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Abstract: A healthy society is the foundation of development in every country, and one way to achieve
a healthy society is to promote healthy nutrition. An unbalanced diet is one of the leading causes of
noncommunicable diseases globally. If food was correctly selected and correctly consumed, both the
problems of overeating and lack of nutrition could be largely solved while also decreasing public
health costs. Interventions such as presenting necessary information and warning labels would help
consumers make better food choices. Hence, providing nutritional information to consumers becomes
essential. The present study investigates the importance of nutrition information labels on consumers’
preferences by estimating their willingness to pay for features and information provided by a dietary
software program (app). An application can easily display the information to the consumers and help
them make informed food choices. A discrete choice experiment investigated consumers’ preferences
and willingness to pay to receive nutritional information. Mixed multinomial logit and latent class
analysis were applied. The results showed the existence of heterogeneity in consumer preferences for
different nutritional information provided by the application. Consumers are willing to pay more for
salt and fat alerts. The results of this study allow for the analysis of consumers’ interest in nutritional
information. Such results are essential for the industry for future investments in similar applications
that potentially could help consumers make better informed choices.

Keywords: choice experiment; food information; nutrition label; mixed multinomial logit; latent class

1. Introduction

According to the World Health Organization [1], noncommunicable diseases (NCDs)
such as cardiovascular diseases, cancers, chronic respiratory illnesses and diabetes are the
leading cause of death worldwide. More than 41 million people die yearly from NCDs (71%
of deaths worldwide), including 15 million individuals who die too early, between 30 and
69 years old. More than 85% of these early deaths in low- and middle-income countries are
due to NCDs. NCDs are also considered a major health concern in developing countries
like Iran. With a population of over 80 million, the mortality rate due to NCDs was almost
82% in 2016 [2]. In addition, in 2013, in Iran, a warning mortality growth of NCDs over
the last 20 years was observed [3]. It is noteworthy that the ageing population of Iran can
worsen the current situation [4].

Most early deaths are related to well-known risk factors, such as an unhealthy diet,
harmful use of tobacco and alcohol, and lack of physical activity [1]. Dietary risk factors
are the main contributors to NCDs [5]. People of all ages are more likely to experience an
unhealthy diet than any of the other three factors (i.e., harmful use of tobacco, alcohol, and
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lack of physical activity). Foods rich in fat, saturated fats, trans-fats, sodium and sugar are
likely to increase the risk of nutrition-related diseases [6]. Reducing such harmful elements
in highly-populated countries such as Iran can be an effective strategy to control and
manage NCDs [7]. Therefore, steps must be taken to guide appropriate food consumption
behaviours [4]. If foods were accurately selected and consumed, the problems of overeating
and lack of nutritional value could be solved, to a large extent, and could help decrease
public health costs [8].

Numerous factors affect consumers’ food choices [9]; among them is the information
displayed on food labels. As an essential tool to inform consumers, food labelling is the
primary means of exchanging information between producers and consumers along the
food supply chain [10]. Consumers look for different types of food information related
to religious constraints, the presence of allergens, environmental issues and production
procedures [11]. In this vein, nutritional food labelling has gained importance in the devel-
opment of food industries with increasing competition and consumers’ greater attention
to health factors [10]. Food nutritional labels influence consumers’ buying decisions and
change their behaviour toward a healthy and desirable food pattern [12,13]. Therefore,
presenting nutritional and allergen information on the food label is considered part of a
broad attempt to prevent the health cost of food-related diseases [14].

Although the information on the food package is simple, consumers seem to use
such information less than one might expect [8]. Because of limited attention, customers
pay attention to a restricted number of product features. Usually, only those that may
be relevant as a quality cue are considered: price and brand are the most relevant [15].
During their in-store experience, consumers are also influenced by various marketing
stimuli, and since they intend to shop a wide range of products, they face multidimensional
decision-making problems.

Time pressure and cognitive limitations are significant constraints in using and un-
derstanding label information in real shopping scenarios. Consumers are not willing to
consider the health labels, especially when constrained by time [15]. Grunert et al. [16]
concluded that only 27% of the consumers check the nutritional information of the food
packages. Moreover, although the majority (83%) of Iranian consumers declared to read
food labels when shopping, only a small percentage of them (5%) aimed to obtain nutri-
tional information on labels [8,17]. A possible reason is that the consumers are too hurried
to look at and analyse nutritional and health-related data presented on food labels due to a
distracting and crowded purchasing atmosphere. In this situation, evaluating the nutri-
tional value of their shopping basket could be difficult even for those conscious consumers
who wish to choose healthy foodstuffs [14].

Using interpretation guides, such as software programs (or applications–apps) and
keeping a tally of nutritional information on food products while shopping could help
consumers to make more conscious choices [12,14,18]. This study investigates consumers’
preferences and willingness to pay for different dietary software program information
features. A discrete choice experiment was applied to evaluate the hypothetical services
mentioned. Thus, three models were estimated: a Mixed Multinomial Logit (ML) in
preference space, a ML in willingness to pay (WTP) space, and a latent class. The findings
of this study are useful to several stakeholders. Policymakers could use the present results
to develop policies and favour software applications that allow more conscious food choices
and promote a healthy change in people’s diet. Consumers could also benefit from having
access to a tool that assists them in selecting their food.

2. Literature Review

According to the literature, food labelling, by providing relevant information to
consumers, has a significant role in healthy food choices [19]. Front Of Package (FOP)
nutrition labels are food labels that provide nutritional information on the most common
intakes of saturated fat, sugar, and sodium (or salt) in various designs and assist consumers
in making healthy food choices [20,21]. Emrich et al. [22] found that consumers who
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consulted FOP nutrition labels reduced unhealthy food in their diets, such as overall total
fat, saturated fat, and sodium intake. Similarly, Mclean et al. [23] showed that people with
hypertension would lower high-sodium processed food intake using FOP nutrition labels.

Consumers consider nutrition labels essential in evaluating the product [24]. How-
ever, the information included in the labels does not influence their purchasing decisions.
Barreiro-Hurlé et al. [25] showed that using nutritional information, regardless of the type
of the nutritional label (facts panels or claims), leads consumers to a healthy food selection.

In addition, background knowledge is needed to understand the information on the
nutritional labels [26,27]. Low awareness and lack of nutritional knowledge are the most
important reasons for not paying attention to the nutritional contents of food labels [17].
Therefore, to be effective, salient and personalised information should be easily, clearly,
and quickly accessed through reliable tools that lead to informed food choices [28].

A possible efficient solution to all the mentioned issues is using technology; usability is
of paramount relevance here [29]. In other words, smartphone applications can be used to
read and process the written information on nutritional labels and display the information
to consumers in an easy-to-understand way. Moreover, by adapting to consumers’ unique
features and providing nutritional advice, these apps can assist in choosing the best product
that consumers require [30]. In this regard, apps such as “Tapingo” or “SmartAPPetite”
were developed to provide consumers with relevant information worldwide and in south-
western Ontario. Whereas university students used the first app to order food, the second
was used to motivate people to consume local food, considering their nutritional prefer-
ences and providing customised information [31,32]. Neither of the apps are available in
Iran [31,32]. Therefore, customised food information, specific for each individual, easily
understood and relevant to their needs, can be provided via technological tools such as
the apps mentioned above. Moreover, previous studies have found that participants were
willing to pay for customised food information [14]. However, the willingness to pay was
mainly for the information that included allergy-alert and diet-alert warnings.

This information could also be sold based on the subscription method. Several eco-
nomic factors explain the existence of subscriptions. First, subscriptions can reduce transac-
tion costs. In other words, several products can be exchanged only once and not every time
the product is supplied and used. Second, the risk of price change is less for the consumer,
although the seller may encounter uncertainty about future prices. However, the payment
in advance is a premium for running that risk. Finally, subscriptions can lower market
uncertainty by fixing the number of products sold. Subscriptions allow sellers to segment
buyers into groups with demand elasticities and thus permit price discrimination, which
can benefit both producers and social welfare, so long as the marginal cost of production is
positive. There are no binding capacity constraints [33].

Another critical issue in using the app is the information provision format. Previous
studies presented and analysed two main label formats: the Guideline Daily Amount
(GDA) and Traffic Light System (TLS). The GDA shows nutritional information numerically
and positively influences healthy food choices [34]. The TLS is widely used in the food
industry. It typically shows different lights (e.g., green, amber or red labels) to inform
whether foods contain unhealthy ingredients (e.g., low, medium or high amounts of salt,
fat, saturated fat or sugars) [35]. According to several researchers [36,37], this system also
has a significant role in the selection of healthy food.

However, the information provision format plays a crucial role in forming the con-
sumers’ perspective toward the nutritional information provision. Consumers like nutri-
tional labels with nice colours, symbols, and easy-to-understand information, whether
graphically or numerically [18]. In a study including TLS and GDA, approximately 90% of
participants checked to agree/strongly agree on the scale when asked if they liked TLS [38].
In the same study, GDA was liked by only 50% of the participants. Similarly, consumers in
New Zealand preferred the TLS format most often [39]. By contrast, other studies found
that GDA was considered a more attractive and liked label than TLS [40,41]. Different
factors such as social level, local differences, interest in healthy eating and nutritional
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knowledge of consumers play a significant role in utilising GDA and understanding nutri-
tional information [27]. Young consumers with no children using GDA are more interested
in nutritional information and more aware of food-related health issues [12].

Another factor influencing consumers informed food choice is the difference between
displaying food information for every single product in the shopping basket or the total
number of items in an aggregate basket. The limited number of studies on this issue have
found that consumers prefer to process each product’s information individually rather than
obtain aggregate information for the total basket [12,14]. However, given the scarcity of
literature on this issue, further research is needed.

3. Materials and Methods
3.1. The Discrete Choice Model

A Discrete Choice Experiment (DCE) is a survey-based methodology widely used to
model consumers’ preferences [42]. According to the method, all goods and services are
defined by a set of attributes. Therefore, respondents are presented with several market
simulations (choice sets) in which the offered products or services differ in at least one
attribute [43]. All alternatives shown to the respondents are evaluated using the same
list of attributes but with different levels (e.g., the presence or not of the organic logo).
Based on these attributes and their levels, participants are asked to choose the alternative
they preferred the most in each choice set, according to the characteristics and price of
the presented products or services. Including the price/cost of each product enables the
calculation of a respondent’s willingness to pay (WTP) for a specific attribute.

The DCE is based on the Lancastrian consumer theory [44] and the Random Utility
model (RUM) [45]. According to Lancaster [44], individuals’ choice is based on the utility
maximisation rule, meaning they will select the alternative that gives the highest utility [46].
Moreover, the RUM framework indicates that the utilities of different goods or services can
be broken down into separate utilities for their attributes. Therefore, the total utility of the
selected item i by the individual n is represented as the sum of two utility components,
a systematic component (Vni) and a non-observed component (εni), which is treated as
random. The systematic (non-observed) component can be further approximated by a
linear function of the product or service attributes in the vector Xni, while the population
utility weights for each attribute can be collected through the vector β:

Uni = Vni + εni = βXni + εni (1)

Under the assumption that εni follows an independent and identically extreme value
distribution, a multinomial logistic (MNL) model can be implemented. However, the
main limitation of the MNL model is that it assumes homogeneity of preferences across
consumers, which is an unrealistic assumption [47]. Flexible models such as the Mixed
Multinomial Logit (ML) can capture unobserved preference heterogeneity across individ-
uals. Assuming that the unknown parameter estimating β is random according to the
continuous probability distributions, the utility of the individual n from alternative i is
specified as:

Uni = β′Xni + εni (2)

where β′ varies between individuals but not over alternatives (representing ‘consumers’
preferences heterogeneity); while Xni is a vector of observed variables related to the alter-
native i and decision-maker n. εij is a random term distributed i.i.d. extreme value over
individuals and alternatives.

In the present study, the random parameters β were assumed to be normally dis-
tributed to allow positive and negative preferences for each attribute. Only the price
parameter was assumed to be distributed following a negative log-normal distribution to
obtain a better fit with the microeconomic theory (negative utility for the price parameter).

Furthermore, due to the impossibility of direct interpretation of coefficients in the
preference space, the willingness to pay was also calculated. As the ML models accounts
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for the heterogeneity of preferences, the WTP was directly estimated in the WTP-space
which allows to interpret coefficients of attributes and compare them with each other in
and easier way, while providing more reasonable distributions [48]:

Uni = αni − λn pni + (λnγn)
′ Xni + εni (3)

where λn = (βn price/µn) with βn price being an individual-specific coefficient for the
price, while µn represents an individual-specific scale parameter γn = (cn/λn), where
cn = (βn/µn).

Although the ML models consider variety in preferences, the source of the hetero-
geneity of tastes is unknown. Moreover, their specification requires an a priori assumption
for the β distribution. These limitations can be overcome with the latent class (LC) mod-
els [49,50], providing a variety of information about participants’ behaviour. In this model,
the heterogeneity of preferences is accommodated by dividing consumers into a set of
exclusive classes with homogeneous preferences within them. Therefore, the utility in the
LC models of the individual n for the alternative i is:

Uni|c = βcXni + εni|c (4)

where βc is the vector of class c associated with a segment-specific vector of coefficients,
while εni|c follows a Gumbel distribution.

The class membership of the individuals is a priori unknown to the analyst, as it
depends on the observable attributes and the latent unobservable components [51]. The
optimal number of classes was identified using the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC), as well as the significance of the estimated parameters
and the interpretation of the model (in terms of sign and size of the parameters) [49,52].
Based on the assumption of linearity of the utility function, the indirect utility for each
alternative i for each segment c is:

Vi|c = αi|c + βBasketXBasket,i|c + βFormatXFormat,i|c + βSalt alertXSalt alert,i|c
+ βFat alertXFat alert,i|c + βAllergy alertXAllergy alert,i|c

+ βpayment Xpayment,i|c + βPriceXPrice,i|c + εi|c

(5)

The WTP for each attribute was estimated for each segment. The WTP was calculated
as the price change related to a unit increment un a specific attribute in that segment:

WTP = −βattribute
βprice

(6)

where βattribute is the coefficient of the attribute of interest in a specific segment and βprice
is the price coefficient in the same segment.

3.2. Product and Attribute Selection

A new digital mobile application that helps consumers make informed food choices
during grocery shopping was selected for the analysis. It can provide consumers with
personalised information on potential unhealthy components (e.g., fats, salt) in the food
products. A warning on possible allergies is also available. This information can be pro-
vided individually or as a basket for all products simultaneously. Moreover, the information
can be displayed using a TLS or GDA. The service has a price in local currency, which
varies according to the affiliation program (monthly, quarterly or yearly). Hence, seven
attributes were selected based on previous literature: basket [12,14,53], format [24,34,54,55],
fat alert [6,19,22,56,57], salt alert [23], allergy alert [58–60] payment type [61–63], and
price [12,14]. The description of attributes and their levels is presented in Table 1.
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Table 1. Features of the hypothetical dietary application.

Attribute Description Levels *

Basket

The nutritional information is displayed in two ways:
a: basket: information shown in aggregate form for all the selected products
(the entire basket).
b: individual: information presented for each product in the basket.

Basket = 1,
Individual = 0

Format

a: Guideline Daily Amounts (GDAs): this label communicates nutrient
content levels in absolute values, per 100 g or portion size, and is also
expressed as a percentage of proposed daily reference quantities within
one’s total diet.
b: Traffic Light System (TLS): this label shows nutrient content by weight.
Green, amber, and red colours are used to respectively depict low, medium,
and high content for unhealthy components (e.g., salt).

Guideline Daily Amounts = 0,
Traffic Light System = 1

Sodium (salt) alert A service will alert shoppers if they buy products with high sodium content. Salt alert = 1,
No alert = 0

Fat alert A service to alert shoppers to avoid buying foods with high-fat content. Fat alert = 1,
No alert = 0

Allergies

A service helps buyers avoid an allergic reaction. The most common
ingredients that trigger food allergens include dairy, eggs, peanuts, wheat,
corn and soy. The service also includes any allergens found in flavourings,
colourings or other additives. This application allows users to scan
products’ barcodes to check for allergens.

Allergy alerts = 1,
No alerts = 0

Payment
Payment for using the diet application is based on monthly, quarterly, or
yearly subscription. Quarterly and yearly subscribes have access to a 50%
and 70%discount, respectively.

Monthly = 0,
Quarterly = 1,

Yearly = 2

Price per month Monthly cost for using services of diet application (without the quarterly
and yearly discount).

1500-, 4500-, 7500-,
10,500-(tomans)

* The reference level for categorical attributes is presented in italics.

3.3. Data Collection and Analysis

The data were gathered through personal interviews between August and September
2019 in Sari, the capital of Mazandaran (Iran). A convenient sample in the province of
Mazandaran was selected given the predominance of nutritional-related diseases. In
Mazandaran, the leading cause of death is cardiovascular disease. Moreover, Mazandaran
presents the higher levels of obesity prevalence in all of Iran and is among the top five
provinces regarding the prevalence of hyperlipidaemia and hypertension [64].

The individuals included in the study were over 18 years old, currently living in
Sari and had an income or could use the household income for food expenses. For the
sample collection, three leading chain supermarkets were selected during quiet hours of
the department store (excluding Thursdays and Fridays), so the respondents would not
get distracted. Customers and staff present at the moment of the study were randomly
recruited. Out of the 207 distributed questionnaires, three incomplete questionnaires were
excluded. The final sample included 204 questionnaires.

The questionnaire was developed in English on the Qualtrics platform. Then, it was
translated and back-translated to Farsi [65]. Close collaboration with a local researcher
allowed conceptual, functional and categorical equivalence in the translation [66]. The
questionnaire included socio-demographic data, health conditions, shopping behaviour,
awareness of food-related diseases and the DCE.

3.4. Discrete Choice Experiment Design and Estimation

Given the seven attributes and their levels, 384 (25 × 3 × 4) possible alternatives
could be created. The number of combinations was reduced to obtain a more reliable
and statistically efficient design. A fractional factorial design of 12 unlabelled choice sets
was developed employing a D-efficient design in the Ngene software (D-error = 0.35 and
A-error = 0.40). Each respondent was presented with 12 choice sets with two alternatives
and a “no choice” option in case the respondents would prefer not to choose either the
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application services. All choice sets and alternatives were presented in a randomised order
to avoid any bias [67].

Before the choice experiment, participants were introduced to the purpose of the
research. Then, the respondents were presented with a list of products, in their local
language, based on the criteria of “optimal food basket for Iranian households” introduced
by the Ministry of Health, Treatment and Medical Training of Iran [68]. The list was
developed based on the consumers’ nutrient requirements according to age and gender,
the cost (including only economically affordable goods) and the production potential in
the country for each product. Both raw and pre-prepared products were included. The
products were presented in a graphical format (Figure 1) and randomised order.
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Figure 1. List of products showed to the respondents.

Individuals were asked to imagine they were in a store and choose the groceries
they usually buy during their shopping trip to simulate purchasing decision-making. The
participants could choose as many products as they wanted. The weight/volume of each
product was specified (Table 2). The objective of this task was to get the consumer to
visualise the products they usually buy and evaluate how useful the proposed application
could be when valuing the nutritional properties of their usual food shopping.

Table 2. List of products presented to participants and their weight/volume.

List of Products

Bread (400 g package) Barbecued chicken (800 g pack)
Rice (300 g pack) Eggs

Macaroni (500 g package) Milk (1 L)
A can of baked beans and mushrooms (400 g) Vegetable oils (810 g)

Olivier salad (250 g pack) Chicken soup (70 g package)
Vegetables (250 g pack) Biscuits (100 g)

Apples Coca-cola (1.50 L)
Cheese (450 g) Please add to list other foodstuffs you buy

Then, the respondents were introduced to the diet application. The participants
were told that a new diet application was being launched to aid customers in making
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healthier food choices. The service would allow them to keep a tally of the main nutritional
components of the food they purchase, as well as the presence of specific harmful substances
for them (e.g., sugar, fat or allergic components). Therefore, the application would display
in an easy-to-read format the nutritional information by scanning the bar code of the
selected product. All attributes of the application and the attributes’ levels were presented
and thoroughly described to inform participants equally. Participants could also request
help or ask for clarifications to the interviewer present at the moment of the development
of the study. An example of a choice set (Figure 2) was also introduced to the participants,
followed by a “cheap talk” to reduce the hypothetical bias [69].
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Figure 2. Example of choice set.

In the DCE, participants were asked to select the alternative with the features they
would like the most for the healthy application at the given price and payment method.
All alternatives were simultaneously presented as in the example in Figure 2. Respondents
had no time limit for their selection. A total of 2448 choices were collected.

The data were analysed through the APOLLO package in R [70]. An MNL model was
estimated as a departure point, followed by a ML in the preference-space using Halton
draws with 500 replications. Coefficient estimates from the ML in the preference space
were incorporated as priors for the ML estimations in the WTP-space, using Halton draws
with 500 replications. To facilitate convergence in the WTP-space, a scaling factor was
implemented.

4. Results

The characteristics of the sample are shown in Table 3. A total of 204 responses were
collected. The average age of the participants was 37 years old. In addition, 36.27% of
respondents declared they are the head of their household, meaning they were responsible
for providing all or most of the household expenses or deciding how to spend the household
income. Most respondents presented a low income, and the average household size was
about 3.5 people. The average body mass index (BMI) was 27 (kg/m2), indicating that
people in the sample suffered from being overweight [71].
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Table 3. Sample characteristics.

Variable Percent (%)

Gender
Female 57.00
Male 43.00

Marital Status
Single 29.41

Married 70.59
Age

18–30 25.98
31–50 61.27
51–65 12.25

Over 65 0.49
Education level
Primary (1–5) 2.45
Middle (6–8) 6.86

Diploma 20.59
Associate degree 13.24

Bachelor 32.35
Master or over 24.51

BodyMass Index (BMI)
Underweight 3.90

Normal Weight 41.00
Pre-obesity 40.00

Obesity 16.00
Health conditions

High blood pressure 15.00
Food allergies 15.00

Average household monthly income (10 million rial)
Below 1.49 19.61
1.50–2.49 29.90
2.50–3.49 21.57
3.50–4.49 11.76
4.50–5.49 7.35
5.50–6.49 3.43
over 6.50 6.37

Regarding the results of the ML Table 4, the alternative specific constant (ASC) was positive
and statistically significant. That is, choosing alternatives A or B yielded positive utility. The
basket coefficient was negative and statistically significant. This means that the respondents
preferred to have displayed the product information individually rather than in an aggregated
format for all items. The format coefficient was not statistically significant, indicating the
participants’ indifference to format. Presenting information using the Traffic Light System (TLS)
or Guideline Daily Amount (GDA) did not make any difference to the respondents.

Table 4. Results of the ML in preference space and in WTP-space.

ML in Preference Space ML in Willingness to Pay Space (1000 Tomans)

Variable Mean Standard Error Mean Standard Error

ASC 1.94 *** 0.20 −1.67 −0.20

Mean estimates
Basket −0.47 *** 0.09 −9.01 * 5.09
Format (TLS) 0.03 0.07 −0.19 1.14
Sodium (salt) alert 1.16 *** 0.10 +20.70 *** 7.10
Fat alert 1.33 *** 0.10 +23.04 *** 7.95
Allergy alerts 0.79 *** 0.09 +12.92 *** 4.02
Payment quarterly 1.56 * 0.80 +23.06 15.17
Payment yearly −0.22 ** 0.11 −1.74 2.00
Price −2.64 *** 0.24 +2.71 *** 0.32
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Table 4. Cont.

ML in Preference Space ML in Willingness to Pay Space (1000 Tomans)

Standard deviation estimates
Basket 0.96 *** 0.10 16.47 *** 5.47
Format 0.28 ** 0.14 3.36 2.10
Sodium (salt) alert 0.78 *** 0.09 11.98 *** 4.09
Fat alert 0.90 *** 0.11 10.65 *** 3.18
Allergies 0.74 *** 0.10 12.05 ** 5.73
Payment quarterly 2.22 *** 0.54 30.64 ** 12.40
Payment yearly 0.47 *** (0.15) 6.79 ** 3.29
Price 0.76 *** (0.13) 0.89 *** 0.20

Estimated parameters 17 17
Log-likelihood (final) −1504.87 −1496.26
Rho-square 0.44 0.44
Adj.Rho-square 0.43 0.44
AIC 3043.75 3026.52
BIC 3142.4 3125.17

Notes: symbols *, **, *** mean significant at 10%, 5% and 1%. ASC captures the choice of either alternative A or B
as opposed to the “none” option. All estimates follow a normal distribution, besides price (negative log-normal).

Additionally, the coefficients of salt alert, fat alert, and allergy alert were positive
and statistically significant, indicating that consumers in Sari would like to know whether
their chosen products have a high intake of fat and salt in compared to not having such
information (reference level). They also preferred to be informed about the products that
could cause them food allergies compared to not having such information

Regarding payment frequency, respondents prefer a quarterly payment over a monthly
payment (reference level). However, a monthly payment was preferred over a yearly one.
The price coefficient was significant and negative, which means that participants pre-
ferred to pay less. Dispersion parameters (standard deviation estimates) were statistically
significant, exhibiting heterogeneous preferences for all attributes.

Based on the Mixed Multinomial Logit (ML) results in the willingness to pay space
in Table 4, the highest willingness to pay was related to the fat alert. Consumers were
prepared to pay approximately 23,000 tomans (approximately €4.93) to receive fat alerts
for selected products. Following, consumers were willing to pay about 21,000 tomans
(approximately €4.50) to receive the salt alerts and 13,000 tomans (approximately €2.79) to
receive allergy alerts.

Most of the standard deviation estimates for the WTP model were significant, indi-
cating a great variety among consumers’ preferences for these attributes. However, the
standard deviation estimate for the format coefficient was not significant, meaning that
there was no heterogeneity among respondents regarding their willingness to pay for this
attribute. In general, respondents are not willing to pay to get their nutritional information
in the TLS format over the GDA, and this is quite a homogeneous result across the sample.

A latent class model was estimated to investigate the source of such heterogeneity in
consumer behaviour. The number of classes was based on the model with the lower BIC
(3281.51) and the best interpretability. Thus, participants were divided into two groups
with different behavioural characteristics. Accordingly, 14% of consumers belonged to class
one and 86% to class two. The result of the model is reported in Table 5.

Results of the latent class model showed significant differences between the two classes.
The respondents in class 1 were indifferent to receiving the information for each product or
as a basked. Moreover, the format was negative and statistically significant, demonstrating
consumers’ preference for GDA rather than TLS. The coefficients of the salt and fat alerts
were positive and statistically significant, indicating the preferences of the consumers to
receive the alerts related to the prevention of health issues. The allergy alert estimate was
only significant at 10%. In this class, the quarterly and annual payments coefficients were
negative and statistically significant, indicating the respondents’ preferences for a monthly
subscription over a quarterly and annual subscription. The coefficient of the price was
negative as expected and statistically significant.
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Table 5. Results of the MNL latent class model.

Class 1 Class 2

Variables Mean Standard Error WTP (1000 Tomans) Mean Standard Error WTP (1000 Tomans)

Basket −0.54 0.37 −0.36 *** 0.06 −7.2
Format −1.13 ** 0.49 −2.51 0.04 0.05
Sodium (salt) alert 1.96 *** 0.70 4.36 0.81 *** 0.05 16.2
Fat alert 3.98 *** 0.79 8.84 0.71 *** 0.06 14.2
Allergy alerts 0.78 * 0.41 1.73 0.58 *** 0.05 11.6
Payment quarterly −2.88 *** 0.75 −6.40 −0.02 0.32
Payment yearly −2.49 *** 0.73 −5.53 −0.07 0.09
Price −0.45 *** 0.11 −0.05 *** 0.01
ASC a 2.12 *** 0.19 -

Class membership
probability 0.14 0.86

Log-likelihood (final) −1570.53
Rho-square 0.42
Adj.Rho-square 0.41
AIC 3177.06
BIC 3281.51

Notes: symbols *, **, *** mean significant at 10%, 5% and 1%. a ASC captures the choice of either alternative A or
B as opposed to the “none” option.

In contrast to class 1, in class 2, the basket attribute was significant, which indicated
that people in this class preferred that the diet app presents nutritional information for
each product separately rather than for the entire basket. The influence of format attributes
on consumer preference was not statistically significant in class 2. Moreover, salt alert,
fat alert, and allergies alert were positive and statistically significant. Unlike in class 1,
the payment attributes were not statistically significant. Participants were indifferent to
monthly, quarterly, and annual subscriptions. The coefficient of the price in this class was
also negative, as expected.

In summary, although the salt alert and fat alert coefficients were higher in class 1
compared with class 2, the willingness to pay for the salt alert and fat alert in class 2 was
larger than in class 1. Similarly, the willingness to pay for the allergy alert was higher in
class 2 than in class 1. While the consumers in class 1 had clear preferences for the format
(GDA) and the payment frequency (monthly), consumers in class 2 were indifferent to
these attributes. On the other hand, participants in class 2 preferred to receive information
for each product, while participants in class 1 did not have any specific preference for it. In
addition, the ASC was positive and significant, indicating positive preferences for using
the application.

5. Discussion

The present study uses a discrete choice experiment to investigate consumers’ pref-
erences and WTP for receiving nutritional information provided by a dietary application
during grocery shopping. The findings from the ML model indicate heterogeneity in
consumer preferences for the different attributes of the app. The aggregated results from
the ML and the latent class models showed that participants were willing to pay for cus-
tomised information at the point of the purchase. This result is consistent with previous
literature [12,14], which showed that consumers preferred obtaining dietary and allergy in-
formation when buying food. This result also aligns with previous findings that about 80%
of Mexican consumers liked and wanted warning labels on the front of food packages [38].

Moreover, considering both models’ positivity and the significance of salt and fat alert
coefficients, respondents are willing to pay for information that helps them make informed
and healthier food choices. In this regard, it is recommended that the food industry in Iran
insert alerts (e.g., salt alert and fat alert) on food packaging, similar to the action taken by
the tobacco industry.

In addition, the ML and latent class models results inferred that most participants
preferred to receive the customised information from the application for each product
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individually, rather than for the whole basket as aggregated information. In other words,
individuals, similarly to previous findings [14], prefer to examine the nutritional infor-
mation for each product individually. However, in the latent class, 14% of individuals
were indifferent to obtaining information in this context. This result is also in line with
previous research [12], which found that 89% of consumers were indifferent whether the
information was provided product by product or as an aggregated format for the whole
basket. A possible explanation for this can be the lack of such devices in Iran to display
integrated information of the shopping basket at the purchasing time; therefore, this feature
is intangible to some individuals.

The result of the ML indicated that consumers were indifferent about the format of
the nutritional information. However, the latent class analysis showed that the smallest
of the resulting classes (14%) preferred nutritional information displayed in Guideline
Daily Amount rather than the Traffic Light System. Although this finding is in line with
previous research [40], the results are somewhat surprising, given that the TLS has been
mandatory in Iran since 2016, and the GDA is optional [10]. A possible reason is that
consumers are still not familiar with TLS. A study showed that 59% of the participants were
not familiar with the Traffic Light System and only 27% of consumers claimed that they
had used the TLS [17]. It is worth mentioning that before the implementation of TLS, the
nutritional information was presented on the food packaging, similar to the GDA format.
According to previous research, although the GDA format presents more detail [72] and
its preference might be influenced by the level of education [73], it is also liked more by
consumers than other formats [74]. Therefore, designing educational programs in health
centres to introduce labels and their function in informed food choice should be a priority
for responsible organisations.

The results of the ML also indicated the existence of a strong preference for monthly
payments rather than yearly. Consumers are unwilling to undertake a long-time commit-
ment [75]. Moreover, the significant standard deviation estimates for the payment methods
in the ML model show high heterogeneity among respondents. So, although a class of
respondents prefer monthly payments (class 1), the other class is indifferent. In the case
of implementing the app, various payment frequency alternatives should be presented to
address different segment needs.

In general, the results of the present paper contribute to the literature in two ways.
First, to the authors’ best knowledge, there are no previous studies on the WTP of Ira-
nian consumers for features of an app that could help them make a more informed
decision [12,14,18]. Second, given that the geographical area in which the sample was
collected there is an important predominance of nutritional-related diseases [64], it is key to
identify communication strategies and tools to inform consumers and assist them in their
food choices effectively. The present study explores one possible alternative among many
others. However, future research should also compare this option with other digital and
non-digital solutions.

6. Conclusions

In this study, a DCE was developed and analysed to examine the effect of a diet app,
which included the characteristics of the basket, format, salt alert, fat alert, allergy alert,
payment, and price on consumers’ preferences and their willingness to pay in Sari, Iran.

Our findings provide new insights into consumers’ preferences for the nutritional in-
formation provided by the application as an effective tool in helping consumers to make
conscious choices during their shopping experience. In this regard, policymakers could benefit
from our results by encouraging the implementation of diverse systems (digital and non-
digital) that assist consumers in making an informed decision during their grocery shopping.
Meanwhile, future research should also explore how to effectively deliver this information
to the consumers, studying the diverse tools that could be used for this purpose (e.g., apps,
advertisement, etc.), how to frame the messages effectively, as well as consumer acceptability.
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Policymakers should also promote campaigns that increase consumers knowledge
regarding the presence or lack of nutrients in certain foods. This could collaborate in
reducing the incidence of non-communicable diseases by encouraging more conscious
food choices. Such a process should also motivate the food industry to increase sales by
changing food formulation to low-salt and low-fat products

The present study also presents some limitations. First, the study includes a convenient
sample of 204 people living in Sari, the capital of Mazandaran (Iran). Although the geographi-
cal area of the study was chosen on purpose given the predominance of nutritional-related
diseases in the area [64], the results are not generalisable to the rest of the Iranian population
or other countries. Future research would benefit in replicating the current study in other
geographical areas of Iran or other countries with similar morbidity profiles.

Second, the present results are based on a hypothetical market, which means that the
hypothetical bias may arise [76]. Respondents might express certain preferences in the hy-
pothetical DCE that may differ from their actual preferences under real circumstances [77],
leading to overestimated coefficients [78]. Therefore, future work should benefit greatly by
combining revealed and stated preference data.
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