing the ego networks corresponding to the objects of Obj1 and

Obj2. They are reported in Figure 612.

Now, consider the ego networks corresponding to V.Ocean and C.Sea. Our approach merges the

two egos into a unique node. Then, it verifies whether further synonyms exist between the alters. Since

none of these synonyms exists, it returns the ego network shown at the left of Figure 7. The same task

is performed for the ego networks corresponding to W.P lace, C.P lace, V.Region and E.Location. In

particular, first the four egos are merged. Then, synonyms between the alters W.City and C.City and

the alters W.Altitude and C.Altitude are retrieved. Based on this, W.City and C.City are merged in

one node, W.Altitude and C.Altitude are merged in another node, the arcs linking the ego to W.City

and C.City are merged in one arc and the ones linking the ego to W.Altitude and C.Altitude are

merged in another arc. In this way, the ego network shown at the right of Figure 7 is returned. At this

point, there are two ego networks, EOcean and EArea, each corresponding to one of the terms specified

by the user.

Figure 7: Ego networks corresponding to Ocean and Area.

Our approach proceeds by searching for synonymies between the nodes of EOcean and EArea. Since

12In this figure, for layout reasons, we do not show the arc labels because they are the same as the ones of the

corresponding arcs of Figures 3, 4 and 5.
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Figure 8: The integrated thematic view.

it does not find them, it returns the set V = {VOcean, VArea}, where VOcean (resp., VArea) coincides

with EOcean (resp., EArea).

At this point, the semantic enrichment procedure (see Section 4.3) is executed. As shown in Figure

8, first each term is semantically aligned to the corresponding DBpedia entry (e.g., Ocean is linked to

dbo:Sea, Area is linked to dbo:Location and dbo:Place, whereas Country is linked to dbo:Country13,

respectively). After a single iteration, the triples 〈dbo:sea rdfs:range dbo:Sea〉 and 〈dbo:sea rdfs:domain

dbo:Place〉 are retrieved; they mean that a property dbo:sea is defined in DBpedia, stating that a

dbo:Place is lapped by a dbo:Sea (e.g, Italy by the Mediterranean sea). Other connections can be

found by moving to specific instances of the mentioned resources. Indeed, the triples 〈instance rdf:type

dbo:Sea〉, 〈instance rdf:type dbo:Location〉 and 〈instance rdf:type dbo:Place〉 are retrieved. Finally, a

triple 〈instance dbo:country dbo:Country〉 is also determined. As a result, the semantic enrichment

procedure succeeded in merging the two views, which were still separated after the view extraction

step.

In order to validate the results, we also performed an evaluation done by a panel of three experts.

The experts were given the graphs in Figures 3, 4, 5 and were asked to manually extract the thematic

views starting from the two topics “Ocean” and “Area”. Each expert manually produced the views

including the nodes that, according to them, were relevant to each topic. We compared the views

produced by the experts to those generated by our approach, and considered as valid those nodes on

which the majority (at least 2 out of 3 experts) agreed. Finally, we calculated precision and recall, that

are reported in Table 2. Experts mostly agreed with each other, with some exceptions. For instance,

two of them recognized the node seaquake as relevant for “Ocean” and environment as relevant for

“Area”, which were not included in our views. On the other hand, the majority did not agree on

current being relevant for “Ocean”. As also shown by the results, apart from these cases, their views

overlap with those produced by our approach.

13Prefixes dbo and dbr stand for http://dbpedia.org/ontology/ and http://dbpedia.org/resource/
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Precision Recall F-Measure

Ocean 0.86 (6/7) 0.86 (6/7) 0.86

Area 0.90 (9/10) 0.83 (10/12) 0.87

Average value 0.88 0.85 0.86

Table 2: Results of the expert validation for the example case.

6 Experiments

In this section, we present the experiments that we carried out to evaluate the performance of our

approach from several viewpoints. Specifically, we describe the testbed in next subsection and the

experiments on view extraction, along with the underlying motivations and the obtained results, in

Subsections 6.2, 6.3 and 6.4. Then, we present the experiments regarding semantic enrichment in

Subsection 6.5, whereas we provide details on computation time of both view extraction and semantic

enrichment in Subsection 6.6.

6.1 Adopted Testbed

To perform our experimental campaign, we built six data lakes DL1, . . . , DL6 with an increasing num-

ber of metadata. Each data lake consisted of 20 sources, with heterogeneous formats. For each data

lake DLk, by following the methodology described in Section 3.1.2, we built a graph GBT
k representing

its technical and business metadata. Hereafter, we use the notation GE
k to represent the corresponding

external graph, and the notation GExt
k to represent the union of GBT

k and GE
k .

The number of nodes of GBT
k for the six data lakes DL1, . . . , DL6 were 208, 356, 572, 928, 1482

and 2392, respectively. The interested reader can find these data lakes in CSV format at the address

http://daisy.dii.univpm.it/dl/datasets/thematicViews.

We carried out all the tests presented in this section on a server equipped with an Intel I7 Quad

Core 7700 HQ processor and 16 GB of RAM with Ubuntu 16.04 operating system. To implement our

approaches we adopted Python, powered with the NetworkX library, as programming language, and

Neo4J (Version 3.4.5) as underlying DBMS.

6.2 Cohesion

The approach proposed in Section 4 is aimed to extract thematic views from graphs representing data

sources. These views should have both structural and semantic cohesion higher than the ones measured

for original data sources. The verification of this assumption is the goal of the first experiment.

We considered two well known structural cohesion measures used in network analysis literature,

namely clustering coefficient and density (M.Tsvetovat and Kouznetsov 2011). The clustering coeffi-

cient of a node is defined as the probability that two randomly chosen (but distinct) neighbors of it

are connected. The clustering coefficient of a network is the average of the clustering coefficients of its

nodes. The density of a network is given by the ratio of the real arcs of the network to the maximum

number of arcs that could be present in it. Both clustering coefficient and density range in the real

interval [0, 1]; the higher their value the higher the corresponding network cohesion.
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For each data lake, we considered 4 groups of topic sets with 1, 2, 4 and 8 topics, respectively.

We chose this range by considering that the vast majority of search queries is composed of less than

3 words, according to the statistics published by various search engines (e.g., in Yahoo the average

length is 2.35 and approximately 85% of queries include less than 4 words (Yi et al. 2008) while queries

with 8 or fewer words account for more than 99% of searches. Similar trends are reported by other

search engines (Spink et al. 2001)). The size of the set, that is the number of its topics, is denoted

by |T |. For each size, we randomly generated 10 different sets of topics and we used them as input to

our approach. For each topic set, our approach returned a thematic view for which we computed the

corresponding clustering coefficient and density. Finally, for each data lake, we averaged the obtained

results and compared them with the average clustering coefficient and the average density of the

corresponding original data sources. The obtained results are reported in Tables 3 and 4.

GBT
k (size) Average clustering coefficient (real sources)

Average clustering coefficient (thematic views)

|T | = 1 |T | = 2 |T | = 4 |T | = 8

GBT
1 (208) 0.242 0.328 0.379 0.387 0.412

GBT
2 (356) 0.280 0.353 0.397 0.422 0.444

GBT
3 (572) 0.294 0.402 0.442 0.485 0.492

GBT
4 (928) 0.358 0.451 0.483 0.505 0.516

GBT
5 (1482) 0.394 0.491 0.515 0.532 0.536

GBT
6 (2392) 0.396 0.523 0.537 0.546 0.548

Table 3: Values of the clustering coefficient of the data sources and the thematic views against the

size of GBT
k and the size of the topic set.

GBT
k (size) Average density (real sources)

Average density (thematic views)

|T | = 1 |T | = 2 |T | = 4 |T | = 8

GBT
1 (208) 0.255 0.265 0.270 0.284 0.301

GBT
2 (356) 0.268 0.296 0.308 0.315 0.324

GBT
3 (572) 0.279 0.396 0.399 0.405 0.411

GBT
4 (928) 0.273 0.481 0.489 0.494 0.514

GBT
5 (1482) 0.290 0.551 0.561 0.573 0.580

GBT
6 (2392) 0.278 0.615 0.615 0.626 0.634

Table 4: Values of the density for the data sources and the thematic views against the size of GBT
k

and the size of the topic set.

.

From the analysis of these tables, we can observe that, in almost all cases, the values of both

clustering coefficient and density are higher or much higher for thematic views than for the original

data sources. This is clearly a confirmation of the goodness of our approach, which returns thematic

views more cohesive than the original sources. Conversely, if views were selected randomly, they

would have had a distribution of arcs similar to the full data lake, and therefore a comparable value

for cohesion. We also observe that when |T | increases, the values of both clustering coefficient and

density increase. This can be explained by observing that, in processing T , our approach selects the

portions of networks containing at least one topic of T . When |T | increases, the portion of networks

selected by our approach increases too, and the probability of selecting nodes that are synonyms and,

hence, will be merged, increases as well; this leads to a higher cohesion value.
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6.3 Connecting capability and node distribution in thematic views

Another quality parameter for thematic views is their connecting capability, that is the capability of a

view to connect more data sources. This capability depends on the number of synonym relationships

added to the model by the proposed approach, and, in turn, on the number of merged nodes. Indeed,

we merge all the pairs of synonym nodes coming from different data sources, since “de-facto” they refer

to the same concepts (see functions graft() and mergeNodes() in Algorithm 1). Hence, the number of

merged nodes can be used to count the synonymy relationships in the model. The higher the number

of merged nodes in a thematic view, the higher its capability of connecting data sources.

For each data lake and thematic view used in the previous subsections, we computed the ratio

of the number of merged nodes to the number of nodes of the view (MNview ). Furthermore, we

compute the ratio of the number of different data sources, which the merged nodes belong to, to the

total number of data sources (MNsource). Clearly, the higher the two ratios, the higher the connecting

capability of thematic views. Results averaged for |T | are reported in Table 5.

GBT
k (size)

Average MNview Average MNsource

|T | = 1 |T | = 2 |T | = 4 |T | = 8 |T | = 1 |T | = 2 |T | = 4 |T | = 8

GBT
1 (208) 0.308 0.460 0.523 0.558 0.378 0.473 0.492 0.457

GBT
2 (356) 0.386 0.519 0.613 0.658 0.369 0.474 0.531 0.492

GBT
3 (572) 0.544 0.667 0.786 0.818 0.488 0.481 0.453 0.444

GBT
4 (928) 0.694 0.791 0.866 0.883 0.457 0.432 0.422 0.418

GBT
5 (1482) 0.814 0.887 0.944 0.950 0.457 0.519 0.811 0.921

GBT
6 (2392) 0.913 0.965 0.978 0.981 0.520 0.676 0.838 0.923

Table 5: Average MNview and average MNsource against the size of GBT
k and the size of the topic set.

From the analysis of these tables, we observe that our approach returns satisfying results. Indeed,

note that MNview increases when the size of the data lake increases. Furthermore, MNview slightly

increases when |T | increases. Similar trends can be observed for the average MN source. In this

case, the value increases more as |T | increases. Conversely, if there were no semantic relations (i.e.

synonymy) it would not have been possible to merge sources, whatever the size of the network.

In order to deepen this investigation, for each thematic view, we compared the distribution of its

nodes against the data sources they belong to. Indeed, if almost all the nodes of a thematic view

derive from only one data source, the information contribution provided by the view itself would be

very small because it would be analogous to the one provided by the corresponding source. On the

contrary, if the nodes of a thematic view derive from several data sources, then the view provides new

and valuable knowledge. Based on this reasoning, we evaluated the heterogeneity of the provenance of

each node in a thematic view. For this purpose, we adapted the Herfindahl Index (Hirschman 1964)

to our context. This index is very used in several research fields of Economics from several decades;

for instance, it is exploited to evaluate the concentration degree in an industry.

In order to adapt the Herfindahl Index to our scenario, consider a data lake DL consisting of m

data sources {D1, D2, . . . , Dm}. Consider, also, a thematic view Vj derived by our approach. Let nj

be the number of nodes of Vj and let njk , 1 ≤ k ≤ m, be the fraction of the nodes of Vj belonging

to Dk. The Herfindahl Index Hj of Vj is defined as
∑m

k=1

(
njk
nj

)2
. The Herfindahl Index generally

used in Economics ranges in the real interval
[

1
m , 1

]
. In our case, since a node can derive from the

merge of more synonymous nodes (specifically, it could represent at most m nodes), Hj can range in
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the real interval
[

1
m ,m

]
. The higher the value of Hj , the higher the concentration degree of the nodes

of data sources in Vj . As previously pointed out, a desired property is the ability to build thematic

views connecting nodes that belong to different sources. In terms of the Herfindahl Index, this means

to have values of the index as lower as possible14.

Table 6 reports the average values of the Herfindahl Index computed for each data lake.

GBT
k (size)

Average Herfindhal Index

|T | = 1 |T | = 2 |T | = 4 |T | = 8

GBT
1 (208) 0.322 0.312 0.308 0.296

GBT
2 (356) 0.284 0.277 0.272 0.264

GBT
3 (572) 0.242 0.236 0.225 0.217

GBT
4 (928) 0.163 0.156 0.147 0.143

GBT
5 (1482) 0.121 0.118 0.114 0.108

GBT
6 (2392) 0.112 0.110 0.087 0.068

Table 6: Average values of the Herfindahl Index of thematic views against the size of GBT
k and the

size of the topic set.

Results show that the nodes of a thematic view are distributed among several sources. Indeed, on

average, the Herfindahl Index is 0.196 and the maximum value is 0.322. As expected, the values of

Hj improve with the increase of both the size of the data lake and |T |, that is with the increase of the

probability of having synonymy relationships in a thematic view. Table 6 confirms and strengthens

the results obtained by computing the number of merged nodes in a thematic view.

6.4 Efficiency obtained thanks to thematic views

This subsection is devoted to measure the efficiency guaranteed by the presence of thematic views in

a data lake. In order to perform this experiment we randomly selected a set PSet of 52348 pairs of

nodes (ns, nt) such that: (i) ns and nt belong to at least one thematic view; (ii) there exists at least

one path from ns to nt.

In order to measure efficiency, for each pair (ns, nt), we conducted both a Breadth-First Search

and a Depth-First Search in such a way as to reach nt starting from ns. Each of these searches was

performed two times; during the former one we assumed the existence of no thematic views; instead,

during the latter one, we assumed their presence. We computed the number fBFS
st =

̂numBFS
st

numBFS
st

. Here,

the numerator ̂numBFS
st denotes the number of nodes involved in the search in presence of thematic

views, whereas the denominator numBFS
st indicates the number of nodes involved in the search but

in absence of thematic views. In an analogous fashion, we computed numDFS
st , ̂numDFS

st and fDFS
st ,

which correspond to the previous parameters but for Depth-First Search. Clearly, the lower fBFS
st

and fDFS
st , the higher the contribution of the thematic views to reduce the number of nodes necessary

to reach nt from ns and, consequently, the higher the efficiency that our thematic view detection

approach can provide.

We averaged the values of fBFS
st and fDFS

st on all the pairs of PSet and we obtained fBFS and

fDFS . We performed this task for all the six data lakes introduced in Section 6.1. The obtained

14Consider that, since we have 20 real sources in the data lakes adopted in our experimental campaign, the value of

Hj can range in the real interval [0.05, 20].
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results are reported in Table 7.

GBT
k (size) fBFS fDFS

GBT
1 (208) 0.888 0.867

GBT
2 (356) 0.711 0.691

GBT
3 (572) 0.624 0.603

GBT
4 (928) 0.564 0.542

GBT
5 (1482) 0.556 0.553

GBT
6 (2392) 0.421 0.388

Table 7: Values of fBFS and fDFS against the size of GBT
k .

From the analysis of this table we can observe that our approach can contribute to decrease the

number of the nodes of a data lake involved in the visit of nt starting from ns and, therefore, to increase

the efficiency of this task. Observe that the decrease of the number of involved nodes becomes very

high as the data lake size increases.

This result could lead one to conclude that it is appropriate to create a huge number of thematic

views in a data lake. Actually, this is not the case. Indeed, the creation and the maintenance of

thematic views is expensive and, therefore, it is necessary a right tradeoff between the benefits they

cause and the costs they require.

6.5 Effectiveness of semantic enrichment

This experiment aimed at evaluating the effectiveness of the semantic enrichment step discussed in

Section 4.3 in terms of its capability of integrating two separate views.

In order to perform the experiments with a large number and variety of views to integrate, we

proceeded as follows:

• Alignment: starting from the views obtained in the previous step, we firstly aligned each node

to the corresponding DBpedia URI.

• Configuration: for each view, we randomly selected a subset of nodes (i.e. URIs), according to a

parameter (size of view) ranging from 3 to 10. Nodes to expand are selected randomly because

the size of each view may vary. Hence, this parameter helps to keep the dimension under control

in order to experimentally evaluate how the size affects effectiveness.

• Extraction of triples and extension of views: according to the approach described in Subsection

4.3, we extracted from DBpedia triples related to the randomly selected nodes. The triples

are then used to extend the views. This step is executed a number of times (num extensions),

ranging from 1 to 2.

• Verification: we analyzed the views to verify whether there are paths linking them (i.e., if they

have been merged).

For each specific combination of size of view and num extensions, we repeated the whole procedure

100 times with a different set of URIs for each execution. At each iteration, we computed the following

measures:
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• percentage of cases in which views were merged;

• average number of nodes of the final merged view (for the cases in which it was obtained);

The obtained average results are shown in Table 8. From the analysis of this table, we can see

that the chance to obtain a merged view increases with the size of the views and with the number of

extensions, going from 2% to 46%.

We also computed the average length of a path. This parameter does not depend on the size of

view. We obtained that it is equal to 1.5 when num of extensions is equal to 1, and to 2.8 when it is

equal to 2.

num extensions=1
size of view

3 5 7 10

% 0.02 0.03 0.08 0.14

avg size 120 196 271 382

num extensions=2
size of view

3 5 7 10

% 0.06 0.1 0.15 0.46

avg size 790 1144 1810 2493

Table 8: Performance of the semantic enrichment step.

6.6 Computation time

In this experiment, we aimed at evaluating the computation time of our approach. As for view

extraction, in Figure 9, we report the execution time against the size |T | of the topic set for the six

data lakes that we considered in our experimental campaign.

Figure 9: Average computation time of the view extraction task against the size of the data lake and

the size of the topic set.

From the analysis of this figure, we can observe that our approach obtains satisfying results.

Specifically, the computation time is always very low for data lakes having at most 1482 nodes.

Instead, for data lakes with more than 2392 nodes, the computation time is low for |T | = 1 or |T | = 2.

Then, it increases, even if it remains acceptable for |T | = 4, whereas it becomes excessive for |T | = 8.
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Figure 10: Computation time (in seconds) of the semantic enrichment task against the number of

external nodes taken into consideration.

However, with regard to this fact, we must point out that topic sets consisting of 8 keywords are very

uncommon15.

As for the semantic enrichment step, in Figure 10, we report the computation time of a single

iteration of the algorithm, against the number of external nodes taken into consideration. As we can

see, even in presence of a very large number of nodes (i.e., registering about 2500 different types of

object or attribute), the time required for this step is low (it does not exceed 30 seconds) and almost

negligible w.r.t. the computation time of the view extraction activity. This time can be further

reduced by introducing suitable stop conditions, such as stopping the procedure as soon as a first path

has been retrieved.

7 Conclusion

In this paper, we have proposed a new network-based model to uniformly represent the structured,

semi-structured and unstructured sources of a data lake. Then, we have illustrated a new approach to

“structuring” unstructured sources. Finally, based on these two tools, we have defined a new approach

to extracting topic-guided views from the sources of a data lake. This last approach consists of two

steps; the former is based on ego networks, whereas the latter leverages semantic relationships.

This paper is not to be intended as an ending point. Instead, we think that it should be the

starting point of a new family of approaches aiming at handling information systems in the new

big data oriented scenario. By proceeding in this direction, first we plan to define an unsupervised

approach to extracting topic-guided views from a data lake. This could be extremely useful in presence

of a huge number of sources composing the data lake, or if we want to preliminarily construct a set

of semantically homogeneous views to “offer” to a user (think, for instance, of a big data analytics

scenario).

15As a matter of fact, a topic set with 8 keywords would encompass a great number of different concepts and, as such,

it would not be generally able to capture a clear and specific desire of a user.
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We also plan to define new approaches to: (i) supporting a flexible and lightweight querying

of the sources of a data lake; (ii) extracting complex knowledge patterns; (iii) performing schema

matching and schema mapping; (iv) carrying out data reconciliation and integration. Differently from

the already existing approaches, these new generation-approaches should be strongly oriented to data

lakes and should be specifically conceived to effectively and efficiently managing unstructured data

sources.
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Garćıa-Moya, L., Kudama, S., Aramburu, M., and Berlanga, R. (2013). Storing and analysing voice of the market data

in the corporate data warehouse. Information Systems Frontiers, 15(3):331–349.

Hai, R., Geisler, S., and Quix, C. (2016). Constance: An intelligent data lake system. In Proc. of the International

Conference on Management of Data (SIGMOD 2016), pages 2097–2100, San Francisco, CA, USA. ACM.

Hai, R., Quix, C., and Zhou, C. (2018). Query Rewriting for Heterogeneous Data Lakes. In Proc. of the International

Conference on European Conference on Advances in Databases and Information Systems(ADBIS’18), pages 35–49,

Budapest, Hungary. Springer.

Halevy, A. (2001). Answering queries using views: A survey. The VLDB Journal, 10(4):270–294. Springer.

Hamadou, H. and Ghozzi, F. (2018). Querying Heterogeneous Document Stores. In Proc. of the International Conference

on Enterprise Information Systems (ICEIS’18), pages 58–68, Madeira, Portugal.

Heath, T. and Bizer, C. (2011). Linked data: Evolving the web into a global data space. Synthesis lectures on the

semantic web: theory and technology, 1(1):1–136.

Hirschman, A. (1964). The paternity of an index. The American Economic Review, 54(5):761–762.

Hitzler, P. and Janowicz, K. (2013). Linked Data, Big Data, and the 4th Paradigm. Semantic Web, 4(3):233–235.

Janjua, N., Hussain, F., and Hussain, O. (2013). Semantic information and knowledge integration through argumentative

reasoning to support intelligent decision making. Information Systems Frontiers, 15(2):167–192.

Keith, A., Cyganiak, R., Hausenblas, M., and Zhao, J. (2011). Describing linked datasets with the void vocabulary.

Technical report.

28



Klettke, M., Awolin, H., Storl, U., Muller, D., and Scherzinger, S. (2017). Uncovering the evolution history of data lakes.

In Proc. of the International Conference on Big Data (IEEE BigData 2017), pages 2462–2471, Boston, MA, USA.

IEEE.

Kondrak, G. (2005). N-gram similarity and distance. In String processing and information retrieval, pages 115–126.

Springer.

Konstantinou, N., Koehler, M., Abel, E., Civili, C., Neumayr, B., Sallinger, E., Fernandes, A., Gottlob, G., Keane,

J., and Libkin, L. (2017). The VADA architecture for cost-effective data wrangling. In Proc. of the International

Conference on Management of Data (SIGMOD’17), pages 1599–1602, Chicago, IL, USA. ACM.

Lassila, O., Swick, R. R., et al. (1998). Resource description framework (rdf) model and syntax specification.

Maccioni, A. and Torlone, R. (2018). KAYAK: A Framework for Just-in-Time Data Preparation in a Data Lake. In Proc.

of the International Conference on Advanced Information Systems Engineering (CAiSE’18), pages 474–489, Tallinn,

Estonia. Springer.

Madhavan, J., Bernstein, P., and Rahm, E. (2001). Generic schema matching with Cupid. In Proc. of the International

Conference on Very Large Data Bases (VLDB 2001), pages 49–58, Rome, Italy. Morgan Kaufmann.

McPherson, M., Smith-Lovin, L., and Cook, J. (2001). Birds of a feather: Homophily in social networks. Annual Review

of Sociology, 27:415–444. JSTOR.

Mouttham, A., Kuziemsky, C., Langayan, D., Peyton, L., and Pereira, J. (2012). Interoperable support for collaborative,

mobile, and accessible health care. Information Systems Frontiers, 14(1):73–85.

Mouzakitis, S., Papaspyros, D., Petychakis, M., Koussouris, S., Zafeiropoulos, A., Fotopoulou, E., Farid, L., Orlandi, F.,

Attard, J., and Psarras, J. (2017). Challenges and opportunities in renovating public sector information by enabling

linked data and analytics. Information Systems Frontiers, 19(2):321–336.

M.Tsvetovat and Kouznetsov, A. (2011). Social Network Analysis for Startups: Finding connections on the social web.

O’Reilly Media, Inc.

Navigli, R. and Ponzetto, S. (2012). BabelNet: The automatic construction, evaluation and application of a wide-coverage

multilingual semantic network. Artificial Intelligence, 193:217–250. Elsevier.

Oram, A. (2015). Managing the Data Lake. Sebastopol, CA, USA. O’Reilly.

Palopoli, L., Pontieri, L., Terracina, G., and Ursino, D. (2000). Intensional and extensional integration and abstraction

of heterogeneous databases. Data & Knowledge Engineering, 35(3):201–237.
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