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A B S T R A C T

This work investigates the dynamics of a hinged–simply supported beam with an axial spring
in the neighbourhood of a 3:1 internal resonance between two successive transversal vibration
modes. Multiple time scale method is applied to the analytical model of the planar extensible-
shearable beam with associated boundary conditions, and a second order approximate solution
is obtained. The phenomena that we investigate occur on the resonant branch of the frequency
response curve around the main natural frequency, and consists of a localized extra (bent)
peak on that branch. Also some detached branches have been theoretically detected in the
neighbourhood of this extra peak. The analytical frequency response curves are analysed
extensively and have been compared with finite element numerical simulations, finding an
overall good agreement. Stability of the analytical solutions is checked by computing the
eigenvalues of the Jacobian matrix and looking at the sign of their real part. Strain energies due
to flexural, axial, shear deformability and axial spring are determined and compared between
each other to ascertain their relative importance.

. Introduction

In engineering the most common structural elements are cables, beams, plates or shells, which are applied in tall buildings,
lender bridges, helicopter blades, aeroplane wings, cars and so on. During operation time, these structures are subjected to external
ynamical loads, and their most dangerous behaviour is in the dynamical realm. In general, small amplitudes dynamic response is
odelled using linear vibration theory. As the amplitude of system response increases, linear models are no longer valid, and material

s well as geometric nonlinearities have to be taken into account.
Large free and forced-damped nonlinear oscillations of beams with different boundary conditions are of practical as well as

cientific interest, and have been studied in the past. A conventional combination of fixed, hinged, simply supported and free
oundary conditions at the ends were presented in [1]. Generally (but not always), the clamped–simply supported and hinged–simply
upported beams have softening nature (the vibration frequency decreases by increasing the amplitude of the motion); cantilever
eam presents almost linear dynamic response, while axially restrained ends determine a strong hardening behaviour in the structure
the vibration frequency increases by increasing the amplitude of the motion). Softening on the frequency amplitude characteristic
or structures with free axial displacement is the effect of axial inertia and geometric nonlinear balance terms [2–5].

To investigate the transition from axially unrestrained to restrained boundary conditions, Lenci et al. proposed an extensible-
hearable beam model with axial spring fixed at the end. With the use of perturbation methods they studied the moderately large
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free nonlinear oscillations [6,7] and forced-damped vibrations for the first [8] and higher order resonances [9]. Hardening/softening
dichotomy for the parametrically excited beam–spring system were experimentally tested in [10,11], while qualitative and
quantitative agreement between theoretical/numerical and experimental results were obtained for kinematically excited beams in
[12,13].

Analogous to systems with more than one degree of freedom, nonlinear interactions between normal modes in continuous systems
ause additional dynamic effects. Knowledge of internal resonances is well established in dynamical systems with quadratic and
ubic nonlinearities [14–16]. Nonlinear response of parametrically excited, Euler–Bernoulli beam taking into account axial static
oad applied through the spring and hinged–clamped ends were studied in [17], and next the same configuration of the beam was
mproved by axial deformations in [18]. In their model, authors neglected shearing effects and longitudinal inertia and then, by
arying pulling force, tuned the first and second natural frequencies to the desired multiplier. In a similar arrangement, natural
requencies and nonlinear mode interactions for buckled clamped–clamped beam were investigated in [19–21].

Apart from buckled beams, modal interactions are observed in initially curved (shallow) microelectromechanical systems, which
an be additionally actuated by static and dynamic electric forces [22]. Another opportunity to match the natural frequencies in an
nteger ratio are thermomechanical couplings in thermal environments as a parameter is varied [23]. Flexural–flexural interactions
ccur also in cantilever beams under gravitational effect [24], as well as in initially straight and predeformed rotating structures
ubjected to centrifugal forces [25–27]. Alfosail and Younis shed the light on internal resonances in inclined riser, which undergoes
nvironmental forces, more precisely vortex induced vibrations [28]. In axially moving beams, by properly tuning the constant beam
elocity the condition of internal resonance was achieved [29]. In the initially straight beam model, one important phenomenon is
he transversal–longitudinal internal resonance, in which natural frequencies are very close to ratio 2 ∶ 1 (2𝜔0,𝑛 ≈ 𝜔𝐴) [30]. External

action applied to the structure only in the transversal direction stimulates large flexural amplitudes, and indirectly longitudinal
oscillations through geometric nonlinearities and inertia terms. For precisely selected parameters of the structure, energy transfer
between the two orthogonal directions occurred [31,32].

In this paper we focused on modal interactions in the hinged–simply supported beams with an axial spring at one end. The
stiffness of the spring is the passive control parameter, which is chosen to have 3 ∶ 1 ratio (3𝜔̃0,𝑛 ≈ 𝜔̃0,𝑚) between two different
flexural modes. In fact, for this structural system only 2:1 flexural–longitudinal internal resonance was investigated [30], while
transversal–transversal resonance is studied here for the first time (to the best of authors knowledge), extending the study on nonlinear
response of the separated (i.e. without internal resonance) first seven flexural modes presented in [8].

It is worth to remark that if the frequency 𝛺 of the periodic external excitation is close to a given natural frequency 𝜔𝑛 (so that
we have external resonance from the load), and if 𝜔𝑚 ≈ 3𝜔𝑛 by internal resonance, then 3𝛺 ≈ 𝜔𝑚 and so the mode 𝑚 is subjected to
superharmonic resonance (see Sect. 4.1.3 of [15]). Thus, it is not immediately clear if the activation (i.e. large displacements) of the
𝑚 mode is due to coupling between modes (internal resonance) or directly to the superharmonic resonance. To show that the former
case happens, we consider also an external excitation that does not solicit the mode 𝑚 (practically we consider a concentrated force
in a node of the 𝑚th linear mode shape), so that its activation is possible, at least in this case, because of the coupling between
modes due to the internal resonance.

As we will see in due course, in the considered modal coupling between two different flexural modes, a certain role plays the
axial motion, that naturally appears at the second order and that contributes to the exchange of energy/motion between flexural
modes, acting as a kind of ‘‘carrier’’ (roughly speaking).

The main motivation of this paper is to detect analytically a phenomenon of the born of a secondary peak on the primary
nonlinear resonance branches, that has been numerically observed in several previous works [8,9,31,33].

The manuscript is organized as follows. In Section 2 the mathematical description of the hinged–simply supported beam with an
axial spring is presented. Section 3 contains the multiple time scale method (MTSM) application up to cubic nonlinearities and second
order approximation. Analytical outcomes and stability analysis of dynamical response are compared with numerical simulations in
Section 4 to check the reliability of the approximate analytical solution. Section 5 stresses the contribution of the work.

2. Problem formulation

Let us consider a planar extensible Timoshenko beam, which is made of homogeneous material defined by Young’s modulus
𝐸, shear modulus 𝐺 and density 𝜌. Dimensions of the initially straight structure are: length 𝐿, cross-sectional area 𝐴 and second
moment of area 𝐽 . Space and time dependent terms 𝑊 (𝑍, 𝑇 ) and 𝑈 (𝑍, 𝑇 ) describe displacements in longitudinal and transversal
directions, respectively. Furthermore, rotation angle of the cross section 𝜃(𝑍, 𝑇 ) takes into account sum of slope angle of the axis
of the beam and shear deformation, but warping effect of the cross-section is neglected in the analysis. The beam is subjected to
longitudinal, transversal and rotational inertia. It is assumed that a linear viscous damping acts on the beam and, accordingly, the
three dissipation factors 𝐶𝑊 , 𝐶𝑈 and 𝐶𝜃 are considered. Moreover, periodic external excitation 𝑃𝑈 (𝑍) cos (𝛺𝑇 ) is introduced in the
transverse direction, to directly stimulate only flexural modes. The beam model is governed by the three nonlinear partial differential
equations:

𝜌𝐴𝑊̈ + 𝐶𝑊 𝑊̇ =

⎧

⎪

⎨

⎪

𝐸𝐴
[√

(1 +𝑊 ′)2 + 𝑈 ′2 − 1
]

1 +𝑊 ′
√

(1 +𝑊 ′)2 + 𝑈 ′2
+ 𝐺𝐴

[

𝜃 − arctan
(

𝑈 ′

1 +𝑊 ′

)]

𝑈 ′
√

(1 +𝑊 ′)2 + 𝑈 ′2

⎫

⎪

⎬

⎪

′

, (1)
2

⎩ ⎭
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Fig. 1. The beam–spring system.

𝜌𝐴𝑈̈ + 𝐶𝑈 𝑈̇ + 𝑃𝑈 (𝑍) cos (𝛺𝑇 ) =

⎧

⎪

⎨

⎪

⎩

𝐸𝐴
[√

(1 +𝑊 ′)2 + 𝑈 ′2 − 1
]

𝑈 ′
√

(1 +𝑊 ′)2 + 𝑈 ′2
− 𝐺𝐴

[

𝜃 − arctan
(

𝑈 ′

1 +𝑊 ′

)]

1 +𝑊 ′
√

(1 +𝑊 ′)2 + 𝑈 ′2

⎫

⎪

⎬

⎪

⎭

′

, (2)

𝜌𝐽 𝜃̈ + 𝐶𝜃 𝜃̇ =

⎡

⎢

⎢

⎢

⎣

𝐸𝐽 𝜃′
√

(1 +𝑊 ′)2 + 𝑈 ′2

⎤

⎥

⎥

⎥

⎦

′

− 𝐺𝐴
[

𝜃 − arctan
(

𝑈 ′

1 +𝑊 ′

)]√

(1 +𝑊 ′)2 + 𝑈 ′2, (3)

here Newton’s and Lagrange’s notation are used
(

𝑑(...)
𝑑𝑡 = ̇(...), 𝑑(...)

𝑑𝑍 = (...)′
)

. We refer to [6,8] for more details on the derivation
f the previous equations.

Six boundary conditions correspond to the scheme presented in Fig. 1 and involves free rotation, restrained displacements of the
eams ends and the axial elastic support:

t 𝑍 = 0

𝑊 = 0, 𝑈 = 0, 𝑀 = 0, (4)

t 𝑍 = 𝐿

𝐸𝐴
[√

(1 +𝑊 ′)2 + 𝑈 ′2 − 1
]

1 +𝑊 ′
√

(1 +𝑊 ′)2 + 𝑈 ′2
+ 𝐺𝐴

[

𝜃 − arctan
(

𝑈 ′

1+𝑊 ′

)]

𝑈 ′

√

(1 +𝑊 ′)2 + 𝑈 ′2
+ 𝑘𝑠𝑊 = 0, 𝑈 = 0, 𝑀 = 0, (5)

here 𝑀 is the bending moment, proportional to geometric curvature 𝑀 = 𝐸𝐽 𝜃′
√

(1+𝑊 ′)2+𝑈 ′2
[34], and 𝑘𝑠 is the stiffness of the spring

(see Fig. 1). Note that 𝑀 = 0 implies 𝜃′ = 0. For simplicity time and space dependent notation is omitted in Eqs. (1)–(5).

3. Multiple time scales method

The system described in Section 2 is solved analytically with the help of the multiple time scale method in the neighbourhood
of a primary flexural mode 𝑛 (which is directly excited by the external force), considering 3 to 1 modal interaction with a secondary
flexural mode 𝑚.

In this work we seek the approximate solution only up to cubic geometric nonlinearities, so that we can expand up to the third
order the governing equations. Higher order terms can be included in future work, even if we emphasize that this restriction is
mainly caused by limitations of the commercial manipulator Mathematica© we used for the computations. Thus, Eqs. (1)–(5) take
the form:

𝜌𝐴𝑊̈ + 𝐶𝑊 𝑊̇ = 𝐸𝐴
(

𝑊 ′ + 1
2
𝑈 ′2 − 𝑈 ′2 𝑊 ′

)′
+ 𝐺𝐴

(

𝑈 ′𝜃 − 𝑈 ′2 + 2𝑈 ′2𝑊 ′ − 𝑈 ′𝑊 ′𝜃
)′ , (6)

𝜌𝐴𝑈̈ + 𝐶𝑈 𝑈̇ + 𝑃𝑈 (𝑍) cos (𝛺𝑇 ) =

𝐸𝐴
(

𝑈 ′𝑊 ′ + 1
2
𝑈 ′3 − 𝑈 ′𝑊 ′2

)′
+ 𝐺𝐴

(

𝑈 ′ − 𝜃 − 𝑈 ′𝑊 ′ + 1
2
𝑈 ′2𝜃 − 5

6
𝑈 ′3 + 𝑈 ′𝑊 ′2

)′
, (7)

𝜌𝐽 𝜃̈ + 𝐶𝜃 𝜃̇ = 𝐸𝐽
(

𝜃′ −𝑊 ′𝜃′ − 1
2
𝑈 ′2𝜃′

)′
+ 𝐺𝐴

(

𝑈 ′ − 𝜃 −𝑊 ′𝜃 − 1
2
𝑈 ′2𝜃 + 1

6
𝑈 ′3

)

, (8)

with boundary conditions at 𝑍 = 0

𝑊 = 0, 𝑈 = 0, 𝜃′ = 0, (9)
3
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and boundary conditions at 𝑍 = 𝐿

𝐸𝐴
(

𝑊 ′ + 1
2
𝑈 ′2 − 𝑈 ′2 𝑊 ′

)

+ 𝐺𝐴
(

𝑈 ′𝜃 − 𝑈 ′2 + 2𝑈 ′2𝑊 ′ − 𝑈 ′𝑊 ′𝜃
)

+ 𝑘𝑠𝑊 = 0, 𝑈 = 0, 𝜃′ = 0. (10)

A formal small book-keeping parameter is introduced to consistently separate three time scales: fast 𝑡0, slower 𝑡1 and the
lowest 𝑡2:

𝑡0 = 𝑇 , 𝑡1 = 𝜀𝑇 , 𝑡2 = 𝜀2𝑇 . (11)

s generally established in the multiple time scale method, variables and their time derivatives are sought after in the form:

𝑊 (𝑍, 𝑇 ) = 𝜀𝑊1(𝑍, 𝑡0, 𝑡1, 𝑡2) + 𝜀2𝑊2(𝑍, 𝑡0, 𝑡1, 𝑡2) + 𝜀3𝑊3(𝑍, 𝑡0, 𝑡1, 𝑡2),

𝑈 (𝑍, 𝑇 ) = 𝜀𝑈1(𝑍, 𝑡0, 𝑡1, 𝑡2) + 𝜀2𝑈2(𝑍, 𝑡0, 𝑡1, 𝑡2) + 𝜀3𝑈3(𝑍, 𝑡0, 𝑡1, 𝑡2),

𝜃(𝑍, 𝑇 ) = 𝜀𝜃1(𝑍, 𝑡0, 𝑡1, 𝑡2) + 𝜀2𝜃2(𝑍, 𝑡0, 𝑡1, 𝑡2) + 𝜀3𝜃3(𝑍, 𝑡0, 𝑡1, 𝑡2), (12)

𝑊̇ (𝑍, 𝑇 ) = 𝐷0𝑊 (𝑍, 𝑇 ) + 𝜀𝐷1𝑊 (𝑍, 𝑇 ) + 𝜀2𝐷2𝑊 (𝑍, 𝑇 ),

𝑊̈ (𝑍, 𝑇 ) = 𝐷2
0𝑊 (𝑍, 𝑇 ) + 𝜀2𝐷0𝐷1𝑊 (𝑍, 𝑇 ) + 𝜀2

(

2𝐷0𝐷2 +𝐷2
1
)

𝑊 (𝑍, 𝑇 ),

𝑈̇ (𝑍, 𝑇 ) = 𝐷0𝑈 (𝑍, 𝑇 ) + 𝜀𝐷1𝑈 (𝑍, 𝑇 ) + 𝜀2𝐷2𝑈 (𝑍, 𝑇 ),

𝑈̈ (𝑍, 𝑇 ) = 𝐷2
0𝑈 (𝑍, 𝑇 ) + 𝜀2𝐷0𝐷1𝑈 (𝑍, 𝑇 ) + 𝜀2

(

2𝐷0𝐷2 +𝐷2
1
)

𝑈 (𝑍, 𝑇 ),

𝜃̇(𝑍, 𝑇 ) = 𝐷0𝜃(𝑍, 𝑇 ) + 𝜀𝐷1𝜃(𝑍, 𝑇 ) + 𝜀2𝐷2𝜃(𝑍, 𝑇 ),

𝜃̈(𝑍, 𝑇 ) = 𝐷2
0𝜃(𝑍, 𝑇 ) + 𝜀2𝐷0𝐷1𝜃(𝑍, 𝑇 ) + 𝜀2

(

2𝐷0𝐷2 +𝐷2
1
)

𝜃(𝑍, 𝑇 ), (13)

here 𝐷0 − 𝐷2 represent Nayfeh notation and correspond to time derivatives with respect to previously introduced time scales
0 − 𝑡2 [15,35,36]. As customary, damping coefficients and excitation amplitude are rescaled as follows

𝐶𝑊 = 𝜀2𝑐𝑊 , 𝐶𝑈 = 𝜀2𝑐𝑈 , 𝐶𝜃 = 𝜀2𝑐𝜃 , 𝑃𝑈 (𝑍) = 𝜀3𝑝𝑈 (𝑍). (14)

Substituting Eqs. (11)–(14) into Eqs. (6)–(10) we get a set of equations, which will be solved sequentially:
irst order

𝐸𝐴𝑊 ′′
1 − 𝜌𝐴𝐷2

0𝑊1 = 0, 𝐺𝐴(𝑈 ′
1 − 𝜃1)′ − 𝜌𝐴𝐷2

0𝑈1 = 0, 𝐸𝐽𝜃′′1 − 𝐺𝐴(𝜃1 − 𝑈 ′
1) − 𝜌𝐽𝐷2

0𝜃1 = 0. (15)

oundary conditions:

𝑊1(0) = 0, 𝑈1(0) = 0, 𝜃′1(0) = 0,

𝑘𝑠𝑊1(𝐿) + 𝐸𝐴𝑊 ′
1 (𝐿) = 0, 𝑈1(𝐿) = 0, 𝜃′1(𝐿) = 0. (16)

econd order

𝐸𝐴𝑊 ′′
2 − 𝜌𝐴𝐷2

0𝑊2 = 2𝜌𝐴𝐷0𝐷1𝑊1 − 𝐺𝐴(𝜃1𝑈 ′
1 − 𝑈 ′2

1 )′ − 1
2
𝐸𝐴(𝑈 ′2

1 )′, (17)

𝐺𝐴(𝑈 ′
2 − 𝜃2)′ − 𝜌𝐴𝐷2

0𝑈2 = 2𝜌𝐴𝐷0𝐷1𝑈1 − 𝐸𝐴(𝑈 ′
1𝑊

′
1 )

′ + 𝐺𝐴(𝑈 ′
1𝑊

′
1 )

′, (18)

𝐸𝐽𝜃′′2 − 𝐺𝐴(𝜃2 − 𝑈 ′
2) − 𝜌𝐽𝐷2

0𝜃2 = 2𝜌𝐽𝐷0𝐷1𝜃1 + 𝐺𝐴(𝑊 ′
1 𝜃1) + 𝐸𝐽 (𝑊 ′

1 𝜃
′
1)

′. (19)

oundary conditions:

𝑊2(0) = 0, 𝑈2(0) = 0, 𝜃′2(0) = 0,

𝑘𝑠𝑊2(𝐿) + 𝐸𝐴𝑊 ′
2 (𝐿) +

1
2
𝐸𝐴𝑈 ′2

1 (𝐿) − 𝐺𝐴[𝑈 ′2
1 (𝐿) + 𝜃1(𝐿)𝑈 ′

1(𝐿)] = 0, 𝑈2(𝐿) = 0, 𝜃′2(𝐿) = 0. (20)

Third order

𝐸𝐴𝑊 ′′
3 − 𝜌𝐴𝐷2

0𝑊3 = 𝑐𝑊 𝐷0𝑊1 + 𝜌𝐴(𝐷2
1 + 2𝐷0𝐷2)𝑊1 + 2𝜌𝐴𝐷0𝐷1𝑊2 − 𝐸𝐴(𝑈 ′

1𝑈
′
2 − 𝑈 ′2

1 𝑊 ′
1 )

′

− 𝐺𝐴(2𝑊 ′
1𝑈

′2
1 + 𝜃2𝑈

′
1 − 2𝑈 ′

2𝑈
′
1 − 𝜃1𝑊

′
1𝑈

′
1 + 𝜃1𝑈

′
2)

′, (21)

𝐺𝐴(𝑈 ′
3 − 𝜃3)′ − 𝜌𝐴𝐷2

0𝑈3 = 𝑐𝑈𝐷0𝑈1 + 𝑝𝑈 (𝑍) cos (𝛺𝑇 ) + 𝜌𝐴(2𝐷0𝐷2 +𝐷2
1)𝑈1 + 2𝜌𝐴𝐷0𝐷1𝑈2

+ 𝐸𝐴
(

𝑈 ′
1𝑊

′2
1 − 𝑈 ′

1𝑊
′
2 − 1

2
𝑈 ′3
1 − 𝑈 ′

2𝑊
′
1

)′
+ 𝐺𝐴

(

−1
2
𝜃1𝑈

′2
1 − 𝑈1𝑊

′2
1 + 𝑈 ′

1𝑊
′
2 + 5

6
𝑈 ′3
1 + 𝑈 ′

2𝑊
′
1

)′
, (22)

𝐸𝐽𝜃′′3 − 𝐺𝐴
(

𝜃3 − 𝑈 ′
3
)

− 𝜌𝐽𝐷2
0𝜃3 = 𝑐𝜃𝐷0𝜃1 + 𝜌𝐽

(

2𝐷0𝐷2 +𝐷2
1
)

𝜃1 + 𝜌𝐽2𝐷0𝐷1𝜃2

+ 𝐺𝐴
(1
2
𝜃1𝑈

′2
1 − 1

6
𝑈 ′3
1 + 𝜃2𝑊

′
1 + 𝜃1𝑊

′
2

)

+ 𝐸𝐽
(1
2
𝜃′1𝑈

′2
1 − 𝜃′1𝑊

′2
1 + 𝜃′2𝑊

′
1 + 𝜃′1𝑊

′
2

)′
. (23)

oundary conditions:

𝑊 (0) = 0, 𝑈 (0) = 0, 𝜃′ (0) = 0,
4

3 3 3
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𝑘𝑠𝑊3(𝐿) + 𝐸𝐴𝑊 ′
3 (𝐿) + 𝐺𝐴

[

−𝜃1(𝐿)𝑊 ′
1 (𝐿)𝑈

′
1(𝐿) + 𝜃2(𝐿)𝑈 ′

1(𝐿) + 𝑈 ′
2(𝐿)𝜃1(𝐿)

]

+ (𝐸𝐴 − 2𝐺𝐴)[𝑈 ′
2(𝐿)𝑈

′
1(𝐿) −𝑊 ′

1 (𝐿)𝑈
′2
1 (𝐿)] = 0,

𝑈3(𝐿) = 0, 𝜃′3(𝐿) = 0. (24)

In the perspective of two modes interaction, we assume a multiplicative ratio equal to 3 between two natural frequencies 𝜔𝑚
nd 𝜔𝑛. A small detuning, measured by the parameter 𝜎1, is introduced to take into account the closeness of 𝜔𝑚 and 3𝜔𝑛, i.e. the
on perfect internal resonance. Furthermore, we impose that the frequency of excitation is in the vicinity of the primary resonance
𝑛, detuned by a second additive parameter 𝜎2 [17]:

𝜔𝑚𝑇 = (3𝜔𝑛 + 𝜖2𝜎1)𝑇 = 3𝜔𝑛𝑡0 + 𝜎1𝑡2, 𝛺𝑇 = (𝜔𝑛 + 𝜖2𝜎2)𝑇 = 𝜔𝑛𝑡0 + 𝜎2𝑡2. (25)

ote that 𝜔𝑚𝑇 = 3𝛺𝑛𝑇 − (3𝜎2 − 𝜎1)𝑡2, so that (3𝜎2 − 𝜎1) is the detuning for the superharmonic resonance of the mode 𝑚.
The above assumptions will be applied directly to the third order solution in Section 3.3.

.1. First order solutions

Excluding the case of internal longitudinal–transversal resonance discussed in [30], in the present investigation on transversal–
ransversal internal resonance we assume longitudinal deformation to be negligible to the first-order equation. This is confirmed
y forthcoming FE simulations, where it is shown that axial displacements are (at least) one order of magnitude smaller than the
ransversal one (see Fig. 5). Similar procedure was used in [6,8,9,31], but not in [7,30]:

𝑊1(𝑍, 𝑇 ) = 0. (26)

his assumption simplifies the higher order problems, but does not eliminate geometrical coupling between axial and transversal
irections of Eqs. (17)–(23). The general solution of the linear problem (15)–(16) for the 𝑛th and 𝑚th flexural modes are time and
pace dependent, and consists of two flexural mode shapes 𝑈̂1,𝑛(𝑍), 𝑈̂1,𝑚(𝑍) and 𝜃̂1,𝑛(𝑍), 𝜃̂1,𝑚(𝑍), multiplied by complex amplitudes
nd corresponding (fast) time harmonic functions 𝑒𝑖𝜔𝑛𝑡0 , 𝑒𝑖𝜔𝑚𝑡0

𝑈1(𝑍, 𝑡0, 𝑡1, 𝑡2) = 𝐴1(𝑡1, 𝑡2)𝑒𝑖𝜔𝑛𝑡0 𝑈̂1,𝑛(𝑍) + 𝐴2(𝑡1, 𝑡2)𝑒𝑖𝜔𝑚𝑡0 𝑈̂1,𝑚(𝑍) + 𝑐.𝑐, (27)

𝜃1(𝑍, 𝑡0, 𝑡1, 𝑡2) = 𝐴1(𝑡1, 𝑡2)𝑒𝑖𝜔𝑛𝑡0 𝜃̂1,𝑛(𝑍) + 𝐴2(𝑡1, 𝑡2)𝑒𝑖𝜔𝑚𝑡0 𝜃̂1,𝑚(𝑍) + 𝑐.𝑐, (28)

here 𝑖 is the imaginary unit and c.c. represents complex conjugate. The 𝑛th mode shape and associated natural frequency are given
y

𝑈̂1,𝑛(𝑍) = sin
( 𝑛𝜋𝑍

𝐿

)

, 𝜃̂1,𝑛(𝑍) =

(

𝑛𝜋
𝐿

−
𝐿𝜌𝜔2

𝑛
𝜋𝐺𝑛

)

cos
( 𝑛𝜋𝑍

𝐿

)

,

𝜔𝑛 =

√

𝐴𝐺𝐿2 + 𝜋2𝑛2(𝐸 + 𝐺)𝐽 −
√

[

𝐴𝐺𝐿2 + 𝜋2𝐽𝑛2(𝐸 + 𝐺)
]2 − 4𝜋4𝐸𝐺𝐽 2𝑛4, (29)

and 𝑚th mode can be read by substitution 𝑛 → 𝑚. For a detailed derivation of mode shapes and natural frequencies we refer to [6,7].

3.2. Second order solution

The solution of the second order problem in the axial direction (17) with associated boundary conditions (20) can be decomposed
into space functions, (slow) time dependent amplitudes and harmonic (fast) time functions, and is given by (the overbar stands for
complex conjugate):

𝑊2(𝑍, 𝑡0, 𝑡1, 𝑡2) = 𝑊2𝑎(𝑍)𝐴1(𝑡1, 𝑡2)𝐴̄1(𝑡1, 𝑡2) +𝑊2𝑏(𝑍)𝐴2(𝑡1, 𝑡2)𝐴̄2(𝑡1, 𝑡2) + 𝑊2𝑐 (𝑍)𝐴2
1(𝑡1, 𝑡2)𝑒

2𝑖𝜔𝑛𝑡0 +𝑊2𝑑 (𝑍)𝐴2
2(𝑡1, 𝑡2)𝑒

2𝑖𝜔𝑚𝑡0

+ 𝑊2𝑒(𝑍)𝐴1(𝑡1, 𝑡2)𝐴2(𝑡1, 𝑡2)𝑒𝑖(𝜔𝑛+𝜔𝑚)𝑡0 +𝑊2𝑓 (𝑍)𝐴1(𝑡1, 𝑡2)𝐴̄2(𝑡1, 𝑡2)𝑒𝑖(𝜔𝑛−𝜔𝑚)𝑡0 + 𝑐.𝑐. (30)

The functions 𝑊2𝑎(𝑍), 𝑊2𝑏(𝑍), 𝑊2𝑐 (𝑍), 𝑊2𝑑 (𝑍), 𝑊2𝑒(𝑍) and 𝑊2𝑓 (𝑍) are real valued and reported in Appendix A. They quantify how
the first order transversal motion 𝑈1 and 𝜃1 induce a second order axial motion 𝑊2, through which the modal coupling is successively
activated (at the third order). Note that since we are not considering 2:1 internal resonance (which is instead addressed in [30]),
we have no secular terms in the expression (30).

To look for the solution of the second order problem in the transversal direction we rewrite Eqs. (18)–(19) taking into
account Eqs. (26)–(28):

𝐺𝐴(𝑈 ′
2 − 𝜃2)′ − 𝜌𝐴𝐷2

0𝑈2 = 2𝜌𝐴
[

𝑖𝜔𝑛
𝜕𝐴1(𝑡1, 𝑡2)

𝜕𝑡1
𝑒𝑖𝜔𝑛𝑡0 𝑈̂1,𝑛(𝑍) + 𝑖𝜔𝑚

𝜕𝐴2(𝑡1, 𝑡2)
𝜕𝑡1

𝑒𝑖𝜔𝑚𝑡0 𝑈̂1,𝑚(𝑍)
]

+ 𝑐.𝑐., (31)

𝐸𝐽𝜃′′2 − 𝐺𝐴(𝜃2 − 𝑈 ′
2) − 𝜌𝐽𝐷2

0𝜃2 = 2𝜌𝐽
[

𝑖𝜔𝑛
𝜕𝐴1(𝑡1, 𝑡2)

𝜕𝑡1
𝑒𝑖𝜔𝑛𝑡0 𝜃̂1,𝑛(𝑍) + 𝑖𝜔𝑚

𝜕𝐴2(𝑡1, 𝑡2)
𝜕𝑡1

𝑒𝑖𝜔𝑚𝑡0 𝜃̂1,𝑚(𝑍)
]

+ 𝑐.𝑐. (32)

he right hand sides of the previous equations suggest to assume
𝑖𝜔𝑛𝑡0 𝑖𝜔𝑚𝑡0
5

𝑈2(𝑍, 𝑡0, 𝑡1, 𝑡2) = 𝑒 𝑈2,𝑛(𝑍, 𝑡1, 𝑡2) + 𝑒 𝑈2,𝑚(𝑍, 𝑡1, 𝑡2) + 𝑐.𝑐., (33)
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𝜃2(𝑍, 𝑡0, 𝑡1, 𝑡2) = 𝑒𝑖𝜔𝑛𝑡0𝜃2,𝑛(𝑍, 𝑡1, 𝑡2) + 𝑒𝑖𝜔𝑚𝑡0𝜃2,𝑚(𝑍, 𝑡1, 𝑡2) + 𝑐.𝑐. (34)

Inserting Eqs. (33)–(34) in Eqs. (31)–(32), and considering only the terms multiplying 𝑒𝑖𝜔𝑛𝑡0 , we obtain

𝐺𝐴(𝑈 ′
2,𝑛 − 𝜃2,𝑛)′ + 𝜌𝐴𝜔2

𝑛𝑈2,𝑛 = 2𝜌𝐴𝑖𝜔𝑛
𝜕𝐴1(𝑡1, 𝑡2)

𝜕𝑡1
𝑈̂1,𝑛(𝑍), (35)

𝐸𝐽𝜃′′2,𝑛 − 𝐺𝐴(𝜃2,𝑛 − 𝑈 ′
2,𝑛) + 𝜌𝐽𝜔2

𝑛𝜃2,𝑛 = 2𝜌𝐽𝑖𝜔𝑛
𝜕𝐴1(𝑡1, 𝑡2)

𝜕𝑡1
𝜃̂1,𝑛(𝑍). (36)

he solvability condition of the previous equations is obtained by multiplying by 𝑈̂1,𝑛 and 𝜃̂1,𝑛, and integrating over the spatial
omain:

∫

𝐿

0

[

𝐺𝐴
(

𝑈 ′
2,𝑛 − 𝜃′2,𝑛

)′
+ 𝜌𝐴𝜔2

𝑛𝑈2,𝑛

]

𝑈̂1,𝑛𝑑𝑍 = 2𝜌𝐴𝑖𝜔𝑛
𝜕𝐴1(𝑡1, 𝑡2)

𝜕𝑡1 ∫

𝐿

0

(

𝑈̂1,𝑛
)2 𝑑𝑍, (37)

∫

𝐿

0

[

𝐸𝐽𝜃′′2,𝑛 − 𝐺𝐴
(

𝜃2,𝑛 − 𝑈 ′
2,𝑛

)

+ 𝜌𝐽𝜔2
𝑛𝜃2,𝑛

]

𝜃̂1,𝑛𝑑𝑍 = 2𝜌𝐽𝑖𝜔𝑛
𝜕𝐴1(𝑡1, 𝑡2)

𝜕𝑡1 ∫

𝐿

0

(

𝜃̂1,𝑛
)2 𝑑𝑍. (38)

Integrating by parts Eqs. (37)–(38), using boundary conditions Eq. (20), and summing up the two equations we obtain

∫

𝐿

0

[

𝐺𝐴
(

𝑈̂ ′
1,𝑛 − 𝜃̂′1,𝑛

)′
+ 𝜌𝐴𝜔2

𝑛𝑈̂1,𝑛

]

𝑈2,𝑛𝑑𝑍 + ∫

𝐿

0

[

𝐸𝐽𝜃̂′′1,𝑛 − 𝐺𝐴
(

𝜃̂1,𝑛 − 𝑈̂ ′
1,𝑛

)

+ 𝜌𝐽𝜔2
𝑛𝜃̂1,𝑛

]

𝜃2,𝑛𝑑𝑍 =

2𝜌𝑖𝜔𝑛
𝜕𝐴1(𝑡1, 𝑡2)

𝜕𝑡1

[

𝐴∫

𝐿

0

(

𝑈̂1,𝑛
)2 𝑑𝑍 + 𝐽 ∫

𝐿

0

(

𝜃̂1,𝑛
)2 𝑑𝑍

]

. (39)

t is easy to see that functions in brackets on the left hand side are solutions of the first order problem and thus vanish. Since the
ntegrals on the right hand side are positive, it follows that

𝜕𝐴1(𝑡1, 𝑡2)
𝜕𝑡1

= 0. (40)

Suchlike derivation is repeated for the other harmonic 𝑒𝑖𝜔𝑚 leading to
𝜕𝐴2(𝑡1, 𝑡2)

𝜕𝑡1
= 0. (41)

Then, complex amplitudes do not depend on the slow time 𝑡1, although they depend on second slowest time-scale, 𝐴1(𝑡2) and 𝐴2(𝑡2).
ow Eqs. (18)–(19) are reduced to

𝐺𝐴(𝜃2 − 𝑈 ′
2)

′ + 𝜌𝐴𝐷2
0𝑈2 = 0, 𝐸𝐽𝜃′′2 − 𝐺𝐴(𝜃2 − 𝑈 ′

2) − 𝜌𝐽𝐷2
0𝜃2 = 0. (42)

he solutions of these homogeneous equations are already presented in the first order solution (27)–(28), thus we can assume the
econd order solution as

𝑈2(𝑍, 𝑡0, 𝑡1, 𝑡2) = 0, 𝜃2(𝑍, 𝑡0, 𝑡1, 𝑡2) = 0. (43)

.3. Third order solution

For the purpose of this work it is not needed to determine the third order solution. It is sufficient to use the solvability conditions
f the equation governing the transversal motion. Using the results of the previous sections, the third order Eqs. (22)–(23) become

𝐺𝐴(𝑈 ′
3 − 𝜃3)′ − 𝜌𝐴𝐷2

0𝑈3 = 𝑖𝑐𝑈
[

𝜔𝑛𝑈̂1,𝑛(𝑍)𝐴1(𝑡2)𝑒𝑖𝜔𝑛𝑡0 + 𝜔𝑚𝑈̂1,𝑚(𝑍)𝐴2(𝑡2)𝑒𝑖𝜔𝑚𝑡0
]

+ 2𝑖𝜌𝐴
[

𝑈̂1,𝑛(𝑍)𝜔𝑛
𝜕𝐴1(𝑡2)
𝜕𝑡2

𝑒𝑖𝜔𝑛𝑡0 + 𝑈̂1,𝑚(𝑍)𝜔𝑚
𝜕𝐴2(𝑡2)
𝜕𝑡2

𝑒𝑖𝜔𝑚𝑡0
]

+ 𝑈3𝑎(𝑍)𝐴2
1(𝑡2)𝐴̄1(𝑡2)𝑒𝑖𝜔𝑛𝑡0

+ 𝑈3𝑏(𝑍)𝐴1(𝑡2)𝐴2(𝑡2)𝐴̄2(𝑡2)𝑒𝑖𝜔𝑛𝑡0 + 𝑈3𝑐 (𝑍)𝐴2
1(𝑡2)𝐴̄2(𝑡2)𝑒𝑖(2𝜔𝑛𝑡0−𝜔𝑚𝑡0) + 𝑈3𝑑 (𝑍)𝐴1(𝑡2)𝐴̄1(𝑡2)𝐴2(𝑡2)𝑒𝑖𝜔𝑚𝑡0

+ 𝑈3𝑒(𝑍)𝐴2
2(𝑡2)𝐴̄2(𝑡2)𝑒𝑖𝜔𝑚𝑡0 + 𝑈3𝑓 (𝑍)𝐴3

1(𝑡2)𝑒
3𝑖𝜔𝑛𝑡0 + 1

2
𝑝𝑈 (𝑍)𝑒𝑖(𝜔𝑛𝑡0+𝜎2𝑡2) + NST + 𝑐.𝑐, (44)

𝐸𝐽𝜃′′3 − 𝐺𝐴
(

𝜃3 − 𝑈 ′
3
)

− 𝜌𝐽𝐷2
0𝜃3 = 𝑖𝑐𝜃

[

𝜔𝑛𝜃̂1,𝑛(𝑍)𝐴1(𝑡2)𝑒𝑖𝜔𝑛𝑡0 + 𝜔𝑚𝜃̂1,𝑚(𝑍)𝐴2(𝑡2)𝑒𝑖𝜔𝑚𝑡0
]

+ 2𝑖𝜌𝐽
[

𝜃̂1,𝑛(𝑍)𝜔𝑛
𝜕𝐴1(𝑡2)
𝜕𝑡2

𝑒𝑖𝜔𝑛𝑡0 + 𝜃̂1,𝑚(𝑍)𝜔𝑚
𝜕𝐴2(𝑡2)
𝜕𝑡2

𝑒𝑖𝜔𝑚𝑡0
]

+ 𝜃3𝑎(𝑍)𝐴2
1(𝑡2)𝐴̄1(𝑡2)𝑒𝑖𝜔𝑛𝑡0

+ 𝜃3𝑏(𝑍)𝐴1(𝑡2)𝐴2(𝑡2)𝐴̄2(𝑡2)𝑒𝑖𝜔𝑛𝑡0 + 𝜃3𝑐 (𝑍)𝐴2
1(𝑡2)𝐴̄2(𝑡2)𝑒𝑖(2𝜔𝑛𝑡0−𝜔𝑚𝑡0) + 𝜃3𝑑 (𝑍)𝐴1(𝑡2)𝐴̄1(𝑡2)𝐴2(𝑡2)𝑒𝑖𝜔𝑚𝑡0

+ 𝜃3𝑒(𝑍)𝐴2
2(𝑡2)𝐴̄2(𝑡2)𝑒𝑖𝜔𝑚𝑡0 + 𝜃3𝑓 (𝑍)𝐴3

1(𝑡2)𝑒
3𝑖𝜔𝑛𝑡0 + NST + 𝑐.𝑐. (45)

where

cos(𝛺𝑇 ) = 𝑒𝑖𝛺𝑇 + 𝑒−𝑖𝛺𝑇

2
= 𝑒𝑖(𝜔𝑛𝑡0+𝜎2𝑡2) + 𝑒−𝑖(𝜔𝑛𝑡0+𝜎2𝑡2)

2
= 𝑒𝑖(𝜔𝑛𝑡0+𝜎2𝑡2)

2
+ 𝑐.𝑐. (46)

s used. Space dependent functions 𝑈3𝑎(𝑍) −𝑈3𝑓 (𝑍) and 𝜃3𝑎(𝑍) − 𝜃3𝑓 (𝑍) are reported in Appendix B. They depend on 𝑊2, and this
hows how the second order axial solution affects the third order transverse motion. However, there are also terms depending on
6
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Table 1
Mechanical properties of the beam.
𝐴, m2 𝐿, m 𝐸, GPa 𝑣, (–) 𝜒 , (–) 𝜌, kg/m3

0.05 × 0.05 0.5 210 0.3 0.85 7580

𝑈1 only, and thus we cannot conclude that the coupling between flexural modes is only due to the axial motion, even if this seems
to play the major role. The coupling terms are those multiplying 𝐴1(𝑡2) and 𝐴2(𝑡2), namely 𝑈3𝑏, 𝑈3𝑐 , 𝑈3𝑑 , 𝜃3𝑏, 𝜃3𝑐 and 𝜃3𝑑 .

Using the resonance Eqs. (25) and collecting the exponential terms, Eqs. (44)–(45) become

𝐺𝐴(𝑈 ′
3 − 𝜃3)′ − 𝜌𝐴𝐷2

0𝑈3 = 𝑒𝑖𝜔𝑛𝑡0
[

𝑖𝑐𝑈𝜔𝑛𝑈̂1,𝑛(𝑍)𝐴1(𝑡2) + 2𝑖𝜌𝐴𝑈̂1,𝑛(𝑍)𝜔𝑛
𝜕𝐴1(𝑡2)
𝜕𝑡2

+ 𝑈3𝑎(𝑍)𝐴2
1(𝑡2)𝐴̄1(𝑡2)

+ 𝑈3𝑏(𝑍)𝐴1(𝑡2)𝐴2(𝑡2)𝐴̄2(𝑡2) + 𝑈3𝑐 (𝑍)𝐴̄2
1(𝑡2)𝐴2(𝑡2)𝑒𝑖𝜎1𝑡2 +

1
2
𝑝𝑈 (𝑍)𝑒𝑖𝜎2𝑡2

]

+𝑒𝑖𝜔𝑚𝑡0
[

𝑖𝑐𝑈𝜔𝑚𝑈̂1,𝑚(𝑍)𝐴2(𝑡2) + 2𝑖𝜌𝐴𝑈̂1,𝑚(𝑍)𝜔𝑚
𝜕𝐴2(𝑡2)
𝜕𝑡2

+ 𝑈3𝑑 (𝑍)𝐴1(𝑡2)𝐴̄1(𝑡2)𝐴2(𝑡2)

+ 𝑈3𝑒(𝑍)𝐴2
2(𝑡2)𝐴̄2(𝑡2) + 𝑈3𝑓 (𝑍)𝐴3

1(𝑡2)𝑒
−𝑖𝜎1𝑡2

]

+ NST + 𝑐.𝑐, (47)

𝐸𝐽𝜃′′3 − 𝐺𝐴
(

𝜃3 − 𝑈 ′
3
)

− 𝜌𝐽𝐷2
0𝜃3 = 𝑒𝑖𝜔𝑛𝑡0

[

𝑖𝑐𝜃𝜔𝑛𝜃̂1,𝑛(𝑍)𝐴1(𝑡2) + 2𝑖𝜌𝐽 𝜃̂1,𝑛(𝑍)𝜔𝑛
𝜕𝐴1(𝑡2)
𝜕𝑡2

+ 𝜃3𝑎(𝑍)𝐴2
1(𝑡2)𝐴̄1(𝑡2)

+ 𝜃3𝑏(𝑍)𝐴1(𝑡2)𝐴2(𝑡2)𝐴̄2(𝑡2) + 𝜃3𝑐 (𝑍)𝐴̄2
1(𝑡2)𝐴2(𝑡2)𝑒𝑖𝜎1𝑡2

]

+𝑒𝑖𝜔𝑚𝑡0
[

𝑖𝑐𝜃𝜔𝑚𝜃̂1,𝑚(𝑍)𝐴2(𝑡2) + 2𝑖𝜌𝐽 𝜃̂1,𝑚(𝑍)𝜔𝑚
𝜕𝐴2(𝑡2)
𝜕𝑡2

+ 𝜃3𝑑 (𝑍)𝐴1(𝑡2)𝐴̄1(𝑡2)𝐴2(𝑡2)

+ 𝜃3𝑒(𝑍)𝐴2
2(𝑡2)𝐴̄2(𝑡2) + 𝜃3𝑓 (𝑍)𝐴3

1(𝑡2)𝑒
−𝑖𝜎1𝑡2

]

+ NST + 𝑐.𝑐, (48)

It is worth to remind that the external force 𝑝𝑈 (𝑍) appears only on the term multiplying 𝑒𝑖𝜔𝑛𝑡0 of the first equation, because it is
ssumed to be in resonance with 𝜔𝑛, see Eq. (25), and no distributed loads are considered. Thus, in the analytical computations only
he 𝑛th mode is directly excited, while the 𝑚th mode is activated only by coupling due to the internal resonance. In forthcoming
inite Element (FE) numerical simulations, on the other hand, both modes are generally excited, and so it is not clear if the 𝑚th
s activated by the internal resonance or by the superharmonic resonance. To check that the former case happens we will consider
lso a load 𝑝𝑈 (𝑍) not directly activating the 𝑚th mode, i.e. a concentrated force applied at a node of the 𝑚th mode shape.

By using the same procedure illustrated in Section 3.2 we obtain the solvability conditions of the Eqs. (47)–(48), which, after
ong computations, can be arranged as follows:

𝜕𝐴1(𝑡2)
𝜕𝑡2

=𝑐1𝑐𝑈𝐴1(𝑡2) + 𝑐2𝑐𝜃𝐴1(𝑡2) + 4𝑖𝑐3𝐴̄1(𝑡2)𝐴2
1(𝑡2) + 4𝑖𝑐4𝑒𝑖𝜎1𝑡0 𝐴̄2

1(𝑡2)𝐴2(𝑡2) + 4𝑖𝑐5𝐴1(𝑡2)𝐴̄2(𝑡2)𝐴2(𝑡2) +
1
2
𝑖𝑐6𝐹𝑒𝑖𝜎2𝑡2 , (49)

𝜕𝐴2(𝑡2)
𝜕𝑡2

=𝑐7𝑐𝑈𝐴2(𝑡2) + 𝑐8𝑐𝜃𝐴2(𝑡2) + 4𝑖𝑐9𝐴1(𝑡2)𝐴̄1(𝑡2)𝐴2(𝑡2) + 4𝑖𝑐10𝐴̄2(𝑡2)𝐴2
2(𝑡2) + 4𝑖𝑐11𝑒−𝑖𝜎1𝑡2𝐴3

1(𝑡2), (50)

where

𝐹 = ∫

𝐿

0
𝑝𝑈 (𝑍)𝑈̂1,𝑛(𝑍)𝑑𝑍. (51)

In the following we will considered only a concentrated force, of magnitude 𝑄, at a given position 𝑍̄, i.e. 𝑝𝑈 (𝑍) = 𝛿(𝑍 − 𝑍̂) (𝛿(.)
is the Dirac delta function), so that

𝐹 = 𝑄𝑈̂1,𝑛(𝑍̄). (52)

In particular we will use 𝑍̄ = 𝐿∕4, which excites both first and second flexural modes, and 𝑍̄ = 𝐿∕2, which excites the first but not
the second flexural mode.

The coefficients 𝑐𝑖 depend on lower order solutions. 𝑐1, 𝑐2, 𝑐7 and 𝑐8 are related to damping, while 𝑐6 to the excitation. All of
them do not depend on the spring stiffness 𝑘𝑠. 𝑐3 and 𝑐10 are, respectively, the nonlinear corrections coefficients of the 𝑛th and 𝑚th
mode alone, i.e. in the absence of internal resonance. If negative, the corresponding mode is softening, otherwise it is hardening.
𝑐4, 𝑐5, 𝑐9 and 𝑐11 are due to the coupling, and thus are very important for the present work; in fact, they are able to alter the
hardening/softening behaviour given only by 𝑐3 and 𝑐10. The coefficients have long expressions, that cannot be reported. However,
assuming beam properties of Table 1, 𝑛 = 1 and 𝑚 = 2, they are listed in Appendix C for twelve values of dimensionless spring
stiffnesses 𝜅 = 𝑘𝑠𝐿

𝐸𝐴 . It is easy to see that 𝑐1, 𝑐2 and 𝑐6−𝑐8 are independent of 𝜅, and that 𝑐3(𝜅 = 0) is negative (softening), and becomes
ositive (hardening) for increasing 𝜅. 𝑐10, on the other end, is always positive, so that the second mode is always hardening, and for
ts largest value 𝑐10(𝜅 = 1) = 7.3071 × 106 we are very close to a singularity (solutions escape to ±∞), see the nonlinear correction
oefficient reported in [9]. However, it is still within the scope of our interest.

We eliminate exponential notation by introducing the real-valued functions 𝑝1(𝑡2), 𝑞1(𝑡2), 𝑝2(𝑡2) and 𝑞2(𝑡2):

𝐴 (𝑡 ) = 1 (

𝑝 (𝑡 ) − 𝑖𝑞 (𝑡 )
)

𝑒𝑖𝜎2𝑡2 , 𝐴̄ (𝑡 ) = 1 (

𝑝 (𝑡 ) + 𝑖𝑞 (𝑡 )
)

𝑒−𝑖𝜎2𝑡2 ,
7
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G

𝑞
b
a
u
t
t

𝐴2(𝑡2) =
1
2
(

𝑝2(𝑡2) − 𝑖𝑞2(𝑡2)
)

𝑒𝑖(3𝜎2−𝜎1)𝑡2 , 𝐴̄2(𝑡2) =
1
2
(

𝑝2(𝑡2) + 𝑖𝑞2(𝑡2)
)

𝑒−𝑖(3𝜎2−𝜎1)𝑡2 . (53)

rouping real and imaginary parts we get a set of four modulation equations:
𝜕𝑝1(𝑡2)
𝜕𝑡2

= 𝑓1 = − 𝜎2𝑞1 + 𝑐1𝑐𝑈𝐼
𝑝1 + 𝑐2𝑐𝜃𝐼 𝑝1 + 𝑐3

(

𝑝21𝑞1 + 𝑞31
)

+ 𝑐4
(

𝑝21
(

𝑡2
)

𝑞2 − 2𝑝2𝑝1𝑞1 − 𝑞21𝑞2
)

+ 𝑐5
(

𝑝22𝑞1 + 𝑞1𝑞
2
2
)

, (54)

𝜕𝑞1(𝑡2)
𝜕𝑡2

= 𝑓2 =𝜎2𝑝1 + 𝑐1𝑐𝑈𝐼
𝑞1 + 𝑐2𝑐𝜃𝐼 𝑞1 + 𝑐3

(

−𝑝1𝑞21 − 𝑝31
)

+ 𝑐4
(

−2𝑝1𝑞1𝑞2 + 𝑝2𝑞
2
1 − 𝑝2𝑝

2
1
)

+ 𝑐5𝑝1
(

−𝑝22 − 𝑞22
)

− 𝑐6𝑄, (55)

𝜕𝑝2(𝑡2)
𝜕𝑡2

= 𝑓3 = − (3𝜎2 − 𝜎1)𝑞2 + 𝑐7𝑐𝑈𝐼𝐼
𝑝2 + 𝑐8𝑐𝜃𝐼𝐼 𝑝2 + 𝑐9

(

𝑝21𝑞2 + 𝑞21𝑞2
)

+ 𝑐10
(

𝑝22𝑞2 + 𝑞32
)

+ 𝑐11
(

3𝑝21𝑞1 − 𝑞31
)

, (56)

𝜕𝑞2(𝑡2)
𝜕𝑡2

= 𝑓4 =(3𝜎2 − 𝜎1)𝑝2 + 𝑐7𝑐𝑈𝐼𝐼
𝑞2 + 𝑐8𝑐𝜃𝐼𝐼 𝑞2 + 𝑐9

(

−𝑝2𝑞21 − 𝑝2𝑝
2
1
)

+ 𝑐10
(

−𝑝2𝑞22 − 𝑝32
)

+ 𝑐11
(

3𝑝1𝑞21 − 𝑝31
)

. (57)

The explicit dependence of 𝑝1, 𝑞1 and 𝑝2, 𝑞2 on 𝑡2 is omitted to simplify the expressions.
The approximate solution (12) after substituting first (26)–(29), (30) and (43) takes the form:

𝑊 (𝑍, 𝑡) = 𝜀2 1
2

{1
2
𝑊2𝑎(𝑍, 𝑛)(𝑝21 + 𝑞21 ) +

1
2
𝑊2𝑏(𝑍, 𝑛)(𝑝22 + 𝑞22 )

+ 𝑊2𝑐 (𝑍, 𝑛)
[

(𝑝21 − 𝑞21 ) cos
(

2𝜔𝑛𝑡0 + 2𝜎2𝑡2
)

+ 2𝑝1𝑞1 sin
(

2𝜔𝑛𝑡0 + 2𝜎2𝑡2
)]

+ 𝑊2𝑑 (𝑍, 𝑛)
[

(𝑝21 − 𝑞21 ) cos
(

−2𝜔𝑚𝑡0 + 2𝜎1𝑡2 − 6𝜎2𝑡2
)

− 2𝑝1𝑞1 sin
(

−2𝜔𝑚𝑡0 + 2𝜎1𝑡2 − 6𝜎2𝑡2
)]

+ 𝑊2𝑒(𝑍, 𝑛)
[

(𝑝1𝑝2 − 𝑞1𝑞2) cos
(

−(𝜔𝑛 + 𝜔𝑚)𝑡0 + (𝜎1 − 4𝜎2)𝑡2
)

− (𝑝2𝑞1 + 𝑝1𝑞2) sin
(

−(𝜔𝑛 + 𝜔𝑚)𝑡0 + (𝜎1 − 4𝜎2)𝑡2
)]

+𝑊2𝑓 (𝑍, 𝑛)
[

(𝑝1𝑝2 − 𝑞1𝑞2) cos
(

(−𝜔𝑛 + 𝜔𝑚)𝑡0 + (𝜎1 − 4𝜎2)𝑡2
)

− (𝑝2𝑞1 + 𝑝1𝑞2) sin
(

(−𝜔𝑛 + 𝜔𝑚)𝑡0 + (𝜎1 − 4𝜎2)𝑡2
)]}

+ (𝜀3), (58)
𝑈 (𝑍, 𝑇 ) = 𝜀

{[

𝑝1 cos
(

𝜔𝑛𝑡0 + 𝜎2𝑡2
)

+ 𝑞1 sin
(

𝜔𝑛𝑡0 + 𝜎2𝑡2
)]

𝑈̂1,𝑛(𝑍, 𝑛)

+
[

𝑝2 cos
(

−𝜔𝑚𝑡0 + (𝜎1 − 3𝜎2)𝑡2
)

− 𝑞2 sin
(

−𝜔𝑚𝑡0 + (𝜎1 − 3𝜎2)𝑡2
)]

𝑈̂1,𝑚(𝑍, 𝑛)
}

+ (𝜀3), (59)
𝜃(𝑍, 𝑇 ) = 𝜀

{[

𝑝1 cos
(

𝑡0𝜔𝑛 + 𝑡2𝜎2
)

+ 𝑞1 sin
(

𝜔𝑛𝑡0 + 𝜎2𝑡2
)]

𝜃̂1,𝑛(𝑍, 𝑛)

+
[

𝑝2 cos
(

−𝜔𝑚𝑡0 + (𝜎1 − 3𝜎2)𝑡2
)

− 𝑞2 sin
(

−𝜔𝑚𝑡0 + (𝜎1 − 3𝜎2)𝑡2
)]

𝜃̂1,𝑚(𝑍, 𝑛)
}

+ (𝜀3). (60)

Modulation Eqs. (54)–(57) enable investigation of amplitudes in the second slow time scale 𝑡2 as well as frequency response curves
of the simply supported beam with elastic boundary condition in the axial direction and nonlinear modal interactions between two
successive flexural modes. The direct modal coupling is observed in Eq. (58) as products 𝑝1𝑝2, 𝑞1𝑞2, 𝑝2𝑞1 and 𝑞1𝑝2, while indirect
modal coupling comes from the solution of Eqs. (54)–(57).

Commonly, only equilibria points of (54)–(57) are looked for, corresponding to stationary nonlinear oscillations of the original
problem. Here, instead, we integrated (54)–(57) numerically, in order to highlight the presence of different kind of motions, like for
example periodic solutions, corresponding to quasi-periodic motion of the physical system (an example is reported in forthcoming
Fig. 4). More precisely, in Section 4 the brute force method is implemented to draw numerically stable solutions. These results
are then compared with independent FE simulations. Next, the stability of the same frequency response curves for the steady state
solutions is determined by studying the eigenvalues of the Jacobian matrix.

4. Results

Flexural–flexural interactions are of our interest as it is the natural extension of former works on uncoupled bending resonances.
Thus, the dimensional mechanical properties of the structure, reported in Table 1, correspond to those used in [8,9,30,31,33,37].
Limiting the investigation only to the first two bending modes of the beam (𝑛 = 1, 𝑚 = 2) the natural frequencies are 𝜔1 =
2899.52 rad/s (461.47 Hz) and 𝜔2 = 11086.7 rad/s (1764.5 Hz). It implies the first detuning parameter 𝜎1 = 𝜔2 − 3𝜔1 = 2388.14 rad/s
(380.28 Hz), which is 21% of 𝜔2, and the superharmonic resonance (i.e. 𝛺 ≈ 𝜔2∕3) is expected at 𝜎2 = 1

3𝜔2 − 𝜔1 = 796.05 rad/s
(126.76 Hz). Moreover, we assume constant amplitude of excitation 𝑄 = 59839.5 N. Except 𝑐𝜃𝐼𝐼 , which is tuned to secondary
branch (0.6%), the damping coefficients are adjusted to 6% of the natural modes: 𝑐𝑈𝐼

= 27.6883 N s/m, 𝑐𝜃𝐼 = 4.51672 N s/m,
𝑐𝑈𝐼𝐼

= 105.874 N s/m, 𝑐𝜃𝐼𝐼 = 0.924837 N s/m. Linear viscous damping coefficient of the second mode is fitted to the frequency
response curve obtained from numerical simulations for 𝜅 = 1, and as a side-issue is not varied for different spring stiffnesses.
We initially consider the force applied at a quarter of the length of the beam, 𝑍̄ = 𝐿∕4.

4.1. Brute force methods

Applying the brute force method with frequency sweep forward/backward to Eqs. (54)–(57), amplitudes 𝑝1(𝑡2), 𝑞1(𝑡2), 𝑝2(𝑡2),
2(𝑡2) are obtained by numerical integration in the slowest time scale 𝑡2. For each fixed value of 𝜅, the appropriate (one per each
ranch) initial conditions are chosen at 𝜎2 = 1500 rad/s; then, the frequency of excitation was gradually decreased step by step of
bout 1 rad/s, up to reaching 𝜎2 = −500 rad/s. This end the decreasing phase. Then, the frequency is increased, with the same step,
p to reach again 𝜎2 = 1500 rad/s. With this approach we are able to detect the hysteresis loop to the nonlinear resonance, limiting
o the stable solutions, even though we lose disconnected branches, like for example isolas. They will be detected analytically in
8

he next section.
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Fig. 2. Frequency response curve for sweep forward and 𝜅 = 5: amplitudes 𝑝1(𝑡2), 𝑞1(𝑡2) 𝑝2(𝑡2), 𝑞2(𝑡2) and maximum amplitudes for the first (a) and second (b)
modes — solid black lines. Two-mode equilibrium solution at 𝑍 = 1∕4𝐿 - solid black line (c).

An example of resultant amplitude for first and second vibration modes are displayed in Fig. 2a,b. To illustrate the behaviour of
the beam due to both involved modes, i.e to highlight the effect of the nonlinear coupling due to the internal resonance, we select
a given point and report the amplitude of its transversal displacement. We choose the same point where the force is applied. For
𝑍 = 𝐿∕4, the first mode has multiplier sin (𝜋∕4) = 0.707107, while the second mode is taken into account as the maximum value
and the gain is equal to sin (𝜋∕2) = 1. The resultant amplitude for the motion of this point is presented in Fig. 2c.

In Fig. 3 the results of Fig. 2c are extended to different values of 𝜅, and compared with FE solutions. For detailed information on
the FE model we refer to our previous works [8,12,30,33,37]. An overall very good agreement between theoretical and FE solutions
is found (at least for moderate amplitude, where the asymptotic solutions is expected to be valid), thus confirming the reliability of
the former.

For 𝜅 = 0 the system is softening (the curve bends towards the left), and no modal interaction is observed. By slightly increasing
𝜅, up to 0.1, we move to an hardening behaviour (the transition for softening to hardening is when 𝑐3 = 0, i.e. at 𝜅 ≈ 0.018, see
Appendix C). Furthermore, and more important for the scope of this work, the modal coupling clearly appears as the extra peak of
the main resonant (upper) branch, which is also hardening, according to the fact that the second mode is hardening, too. It looks
like as a (secondary) resonance on top of another (principal) resonance. This happens at 𝜎2 ≈ 700, i.e. when 𝛺 ≈ 𝜔2∕3, showing
that it is activated by the internal resonance. In fact, we remind that, at least in the analytical computations, the second mode is
not directly forced (in (47)–(48) there is no excitation in the terms multiplying 𝑒𝑖𝜔𝑚𝑡0 ; and no excitation in (56)–(57), too).

For the previous value of 𝜅 the modal coupling has the largest effect. By further increasing 𝜅, the extra peak due to internal
resonance decreases its amplitude, and occurs for increasing values of the forcing frequency, however always in the neighbourhood
of 𝛺 ≈ 𝜔2∕3, i.e. in a neighbourhood of 𝜎2 = 796.05. Simultaneously, the main frequency response curve is more and more bent,
according to the fact that 𝑐3 (strongly) increases with 𝜅 (see Appendix C). For large value of 𝜅, say for 𝜅 > 10, the extra peak
practically disappears, and the modal coupling has no more effects on the main resonance curve of the first mode.

Noticeable effects of the modal coupling appear only for the upper (resonant) stable solutions, while the bottom (non resonant)
solutions seem to be smooth and undisturbed.

The solutions along the various branches of Fig. 3 are fixed points of (54)–(57), i.e. periodic solutions of the physical system.
However, for 𝜅 = 0.25, 𝜅 = 0.5, 𝜅 = 1 and 𝜅 = 3, see Fig. 3c–f, there are other solutions, in particular periodic one, corresponding to
quasi-periodic motion of the physical system. This is highlighted by the red circle in Fig. 3e. In FE simulations similar phenomenon
is observed only for 𝜅 = 3. These very narrow ranges may be overlooked by too rare sampling of frequency excitation (25 rad/s) or
when the stability of this non equilibrium solution is lost and consequently the solution escapes to a different stable branch. Zoom
of the secondary resonance for 𝜅 = 1 and corresponding time histories of the points marked with circles of Fig. 3e are illustrated in
Fig. 4. It is seen that, after an initial transient, two solutions (for 𝜎 = 1050 rad/s (upper branch, green) and 𝜎 = 1200 rad/s (blue))
approach a constant value, in contrast to red solution that converges to a periodic motion.

Let us investigate the peak detected in the FE simulations for 𝜅 = 3 and 𝜎2 = 1075.48 rad/s (𝛺 = 3975 rad/s), corresponding to
a solution with the very high period 𝑃 ≈ 0.031 s (that is 20 times the period of the excitation 2𝜋∕3975 = 0.00158 s), see Fig. 5. An
internal resonance induced periodic energy exchange between the axial and transversal motion is observed in Fig. 5a. When the
amplitude in the transverse direction significantly decreases, the largest value of 𝑊 (𝑍 = 𝐿) becomes positive, which corresponds to
dynamic beam stretching. The longitudinal vibrations are proportional to the transverse movement and after one period the energy
transfer is repeated again. In parallel, the fast Fourier transform was performed to find the desired natural frequencies, in which
integer ratios of the frequency of excitation (𝛺), first two flexural (𝜔01 and 𝜔02) modes and the first longitudinal (𝜔𝐴01 = 26644, 78 Hz)
mode were included, see Fig. 5b. Generally, linear analysis is ineffective due to large amplitudes of vibrations in lateral direction,
which causes nonlinearities also in the longitudinal direction, so that the following conclusions are only preliminary. In addition to
the closeness of 𝜔02 and 3𝛺, which is lurking in the background (see the previous analysis), we also observe that around the first
peak of the transversal motion 𝑈 (grey) we have 𝛺 ≈ 𝜔𝐴01∕6, i.e. a 6:1 superharmonic resonance with the longitudinal mode, while
around the first peak in the longitudinal direction (black) we have 2𝛺 ≈ 𝜔𝐴01∕3. The closer examination of this case, that likely
involve a very challenging 6 to 2 to 1 flexural–flexural–longitudinal internal resonances of Timoshenko beams, is left for future
works.
9
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Fig. 3. Frequency response curves obtained by brute force methods for various spring stiffens [0,+∞) of the beam: grey dots — FEM, black dots MTSM. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.2. Isolas detection and stability analysis

It is a very demanding task to grab all solutions of (54)–(57), which carries the risk of overlooking certain solutions of the four-
dimensional space, in particular unexpected isolas, in spite of the fact that techniques for the construction of basins of attraction
have been improved over the years [38,39]. To relieve such problem we consider the equilibrium points of the ordinary differential
Eqs. (54)–(57), i.e. 𝑓1 = 𝑓2 = 𝑓3 = 𝑓4 = 0, that then become four fully nonlinear and fully coupled but algebraic equations, that thus
can be ‘‘fully’’ solved for each frequency of excitation 𝜎2. Full frequency response curves are gathered in Fig. 6.

Next, the stability of the reported solutions is determined by the eigenvalues of the Jacobian matrix:

𝐽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝜕𝑓1
𝜕𝑝1

𝜕𝑓1
𝜕𝑞1

𝜕𝑓1
𝜕𝑝2

𝜕𝑓1
𝜕𝑞2

𝜕𝑓2
𝜕𝑝1

𝜕𝑓2
𝜕𝑞1

𝜕𝑓2
𝜕𝑝2

𝜕𝑓2
𝜕𝑞2

𝜕𝑓3
𝜕𝑝1

𝜕𝑓3
𝜕𝑞1

𝜕𝑓3
𝜕𝑝2

𝜕𝑓3
𝜕𝑞2

𝜕𝑓4 𝜕𝑓4 𝜕𝑓4 𝜕𝑓4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

, Eigenvalues [𝐽 ] = {𝑥1 + 𝑖𝑦1, 𝑥2 + 𝑖𝑦2, 𝑥3 + 𝑖𝑦3, 𝑥4 + 𝑖𝑦4}. (61)
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Fig. 4. Zoom of frequency response curves obtained by brute force methods by FEM (grey) and MTSM (black) for 𝜅 = 1. Selected time histories in the slow
time scale 𝑡2 (MTSM): green and blue — fixed points, red — the limit cycle. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. Time histories from FE simulations for 𝜅 = 3, 𝛺 = 3975 rad/s (𝜎2 = 1075.48 rad/s) (a) and their fast Fourier transform (b). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

The solution is stable when all eigenvalues have negative real part, while the solution is unstable if at least one real part is
positive. The system of four differential equations has a much greater number of instability scenarios comparing to a two-dimensional
systems, nevertheless, in this work we observe only two general instabilities: a saddle-type solution, for a real positive eigenvalue,
and source-type solution, for complex eigenvalue with positive real part:

if
(

𝑥1 > 0
⋀

𝑦1 = 0
)

∨
(

𝑥2 > 0
⋀

𝑦2 = 0
)

∨
(

𝑥3 > 0
⋀

𝑦3 = 0
)

∨
(

𝑥4 > 0
⋀

𝑦4 = 0
)

→ unstable saddle-type,
if

(

𝑥1 > 0
⋀

𝑦1 ≠ 0
)

∨
(

𝑥2 > 0
⋀

𝑦2 ≠ 0
)

∨
(

𝑥3 > 0
⋀

𝑦3 ≠ 0
)

∨
(

𝑥4 > 0
⋀

𝑦4 ≠ 0
)

→ unstable source-type,
if 𝑥1 < 0 ∧ 𝑥2 < 0 ∧ 𝑥3 < 0 ∧ 𝑥4 < 0 → stable.

Worth noting is the detached, partially-stable solution path presented in Fig. 6a, which shows three stability scenarios. Due to
the huge amplitude of vibrations and small basin of attraction its stable branch was not detected in FE simulations, not even using a
very accurate shooting procedure. Source-type instabilities appear only at higher amplitude branches for 𝜅 ≤ 5, their centre moves
with the spring stiffness and the largest green interval corresponds to 𝜅 = 0.5.
11
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Fig. 6. Stability analysis of algebraic equations (54)–(57) for 𝑓1 = 𝑓2 = 𝑓3 = 𝑓4 = 0, black (green and red) denotes stable (unstable source-type and saddle-type)
paths. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Frequency response curves for external load at 𝑍̄ = 𝐿∕2, grey (black, red and green) dots are results obtained in FEM (MTSM): transversal displacement
at 𝑍 = 𝑙∕4 (a) transversal displacement at 𝑍 = 𝐿∕2 (b) maximum and minimum of the longitudinal motion (only FE simulations) (c) and amplitude of the second
mode (only MTSM) (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Large amplitude solutions for 𝜅 = 0.01, 𝜅 = 0.02, 𝜅 = 0.05, 𝜅 = 0.1, and 𝜅 = 0.25 are also separated from principal resonance
(isola), see Fig. 6b-f. In all investigated cases, the nonlinear response of the first bending mode is disturbed only by activating the
secondary resonance, but passing this area, the dynamic couplings disappear and return to the first mode alone. The secondary
responses bend towards right for 𝜅 ≥ 0.1, while axial boundary condition of lower stiffness generates slope of the curve to the left.
We assume that observed mechanism is affected by significant longitudinal movement, similarly to the first flexural mode of simply
supported beam (𝜅 = 0), in which the axial inertia terms soften the primary resonance curve. Fig. 6d attracts particular attention
with transition from hardening of primary response to softening of secondary response giving us full control over the system. The
interval 588 rad/s ≤ 𝜎2 ≤ 683 rad/s of 𝜅 = 0.1 shows only one stable branch and explains absence of second stable branch in Fig. 3e.
This result has been cross checked in laborious brute force and shooting initial conditions methods by FE simulations for 𝜅 = 0.125
as well as 𝜅 = 0.25 in [31], and implicitly proves the correctness of the analytical model.

4.3. Internal resonance mechanism

We transfer the concentrated load from 𝑍̄ = 𝐿∕4 to 𝑍̄ = 𝐿∕2 in the numerical and analytical studies to further confirm that the
modal coupling is due to internal resonance 3:1 and not to a 3:1 superharmonic resonance. Now, the external load is imposed at
the modal node of the second flexural mode, thus it is no longer directly excited by the concentrated force, not even in the FE
simulations.

Comparison between numerical and analytical outcomes are presented for 𝜅 = 1 in Fig. 7. Overall, MTSM and FE results fit
together very well, also in terms of bifurcation frequencies and unstable intervals. However, the numerical and analytical results
quantitatively differ more and more as the detuning parameter 𝜎2 increases, or better as the amplitude of the motion increases,
as expected due to the perturbative nature of the solution (but the qualitative similitude is maintained in any case). Certainly the
higher orders analytical approximations will give better quantitative agreement with numerical simulations. The side issue can be
also related to the frequency-dependent damping coefficient in Abaqus_CAE© software.

At first glance, dynamical behaviour of the beam–spring system (𝜅 = 1) for excitation at the beam midpoint displayed in Fig. 7a
does not differ from dynamical response presented in Fig. 3e (note that there are different vertical scales in the two figures). The main
difference is that the secondary resonant stable branch is even better highlighted. Moreover, the unstable source-type area is slightly
13
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Fig. 8. Time histories of strain energies in bending (black), elongation (green), shear (blue) deformability of the beam and in the axial spring (red): the highest
(a), intermediate (b) and lowest (c) amplitudes of steady state oscillations. Case 𝜎2 = 1200 rad/s of Fig. 7a. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

shifted towards higher frequencies, and the agreement of numerical and analytical results is the same. The modal decomposition
into the basic transverse modes, together with the fact that the second mode has a node at 𝑍 = 𝐿∕2, is at the base of the fact that
the transversal displacement at 𝑍 = 𝐿∕2 does not have the extra peak due to modal coupling, both in analytical and FE simulations
(Fig. 7b). The contribution of the second mode is shown in Fig. 7d.

Very interesting FE results are observed for the longitudinal dynamic response of the beams tip, see Fig. 7c. Starting from the
lowest frequency of excitation 𝜎2 = −500 rad/s, the pulsating axial oscillations have a maximum displacement that is negligible,
while the minimum displacement (and thus its overall amplitude) increases almost like a parabola. The first relevant phenomena
appears for about 𝜎2 = 650 rad/s (i.e. at 𝛺 = 3549.52 rad/s). Considering that the first natural frequency in the axial direction
is 𝜔𝐴01(𝜅 = 1) = 20 985.84 rad/s, it can be found that 1

6𝜔𝐴01(𝜅 = 1) = 3497.64 ≈ 𝛺 rad/s, i.e. we are close to 6:1 superharmonic
resonance of the axial mode (see Fig. 5 where this phenomenon is also illustrated). The born of the secondary flexural resonance
is credited at 900 rad/s and it activates dynamic buckling of the beam. In the other words, the tip of the beam does not return to
its initial position and the first flexural mode indirectly by the longitudinal motion activates the second and higher order flexural
modes as well. Passing the dynamic buckling zone, at 𝜎2 = 975 rad/s, we move to a zone with axial dynamic stretching correlated
with large amplitudes of both fundamental and secondary responses.

To better understand the various relative contributions to the beam motion, let us compute (up to the second order) the flexural,
axial and shear strain energies, as well as the strain energy of the boundary spring. For this purpose we choose three stable branches
at 𝜎2 = 1200 rad/s of Fig. 7a, (i) the highest, 𝑈𝑚𝑎𝑥 = 39.4674 mm involving the fundamental and secondary response, (ii) the
intermediate, 𝑈𝑚𝑎𝑥 = 31.0515 mm due only to the fundamental resonance, and (iii) the lowest, 𝑈𝑚𝑎𝑥 = 1.23173 mm related to the
non resonant branch (Fig. 8). As expected, the largest strain energy is accumulated in the highest vibration amplitude, wherein the
maximum strain energy due to elongation/compression is about one half of the bending strain energy: this proves how the axial
deformability cannot be neglected, and that the axial motion is very influential as a ‘‘carrier’’ between flexural modes. On the other
hand, the maximum energy contained in the spring is slightly lesser than one half of strain energy due to elongation of the beam,
showing how it plays a minor, but not negligible, role. Furthermore, an energy transfer mechanism between the beam and the spring
exists, since as one increases, the other decreases. The energy due to shearing effect may be attributed rather to fast oscillations of
the second flexural mode than to slow oscillations of first bending mode, according to the fact that higher order modes are more
prone to shear deformation. When secondary response is not activated, the fundamental resonance becomes smooth and have only
one harmonic 𝛺𝑇 , and contribution of the shearing effect reduces (Fig. 8b). We note that energy of the axial spring and beam’s axial
deformations are still significant, see Fig. 8b. Finally, for small oscillations the axial spring and the extensibility of the beam become
negligible, according to the fact that the solution approaches the linear problem and nonlinear longitudinal–transversal couplings
do not occur). On the contrary, the shear strain energy does not reduce its magnitude (while remaining in any case small, i.e. about
2.5% of the flexural energy).

5. Conclusions and final remarks

Nonlinear dynamics of the hinged–simply supported extensible shearable beam with an axial spring have been studied in the
paper in a neighbourhood of an internal resonance between two transversal modes. First, perturbation method have been applied
to the problem to derive modulation equations, which capture flexural–flexural nonlinear modal interactions, that occurs also by
the involvement of the axial motions. It is shown that the increase of the axial spring stiffness changes the hardening/softening
behaviour of the first flexural mode, moreover affects the secondary resonance (due to the internal resonance) localization and
amplitude. Stable, unstable saddle-type and unstable source-type solutions have been observed by Jacobi stability analysis. Secondly,
results of analytical and numerical approaches have been confronted with a very good agreement. Raised reliability of the problem
prelude the future experimental validation.
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For the initially straight beams the dynamic coupling between flexural modes is often neglected, which explains little knowledge
n this topic in the literature. The vast majority of the research done has been limited only to beams with buckling, axial loading
r pre-deflection. On the basis of the calculations performed by two independent methods, the interactions between the two modes
ere carefully tested. In the future work authors plan to investigate the condition of longitudinal deformation in the first order of

he approximate solution 𝑊1(𝑍, 𝑇 ) ≠ 0 as well as the more rigorous condition of the transverse–transverse–longitudinal internal
esonance which is a heavy task to be done analytically, and to date can be done only by the FE method.

On the basis of the presented results, we conclude that taking into account in the analytical model the dynamics in the
ongitudinal direction is very important for the appearance of axially-induced 3:1 flexural internal resonance. This argument is
trengthened by the lack of this phenomenon for the fixed- fixed beam, where the axial displacement is null by the constraint, at
east at the boundaries (see Figs. 3i and 6i).

The considered Timoshenko beam model takes into account the shearing effect and inertia from rotation of cross-section, which
or the sake of simplification could by omitted, but improves the accuracy of the results and enables investigation the interactions
f higher flexural and longitudinal modes (e.g. 𝜔03, 𝜔04 and 𝜔𝐴02).
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Appendix A

𝑓1(𝑙) = −
(

𝐸𝑙2𝜋2 − 2𝐿2𝜌𝜔2
𝑙
)

2𝑙𝜋𝑍 + 𝐿 (𝜅 + 1) sin
(

2𝑙𝜋𝑍
𝐿

)

4𝐸𝐿2𝑙𝜋
(

𝑘𝑠 + 1
) , 𝑙 ∈ N+, 𝜅 =

𝑘𝑠𝐿
𝐸𝐴

,

𝑊2𝑎(𝑍) = 𝑓1(𝑙 = 𝑛), 𝑊2𝑏(𝑍) = 𝑓1(𝑙 = 𝑚), (A.1)

𝑓2(𝑙) =
(𝐸𝑙2𝜋2 − 2𝐿2𝜌𝜔2

𝑙 )

16𝐿2(−𝐸𝑙2𝜋2 + 𝐿2𝜌𝜔2
𝑙 )
[

√

𝐸𝐴
√

𝜌𝜔𝑙 cos
(

2𝐿
√

𝜌𝜔𝑙
√

𝐸

)

+ 𝑘𝑠 sin
(

2𝐿
√

𝜌𝜔𝑙
√

𝐸

)]

×

{

𝜋𝐿𝑙 sin
( 2𝜋𝑙𝑍

𝐿

)

[

2
√

𝐸𝐴
√

𝜌𝜔𝑙 cos

(

2𝐿
√

𝜌𝜔𝑙
√

𝐸

)

+ 𝑘𝑠 sin

(

2𝐿
√

𝜌𝜔𝑙
√

𝐸

)]

− sin

(

2
√

𝜌𝑍𝜔𝑙
√

𝐸

)

[

2𝐴𝐿2𝜌 cos(2𝜋𝑙)𝜔2
𝑙 + 2𝐴𝐿2𝜌𝜔2

𝑙 − 2𝐸𝜋2𝐴𝑙2 + 𝜋𝑘𝑠𝐿𝑙 sin(2𝜋𝑙)
]

}

, 𝑙 ∈ N+,

𝑊2𝑐 (𝑍) = 𝑓2(𝑙 = 𝑛), 𝑊2𝑑 (𝑍) = 𝑓2(𝑙 = 𝑚). (A.2)

The functions 𝑊2𝑒(𝑍) and 𝑊2𝑓 (𝑍) have very long expressions. They can be detected by the symbolic software Mathematica©
e used for the computations, but cannot be reported here. For fixed parameters of Table 1 they are given by:

𝑊2𝑒 =
1

𝑘𝑠 + 3.16 × 108
×
{

(32.65𝑘𝑠 − 6.05 × 1010) sin(2.70𝑍) − (9.72𝑘𝑠 + 3.06 × 109) sin(6.28𝑍)

−(1.84𝑘𝑠 + 5.82 × 108) sin(18.84𝑍) − (26.19𝑘𝑠 + 8.262 × 109) cos(2.70𝑍)

+(𝑘𝑠 + 3.15 × 108) [28.86 cos(6.28𝑍) − 2.67 cos(18.85𝑍)]
}

, (A.3)

𝑊2𝑓 =
−8.86 × 1010 sin(1.58𝑍) + 2.86 × 10−6 sin(6.28𝑍) − 4.77 × 10−7 sin(18.85𝑍)

𝑘𝑠 + 8.21 × 108
+ 53.80 sin(1.58𝑍)

− 8.46 sin(6.28𝑍) − 1.82171 sin(18.85𝑍) − 22.48 cos(1.58𝑍) + 25.11 cos(6.28𝑍) − 2.63 cos(18.85𝑍). (A.4)
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Appendix B

All next functions depend on the space variable 𝑍, which is omitted to simplify the notation.

𝑈3𝑎 =𝐸𝐴
(

𝑈 ′
1,𝑛𝑊

′
2𝑎 + 𝑈 ′

1,𝑛𝑊
′
2𝑐 +

3
2
𝑈 ′3
1,𝑛

)′
+ 𝐴𝐺

(

𝑈 ′
1,𝑛𝑊

′
2𝑎 + 𝑈 ′

1,𝑛𝑊
′
2𝑐 −

3
2
𝜃1,𝑛𝑈

′2
1,𝑛 +

5
2
𝑈 ′3
1,𝑛

)′
,

𝑈3𝑏 =𝐸𝐴
(

3𝑈 ′
1,𝑛𝑈

′2
1,𝑚 + 𝑈 ′

1,𝑛𝑊
′
2𝑏 + 𝑈 ′

1,𝑚𝑊
′
2𝑒 + 𝑈 ′

1,𝑚𝑊
′
2𝑓

)′

+ 𝐴𝐺
(

−2𝜃1,𝑚𝑈 ′
1,𝑛𝑈

′
1,𝑚 + 5𝑈 ′

1,𝑛𝑈
′2
1,𝑚 + 𝑈 ′

1,𝑛𝑊
′
2𝑏 + 𝑈 ′

1,𝑚𝑊
′
2𝑒 + 𝑈 ′

1,𝑚𝑊
′
2𝑓 − 𝜃1,𝑛𝑈

′2
1,𝑚

)′
,

𝑈3𝑐 =𝐸𝐴
( 3
2
𝑈 ′2
1,𝑛𝑈

′
1,𝑚 + 𝑈 ′

1,𝑛𝑊
′
2𝑓 + 𝑈 ′

1,𝑚𝑊
′
2𝑐

)′
+ 𝐴𝐺

(

−𝜃1,𝑛𝑈 ′
1,𝑛𝑈

′
1,𝑚 + 5

2
𝑈 ′2
1,𝑛𝑈

′
1,𝑚 + 𝑈 ′

1,𝑛𝑊
′
2𝑓 − 1

2
𝜃1,𝑚𝑈

′2
1,𝑛 + 𝑈 ′

1,𝑚𝑊
′
2𝑐

)′
,

𝑈3𝑑 =𝐸𝐴
(

3𝑈 ′2
1,𝑛𝑈

′
1,𝑚 + 𝑈 ′

1,𝑛𝑊
′
2𝑒 + 𝑈 ′

1,𝑛𝑊
′
2𝑓 + 𝑈 ′

1,𝑚𝑊
′
2𝑎

)′

+ 𝐴𝐺
(

−2𝜃1,𝑛𝑈 ′
1,𝑛𝑈

′
1,𝑚 + 5𝑈 ′2

1,𝑛𝑈
′
1,𝑚 + 𝑈 ′

1,𝑛𝑊
′
2𝑒 + 𝑈 ′

1,𝑛𝑊
′
2𝑓 − 𝜃1,𝑚𝑈

′2
1,𝑛 + 𝑈 ′

1,𝑚𝑊
′
2𝑎

)′
,

𝑈3𝑒 =𝐸𝐴
(

𝑈 ′
1,𝑚𝑊

′
2𝑏 + 𝑈 ′

1,𝑚𝑊
′
2𝑑 + 3

2
𝑈 ′3
1,𝑚

)′
+ 𝐴𝐺

(

𝑈 ′
1,𝑚𝑊

′
2𝑏 + 𝑈 ′

1,𝑚𝑊
′
2𝑑 − 3

2
𝜃1,𝑚𝑈

′2
1,𝑚 + 5

2
𝑈 ′3
1,𝑚

)′
,

𝑈3𝑓 =𝐸𝐴
(

𝑈 ′
1,𝑛𝑊

′
2𝑐 +

1
2
𝑈 ′3
1,𝑛

)′
+ 𝐴𝐺

(

𝑈 ′
1,𝑛𝑊

′
2𝑐 −

1
2
𝜃1,𝑛𝑈
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Appendix C

In this section we report the values of the parameters 𝑐𝑖 for increasing stiffness of the axial spring, when 𝑛 = 1, 𝑚 = 2,
𝐴 = 0.05 × 0.05 m2, 𝐿 = 0.5 m, 𝐸 = 210 GPa, 𝐺 = 68.6538 GPa, 𝜌 = 7580 kg m−3.

𝜅 = 𝑘𝑠𝐿
𝐸𝐴 0 0.01 0.02 0.05 0.1 0.25

𝑐1 −0.025280 −0.025280 −0.025280 −0.025280 −0.0252780 −0.0252780
𝑐2 −0.949995 −0.949995 −0.949995 −0.949995 −0.949995 −0.949995
𝑐3 −24651.43 −10939.91 2490.74 41 181.43 100 784.26 249 971.76
𝑐4 −191777.1 −189407.84 −187096.58 −180489.98 −170460.02 −146110.99
𝑐5 −972637.75 −918258.89 −865873.37 −719332.32 −504281.06 −6270.2992
𝑐6 2.466 × 10−5 2.466 × 10−5 2.466 × 10−5 2.466 × 10−5 2.466 × 10−5 2.466 × 10−5

𝑐7 −0.024801 −0.024801 −0.024801 −0.024801 −0.024801 −0.024801
𝑐8 −3.250212 −3.250212 −3.250212 −3.250212 −3.250212 −3.250212
𝑐9 −249496.4 −235700.2 −222412.2 −185254.2 −130758.5 −4697.221
𝑐10 2.9183 × 106 2.9574 × 106 2.9961 × 106 3.10916 × 106 3.28947 × 106 3.787731 × 106

𝑐11 −2540.930 −2512.790 −2485.267 −2406.201 −2285.041 −1985.162
16
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𝜅 = 𝑘𝑠𝐿
𝐸𝐴 0.5 1 3 5 10 ∞

𝑐1 −0.025280 −0.025280 −0.025280 −0.025280 −0.025280 −0.0252780
𝑐2 −0.949995 −0.949995 −0.949995 −0.949995 −0.949995 −0.949995
𝑐3 430 409.8 653 150.8 981 769.1 1.089924 × 106 1.187671 × 106 1.304253 × 106

𝑐4 −118026.8 −85265.42 −40414.8 −26485.59 −14227.38 −1.537064
𝑐5 548 918.7 1.1965 × 106 2.1159 × 106 2.413956 × 106 2.6824 × 106 3.0018 × 106

𝑐6 2.466 × 10−5 2.466 × 10−5 2.466 × 10−5 2.466 × 10−5 2.466 × 10−5 2.466 × 10−5

𝑐7 −0.024801 −0.024801 −0.024801 −0.024801 −0.024801 −0.024801
𝑐8 −3.250216 −3.250216 −3.250216 −3.250216 −3.250216 −3.250216
𝑐9 135 653.9 299 175.2 531 147.6 606 316.5 673 999.2 754 530.5
𝑐10 4.5807 × 106 7.3071 × 106 3.29765 × 106 4.0686 × 106 4.5463 × 106 5.0060 × 106

𝑐11 −1628.88 −1198.64 −582.844 −385.0347 −208.2995 −0.022750
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