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Abstract

This thesis aims at developing novel methodologies to mitigate the limitations of

the state-of-the art State-Space Substructuring (SSS) techniques and of the state-of-

the-art approaches to estimate state-space models from experimentally acquired data.

Moreover, we also aim at demonstrating the benefit of using state-space models and

SSS methods to tackle time-domain Transfer Path Analysis (TPA) applications.

In this thesis, the dual SSS formulation (also, denoted Lagrange Multiplier State-

Space Substructuring method (LM-SSS)) is extended to directly perform dynamic sub-

structuring (DS) operations with displacement and velocity state-space models. A

novel coupling form, tagged Unconstrained Coupling Form (UCF), specially tailored to

perform DS operations with LM-SSS is derived. With respect to the coupling forms

previously presented in literature, UCF holds the advantages of only requiring the

computation of a single nullspace and not demanding the typical difficult selection of

a subspace from a nullspace. Then, novel post-processing procedures to eliminate the

redundant states originated from the performance of DS operations with LM-SSS are

proposed to enable the computation of minimal-order coupled models. An additional

post-processing procedure is presented to avoid a manual elimination of the redundant

degrees of freedom (DOFs) of the coupled state-space models computed with LM-SSS.

By comparing LM-SSS enhanced by the proposed post-processing procedures with two

state-of-the-art approaches, it is straightforward that LM-SSS entails the advantages

of both, without presenting any of their drawbacks. Subsequently, a novel primal

state-space assembly formulation is derived. Afterwards, a novel SSS technique, named

LM-SSS via compatibility relaxation, is developed to allow the inclusion of connect-

ing elements (CEs) into SSS operations via compatibility relaxation. Post-processing

procedures to eliminate the extra states originated from the performance of coupling op-

erations with this method are also derived, enabling the computation of minimal-order

coupled models. A discussion on how to compute models of CEs to be used with LM-

SSS via compatibility relaxation in analytical, numerical and experimental contexts

is conducted. To estimate these models in an experimental context, the state-space

realization of the Inverse Substructuring (IS) method is derived.

Then, a novel method to impose Newton’s second law on estimated state-space mod-

els that does not rely on the use of undamped residual compensation modes (RCMs) is

introduced. Thereby, this technique enables the computation of models strictly verify-
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ing this physical law that are suitable for being used in time-domain analysis. Besides

this benefit, by comparing this method with a state-of-the-art approach, it is evident

that the method here derived holds the additional advantage of permitting the en-

forcement of Newton’s second law by using RCMs presenting lower natural frequencies.

Subsequently, a novel strategy to impose stability on unstable coupled models resul-

tant from the performance of DS operations with non-passive models is proposed. This

approach has the important advantage of not necessarily rely on iterative algorithms.

Afterwards, the developed methodologies are validated on numerical and experimen-

tal substructuring cases. The identified state-space models representative of the sub-

structures/assemblies under study showed to be highly accurate, while respecting New-

ton’s second law. This clearly demonstrates the robustness of the proposed approach

to force state-space models to obey Newton’s second law. Reliable decoupling/coupling

results are obtained with LM-SSS enhanced by the developed post-processing proce-

dures and by using the estimated models transformed into UCF. The primal state-space

assembly formulation also showed to lead to accurate primally assembled/disassembled

results. Moreover, the state-space realization of IS showed to be capable of computing

reliable models representative of the CEs, provided that they verify the underlying as-

sumptions of IS. The LM-SSS via compatibility relaxation method also demonstrated

to be able to accurately include the models of the CEs identified with the state-space

realization of IS into the coupling operations. On top of this, it is evident that the pro-

posed approach to impose stability on unstable coupled state-space models is reliable.

Indeed, it turned out to lead to the determination of accurate stable coupled models

from unstable coupled models resultant from the performance of several DS operations.

Then, a local approach to compute interpolating Linear Parameter-Varying (LPV)

models is presented and validated on numerical and experimental examples. The state-

space realizations of the matrix-inverse classical Transfer Path Analysis (TPA) and of

the in-situ component-based TPA methods are presented. Subsequently, novel applica-

tions of LPV models in TPA are proposed and validated on an analytical assembly made

of a source and a passive system. The dynamics of both systems is time-dependent. In

a first instance, an interpolating LPV model describing the dynamics of the passive sys-

tem is used with the matrix-inverse classical TPA method to estimate the time-domain

connecting force acting on the interface between the source and the passive system. It

is found that the estimated connecting force is accurate and can be used to perform

reliable estimations of the responses on DOFs belonging to the passive system. Then,

interpolated models computed from the LPV models describing the dynamics of the

source and passive systems are coupled at each time-sample by using LM-SSS to obtain

coupled models representative of the dynamics of the assembled structure. These cou-

pled models are used with the in-situ component-based TPA method to estimate the

time-domain equivalent force of the source. It is found that the estimated equivalent

force is accurate and can be used to perform reliable estimations of the responses on

the passive side of assemblies made of the same source connected to any passive system.



Sommario

Questa tesi mira a sviluppare nuove metodologie per mitigare i limiti presenti nello

stato dell’arte in relazione alle tecniche di State-Space Substructuring (SSS) e degli

approcci per stimare i modelli State-Space da dati acquisiti sperimentalmente. Inoltre,

si vuole dimostrare il vantaggio dell’uso dei modelli state-space e dei metodi SSS per

affrontare applicazioni Transfer Path Analysis (TPA) nel dominio del tempo.

In questa tesi, la formulazione SSS duale (anche denominata Lagrange Multiplier

State-Space Substructuring (LM-SSS)) viene estesa per eseguire direttamente opera-

zioni di dynamic substructuring (DS) con modeli state-space di spostamento e velocità.

Viene derivata una nuova forma di accoppiamento, denominata Unconstrained Cou-

pling Form (UCF), appositamente studiata per eseguire operazioni DS con LM-SSS.

Rispetto alle forme di accoppiamento precedentemente discusse in letteratura, la UCF

presenta il vantaggio di richiedere il calcolo di un solo nullspace e di non richiedere la

tipica e difficile selezione di un sottospazio da un nullspace. Vengono poi discusse nuove

procedure di post-processing per eliminare gli stati ridondanti derivanti dall’esecuzione

di operazioni DS con LM-SSS. In questo modo, è possibile calcolare modelli accop-

piati di ordine minimo. Viene presentata un’ulteriore procedura di post-processing

per evitare l’eliminazione manuale dei gradi di libertà (DOF) ridondanti dei modelli

accoppiati con LM-SSS. Confrontando LM-SSS, potenziato dalle procedure di post-

processing proposte, con due approcci considerati ad aggi il reiferimento di letteratura,

è evidente che LM-SSS presenta i vantaggi di entrambi, senza presentare alcuno dei

loro svantaggi. Successivamente, viene derivata una nuova formulazione denominata

primal state-space assembly. In seguito, viene sviluppata una nuova tecnica SSS, deno-

minata LM-SSS via compatibility relaxation, per consentire l’inclusione degli elementi

di connessione (CE) nelle operazioni SSS tramite compatibility relaxation. Vengono

inoltre derivate procedure di post-processing per eliminare gli stati extra originati dal-

l’esecuzione di operazioni di accoppiamento con questo metodo, consentendo il calcolo

di modelli accoppiati di ordine minimo. Si discute su come calcolare modelli di CE

da utilizzare con LM-SSS tramite il rilassamento di compatibilità in contesti analitici,

numerici e sperimentali. Per stimare questi modelli in un contesto sperimentale, è stata

derivata una realizzazione state-space del metodo Inverse Substructuring (IS).

Viene poi introdotto un nuovo metodo per imporre la seconda legge di Newton su

modelli state-space che non si basa sull’uso di modi di compensazione residui (RCM)
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non smorzati. In questo modo, è possibile calcolare modelli che verificano questa legge

fisica e che sono adatti a essere utilizzati nell’analisi del dominio del tempo. Oltre a

questo vantaggio, confrontando questo metodo con lo stato dell’arte, è evidente che il

metodo qui derivato ha l’ulteriore vantaggio di consentire l’applicazione della seconda

legge di Newton utilizzando RCM che presentano frequenze naturali più basse. Suc-

cessivamente, viene proposta una nuova strategia per imporre la stabilità ai modelli

accoppiati instabili risultanti dall’esecuzione di operazioni DS con modelli non passivi.

Questo approccio ha l’importante vantaggio di non basarsi necessariamente su algoritmi

iterativi.

Successivamente, le metodologie sviluppate sono state validate su casi di studio nu-

merici e sperimentali. I modelli state-space identificati, rappresentativi delle sottostrut-

ture/assiemi oggetto di studio, si sono dimostrati altamente accurati, pur rispettando

la seconda legge di Newton. Ciò dimostra la robustezza dell’approccio proposto per

forzare i modelli state-space a rispettare la seconda legge di Newton. Risultati affi-

dabili di disaccoppiamento/accoppiamento si ottengono con LM-SSS migliorato dalle

procedure di post-processing sviluppate e utilizzando i modelli stimati trasformati in

UCF. La formulazione primal state-space assembly ha dimostrato di portare a risultati

accurati primal assembled/disassembled. Inoltre, la realizzazione state-space di IS ha

dimostrato di essere in grado di calcolare modelli affidabili rappresentativi degli CE,

a condizione di verificare le ipotesi di base di IS. Il metodo di rilassamento della com-

patibilità LM-SSS ha anche dimostrato di essere in grado di includere accuratamente

i modelli degli CE identificati con la formulazione state-space di IS nelle operazioni di

accoppiamento. Inoltre, è evidente che l’approccio proposto per imporre la stabilità ai

modelli state-space accoppiati instabili porta alla determinazione di modelli di coppia

stabili accurati da modelli state-space accoppiati instabili risultanti dall’esecuzione di

diverse operazioni di DS.

Viene quindi presentato un approccio locale per il calcolo di modelli interpolanti a

variazione di parametri lineari (LPV), validato su esempi numerici e sperimentali. Ven-

gono presentate le formulazioni state-space dei metodi matrix-inverse classical TPA e

in-situ component-based TPA. Successivamente, viene proposta e validata una nuova

applicazione dei modelli LPV nella TPA su una struttura assemblata analitica com-

posta da una sorgente e da un sistema passivo. La dinamica di entrambi i sistemi è

tempovariante. In un primo momento, un modello LPV interpolante che descrive la di-

namica del sistema passivo viene utilizzato con il metodo matrix-inverse classical TPA

per stimare la forza di connessione nel dominio del tempo che agisce sull’interfaccia

tra la sorgente e il sistema passivo. La forza di connessione che si ottiene è accurata e

può essere utilizzata per eseguire stime affidabili delle risposte sui DOF appartenenti al

sistema passivo. Quindi, i modelli interpolati calcolati dai modelli LPV che descrivono

la dinamica della sorgente e dei sistemi passivi vengono accoppiati ad ogni campione

temporale utilizzando LM-SSS per ottenere modelli accoppiati rappresentativi della di-

namica della struttura assemblata. Questi modelli accoppiati vengono utilizzati con il
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metodo in-situ component based TPA per stimare la forza equivalente della sorgente

nel dominio del tempo. Si scopre che la forza equivalente stimata è accurata e può

essere utilizzata per eseguire stime affidabili delle risposte sul lato passivo degli assiemi

costituiti dalla stessa sorgente collegata a qualsiasi sistema passivo.
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t Time

U Input vector in frequency domain

u Input vector

UR Upper residual matrix
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V Damping matrix

W Right eigenvectors of a matrix

X State vector in frequency domain

x State vector

Y Output vector in frequency domain

y Output vector

z State vector transformed into coupling form

Greek letters

β Scheduling parameter β

∆ Parameterized value of a scheduling parameter

η Output vector defined in the modal domain

γ Gaussian distributed independent stochastic variable

Λ Diagonal matrix composed by the poles of a system

λ Pole of a system

ΛC Lagrange multipliers vector in frequency domain

ω Frequency

ωd Damped natural frequency

ωn Natural frequency

Ψ Mode shapes matrix

ψ Mode shape vector

σ Singular values of a matrix

θ Gaussian distributed independent stochastic variable

ξn Damping ratio

Other symbols

•̄ Coupled vector/matrix

⊗

Kronecker matrix product

•̆ Vectors/matrices of an interpolating LPV model
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•−1 Inverse of a matrix

•̈ Second order time derivative

•̇ First order time derivative

•̂ Maximum value of scheduling parameter •

ℑ(•) Imaginary part of a variable

ℜ(•) Real part of a variable

•̃ Coupled vector/matrix associated with an unique set of DOFs

• Minimum value of scheduling parameter •

diag[•] Column vector containing the diagonal elements of matrix [•]

vec[•] Column vector obtained by stacking all columns of matrix [•]





Chapter 1

Introduction

This project has received funding from the European Union’s Framework Pro-

gramme for Research and Innovation Horizon 2020 (2014–2020) under the Marie Sklodowska-

Curie Grant Agreement n◦ 858018.

1.1 Research Context and Motivation

To ease the characterization of the dynamic behaviour of complex structures, we

may think on diving them into several simple substuctures. Then, by characterizing

the dynamics of each of those simple substructures and by coupling them, a character-

ization of the dynamic behaviour of the initial complex structure can be obtained. The

approach just described is commonly addressed in literature as dynamic substructuring

(DS). This concept can be exploited with substructures numerically or experimentally

characterized. Additionally, DS also provides us the possibility of coupling together nu-

merically and experimentally characterized substructures. In this thesis, our attention

will be focused on the application of DS with experimentally characterized substruc-

tures.

Nowadays, when dealing with experimentally characterized substructures, the DS

concept is mainly exploited in frequency domain. Yet, some applications would profit

from the use of DS in time-domain. For example, applications involving transient

phenomena, involving the characterization of the dynamics of mechanical systems pre-

senting non-linear or time-varying dynamic behaviour and real-time substructuring

applications. In fact, there are many mechanical systems that when operating un-

der regular conditions promote relevant changes on the dynamic behaviour of their

components. A classical example of these components are the rubber mounts, whose

dynamics depends on several external factors, such as on the temperature at which

they are submitted and on the value of the static pre-load applied on them.

To tackle this kind of applications, one may think of using state-space models to

characterize the dynamics of each component and then, couple them by exploiting SSS

methods. In fact, this strategy seems promising for several reasons. First of all, these

1
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models are known to be well-suited to deal with problems formulated in time-domain.

Secondly, the state-space models can be used to characterize mechanical systems, whose

dynamics depends on different external factors. Indeed, there are many approaches

proposed in literature based on state-space models that are adequate to characterize

components, whose dynamics depends on different factors. On top of this, these mod-

els are also well-known for being excellent choices to tackle real-time substructuring

applications. However, the state-of-the-art methodologies are not completely adequate

to experimentally estimate state-space models that are suitable for being exploited in

DS operations. Moreover, the family of SSS methods is still under investigation, not

being so well established in literature as, for example, the Component Mode Synthe-

sis (CMS) and Frequency Based Substructuring (FBS) methods. For these reasons,

the computation of accurate stable coupled state-space models by performing coupling

operations with models representative of real mechanical systems and estimated exper-

imentally, for example, from experimentally acquired Frequency Response Functions

(FRFs), continues to be challenging.

In the following, we detail the challenges to be overcome to ease the computation

of accurate stable coupled models from the performance of DS operations with exper-

imentally estimated state-space models. Moreover, we refer the kind of time-domain

TPA applications that we aim at tackling by using state-space models and SSS methods.

State-Space Substructuring

Two of the most well-known state-of-the-art SSS approaches are the methods pre-

sented by Su and Juang in [9] and by Sjövall and Abrahamsson in [8]. The method

derived by Su and Juang is capable of coupling an unlimited number of substructures at

same time. However, it presents two important drawbacks. On the one hand, it is not

capable of computing minimal-order coupled models. On the other hand, it requires

the performance of two different matrix inversions. Conversely, the method proposed

by Sjövall and Abrahamsson enables the computation of minimal-order coupled mod-

els and only requires the computation of a single matrix inversion. Nonetheless, this

method is only capable of coupling two substructures at same time. In addition, this

approach requires the previous transformation of state-space models into the coupling

form proposed in [8]. The transformation matrix involved on the transformation of

state-space models into this coupling form requires the selection of a subspace from the

nullspace of the input matrix of the model to be transformed. The selection of this

subspace is hard to be performed and strongly influences the performance of the trans-

formation. To ease the computation of coupled state-space models, a novel coupling

form and novel post-processing procedures are proposed in section 2.3 to define a SSS

approach that merges the advantages of both of these state-of-the-art SSS methods,

while mitigating their limitations.

Moreover, the SSS methods available in literature only allow the inclusion of the
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dynamics of CEs into coupling operations by treating them as others substructures to

be coupled. Even though this methodology does not pose any important disadvantages,

when dealing with CEs analytically or numerically characterized, it definitely presents

drawbacks, when the CEs are to be experimentally characterized. In an experimental

context, it is typical to test CEs with fixtures attached to their ends. Therefore, to

obtain a state-space model characterizing the dynamics of a CE by considering it as

a regular structure, we are required to decouple the dynamics of the fixtures used to

test it. Hence, we are demanded to determine models representative of these fixtures,

which might involve the performance of additional experimental modal characterization

tests. Furthermore, the performance of decoupling operations to remove the dynamics

of the fixtures leads to the identification of state-space models representative of CEs

that are contaminated by pairs of spurious modes. In practice, there is generally no

a-priori knowledge on the dynamics of the substructures to be identified by decou-

pling operations. Thus, the identification and subsequent elimination of these spurious

modes is many times hard or even infeasible to be performed. The use of state-space

models contaminated by spurious states to include the dynamics of CEs into coupling

operations is not recommended, because it leads to the computation of coupled modes

spoiled by spurious states. Moreover, due to the contamination by spurious modes, the

performance of calculations with these coupled models and with the identified models

of the CEs will demand higher computational effort.

To overcome the disadvantages associated with the inclusion of CEs into the cou-

pling SSS operations by treating them as regular structures, we may think on including

them into these operations via compatibility relaxation. In this way, we could include

the dynamics of CEs by exploiting state-space models representative of their diagonal

dynamic stiffness terms. The inverse substructuring (IS) method could be particularly

useful to compute these models, because it enables the determination of the diagonal

dynamic stiffness terms of CEs from the dynamic stiffness of the assembly, where they

are included, provided that these components verify the assumptions underlying IS.

Thus, it could be possible to experimentally determine state-space models representa-

tive of CEs without performing decoupling operations and hence, free of spurious states.

Moreover, in this scenario, we would not be required to determine state-space models

representative of the fixtures used to experimentally characterize the CEs. Thereby,

in section 2.5, a novel SSS method to include CEs via compatibility relaxation into

SSS coupling operations is proposed. Furthermore, the state-space realization of IS

is derived to experimentally determine state-space models representative of CEs to be

included into this novel SSS technique.

Estimation of state-space models

To be suitable for DS operations, the state-space models must present FRFs that

closely match the FRFs of the mechanical systems that they represent. On top of this,
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these models must be stable, reciprocal (in case that the substructures that they rep-

resent are reciprocal), obey Newton’s second law, passive and have to present outputs

and inputs collocated at the interfaces of the substructures involved in the DS opera-

tions. The state-space models defined in analytical and numerical contexts generally

verify these criteria. However, the experimental identification of state-space models

that verify all this criteria is not straightforward. In particular, the computation of

models verifying Newton’s second law and passivity remains challenging.

The identification of state-space models verifying Newton’s second law is manda-

tory, otherwise these models cannot be properly differentiated. Thereby, state-space

models that do not respect Newton’s second law cannot be properly transformed into

coupling form, which makes the computation of minimal-order coupled models infeasi-

ble, in case that the state-space models involved in the DS operations are not defined in

the physical domain (common situation in practice). Moreover, the accelerance FRFs

of state-space models violating this physical law cannot be correctly determined. The

state-of-the-art approaches to impose Newton’s second law on state-space models either

impose this physical law in a weak sense or make use of undamped residual compen-

sation modes (RCMs) to strictly impose it. On the one hand, state-space models that

do not strictly obey Newton’s second law are not suitable for being used in SSS oper-

ations. On the other hand, the inclusion of undamped modes on state-space models

is not recommended, because the performance of time-domain simulations with mod-

els composed by undamped modes may lead to numerical instabilities. To overcome

the limitations of the state-of-the-art approaches, in section 3.3.2, we propose a novel

method to strictly impose Newton’s second law on state-space models without relying

on the use of undmaped RCMs.

The estimation of state-space models verifying passivity is also fundamental, be-

cause the performance of DS operations with non-passive models generally leads to the

computation of unstable coupled state-space models. Many algorithms to impose pas-

sivity on state-space models have already been proposed in literature. These algorithms

are often clustered under the labels optimal and sub-optimal. Nevertheless, none of

these groups of algorithms is completely adequate to estimate passive state-space mod-

els to be involved on SSS operations, because they either lead to the computation of

state-space models with limited accuracy (case of the sub-optimal algorithms) or they

demand high computational effort (case of the optimal algorithms). This might pre-

vent the use of SSS methods in applications that require a fast computation of accurate

stable coupled state-space models. In [4], a direct method to impose passivity on state-

space models that does not belong to any of the groups of techniques mentioned above

was proposed. However, this approach may lead to the computation of passive models

presenting poor accuracy and not being globally passive (i.e. that are not passive in the

entire frequency axis). To surpass these difficulties, in section 3.5, we propose a novel

approach to compute accurate stable coupled state-space models directly from unstable

coupled models originated from the performance of SSS operations with non-passive
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models. In this way, we avoid the need of imposing passivity on state-space models.

State-space models and SSS methods in TPA

As discussed in section 1.1, the state-space formulation is well-suited to deal with

problems formulated in time-domain and to take into account possible time-domain

variations on the dynamics of mechanical systems by exploiting, for instance, interpo-

lating Linear Parameter-Varying (LPV) models. Thus, we intend to take advantage

of these characteristics of the state-space formulation to apply TPA methods on ap-

plications involving structures/components, whose dynamics changes over time. In

chapter 5, two time-domain TPA applications involving mechanical systems presenting

time-domain variations on their dynamical behaviour are tackled by using state-space

models and SSS methods.

1.2 Research Objectives

The aim of this thesis is to develop novel methodologies to mitigate the limita-

tions of the state-of-the art SSS techniques and of the state-of-the-art approaches to

experimentally estimate state-space models. Moreover, we also aim at demonstrating

the benefit of using state-space models and SSS methods to tackle time-domain TPA

applications. To accomplish these objectives, the state-of-the-art must be extended by

the following innovations:

• Develop a novel State-Space Substructuring (SSS) methodology that entails the

advantages of the state-of-the-art methods, while overcoming their main limita-

tions;

• Develop a novel methodology to enable the introduction of the dynamics of CEs

into SSS operations via compatibility relaxation;

• Derive a novel approach to determine state-space models of CEs to be included

into the coupling SSS operations via compatibility relaxation;

• Address the limitation of the state-of-the art approaches to force identified state-

space models to obey Newton’s second law, by developing a novel approach that

strictly imposes this physical law without relying on the use of undamped RCMs;

• Develop a novel method that enables the computation of accurate stable coupled

state-space models from the performance of DS operations with non-passive state-

space models;

• Investigate and demonstrate the benefit of using state-space models and SSS

methods for time-domain Transfer Path Analysis (TPA) applications.
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1.3 Thesis Contributions

The novel contributions of this thesis with respect to the state-of-the-art are listed

as follows:

• The dual SSS formulation (also denoted LM-SSS) is extended to directly couple

displacement and velocity state-space models. In this way, we can directly com-

pute displacement and velocity coupled models with LM-SSS, avoiding the need

of performing matrix inversions to compute displacement and velocity coupled

models from the correspondent acceleration coupled model;

• A novel coupling form tagged Unconstrained Coupling Form (UCF) is presented.

UCF is specially tailored to conduct DS operations with LM-SSS, holding the

advantage of transforming state-space models into coupling form without relying

on the selection of a subspace from a nullspace, which is many times difficult to

be performed. UCF is validated on numerical and experimental substructuring

cases;

• Novel post-processing procedures to eliminate the redundant states originated

from the performance of DS operations with LM-SSS are proposed. These ap-

proaches enable the computation of minimal-order coupled models with LM-SSS.

Numerical and experimental substructuring cases are exploited to validate these

post-processing procedures;

• To avoid a manual elimination of the redundant DOFs originated from the perfor-

mance of coupling operations with LM-SSS, a novel post-processing procedure is

proposed to retain a unique set of DOFs from the computed coupled state-space

models. This post-processing procedure is validated on numerical and experimen-

tal substructuring cases;

• A novel primal state-space assembly formulation is introduced. This approach is

validated on numerical and experimental substructuring cases;

• A novel SSS technique enabling the inclusion of the dynamics of CEs into LM-

SSS formulation via compatibility relaxation is derived. This approach enables

the inclusion of the dynamics of CEs by using state-space models representative

of their diagonal apparent mass terms. The accuracy of this coupling approach

is evaluated on numerical and experimental substructuring cases;

• Novel post-processing procedures to eliminate the extra states originated from the

performance of coupling operations with LM-SSS via compatibility relaxation are

presented. Thereby, enabling the computation of minimal-order coupled mod-

els with this SSS method. These post-processing procedures are validated on

numerical and experimental substructuring cases;
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• The state-space realization of the Inverse Substructuring (IS) method is derived.

This method enables the determination of state-space models representative of

the diagonal apparent mass terms of connecting elements (CEs) from state-space

models representative of the dynamics of the assemblies where they are included.

The accuracy of this method is evaluated on numerical and experimental sub-

structuring cases;

• A novel method to impose Newton’s second law on state-space models without

relying on the use of undamped RCMs is presented. This approach is validated to

force several state-space models representative of analytical and real mechanical

systems to obey Newton’s second law.

• A novel methodology to impose stability on unstable coupled state-space models

is proposed. Thus, making it possible to compute accurate stable coupled models

from the performance of DS operations with non-passive state-space models. This

methodology is validated to impose stability on an unstable coupled state-space

model resultant from the performance of several DS operations with non-passive

models representative of real mechanical systems.

• Novel strategies to apply both matrix-inverse classical TPA and in-situ component-

based TPA methods in time-domain, when dealing with assemblies composed

by sources and passive systems presenting time-varying dynamics are presented.

These methodologies are numerically validated.

1.4 Thesis Outline

Part of the content of this thesis has already been published in [1], [3], [10], [2],

[6], [11], [7]. However, those topics have been extended in this document to provide

the reader with a more detailed and comprehensive description of the work done. The

present document is organized according to the following structure:

Chapter 1 presents the motivation of the thesis, the defined research activities and

its contributions with respect to the state-of-the-art.

Chapter 2 discusses some state-of-the-art dynamic substructuring techniques be-

longing to the groups of Component Mode Synthesis (CMS), Frequency Based Substruc-

turing and State-Space Substructuring (SSS) methods. The state-of-the-art LM-SSS

method is extended to directly couple displacement and velocity state-space models. A

novel coupling form, specially, tailored to perform DS operations with LM-SSS is pre-

sented. Novel post-processing procedures to eliminate the redundant states originated

from the performance of DS operations with this technique and hence, to compute

minimal-order coupled models are proposed. An additional post-processing procedure

is outlined to eliminate the redundant DOFs from the coupled state-space models com-

puted with LM-SSS without relying on a manual elimination. A comparison of the
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LM-SSS method enhanced by the proposed post-processing procedures with two state-

of-the-art SSS techniques is also conducted. A novel primal state-space assembly formu-

lation is introduced. The inclusion of state-space models representative of connecting

elements (CEs) into the dual SSS formulation via compatibility relaxation is discussed,

leading to the development of a novel SSS coupling method, named Lagrange Multiplier

State-Space Substructuring via compatibility relaxation. Novel post-processing proce-

dures to eliminate the extra states originated from the performance of DS operations

with this technique are proposed. A discussion on strategies to compute state-space

models representative of diagonal apparent mass terms of CEs is conducted and the

state-space realization of the Inverse Substructuring approach is derived.

Chapter 3 presents a state-of-the-art methodology to construct state-space models

from modal parameters directly estimated from experimentally acquired FRFs. A

discussion on the need of constructing state-space models verifying Newton’s second

law is also conducted, being proposed a novel technique to impose this physical law

on state-space models. The proposed novel technique is compared with a state-of-the-

art approach. The state-space realization of the Virtual Point Transformation (VPT)

method is presented and a novel strategy to impose stability on unstable coupled state-

space models is developed.

Chapter 4 exploits numerical and experimental substructuring cases to validate

the novel methodologies proposed in chapters 2 and 3.

Chapter 5 presents a local methodology to construct interpolating LPV models.

This technique is validated on numerical and experimental examples. The use of in-

terpolating LPV models together with the matrix-inverse classical TPA and with the

in-situ component-based TPA methods is proposed to determine time-domain connect-

ing and equivalent forces, respectively, when dealing with mechanical systems, whose

dynamics changes over time. These approaches are validated by exploiting a numerical

example.

Chapter 6 presents the conclusions of this thesis and proposes future research

activities.



Chapter 2

Dynamic Substructuring

2.1 Introduction

Dynamic Substructuring (DS) is a methodology used to characterize the dynamic

behaviour of complex assembled structures. This methodology relies on the belief that

the characterization of a given complex structure can be easily performed by, firstly,

characterizing each of its constituent parts and, then, coupling them to obtain an

accurate representation of the initial complex structure. Over the last decades, this

methodology received much attention, which lead to the development of several DS

techniques [12]. In literature, these techniques are usually clustered in three main

groups. The group of the Component Mode Synthesis (CMS) techniques, the group of

the Frequency Based Substructuring (FBS) methods and the group of the State-Space

Substructuring (SSS) approaches.

In section 2.2, we will start by presenting state-of-the art approaches belonging to

the groups of CMS, FBS and SSS methods (sections 2.2.1, 2.2.2 and 2.2.3, respectively).

Then, novel procedures to mitigate the limitations of the Lagrange Multiplier State-

Space Substructuring (LM-SSS) method are outlined in section 2.3, while a novel primal

state-space assembly formulation is developed in section 2.4. Finally, the inclusion

of connecting elements into the LM-SSS formulation via compatibility relaxation is

discussed in section 2.5, leading to the development of two novel techniques, namely,

the LM-SSS via compatibility relaxation method and the state-space realization of the

inverse substructuring (IS) approach.

2.2 State-of-the-art

2.2.1 Component Mode Synthesis

The group of CMS methods was the first kind of investigated DS techniques and be-

came popular among the scientific community as a reduction method for finite-element

models [12]. When performing DS operations with CMS methods, the dynamical be-

9
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haviour of each of the substructures is represented by a set of modes [13]. Different

methods have been proposed to define reliable sets of modes that properly model the

mechanical behaviour of the substructures. One of the most famous methods is the

Craig-Bampton approach proposed in [14], which uses fixed-interface and constraint

modes to characterize each of the substructures. Yet, there are other techniques that

use other kind of modes. For example, the techniques proposed in [15],[16] that make

use of free-interface modes with and without residual flexibility.

The CMS methods can be used to rigidly couple components by imposing strict

compatibility between their interfaces, i.e. no relative displacement between the inter-

faces of the substructures is allowed (see [12]). Alternatively, these methods can also

be used to couple substructures, whose interfaces are not rigidly coupled, i.e. that may

present some relative displacement between them. For example, substructures that are

connected by connecting elements (CEs), such as screws and rubber mounts. To per-

form the coupling of this kind of substructures, two possible approaches can be followed.

Either we characterize the CE responsible for connecting the substructures and we in-

clude it in the coupling operation as a regular substructure or, we perform coupling

by relaxing the compatibility conditions [17]. By following the second strategy, the

compatibility conditions are no longer defined by imposing null relative displacement

between the interfaces of the substructures to be coupled. Instead, these conditions

are established through the relation between the relative displacement of the interfaces

of the connected structures and the connecting forces acting on the CE (see [18], [19],

[20]).

Overall, this kind of methods are easy to apply, when performing DS operations

with numerically modelled substructures, for example modelled by using finite element

models. However, when dealing with experimentally characterized components these

techniques cannot be directly applied, because they require the use of system identi-

fication algorithms (see, for instance, [21],[22]) to identify modal parameters that well

describe the dynamics of the substructures [23].

Primal Formulation

To present the primal assembly formulation in the modal domain, we will start by

analyzing the assembled structure composed by two substructures denoted α and β

shown in figure 2.1.

Figure 2.1: Assembled structure composed by two different substructures [1].
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By virtually separating the assembled structure presented in figure 2.1, the con-

necting forces acting on the interface DOFs of both substructures can be observed as

depicted in figure 2.2.

Figure 2.2: Substructures composing the assembly shown in figure 2.1 virtually separated [1].

The connecting forces represented in figure 2.2 present the same intensity, but dif-

ferent directions, hence we can represent these forces as follows

{g(t)} =

{

gα(t)

gβ(t)

}

= − [BC ]T {λC(t)} (2.1)

where, {λC(t)} denotes a vector composed by Lagrange Multipliers that represent the

intensity of the connecting forces [24], while [BC ] is a signed Boolean mapping matrix

(see [24],[25],[12],[26]). This matrix must be constructed by assigning negative unitary

values to the coefficients associated with the interface DOFs of one of the substructures

and by assigning positive unitary values to the coefficients related to the interface

DOFs of the other substructure. The value of the coefficients associated with the

internal DOFs of the substructures must be set to zero. Subscripts α and β denote

vectors/matrices associated with substructures α and β, respectively. Vectors {gα(t)}
and {gβ(t)} are composed by the connecting forces acting on each of the substructures.

These vectors are given below.

{gα(t)} =

{

0

gJα(t)

}

(2.2a) {gβ(t)} =

{

0

gJβ (t)

}

(2.2b)

Note that expression (2.1) can be easily generalized and remains valid, when per-

forming coupling operations involving an unlimited number of substructures.

At this point, let us assume that the mass, damping and stiffness matrices of both

substructures is known. Thereby, by generalizing for coupling an unlimited number of

substructures, we may define a set of coupled differential equations as follows

[MD] {ÿ(t)} + [VD] {ẏ(t)} + [KD] {y(t)} = {u(t)} + {g(t)} (2.3)

where, [MD], [VD], [KD], {y(t)}, {u(t)} and {g(t)} are given as follows
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(2.4)

where, {y(t)} and {u(t)} are vectors composed by the displacement responses of the

DOFs and by the external applied forces on the DOFs, respectively. Matrices [M ],

[V ] and [K] denote mass, damping and stiffness matrices, respectively. Subscript D

denotes block diagonal matrices.

Let us further assume that the exact relation between physical and modal coordi-

nates is given as follows:

{

y(t)
}

=
[

Tm,D

]{

η(t)
}

(2.5)

with,

[

Tm,D

]

=


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. . .
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ηβ(t)
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













(2.6)

where, [Tm] is a matrix responsible for transforming the modal coordinates of a given

substructure into the physical domain, while vector {η(t)} is composed by the modal

coordinates of a given substructure.

By using expression (2.5) and expression (2.3) pre-multiplied by [Tm,D]T , we may

rewrite the set of coupled differential equations (expression (2.3)) in modal domain as

follows

[Mm,D] {η̈(t)} + [Vm,D] {η̇(t)} + [Km,D] {η(t)} = {um(t)} + {gm(t)} (2.7)

where, matrices [Mm,D], [Vm,D], [Km,D], {um(t)} and {gm(t)} are given below.

[Mm,D] = [Tm,D]T [MD][Tm,D], [Vm,D] = [Tm,D]T [VD][Tm,D]

[Km,D] = [Tm,D]T [KD][Tm,D]

[um(t)] = [Tm,D]T [u(t)], [gm(t)] = [Tm,D]T [g(t)]

(2.8)

To be coupled, the substructures must respect both compatibility and equilibrium

conditions. The compatibility condition states that the physical motion of the inter-
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face DOFs of both substructures must be the same. Hence, these conditions can be,

mathematically, defined as given below.

[BC ] {y(t)} = {0} (2.9)

By using expression (2.5), expression (2.9) can be also defined in the modal domain

as:

[BC,m] {η(t)} = {0} (2.10)

where, [BC,m] is given hereafter.

[BC,m] = [BC ] [Tm,D] (2.11)

However, when performing coupling by using a primal formulation, the compati-

bility condition is imposed by retaining the unique set of DOFs [12]. Thereby, this

condition must be defined as follows

{η(t)} = [LC,m] {η̃(t)} , ∀ {η̃(t)} (2.12)

where, {η̃(t)} represents the unique set of coupled DOFs represented in the modal

domain and [LC,m] represents a Boolean localization matrix defined in the modal do-

main. The set of unique DOFs {η̃(t)} must verify the compatibility conditions given

in expression (2.10), thus the following identities must be verified.

[BC,m] {η(t)} = [BC,m] [LC,m] {η̃(t)} = {0} (2.13)

It is evident that expression (2.13) will be verified, in case that [LC,m] is computed

from the nullspace of [BC,m] as given below [24],[12].

[LC,m] = null ([BC,m]) (2.14)

The equilibrium conditions state that the sum of the connecting forces at the match-

ing DOFs must be null [9],[27]. This means that the connecting forces acting on match-

ing interface DOFs belonging to different structures must present the same intensity

and opposite direction (hence, must cancel each other). In this way, the equilibrium

conditions can be defined by the following expression.

[LC,m]T {gm(t)} = {0} (2.15)

To prove that the set of equations (2.15) holds, we may start by pre-multiplying

expression (2.1) by [Tm,D]T as follows.

[Tm,D]T {g(t)} = − [Tm,D]T [BC ]T {λC(t)} (2.16)
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By using expression (2.8) and expression (2.11) together with the transpose matrix

property (AB)T = BTAT [28], we may rewrite expression (2.16) as given below.

{gm(t)} = − [BC,m]T {λC(t)} (2.17)

From expression (2.17), it is straightforward that expression (2.15) can be rewriten

as follows.

−[LC,m]T [BC,m]T {λC(t)} = {0} (2.18)

As matrix [LC,m] is the nullspace of [BC,m] (see expression (2.14)), we may write

the following expression.

[BC,m] [LC,m] = {0} (2.19)

By using once again the transpose matrix property (AB)T = BTAT [28] and ex-

pression (2.19), we may define the identities given below.

([BC,m] [LC,m])T = [LC,m]T [BC,m]T = {0} (2.20)

Thus, [LC,m]T is the nullspace of [BC,m]T and, hence expression (2.15) holds.

By imposing both compatibility and equilibrium conditions (expressions (2.12) and

(2.15), respectively) in expression (2.7), we may arrive to the following set of coupled

differential equations:

[

M̃m

]

{

¨̃η(t)
}

+
[

Ṽm

]

{

˙̃η(t)
}

+
[

K̃m

]

{η̃(t)} = {ũm(t)} (2.21)

where,

[M̃m] = [LC,m]T [Mm,D][LC,m], [Ṽm] = [LC,m]T [Vm,D][LC,m]

[K̃m] = [LC,m]T [Km,D][LC,m], [ũm(t)] = [LC,m]T [um(t)]
(2.22)

Dual Formulation

A dual formulation can also be used to set-up the coupled differential equations

of motion in the modal domain. By using expressions (2.17), (2.10) and (2.7) and by

dropping [•], {•} and (t) for ease of readability, the dual assembled differential equations

can be defined as follows







Mm,Dη̈ + Vm,Dη̇ +Km,Dη +BT
C,mλC = um

BC,mη = 0
(2.23)

where, this set of differential equations can also be established in matrix form as given

below.
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[

Mm,D 0

0 0

]{

η̈

λC

}

+

[

Vm,D 0

0 0

]{

η̇

λC

}

+

[

Km,D BT
C,m

BC,m 0

]{

η

λC

}

=
{

um

}

(2.24)

Decoupling

Decoupling is widely used in DS to identify the dynamic behaviour of components

that are part of an assembled structure. This DS operation requires the dynamic behav-

ior of the assembled structure and of the remaining components to be known. One of

the main applications of decoupling operations is the dynamic characterization of parts

that are difficult or even impossible to be tested separately. To perform decoupling, we

can follow the procedures discussed above. However, the mass, damping and stiffness

matrices (either represented in the physical or modal domains) of the substructures to

be decoupled must be, previously, multiplied by −1 [29].

Nevertheless, in practice it is sometimes difficult to perform measurements at the

interface between the substructure to be decoupled and the component to be identified.

To circumvent this difficulty, we may, for instance, exploit the Modal Constraints for

Fixture and Subsystem (MCFS) method presented in [30]. This approach enables

the use of information obtained from measurements performed on internal points of

the assembled structure belonging to the substructure to be decoupled. To perform

decoupling MCFS constrains the motion of the assembly and of the substructure to be

decoupled by using weak modal constraints to avoid high sensitivity to measurement

errors. This method demonstrated to be reliable to perform decoupling operations,

leading to the identification of accurate modal basis representative of the dynamics of

real mechanical systems (see, [29]).

Substructuring via compatibility relaxation

The strategy proposed in [18] to perform coupling of substructures, whose interfaces

are not rigidly connected, will be here presented. To start, let us consider the following

two substructures connected by a CE M depicted in figure 2.3.

Figure 2.3: Assembled structure composed by two substructures connected by a connecting
element [2].
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By virtually separating the assembly shown in figure 2.3, we may observe the con-

necting forces responsible for keeping the substructures coupled (see figure 2.4).

Figure 2.4: Substructures composing the structure depicted in figure 2.3 virtually separated
[2].

To exploit the strategy proposed in [18], we must assume that the CE is massless

and that there are no cross couplings between its DOFs. In other words, each DOF on

one of the interfaces of the CE must be only coupled to one DOF on the other interface

(being both DOFs associated with the same direction). If these conditions hold, we

may define the following relations [17]:

[MM,11] = [MM,12] = [MM,21] = [MM,22] = [0]

[VM,11] = −[VM,12] = −[VM,21] = [VM,22] = [VM ]

[KM,11] = −[KM,12] = −[KM,21] = [KM,22] = [KM ]

(2.25)

where, subscript M denotes variables related to the CE M depicted in figures 2.3 and

2.4, while the first number in subscript refers to the outputs and the second to the

inputs of each variable. The number 1 denotes that the outputs or/and inputs are

associated with the DOFs on the side Mα of the CE, whereas the number 2 means

that the outputs or/and inputs are associated with the DOFs on the Mβ side (see

figure 2.4).

The assembly depicted in figure 2.3 is composed by two substructures connected

by a CE. Thus, relative displacement between the interface of both substructures is

allowed. This relative displacement is a direct consequence of the connecting forces

that act at the interfaces of the CE. Thereby, by generalizing to couple an unlimited

number of substructures connected by an unlimited number of CEs, we may define

a relation between these connecting forces and the relative displacement between the

interfaces of the connected substructures as follows [18]:

{λC(t)} = [VM,D] [BC ] {ẏ(t)} + [KM,D] [BC ] {y(t)} (2.26)

where,

[VM,D] =









VM1

VM2

. . .









, [KM,D] =









KM1

KM2

. . .









(2.27)
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where, subscripts M1 and M2 denote variables associated with different CEs.

As the CEs are assumed to be massless, the force equilibrium condition defined in

expression (2.1) is still valid [18],[20],[17]. In this way, by imposing the compatibility

conditions (see expression (2.26)) in expression (2.3), by exploiting the relation given

in (2.1) and by dropping [•], {•} and (t) for ease of readability, we may establish the

following set of differential equations.

MDÿ + VDẏ +KDy +BT
C(VM,DBC ẏ +KM,DBCy) = u (2.28)

After some mathematical manipulations, the following set of coupled differential

equations can be defined.

MDÿ + (VD +BT
CVM,DBC)ẏ + (KD +BT

CKM,DBC)y = u (2.29)

By exploiting expressions (2.5) and (2.8), expression (2.29) can also be represented

in the modal domain as given hereafter.

T Tm,DMDTm,Dη̈ + T Tm,D(VD +BT
CVM,DBC)Tm,Dη̇

+T Tm,D(KD +BT
CKM,DBC)Tm,Dη = um

(2.30)

2.2.2 Frequency Based Substructuring

In the Frequency Based Substructucturing (FBS) methods, the substructures to

be coupled are characterized by their impedance (i.e. for instance, dynamic stiffness

or apparent mass) or admittance (e.g. receptance, mobility or accelerance FRFs).

Thereby, this group of methods is typically exploited when performing DS operations

with experimentally characterized substructures.

The first developed FBS methods relied on the performance of coupling by primally

assembling the impedance of the substructures involved in the DS operations (see [31]).

However, when performing experimental modal characterization tests, we usually mea-

sure admittance instead of impedance. Thus, the performance of coupling by primally

assembling the impedance of the substructures requires in general the previous inver-

sion of their FRFs. On top of that, after performing coupling, an additional matrix

inversion is required, in case that the determination of the coupled FRFs is of interest.

The performance of so many matrix inversions makes this kind of methods numerically

inefficient and prone to noise amplification [12].

A more suitable technique to perform DS was developed in [32]. This method

showed to be able to directly couple sets of measured FRFs belonging to an unlimited

number of structures at same time. In addition, it also showed to be numerically

efficient, because to perform coupling by using this approach, we are just required to

calculate the inverse of a single matrix of dimension nJ × nJ (where, nJ represents

the number of interface DOFs). However, this approach demonstrated to be complex
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to be used in practice. For this reason, the method proposed in [32] was rewritten

in a more straightforward fashion in [23], giving arise to the development of the well-

known Lagrange Multiplier Frequency Based Substructuring (LM-FBS). This method

makes use of a dual assembly formulation representing a simpler version of the approach

proposed by Jetmundsen et al. in [32]. Due to its accuracy and simplicity, LM-FBS

method is usually the method of choice, when DS operations with FRFs are to be

performed (see, for example, [27],[33]).

When dealing with substructures connected by CEs, we may follow two different

approaches. On the one hand, we may treat the CEs as other substructures to be

coupled, on the other hand, we may include the dynamics of the CEs via compatibility

relaxation ([33],[34],[35]). To implement the second approach, we may exploit the

approach proposed in [20]. This approach represents the frequency based realization

of the approach proposed in [18] and presented in section 2.2.1. Thus, it is developed

by assuming that the CEs are massless and that no cross couplings between their

DOFs exist. By performing these assumptions, a new variant of LM-FBS method that

enables the inclusion of CEs via compatibility relaxation can be formulated. In this

new variant of LM-FBS, the compatibility conditions must allow relative displacement

between the interfaces of the substructures to be coupled. These coupling conditions

must be derived from the relation between the connecting forces acting on the CEs and

the relative displacement between the interfaces of the connected components.

Primal Formulation

To demonstrate how to perform primal assembly in the frequency domain let us

apply a Fourier transform on the expression (2.3) representative of a coupled set of

differential equations as follows

[ZD(jω)] {Y (jω)} = {U(jω)} + {G(jω)} (2.31)

with,

[ZD(jω)] =









Zα

Zβ
. . .









= −ω2 [MD] + jω [VD] + [KD] (2.32)

where, [Z] represents a dynamic stiffness matrix, while {Y (jω)} is a vector composed

by the displacements of the DOFs in the frequency domain. Vectors {U(jω)} and

{G(jω)} are composed by the external applied forces and by the connecting forces in

the frequency domain, respectively.

Before moving on, it is worth noting that expressions (2.1) and (2.9) are still valid

in the frequency domain. Thereby, we may define the following mathematical relations.
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{G(jω)} = − [BC ]T {ΛC(jω)} (2.33)

[BC ] {Y (jω)} = {0} (2.34)

As mentioned in section 2.2.1, when using a primal assembly formulation, the com-

patibility condition is imposed by retaining the unique set of DOFs, whereas the equilib-

rium condition must be enforced by imposing the mutual cancellation of the connecting

forces acting on the matching interface DOFs. Thereby, the compatibility condition

must be defined as follows [24][12]

{Y (jω)} = [LC ]
{

Ỹ (jω)
}

, ∀
{

Ỹ (jω)
}

(2.35)

where, {Ỹ (jω)} represents the unique set of coupled DOFs represented in the physical

domain and [LC ] represents a so-called Boolean localization matrix. Vector {Ỹ (jω)}
must respect the compatibility conditions, thus the following identities must hold.

[BC ] {Y (jω)} = [BC ] [LC ]
{

Ỹ (jω)
}

= {0} (2.36)

By observing expression (2.36), it is evident that this expression will hold, in case

that [LC ] is computed from the nullspace of [BC ] as given below [24][12].

[LC ] = null ([BC ]) (2.37)

The equilibrium conditions can be, mathematically, established as given below

[24],[12].

[LC ]T {G(jω)} = {0} (2.38)

To prove that the relations given in equation (2.38) are verified, we must rewrite

them by using expression (2.33) as follows.

−[LC ]T [BC ]T {ΛC(jω)} = {0} (2.39)

As matrix [LC ] is the nullspace of [BC ] (see expression (2.37)), we may define the

following expression.

[BC ] [LC ] = {0} (2.40)

By using the transpose matrix property (AB)T = BTAT [28] and expression (2.40),

we arrive to the identities given below.

([BC ] [LC ])T = [LC ]T [BC ]T = {0} (2.41)
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Thereby, we may conclude that [LC ]T is the nullspace of [BC ]T and, hence expression

(2.38) holds.

At this point, to primally assemble the dynamic stiffness matrices of each substruc-

ture, we must start by imposing the compatibility condition (see expression (2.35)) on

expression (2.31) as follows

{U(jω)} + {G(jω)} = [ZD(jω)][LC ]
{

Ỹ (jω)
}

(2.42)

by pre-multiplying expression (2.42) by [LC ]T and by imposing the equilibrium condi-

tions defined in expression (2.38), yields:

{

Ũ(jω)
}

= [Z̃(jω)]
{

Ỹ (jω)
}

(2.43)

where, [Z̃(jω)] and
{

Ũ(jω)
}

represent the primally assembled dynamic stiffness ma-

trices and the vector composed by the unique set of external applied forces in the

frequency domain, respectively. These variables are given hereafter.

[

Z̃(jω)
]

= [LC ]T [ZD(jω)] [LC ] (2.44)

{

Ũ(jω)
}

= [LC ]T {U(jω)} (2.45)

To comoute the coupled set of receptance FRFs, we are only required to invert the

primally assembled dynamic stiffness matrices as follows

[

H̃(jω)
]

= [Z̃(jω)]−1 (2.46)

where, [H̃(jω)] denotes a coupled set of receptance FRFs, which is composed by the

unique set of DOFs.

It is worth mentioning that, even though we have presented the primal assembly

formulation in the frequency domain by coupling dynamic stiffness, it continues to be

valid to couple other kinds of impedance, such as apparent mass.

Dual Formulation

To demonstrate how to perform dual assembly in the frequency domain, let us

start by using expressions (2.31), (2.33) and (2.34), to define the following system of

equations:







[ZD(jω)] {Y (jω)} = {U(jω)} −
[

BT
C

]

{ΛC(jω)}
[BC ] {Y (jω)} = {0}

(2.47)

by solving the first set of equations to obtain the value of {Y (jω)} and by dropping

[•], {•} and (jω) for ease of readability, yields:
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





Y = HD(U −BT
CΛC)

BCY = 0
(2.48)

where, [HD(jω)] is given below.

[HD(jω)] = [ZD(jω)]−1 (2.49)

After performing some mathematical manipulations with the system of equations

given in expression (2.48), we may define the following relations.







Y = HD

(

I −BT
C

(

BCHDB
T
C

)−1
BCHD

)

U

ΛC =
(

BCHDB
T
C

)−1
BCHDU

(2.50)

The first set of equations of the system of equations (2.50) can be used to define an

expression to calculate the coupled FRFs as follows

[H̄(jω)] =
{Ȳ (jω)}
{Ū(jω)} = HD

(

I −BT
C

(

BCHDB
T
C

)−1
BCHD

)

(2.51)

where, [H̄(jω)] denotes the coupled set of FRFs. Expression (2.51) enables the compu-

tation of coupled FRFs in a dual manner. A physical interpretation of this expression

can be found in [12]. This coupling approach was proposed by de Klerk et al. in

[23], where it was tagged as Lagrange Multiplier Frequency Based Substructucturing

(LM-FBS) method.

Unlike the primal assembly formulation, the dual assembly formulation does not

impose compatibility by retaining the unique set of DOFs. Thus, for each pair of

coupled DOFs, [H̄(jω)] will present two interface outputs and two interface inputs,

whose physical meaning is the same. To remove these redundant interface outputs and

inputs, for each pair of coupled DOFs we must remove a row and a column of [H̄(jω)]

associated with one of those outputs and inputs, respectively.

In alternative, to avoid the manual elimination of the redundant interface outputs

and inputs, we can use the previously defined Boolean localization matrix (see equation

(2.37)) to retain a unique set of outputs and inputs [27]. Thereby, let us use expression

(2.45) to define the following relation:

{U(jω)} =
(

[LC ]T
)† {

Ũ(jω)
}

(2.52)

where, superscript † denotes the Moore-Penrose pseudoinverse of a matrix. By using

expressions (2.51), (2.35) and (2.52), we can define the following expression.

[LC ] {Ỹ (jω)} =
[

H̄(jω)
]

(

[LC ]T
)† {

Ũ(jω)
}

(2.53)

Finally, expression (2.53) can be rewritten as follows
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{Ỹ (jω)} =
[

H̃(jω)
]{

Ũ(jω)
}

(2.54)

where,
[

H̃(jω)
]

represents the coupled FRFs, which are composed by unique sets of

outputs and inputs.
[

H̃(jω)
]

is given below.

[

H̃(jω)
]

= [LC ]† [H̄(jω)]
(

[LC ]T
)†

(2.55)

Note that, even though we have presented the LM-FBS method by coupling recep-

tance FRFs, it continues to be valid to couple other kinds of FRFs, such as mobility

and accelerance.

Decoupling

To perform decoupling, we may exploit the Inverse Coupling approach [36]. By

following this method, the primal assembly formulation presented above is still valid.

However, we should multiply the impedance matrices of the substructures to be de-

coupled by −1. Similarly, to perform decoupling by using LM-FBS, the procedures

presented above still hold, but the FRFs of the substructures to be decoupled must be

multiplied by −1.

Nevertheless, different strategies can be followed to perform decoupling. One can,

for example, decouple a substructure from an assembled system by enforcing the com-

patibility and equilibrium conditions at the interface DOFs, hence by following the

presented procedures to perform coupling operations, but by using the impedance or

admittance of the substructure to be decoupled multiplied by −1. However, when per-

forming decoupling operations with assemblies/substructures described by their exper-

imentally acquired FRFs, this approach is known for amplifying possible measurement

errors, leading to inaccurate results. In an attempt to increase the robustness of the de-

coupling operations, information measured at internal DOFs may also be included. This

leads, in general, to an improvement of the observability, controlability and conditioning

of the problem [37]. Thereby, decreasing the sensitivity of the decoupling operations

to measurement errors [38]. Detailed discussions on different approaches to perform

decoupling in frequency domain can be found, for instance, in [36],[38],[27],[39],[37].

Substructuring via compatibility relaxation

Here, we will derive the variant of the LM-FBS method (see section 2.2.2) proposed

in [20] that enables the inclusion of CEs into the coupling operations via compatibility

relaxation. To start, let us analyze the assembled structure composed by two sub-

structures connected by a CE depicted in figure 2.3. We will assume that this CE is

massless and that no cross couplings between its DOFs exists. If these conditions hold,

the relations given below are valid [17].
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[ZM,11(jω)] = −[ZM,12(jω)] = −[ZM,21(jω)] = [ZM,22(jω)] = [ZM (jω)] (2.56)

As substructures α and β are connected through the CE M , relative displacement

between their interfaces is allowed. This relative displacement is associated with the

connecting forces acting on the interfaces of the CE (see figure 2.4). Thus, by gener-

alizing for coupling an unlimited number of substructures connected by an unlimited

number of CEs, we may determine the relative displacement between the interfaces of

the connected substructures as given hereafter [18].

[BC ]{Y (jω)} = [ZM,D(jω)]−1{ΛC(jω)} (2.57)

where, matrix [ZM,D(jω)] is given below.

[ZM,D(jω)] =









ZM1
(jω)

ZM2
(jω)

. . .









(2.58)

Expression (2.57) defines the compatibility conditions, mathematically. The local

equilibrium conditions given by the first set of equations of the system of equations

(2.47) are still valid, because the CE is assumed to be massless [17]. Thus, by using the

top set of equations of the system of equations (2.47) and expression (2.57), we may

define the following system of equations







[ZD(jω)] {Y (jω)} = {U(jω)} −
[

BT
C

]

{ΛC(jω)}
[BC ]{Y (jω)} = [ZM,D(jω)]−1{ΛC(jω)}

(2.59)

by solving the first set of equations of the system of equations (2.59) to find the value

of {Y (jω)} and by pre-multiplying the resultant expression by [BC ], we may define the

following expression.

[BC ] {Y (jω)} = [BC ] [HD(jω)] {U(jω)} − [BC ] [HD(jω)]
[

BT
C

]

{ΛC(jω)} (2.60)

By using expression (2.60) and by dropping [•], {•} and (jω), we may rewrite the

second set of equations of the system of equations (2.59) as follows

Z−1
M,DΛC = BCHDU −BCHDB

T
CΛC (2.61)

after performing some mathematical manipulations, we may arrive to the following

relation:
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ΛC =
(

HM,D +BCHB
T
C

)−1
BCHU (2.62)

where, [HM,D] is given below.

HM,D = Z−1
M,D (2.63)

By using expression (2.62) and after performing some mathematical manipulations,

we may rewrite the first set of equations of the system of equations (2.59) as given

below.

Y = HDU −HDB
T
C

(

HM,D +BCHDB
T
C

)−1
BCHDU (2.64)

Thus, we can define an expression that enables the computation of coupled FRFs

by exploiting LM-FBS via compatibility relaxation as given below.

[H̃(jω)] =
{Ỹ (jω)}
{Ũ(jω)}

= HD

(

I −BT
C

(

HM,D +BCHDB
T
C

)−1
BCHD

)

(2.65)

Note that, as the used compatibility conditions to develop this variant of the LM-

FBS formulation do not impose null relative displacement between the interfaces of

the coupled substructures (see expression (2.135)), the computed coupled FRFs will

be composed by unique sets of coupled outputs and inputs. Hence, there is no need

to eliminate outputs and inputs from the obtained coupled FRFs. Moreover, it is also

worth mentioning that expression (2.65) can be used to couple any kind of FRFs, such

as receptance, mobility and accelerance.

2.2.3 State-Space Substructuring

The State-Space Substructuring (SSS) techniques make use of state-space models to

represent the dynamics of the components to be coupled. These approaches are suitable

to perform coupling with numerically and experimentally characterized substructures.

One of the first SSS techniques was proposed by Su and Juang in [9] (for this reason,

from now on it will be denoted as classical SSS). To implement this approach, we must

start by constructing an uncoupled state-space model by concatenating in a block

diagonal form the models of the substructures to be coupled. Then, to mathematically

define the coupling conditions (compatibility and equilibrium), a coupling matrix is

exploited. Finally, by imposing these conditions on the constructed uncoupled state-

space model, a coupled state-space model can be computed. This approach revealed to

be simple and to be able to successfully couple an unlimited number of substructures at

same time. However, this method also revealed to present two important limitations.

On the one hand, classical SSS requires the computation of two matrix inversions,

on the other hand, this approach is unable to compute minimal-order coupled models.
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Thereby, the computed coupled models will contain redundant states. These redundant

states do not perturb the input-output transfer functions of the coupled state-space

model [9]. Nevertheless, the computation of minimal-order coupled models is still

interesting for two main reasons. Firstly, minimal-order coupled state-space models

are free of redundant states, hence they are composed by a lower number of states.

For this reason, the computational effort required to perform calculations with them is

lower. Secondly, minimal-order coupled models are more elegant representations of the

dynamics of coupled structures.

When performing DS operations, we must eliminate one interface DOF for each pair

of connected DOFs. Thus, to obtain a minimal-order coupled model, for each pair of

connected DOFs, we must eliminate one state and its respective first order derivative

[9]. Thereby, the number of states included in a minimal-order coupled state-space

model is n−2nJ (where, n is the sum of the number of states of the state-space models

of the coupled substructures, while nJ is the number of interface outputs). By coupling

models represented in the physical domain (whose states and outputs present the same

physical meaning, hence composed by 2no states (where, no denotes the number of

outputs)), the states, which before coupling represented matching interface outputs,

will be representative of the correspondent coupled interface outputs (the same is valid

for the respective first order derivatives). Hence, the coupled model will include pairs

of states and respective first order derivatives, whose physical meaning is the same. To

compute a minimal-order coupled model, we cannot simply eliminate from the coupled

model one state for each pair of states, whose physical meaning is the same, because

each of these states contributes to the dynamics of the coupled model. Thus, to properly

compute a minimal-order coupled model, this state elimination must guarantee that

the contribution of each eliminated state is retrieved by the one kept in the coupled

model. Two post-processing procedures to perform this operation will be discussed in

section 2.3.3.

In contrast, when the state-space models are estimated from experimentally ac-

quired data (e.g. from measured FRFs), they are usually represented in the modal

domain (see, for instace, [40],[10]). For this reason, it is difficult to point out the states

that correspond to matching interface DOFs, which turns the elimination of the redun-

dant states infeasible. To circumvent this difficulty, one could think on transforming the

identified state-space models from the modal domain into the physical domain. How-

ever, as argued in [41],[42], the transformation of models identified from experimental

data into the physical domain is not feasible. For these models n >> no is usually veri-

fied, consequently, the transformation of these state-space models into physical domain

would impose a tremendous constraint in the models to force them to be composed by

2no states.

An approach to compute minimal-order coupled state-space models was proposed by

Sjövall and Abrahamsson in [8]. In their work, they suggested to couple the state-space

models of the substructures, previously, transformed into the so-called coupling form.
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The coupling form is based on the application of a similarity state vector transformation

that enables the partial transformation of the state vector of the state-space models

into physical domain. After performing this similarity transformation, the state vector

of the state-space models is composed by the first derivative of the interface outputs,

by the interface outputs and by n− 2nJ internal states.

When represented in coupling form, the first block row of the state equation of the

state-space models represents a second order differential equation. Thereby, coupling

can be performed by directly summing those first block rows [41],[43]. Performing

coupling in this way is feasible, because the coupling form proposed in [8] guarantees

that the interface inputs of the models do not contribute to the response of their internal

states. Thus, the internal states are not involved on the coupling operation, being the

state-space matrix terms associated with them only correctly placed on the coupled

state-space model [41].

This coupling method demonstrated to be able to solve the problems pointed to

classical SSS. On the one hand, the coupled model can be computed by performing

a single matrix inversion and, on the other hand, a minimal order coupled model is

directly computed. Nevertheless, this approach imposes the limitation of coupling just

two substructures at same time. In addition, the construction of the transformation

matrix to transform the state-space models into coupling form is not straightforward,

because it requires the choice of a subspace from a nullspace. In [41], Gibanica showed

that this choice is difficult to be performed and that it strongly affects the performance

of the transformation.

In [41], Gibanica developed a novel SSS method by porting the SSS approach pro-

posed in [8] into the general framework presented in [12]. This method turned out to be

able to couple an unlimited number of substructures at same time. However, it requires

the performance of two matrix inversions to compute the coupled state-space model.

Recently, Kammermeier et al. developed a novel SSS method in [44] based on a

dual assembly formulation. This method was later labelled as Lagrange Multiplier

State-Space Substructuring (LM-SSS) in [1]. LM-SSS is able to couple an unlimited

number of substructures at same time and only requires the performance of a single

matrix inversion to compute coupled state-space models. Thus, LM-SSS combines

the advantage of coupling an unlimited number of structures (pointed to classical SSS)

with the advantage of requiring a single matrix inversion to compute the coupled model

(pointed to the method developed in [8]).

However, LM-SSS presents some important limitations. As this method makes use

of a dual assembly formulation, the full set of interface DOFs is retained during the

performance of coupling operations. Hence, we are required to eliminate the redundant

DOFs from the coupled state-space models obtained with LM-SSS. In addition, this

approach is unable to compute minimal-order coupled state-space models and it is only

capable of coupling acceleration state-space models (i.e. state-space models, whose

output vector elements are accelerations, respectively). Hence, if we are interested on
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computing a displacement or a velocity coupled model (i.e. state-space models, whose

output vector elements are displacements and velocity, respectively), we are forced to

firstly compute an acceleration coupled model with LM-SSS. Then, the correspondent

displacement or velocity coupled models can be obtained from the acceleration one (see

[45]). However, the computation of displacement and velocity coupled models from

acceleration ones is not convenient, because it involves the inversion of the state matrix

of the coupled model.

Despite the limitations here pointed to LM-SSS, in section 2.3 it will be shown that

they can be mitigated by using tailored post-processing procedures. In this way, LM-

SSS will combine the advantages of the methods proposed in [9],[8] without presenting

any important disadvantage or limitation. Thus, becoming a very promising SSS ap-

proach. This is the reason why, in the following, we will present the dual assembly

formulation in the state-space domain (also named LM-SSS). Additionally, we will also

discuss how to perform decoupling by using this approach.

Note that, in contrast with sections 2.2.1 and 2.2.2, here we will not present a

primal state-space assembly formulation neither the extension of the dual assembly

formulation to include CEs via compatibility relaxation. These techniques will be,

respectively, presented in sections 2.4 and 2.5. This is justified by the fact that these

approaches were not part of the state-of-the-art, before the performance of the research

activities described in this document. These formulations were, actually, developed in

one of the authors’ publications (i.e. in [2]).

Dual Formulation

In this section, we will present the dual assembly State-Space Substructuring formu-

lation [44], also known as Lagrange Multiplier State-Space Substructuring (LM-SSS)

method [1].

The first step to derive the LM-SSS method is the construction of a so-called diag-

onal coupled state-space model. This model can be constructed by concatenating the

state-space matrices of each state-space model of each substructure to be coupled in a

block diagonal form. Moreover, we must also consider the connecting forces that act

on the interface of the coupled substructures and that are responsible for keeping the

components coupled (see figure 2.2). Thereby, assuming that an unlimited number of

substructures is intended to be coupled, we can define the diagonal coupled state-space

model as follows

{ẋS(t)} = [AS,D] {xS(t)} + [BS,D] ({u(t)} − {g(t)})

{ÿ(t)} =
[

CaccelS,D

]

{xS(t)} +
[

Daccel
S,D

]

({u(t)} − {g(t)})
(2.66)

with,
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{xS(t)} =















xα(t)

xβ(t)
...















, {y(t)} =















yα(t)

yβ(t)
...















{u(t)} =















uα(t)

uβ(t)
...















, {g(t)} =















gα(t)

gβ(t)
...















(2.67)

[AS,D] =









Aα

Aβ
. . .









, [BS,D] =









Bα

Bβ
. . .









[CaccelS,D ] =









Caccelα

Caccelβ

. . .









, [Daccel
S,D ] =









Daccel
α

Daccel
β

. . .









(2.68)

{x(t)} ∈ R
n×1 represents the state vector, {u(t)} ∈ R

ni×1 represents the input vector,

whose elements are the external applied forces and {ÿ(t)} ∈ R
no×1 represents the

acceleration output vector. [A] ∈ R
n×n, [B] ∈ R

n×ni , [C] ∈ R
no×n and [D] ∈ R

no×ni

represent, respectively, state, input, output and feedthrough matrices. Superscript

accel denotes a state-space matrix of an acceleration state-space model, while subscript

S denotes state vectors and state-space matrices of state-space models representative

of the dynamics of substructures.

By using expression (2.1), expression (2.66) can be rewritten as given below.

{ẋS,D(t)} = [AS,D]{xS,D(t)} + [BS,D]({u(t)} − [BC ]T {λC(t)})

{ÿ(t)} = [CaccelS,D ]{xS,D(t)} + [Daccel
S,D ]({u(t)} − [BC ]T {λC(t)})

(2.69)

To couple the substructures, we must impose continuity at their interface. This con-

dition was already, mathematically, defined in expression (2.9). However, here we are

working with state-space models, whose outputs represent accelerations, thus equation

(2.9) must be set-up in terms of accelerations.

[BC ]{ÿ(t)} = {0} (2.70)

Besides the compatibility requirement at the interface, the coupled substructures

have to verify the local equilibrium conditions defined by the output equation of the

state-space model given in expression (2.69). By solving these equations to determine

{u(t)}, we may obtain the expression given below.

{u(t)} = [Daccel
S,D ]−1({ÿ(t)} − [CaccelS,D ]{xS,D(t)}) + [BC ]T {λC(t)} (2.71)
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By using the expressions representative of the compatibility and equilibrium condi-

tions (i.e. equations (2.70) and (2.71), respectively), and by dropping {•}, [•] and (t)

for ease of readability, we can set-up the following system of equations.







(Daccel
S,D )−1(ÿ − CaccelS,D xS,D) +BT

CλC = u

BC ÿ = 0
(2.72)

By performing some mathematical manipulations, the system of equations (2.72)

can be rewritten as given hereafter.















λC = (BCD
accel
S,D BT

C)−1(BCC
accel
S,D xS +BCD

accel
S,D u)

ÿ = (CaccelS,D −Daccel
S,D BT

C(BCD
accel
S,D BT

C)−1BCC
accel
S,D )xS,D

+ (Daccel
S,D −Daccel

S,D BT
C(BCD

accel
S,D BT

C)−1BCD
accel
S,D )u

(2.73)

By using equation (2.71) and the bottom equation of the system of equations (2.73),

the state equations of the diagonal coupled state-space model (equation (2.69)) can be

rewritten as given below.

ẋS,D = (AS,D −BS,DB
T
C(BCD

accel
S,D BT

C)−1BCC
accel
S,D )xS,D

+ (BS,D −BS,DB
T
C(BCD

accel
S,D BT

C)−1BCD
accel
S,D )u

(2.74)

By using equation (2.74) and the bottom equation of the system of equations (2.73),

the coupled state-space model can be defined as follows

{ ˙̄x(t)} = [Ā]{x̄(t)} + [B̄]{ū(t)}
{¨̄y(t)} = [C̄accel]{x̄(t)} + [D̄accel]{ū(t)}

(2.75)

where,

[Ā] = AS,D −BS,DB
T
C(BCD

accel
S,D BT

C)−1BCC
accel
S,D

[B̄] = BS,D −BS,DB
T
C(BCD

accel
S,D BT

C)−1BCD
accel
S,D

[C̄accel] = CaccelS,D −Daccel
S,D BT

C(BCD
accel
S,D BT

C)−1BCC
accel
S,D

[D̄accel] = Daccel
S,D −Daccel

S,D BT
C(BCD

accel
S,D BT

C)−1BCD
accel
S,D

(2.76)

overbar variables represent vectors/matrices associated with the coupled state-space

model.

It is worth mentioning that several system identification algorithms developed to

identify state-space models from experimentally acquired data (e.g. from measured

FRFs) provide an estimation of displacement state-space models (see, for instance, [46]).

Nevertheless, to derive the LM-SSS method we have exploited acceleration models,

hence LM-SSS is only capable of coupling acceleration models. Thereby, to apply

the LM-SSS equations given in (2.75) and (2.76), the identified displacement state-



30 2. Dynamic Substructuring

space models must be previously double-differentiated to compute the correspondent

acceleration models.

By double differentiating a given identified displacement state-space model, we can

obtain the correspondent acceleration model as follows [45]

{ẋ(t)} = [Aaccel]{x(t)} + [Baccel]{u(t)}
{ÿ(t)} = [Caccel]{x(t)} + [Daccel]{u(t)}

(2.77)

where, matrices [Aaccel], [Baccel], [Caccel] and [Daccel] can be computed from the state-

space matrices of the identified displacement model as:

[Aaccel] = [A] , [Baccel] = [B]

[Caccel] =
[

CdispAA
]

, [Daccel] =
[

CdispAB
]

+ [Ddisp]
(2.78)

where, superscript disp denotes state-space matrices of a displacement state-space

model and [Ddisp] = [0].

Decoupling

To perform decoupling in the state-space domain, the SSS methods proposed in

literature (see, for instance, [9], [8], [44]) are still valid. However, the state-space models

of the substructures to be decoupled must be represented in negative form [47], [43]. To

derive the negative form of a given state-space model, let us consider an acceleration

state-space model directly defined from the mass, damping and stiffness matrices of a

given mechanical system [41] as follows:

{ẋ(t)} = [A]{x(t)} + [B]{u(t)}
{ÿ(t)} = [Caccel]{x(t)} + [Daccel]{u(t)}

(2.79)

where, the state-space matrices are given below.

[A] =

[

−M−1V −M−1K

I 0

]

, [B] =

[

M−1

0

]

[Caccel] =
[

−M−1V −M−1K
]

, [Daccel] =
[

M−1
]

(2.80)

To compute the negative form of the state-space model given in expression (2.79),

we must multiply the matrices [M ], [V ] and [K] by −1 [43],[47], as given hereafter.

[A] =

[

−(−M)−1(−V ) −(−M)−1(−K)

I 0

]

, [B] =

[

−M−1

0

]

[Caccel] = [−(−M)−1(−V ) −(−M)−1(−K)], [Daccel] =
[

−M−1
]

(2.81)
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From the state-space matrices of the model given in expression (2.81), it is evident

that to compute the negative form of an acceleration state-space model, we must multi-

ply its input and feedthrough matrices by −1, while its state and output matrices must

remain unchanged. Although, the negative form of a state-space model was derived

by using an acceleration model directly constructed from the mass, damping and stiff-

ness matrices of a given system, the procedure here presented continues to be valid to

transform displacement and velocity state-space models into negative form. Moreover,

the state-space models can be established in any domain (for example, in the modal

domain), this approach remains valid to transform them into negative form.

After having performed the intended decoupling operations, we must retain from the

obtained state-space model the inputs and outputs of the substructure to be identified,

while the other inputs and outputs must be eliminated. This can be performed by

only keeping the columns of the input and feedthrough matrices associated with the

inputs of the component to be identified and by keeping the rows of the output and

feedthrough matrices associated with the outputs of the same component.

2.3 Mitigating the limitations of LM-SSS

In this section, approaches to mitigate all the limitations pointed to the LM-SSS

method in section 2.2.3 will be presented. To start, in section 2.3.1, the LM-SSS for-

mulation is extended to be capable of directly performing coupling operations with

displacement and velocity models. This extension of LM-SSS enables a direct compu-

tation of displacement, velocity and acceleration coupled state-space models. Then, a

novel coupling form, specially tailored to perform coupling with LM-SSS, is outlined in

section 2.3.2, whereas section 2.3.3 presents two novel post-processing procedures to en-

able the elimination of the redundant states originated from DS operations. Thereby,

the performance of coupling with LM-SSS by using state-space models transformed

into UCF together with these post-processing procedures makes the computation of

minimal-order coupled models possible.

Afterwards, in section 2.3.4 a post-processing procedure to retain a unique set of

DOFs from coupled state-space models obtained with LM-SSS is proposed. This devel-

opment enables a smooth elimination of the redundant DOFs included in the coupled

state-space models computed with LM-SSS, avoiding, in this way, the need of manually

eliminating them. Finally, in section 2.3.5, the LM-SSS method enhanced with the

proposed post-processing procedures is compared with the SSS methods presented in

[9] and [8].
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2.3.1 Extending LM-SSS to compute displacement and velocity cou-

pled models

The LM-SSS method presented in section 2.2.3 will be here extended to directly

compute displacement and velocity coupled state-space models. To start, let us exploit

the relations defined in equation (2.78) to rewrite expression (2.76) as follows:

[Ā] = AS,D −BS,DE(CdispS,DAS,DAS,D)

[B̄] = BS,D −BS,DE(CdispS,DAS.DBS,D)

[C̄accel] = C
disp
S,DAS,DAS,D − (CdispS,DAS,DBS,D)E(CdispS,DAS,DAS,D)

[D̄accel] = C
disp
S,DAS,DBS,D − (CdispS,DAS,DBS,D)E(CdispS,DAS,DBS,D)

(2.82)

where, [E] is given below.

[E] = BT
C(BC(CdispS,DAS,DBS,D)BT

C)−1BC (2.83)

By using expressions (2.78), equation (2.82) can be rewritten to compute coupled

displacement state-space models as given below.

[Ā] = AS,D −BS,DE(CdispS,DAS,DAS,D)

[B̄] = BS,D −BS,DE(CdispS,DAS,DBS,D)

[C̄disp] = C
disp
S,D − (CdispS,DAS,DBS,D)E(CdispS,D )

[D̄disp] = C
disp
S,DAS,DBS,D − (CdispS,DAS,DBS,D)E(CdispS,DAS,DBS,D)−

C̄dispĀB̄ = 0

(2.84)

By exploiting the relations between the state-space matrices of acceleration and

velocity state-space models (see [45]), expression (2.82) can be rewritten to directly

calculate coupled velocity state-space models as follows:

[Ā] = AS,D −BS,DE(CdispS,DAS,DAS,D)

[B̄] = BS,D −BS,DE(CdispS,DAS,DBS,D)

[C̄vel] = C
disp
S,DAS,D − (CdispS,DAS,DBS,D)E(CdispS,DAS,D)

[D̄vel] = C
disp
S,DBS,D − (CdispS,DAS,DBS,D)E(CdispS,DBS,D)

(2.85)

where, superscript vel denotes state-space matrices of velocity state-space models. Note

that, if the coupled state-space model obeys Newton’s second law [CdispS,DBS,D] = [0]

[45],[8], hence [D̄vel] = [0].
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2.3.2 Unconstrained Coupling Form

When performing coupling with state-space models that are not defined in the

physical domain, these models must be previously transformed into coupling form in

order to open the possibility of computing minimal-order coupled state-space models

(see section 2.2.3). This is also valid, when performing decoupling operations, because

this DS operation also promotes the presence of redundant states in the resultant state-

space model.

The transformation of the state vector of a given state-space model representative

of the dynamics of a given substructure into coupling form can be defined as follows

[8]:

{z(t)} = [TCF ]{q(t)} =











ẏJ(t)

yJ(t)

xI(t)











(2.86)

where, [TCF ] ∈ R
n×n is the matrix responsible for transforming a state-space model into

coupling form, {q(t)} ∈ R
n×1 represents a state vector expressed in a given domain and

{z(t)} ∈ R
n×1 represents a state vector transformed into coupling form. Superscripts

J and I denote variables related to interface and internal DOFs, respectively.

Matrix [TCF,α] can be constructed as follows:

[TCF ] =







Cdisp,JA

Cdisp,J

N






(2.87)

where, the first and second block rows transform the states into the first derivative of

the output DOFs and into the output DOFs [45], respectively. The last block row (i.e.

N ∈ R
(n−2nJ )×n) applies a transformation on the internal states and it is included on

[TCF ] to make sure that the dimension of the state-space matrices is preserved.

Unlike the approach proposed by Sövall and Abrahamsson in [8], when using LM-

SSS, all the states are involved (including the internal states) in the DS operations. For

this reason, [N ] does not have to be computed to make sure that the interface inputs do

not contribute for the response of the internal states. Therefore, provided that [TCF ]

is invertible and full rank, any transformation can be applied on the internal states.

Thereby, [N ] can be computed as follows:

[

Cdisp,JA

Cdisp,J

]

[N ]T = 0 (2.88)

By computing [N ] as given in expression (2.88), we make sure that [TCF ] is always

full rank, provided that [Cdisp] is full row rank. In this way, expression (2.88) concludes

the development of a novel coupling form specifically suited to perform coupling with

LM-SSS. This coupling form will be from now on denoted Unconstrained Coupling
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Form (UCF), because it is simple and it provides almost complete freedom for the

transformation of the internal states.

By comparing UCF with the coupling form proposed in [8], UCF has the advantage

of not requiring the selection of a subspace from a nullspace. This is an important

advantage, because the selection of the subspace used to define the similarity transfor-

mation matrix to transform state-space models into the coupling form proposed in [8]

is hard to be made and strongly affects the accuracy of the transformation [41].

It is worth mentioning that the input and the output vectors of a given state-space

model to be transformed into coupling form must be, previously, partitioned in terms

of interface and internal DOFs as given hereafter.

{u(t)} =

{

uJ(t)

uI(t)

}

(2.89a) {y(t)} =

{

yJ(t)

yI(t)

}

(2.89b)

Obviously, the rows and columns of the state-space matrices of the model must be

sorted in accordance with the input and output vectors.

2.3.3 Minimal-Order Coupled State-Space Models

When coupling state-space models, for each pair of connected DOFs, one interface

DOF must be eliminated to avoid the presence of redundant DOFs on the coupled

state-space model. Similarly, one state and its correspondent first derivative must be

eliminated to make sure that a minimal order coupled model, thus free of redundant

states originated from the coupling operation, is obtained [9]. LM-SSS method is unable

to directly compute a coupled state-space model free of redundant inputs and outputs

and, it is also unable to directly compute minimal-order coupled state-space models.

Procedures to remove the redundant inputs and outputs present in the coupled models

obtained with LM-SSS are discussed in section 2.3.4. Here, we will focus our attention

on the elimination of the redundant states originated from coupling operations by

proposing two post-processing procedures to eliminate these states from the coupled

models computed with LM-SSS.

To start, let us assume that acceleration state-space models representative of the

substructures depicted in figure 2.1 have been coupled by exploiting LM-SSS. Let us

further assume that before being coupled, the state-space models of these substructures

were transformed into coupling form. Thereby, the obtained coupled state-space model

can be represented as follows:

{ ˙̄z(t)} = [Ā]{z̄(t)} + [B̄]{ū(t)}
{¨̄y(t)} = [C̄accel]{z̄(t)} + [D̄accel]{ū(t)}

(2.90)

where, the state vector is given below.
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{z̄(t)} =
{

˙̄yJα(t) ȳJα(t) x̄Iα(t) ˙̄yJβ (t) ȳJβ (t) x̄Iβ(t)
}T

(2.91)

Recall that to couple these structures, we must impose compatibility at the interface

DOFs of both substructures (see section 2.2.3), thus the following identities hold.

{ȳJ(t)} = {ȳJα(t)} = {ȳJβ (t)} (2.92a) { ˙̄yJ(t)} = { ˙̄yJα(t)} = { ˙̄yJβ (t)} (2.92b)

From expressions (2.91), (2.92a) and (2.92b), it is evident that the computed cou-

pled state-space model is a non-minimal order model, because it presents states, whose

physical meaning is the same (e.g. {ȳJα(t)} and {ȳJβ (t)}). However, to compute a

minimal order coupled model, we cannot simply remove one state and respective first

derivative of each pair of states representing the same physical quantity. This is jus-

tified by the fact that these states contribute to the dynamics of the coupled model.

Hence, when removing these redundant states we must ensure that their contribution

is retrieved by the states that remain in the coupled model.

To properly eliminate the redundant states from the coupled model, we may define

a signed Boolean matrix as follows:

[BT ]{z(t)} = {0} (2.93)

where, from now on matrix [BT ] will be referred as state mapping matrix. Exemplifying

for the coupled state-space model obtained by coupling the substructures shown in

figure 2.1, expression (2.93) would be given as follows:

[BT ]{z(t)} =

[

φI 0 0 −φI 0 0

0 φI 0 0 −φI 0

]
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




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

















˙̄yJα(t)

ȳJα(t)

x̄Iα(t)

˙̄yJβ (t)

ȳJβ (t)

x̄Iβ(t)




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



































= {0} (2.94)

where, [I] ∈ R
no×no denotes an identity matrix and φ is a numerical coefficient, whose

value can be selected to be either 1 or −1.

At this point, we may set-up a relation between the state vector of the original

coupled model and of the minimal-order coupled model as follows:

{z(t)} = [LT ]{z̃(t)}, ∀{z̃(t)} (2.95)

where, {z̃} ∈ R
nmin×1 (with nmin being the number of states of the minimal-order

coupled model) denotes the state vector of the minimal-order coupled state-space model,

while from now on [LT ] will be denoted as state Boolean localization matrix. Vector
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{z̃(t)} must respect equation (2.93), hence we may define the following relations

[BT ]{z(t)} = [BT ][LT ]{z̃(t)} = {0} (2.96)

thus, matrix [LT ] can be computed from the nullspace of [BT ] as given below.

[LT ] = null([BT ]) (2.97)

It is worth mentioning that a matrix defined in similar way as [LT ] has already

been exploited in [41],[42] to translate the SSS method proposed in [8] into the general

framework presented in [12].

By using expression (2.95), we may rewrite expression (2.90) as given below.

[LT ]{ ˙̃z(t)} = [Ā][LT ]{z̃(t)} + [B̄]{u(t)}
{ÿ(t)} = [C̄accel][LT ]{z̃(t)} + [D̄accel]{u(t)}

(2.98)

By exploiting the Moore-Penrose pseudoinverse of matrix [LT ], a minimal realization

of the original coupled state-space model computed with LM-SSS (see expression (2.90))

can be defined as given below.

{ ˙̃z(t)} = [LT ]†[Ā][LT ]{z̃(t)} + [LT ]†[B̄]{u(t)}
{ÿ(t)} = [C̄accel][LT ]{z̃(t)} + [D̄accel]{u(t)}

(2.99)

The post-processing procedure just presented requires the calculation of the pseu-

doinverse of matrix [LT ]. Thus, it is important to analyze matrix [LT ] to evaluate if the

computation of its pseudoinverse will demand important computational effort and if it

may introduce numerical problems associated with ill-conditioned matrix inversions.

[LT ] is a matrix of dimension n× nmin, with n > nmin, whose rank is nmin. Thus,

the pseudoinverse of [LT ] can be computed as given hereafter [48].

[LT ]† = (LTTLT )−1LTT (2.100)

As [LT ] is a Boolean matrix, it will represent an orthogonal basis for the nullspace

of [BT ] [3]. Hence, matrix [LT ]T [LT ] can be defined as follows:

[LT ]T [LT ] =









vT1

vT2
...









[

v1 v2 . . .
]

=









v1 • v1
v2 • v2

. . .









(2.101)

where, vi • vj = 0, ∀ i ̸= j, • represents dot product and vi represents the ith column

of [LT ] matrix.

Observing expression (2.101), it is evident that [LT ]T [LT ] is a diagonal and invertible

matrix [28]. Therefore, the computation of [LT ]† will not introduce numerical problems

and it will not require important computational effort.
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Alternatively, to eliminate the redundant states from the coupled state-space mod-

els, we may exploit a manual post-processing procedure. To implement this manual

approach, for each pair of redundant sates we must proceed as follows:

• Sum the columns of [Ā] that are associated with the pair of redundant states

under analysis and repeat the same operation on the columns of [C̄accel];

• Eliminate the row and column of [Ā] associated to one of those redundant states;

• Eliminate the same row and column of matrices [B̄] and [C̄accel], respectively;

• Repeat the three first steps for the first derivative of the analyzed pair of redun-

dant states.

By exploiting this manual procedure, a minimal-order coupled state-space model

can be determined without using [LT ].

It is worth mentioning that the post-processing procedures here discussed to elim-

inate the redundant states originated from coupling operations still hold and can be

exploited in similar manner to eliminate the redundant states originated from decou-

pling operations.

2.3.4 Retaining the unique set of interface DOFs

The LM-SSS method is a dual DS formulation, thus, when performing DS operations

with this technique the full set of interface DOFs is retained. This happens, because the

compatibility and equilibrium conditions (see equations (2.70) and (2.71), respectively)

used to formulate LM-SSS do not define a direct relation between the unique set of

coupled outputs and inputs and the set of outputs and inputs of the state-space models

to be coupled. Therefore, for each pair of connected DOFs, two outputs and inputs,

whose physical meaning is the same, will be present in the coupled state-space model.

To compute a coupled model composed by a unique set of DOFs, for each pair of

repeated outputs and inputs, we can simply eliminate one of the rows of the [C] and

[D] matrices associated with one of the repeated outputs and one of the columns of

the [B] and [D] matrices associated with one of the repeated inputs [1]. Nevertheless,

this manual procedure might get cumbersome, when the coupling operations involve

the coupling of several interface DOFs belonging to several different substructures.

To ease the elimination of the redundant outputs and inputs that are present in the

coupled state-space model, we may exploit the relations between the full and unique

sets of outputs and inputs defined in expressions (2.35) and (2.45), respectively. Note

that these conditions have already been used in [27] to retain the unique set of DOFs

from the coupled set of FRFs obtained by exploiting LM-FBS (this procedure was also

shown in section 2.2.2). Note also that, expressions (2.35) and (2.45) are established

in the frequency domain. Nevertheless, they are still valid in the time domain, thus we

may express them in the time domain as given below.
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{ũ(t)} = [LC ]T {u(t)} (2.102a) {y(t)} = [LC ]{ỹ(t)} (2.102b)

where, {ũ(t)} represents the unique set of force inputs and {ỹ(t)} represents the unique

set of displacements outputs.

Let us now consider the following generic acceleration coupled state-space model

determined by exploiting LM-SSS.

{ ˙̄x(t)} = [Ā]{x̄(t)} + [B̄]{ū(t)}
{¨̄y(t)} = [C̄accel]{x̄(t)} + [D̄accel]{ū(t)}

(2.103)

As the state-space model given in expression (2.103) is an acceleration model, before

retaining its unique set of outputs and inputs, we must compute the second order time

derivative of equation (2.102b) as given hereafter.

{¨̄y(t)} = [LC ]{¨̃y(t)} (2.104)

By exploiting equations (2.102a) and (2.104), expression (2.103) can be rewritten

as given below.

{ ˙̄x(t)} = [Ā]{x̄(t)} + [B̄]([LC ]T )†{ũ(t)}
[LC ]{¨̃y(t)} = [C̄accel]{x̄(t)} + [D̄accel]([LC ]T )†{ũ(t)}

(2.105)

Finally, using the pseudoinverse of matrix [LC ], the state-space model given in

expression (2.105) can be rewritten as given below.

{ ˙̄x(t)} = [Ā]{x̄(t)} + [B̄]([LC ]T )†{ũ(t)}
{¨̃y(t)} = [LC ]†[C̄accel]{x̄(t)} + [LC ]†[D̄accel]([LC ]T )†{ũ(t)}

(2.106)

The coupled state-space model given in expression (2.106) represents the state-

space model given in expression (2.103) composed by a unique set of interface inputs

and outputs. Thus, without presenting redundant inputs and outputs.

Note that, as [LC ] is Boolean, it represents an orthogonal basis of the nullspace of

[BC ]. For this reason, the computation of [LC ]† and ([LC ]T )† will not demand important

computational effort, because to calculate those matrices we are only required to invert

a diagonal matrix (see section 2.3.3).

It is also worth mentioning, that the procedure here presented continues to be valid

to eliminate the redundant inputs and outputs of displacement and velocity coupled

state-space models computed with LM-SSS.



2.3. Mitigating the limitations of LM-SSS 39

2.3.5 Comparison of LM-SSS with state-of-the-art SSS techniques

Here, we will perform a comparison between the LM-SSS method enhanced by the

post-processing procedures discussed in this section with the SSS methods proposed by

Su and Juang (here, also denoted as classical SSS) in [9] and by Sjövall and Abrahams-

son in [8].

When exploiting classical SSS, we make use of a so-called coupling matrix to impose

both compatibility and equilibrium conditions. This matrix is constructed by only

taking into account the interface DOFs of the components to be coupled. Each row

of the coupling matrix corresponds to a coupled DOF, while each of its columns is

associated with one interface DOF of the components to be coupled. Each row of the

coupling matrix is defined by assigning a unitary value to the terms associated with

the matching DOFs that are coupled to obtain the coupled DOF associated with the

row under construction, while the other terms must be set to zero.

By using the constructed coupling matrix, we can define relations between the in-

terface outputs of the components to be coupled and the unique set of coupled interface

outputs. These relations represent the compatibility conditions. Similarly, the equi-

librium conditions can be represented by using the coupling matrix to define relations

between the interface inputs of the components to be coupled and the unique set of

coupled interface inputs. Thereby, the compatibility and equilibrium conditions can be

defined as given hereafter.

{yJ(t)} = [TSJ ]T {ỹJ(t)}, {ũJ(t)} = [TSJ ]{uJ(t)} (2.107)

where, [TSJ ] ∈ R
nJ×2nJ denotes the coupling matrix used in the classical SSS approach

to set-up the coupling conditions.

At this point, the state-space matrices of the models of the substructures to be

coupled must be partitioned in terms of internal and interface DOFs. Afterwards, we

must concatenate the partitioned state-space matrices in block diagonal form to set-up

an uncoupled diagonal state-space model as given hereafter.

{ẋS(t)} = [AS,D]{xS(t)} +
[

BI
S,D BJ

S,D

]

{

uI(t)

uJ(t)

}

{

yI(t)

yJ(t)

}

=

[

CIS,D

CJS,D

]

{xS(t)} +

[

DII
S,D DIJ

S,D

DJI
S,D DJJ

S,D

]{

uI(t)

uJ(t)

} (2.108)

The performed concatenating operations to construct the uncoupled diagonal state-

space model are exemplified for the construction of [AS,D], [BI
S,D], [CIS,D] and [DII

S,D]

in the expression given below.
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[AS,D] =









Aα

Aβ
. . .









, [BI
S,D] =









BI
α

BI
β

. . .









[CIS,D] =









CIα

CIβ
. . .









, [DII
S,D] =









DII
α

DII
β

. . .









(2.109)

By imposing the coupling conditions defined in equations (2.107) in the uncoupled

diagonal state-space model (see equation (2.108)) and after performing some mathe-

matical manipulations, we may compute the coupled state-space model as follows:

{ ˙̃x(t)} = [Ã]{x̃(t)} +
[

B̃I B̃J
]

{

ũI(t)

ũJ(t)

}

{

ỹI(t)

ỹJ(t)

}

=

[

C̃I

C̃J

]

{x̃(t)} +

[

D̃II D̃IJ

D̃JI D̃JJ

]{

ũI(t)

ũJ(t)

} (2.110)

where,

[Ã] = AS,D +BJ
S,DQC

J
S,D

[B̃] =
[

BI
S,D +BJ

S,DQD
JI
S,D BJ

S,D(DJJ
S,D)−1T TSJS

−1
]

[C̃] =

[

CIS,D +DIJ
S,DQC

J
S,D

S−1TSJ(DJJ
S,D)−1CJS,D

]

[D̃] =

[

DII
S,D +DIJ

S,DQD
JI
S,D DIJ

S,D(DJJ
S,D)−1T TSJS

−1

S−1TSJ(DJJ
S,D)−1DJI

S,D S−1

]

(2.111)

where, overtilde variables denote vectors/matrices associated with a coupled state-space

model composed by unique sets of outputs and inputs, whereas variables [S] and [Q]

are given below.

[S] = TSJ(DJJ
S,D)−1T TSJ (2.112)

[Q] = (DJJ
S,D)−1T TSJS

−1TSJ(DJJ
S,D)−1 − (DJJ

S,D)−1 (2.113)

By comparing LM-SSS with classical SSS, it is evident that LM-SSS is simpler to

implement, because there is no need of partitioning the state-space matrices in terms of

internal and interface DOFs to compute the diagonal coupled state-space model used

in LM-SSS (see expression (2.66)). In contrast, to construct the diagonal uncoupled

state-space model used in classical SSS, we are required to partition the state-space

matrices (see expression (2.110)).

Furthermore, by using classical SSS we are required to compute two matrix inver-
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sions, while by exploiting LM-SSS we are only required to perform a single matrix

inversion. This might represent an important advantage of LM-SSS over classical SSS,

when dealing, for instance, with real-time substructuring applications involving systems

presenting time-varying dynamic behaviour and, whose interfaces are characterized by

many interface DOFs. When dealing with this kind of applications, state-space models

representative of each variation on the dynamics of the substructures to be coupled must

be computed and coupled. Thus, these applications require the performance of several

coupling operations. Thereby, performing a single matrix inversion rather than two for

each coupling operation can represent a dramatic decrease on the computational cost

associated with the real-time substructuring application. On top of this, the matrix to

be inverted by using LM-SSS is of dimension nJ × nJ (see expression (2.76)), whereas

the matrices to be inverted by exploiting classical SSS are of dimension nJ × nJ and

2nJ × 2nJ (see expression (2.111)). Therefore, as the number of interface DOFs of the

substructures to be coupled increases, more important will be the advantage of using

LM-SSS instead of classical SSS.

Observing the coupling conditions defined for the classical SSS method (equations

(2.107)), we may notice that they establish relations between the unique set of interface

outputs and inputs and the interface outputs and inputs of the components to be

coupled. Thus, the coupled state-space model computed by classical SSS (see equation

(2.110)) will be composed by unique sets of interface outputs and inputs, hence there

is no need to use a post-processing procedure to eliminate redundant interface DOFs.

This represents an advantage of classical SSS over LM-SSS.

To analyze the SSS approach proposed in [8], we will consider the coupling of the

two substructures shown in figure 2.2. To start, we must transform the state-space

models of these substructures into the coupling form presented in [8] (from now on

labelled as SACF) as required by the method presented in the same publication. The

displacement state-space models of substructure α and β transformed into SACF can

be represented as follows










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
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
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
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(2.114)

where, subscript P denotes vectors/matrices associated with substructure P , for this

specific case P may either be α or β.

The compatibility and equilibrium conditions can be defined as follows
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{

yJα(t)

yJβ (t)

}

=

[

I

I

]

{ỹJ(t)} (2.115a) {ũJ(t)} =
[

I I
]

{

uJα(t)

uJβ(t)

}

(2.115b)

where, [I] ∈ R
nJ×nJ is an identity matrix.

To compute the coupled state-space model, we must start by summing the first

block rows of the state equations of the state-space models of both components (i.e. α

and β). Then, by imposing both coupling conditions defined in expressions (2.115) and

after making some mathematical manipulations, we can determine the first block row

of the coupled state-space model (for details, see [49]). Finally, by correctly placing

the remaining state-space matrix terms of the models of the substructures α and β, we

may define the coupled state-space model as follows
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ỹJ(t)

yIα(t)

yIβ(t)











=







0 I 0 0

CIvα CIdα CIIα 0

CIvβ CIdβ 0 CIIβ





























˙̃yJ(t)
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(2.116)

where,

Ãvv = Bvv
α ΓAvvβ +Bvv

β ΓAvvα (2.117)

Ãvd = Bvv
α ΓAvdβ +Bvv

β ΓAvdα (2.118)

ÃvIα = Bvv
β ΓAvIα (2.119)

ÃvIβ = Bvv
α ΓAvIβ (2.120)

B̃vv = Bvv
α ΓBvv

β (2.121)

B̃vI
α = Bvv

β ΓBvI
α (2.122)

B̃vI
β = Bvv

α ΓBvI
β (2.123)

with Γ = (Bvv
α +Bvv

β )−1.

The coupled state-space model computed with the approach proposed in [8] (see

expression 2.116) is a minimal-order coupled model and does not present redundant

interface DOFs, because the coupling conditions used to compute it directly define

relations between the unique set of coupled outputs and inputs and the outputs and
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inputs of the state-space models of the substructures α and β (see equations (2.115)).

Therefore, we may conclude that this is an advantage of the method developed by

Sjövall and Abrahamsson in [8] over the LM-SSS method that requires the use of post-

processing procedures to compute minimal order coupled models and to retain the

unique set of coupled outputs and inputs (see sections 2.3.3 and 2.3.4, respectively).

Nevertheless, we may also point some advantages of using LM-SSS instead of the

method proposed in [8]. To start, the LM-SSS method enables the coupling of an

unlimited number of substructures at same time, while by exploiting the approach

proposed in [8], we are limited to couple two substructures at same time. Moreover, it

is important to mention that we can perform coupling by using the approach proposed

in [8], because the interface inputs of a state-space model transformed into SACF do

not contribute for the dynamic response of the internal states (see expression (2.114)).

If the interface inputs of the state-space models of the substructures contributed to the

response of the internal states, we could not directly insert terms of the state-space

matrices of the models to be coupled in the coupled state-space model (see expression

(2.116)). In other words, if this condition is not met, the internal states must be involved

on the coupling operation and, hence the approach proposed in [8] cannot be applied.

Conversely, by using LM-SSS this condition does not need to be met, because all the

states of the state-space models are involved on the coupling operation. Thus, when

transforming the state-space models to be coupled with LM-SSS into coupling form,

the transformation to be applied on the internal states can be arbitrary, provided that

the transformation matrix used to transform the model into coupling form is full rank

and invertible (see section 2.3.2). This is the reason why LM-SSS can also be used to

couple state-space models without being transformed into coupling form. Furthermore,

for computing minimal-order coupled models, LM-SSS can be used to couple models

transformed into UCF or SACF, while the approach proposed in [8] requires the specific

use of SACF. The possibility of using UCF is an important advantage of LM-SSS over

the method proposed in [8], because unlike SACF, UCF does not require the selection

of a subspace from a nullspace. Note that it was shown in [41] that the selection of the

subspace to compute the transformation matrix of SACF is difficult to be performed

and strongly affects the accuracy of the transformation into coupling form. Thus, we

may conclude that, when compared with the approach presented in [8], LM-SSS has

the advantage of being able to couple an unlimited number of substructures at same

time and it is simpler to implement, because it does not require the use of state-space

models transformed into SACF, whose transformation matrix is difficult to be correctly

set-up.

To summarize, we may conclude that the disadvantage of using LM-SSS instead of

the classical SSS and the method developed in [8] is the need of using a post-processing

procedure to retain the unique set of coupled DOFs. Moreover, when comparing LM-

SSS with the approach presented in [8], LM-SSS presents the additional disadvantage

of requiring another post-processing procedure to eliminate the redundant states orig-
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inated from the DS operations. However, note that the post-processing procedures

needed to retain the unique set of DOFs and to eliminate the redundant states are

very simple to be implemented, hence these disadvantages do not represent important

limitations of LM-SSS.

Conversely, LM-SSS showed to present the advantage of being simpler to implement

than the classical SSS and than the method proposed in [8]. On top of this, it requires

the computation of less matrix inversions than classical SSS and it enables the coupling

of an unlimited number of substructures at same time, while the approach presented in

[8] can only couple a maximum of two components at same time. Therefore, we may

claim that the use of LM-SSS with the post-processing procedures presented in this

section is, indeed, a very promising technique that holds important practical advantages

over the other SSS methods.

2.4 Primal state-space assembly formulation

In this section, we will present a primal state-space assembly formulation. This

approach will be outlined by assuming the performance of coupling operations with

state-space models representative of inverted FRFs, i.e. representative of, for instance,

dynamic stiffness and apparent mass. To present this method, let us assume that an

unlimited number of components is intended to be coupled and that the primal as-

sembly operation will be performed with state-space models representative of apparent

mass. When dealing with analytically characterized substructures for which the mass,

stiffness and damping matrices are known, these state-space models can be computed

by using expressions (B.3). In an experimental context, state-space models represen-

tative of the apparent mass of the substructures under study can be computed from

the inverted FRFs or by inverting state-space models estimated from measured FRFs.

The most common approach is to estimate state-space models from measured FRFs

(see, for example, [46],[40],[10]), yielding, in general, the identification of displace-

ment models. To obtain a state-space model representative of apparent mass, we must

double-differentiate the estimated displacement model and then, invert it by following

the procedure presented in appendix A.

After having computed state-space models representative of the apparent mass of

the components to be coupled, we can set up a diagonal coupled state-space model as

follows:
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













{ẋα(t)}
{ẋβ(t)}

...















= [AapmS,D ]















{xα(t)}
{xβ(t)}

...















+ [Bapm
S,D ]















{ÿα(t)}
{ÿβ(t)}

...





























{uα(t)}
{uβ(t)}

...















+















{gα(t)}
{gβ(t)}

...















= [CapmS,D ]















{xα(t)}
{xβ(t)}

...















+ [Dapm
S,D ]















{ÿα(t)}
{ÿβ(t)}

...















(2.124)

where, superscript apm denotes variables of a state-space model representative of ap-

parent mass, matrices [AapmS,D ], [Bapm
S,D ], [CapmS,D ] and [Dapm

S,D ] are given below.

[AapmS,D ] =









A
apm
α

A
apm
β

. . .









, [Bapm
S,D ] =









B
apm
α

B
apm
β

. . .









[CapmS,D ] =









C
apm
α

C
apm
β

. . .









, [Dapm
S,D ] =









D
apm
α

D
apm
β

. . .









(2.125)

The state-space model given in expression (2.124) can be represented in a more

compact manner as given below.

{ẋS(t)} = [AapmS,D ]{xS(t)} + [Bapm
S,D ]{ÿ(t)}

{u(t)} + {g(t)} = [CapmS,D ]{xS(t)} + [Dapm
S,D ]{ÿ(t)}

(2.126)

By exploiting the Boolean localization matrix [LC ] (see section 2.2.2), we may define

both compatibility and equilibrium conditions as follows

{y(t)} = [LC ]{ỹ(t)} (2.127a) [LC ]T {g(t)} = {0} (2.127b)

where, {ỹ(t)} represents the coupled output vector composed by the unique set of

coupled displacements.

Recall that in primal formulation, the compatibility conditions are imposed by

retaining the unique set of coupled DOFs, thus this condition can be mathematically

established by equation (2.127a). The equilibrium conditions are imposed by forcing

the mutual cancellation of the connecting forces. Thereby, these conditions are given

by equation (2.127b) [12].

As we are deriving the primal state-space assembly formulation by using state-

space models representative of apparent mass (whose inputs are accelerations), the

compatibility conditions must be defined in terms of accelerations as well. Hence,
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expression (2.127a) must be double-differentiated as given hereafter.

{ÿ(t)} = [LC ]{¨̃y(t)} (2.128)

By exploiting expression (2.128), expression (2.126) can be rewritten as given below.

{ẋS(t)} = [AapmS,D ]{xS(t)} + [Bapm
S,D ][LC ]{¨̃y(t)}

({u(t)} + {g(t)}) = [CapmS,D ]{xS(t)} + [Dapm
S,D ][LC ]{¨̃y(t)}

(2.129)

Pre-multiplying the output equations of the state-space models given in expression

(2.129) by [LC ]T and by imposing the equilibrium conditions (see expression (2.127b)),

we may rewrite expression (2.129) as given below.

{ẋS(t)} = [AapmS,D ]{xS(t)} + [Bapm
S,D ][LC ]{¨̃y(t)}

[LTC ]{u(t)} = [LC ]T [CapmS,D ]{xS(t)} + [LC ]T [Dapm
S,D ][LC ]{¨̃y(t)}

(2.130)

The primally assembled state-space model given in expression (2.130) can be rewrit-

ten as follows:

{ ˙̃x(t)} = [Ãapm]{x̃(t)} + [B̃apm]{¨̃y(t)}
{ũ(t)} = [C̃apm]{x̃(t)} + [D̃apm]{¨̃y(t)}

(2.131)

where, {ũ(t)} represents the unique set of coupled inputs, while matrices [Ã], [B̃], [C̃]

and [D̃] must be calculated as given hereafter.

[Ãapm] = [AapmS,D ], [B̃apm] = [Bapm
S,D ][LC ],

[C̃apm] = [LC ]T [CapmS,D ], [D̃apm] = [LC ]T [Dapm
S,D ][LC ]

(2.132)

It is worth mentioning that we can also exploit expressions (2.132) to perform

primal disassembly. Nevertheless, the state-space models of the structures to be disas-

sembled must be previously transformed into negative form, by following the procedure

presented in appendix B.

Note also that primal assembly/disassembly operations can be implemented with

state-space models transformed into coupling form (see, [8] and section 2.3.2). To

transform the state-space models involved in these operations into coupling form, we

can follow two different strategies. We can transform directly the state-space models

representative of inverted FRFs (i.e. representative, for instant, of dynamic stiffness

and apparent mass) into coupling form or, in alternative we can transform a model

representative of accelerance and then invert it. To eliminate the redundant states

originated from both primal assembly and disassembly operations, the post-processing

procedures discussed in 2.3.3 continue to be valid.

As final note, it is worth mentioning that in general when the components are ex-
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perimentally characterized, the use of dual formulations is preferred. This is justified

by the fact that to perform DS operations with dual formulations we are only required

to invert quantities related to the interface DOFs. In contrast, when exploiting primal

formulations, we are often demanded to invert all data, because accelerance is the quan-

tity usually measured from experimental tests (this was also discussed in section 2.2.2).

Nonetheless, primal formulations might be interesting for specific applications. For ex-

ample, when working with numerically characterized structures, it might be of interest

to identify a state-space model of a massless component from the state-space model of

the assembly where it is included. The exploitation of the dual SSS formulation (i.e.

LM-SSS) to identify state-space models representative of massless components leads

to ill-condition numerical problems, because matrix BC(CdispS,DAS,DBS,D)BT
C becomes

singular (see expression (2.82)). Conversely, the primal disassembly approach does not

involve the performance of matrix inversions, hence the identification of a model repre-

sentative of massless components can be successfully performed (see expressions (2.131)

and (2.132)).

2.5 State-Space Substructuring via compatibility relax-

ation

In this section, the LM-SSS formulation will be extended to include the dynam-

ics of CEs into coupling operations via compatibility relaxation. By using the SSS

methods presented in literature (see for, example, [9],[8],[41],[42],[44]) to include CEs

into coupling SSS operations, we are forced to treat them as others substructures to

be coupled. When dealing with CEs that are analytically or numerically modelled,

this approach does not impose important disadvantages. However, when dealing with

CEs experimentally characterized, the possibility of including them via compatibility

relaxation presents important advantages [2].

To experimentally characterize the dynamics of a CE (e.g. a rubber mount), it is

common practice to test it with fixtures attached to its ends. Thus, to experimentally

characterize this component, we are required to decouple the dynamics of the fixtures

from the assembly, where it is included (i.e. fixtures attached to the ends of the CE)

[17],[33]. Hence, we are required to know the dynamics of the complete assembly and

of the fixtures used to test the CE. If these mechanical components are to be character-

ized experimentally, this requirement imposes the performance of several experimental

modal characterization tests.

The decoupling operations required to identify the dynamics of the CE can be

implemented by either using the LM-SSS method or the primal state-space assembly

formulation presented in sections 2.2.3 and 2.4, respectively. However, by performing

these decoupling operations, we will end-up with a state-space model representative of

the CE that is composed by nfmf +2nf −2nJ states (assuming that the CE was tested
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with two fixtures attached to its ends and that the redundant states originated from

the decoupling operations are eliminated). Variables nf and nfmf denote the number

of states of the state-space model representative of one of the fixtures used to test the

CE and of the state-space model representative of the fixtures attached to the CE,

respectively.

The state-space models identified from experimentally acquired data are usually

composed by a number of states that is substantially higher than the number of its

outputs and inputs [41]. For this reason, the performance of decoupling operations

might represent an important increment of states on the identified model of the CE. This

increment of states is due to the double inclusion of the dynamics of the substructures to

be decoupled. Indeed, the dynamics of the substructures to be decoupled were already

included on the model representative of the complete assembly, then by performing

decoupling the dynamics of these components is reintroduced. Hence, the identified

model will be spoiled by pairs of spurious modes. In a real case scenario, there is

generally no a-priori knowledge on the dynamics of the substructure to be identified.

Thus, the identification and consequent elimination of these pairs of spurious modes is

hard or even impossible to be performed [47].

Representing the dynamics of CEs by using state-space models contaminated by

spurious states presents two important disadvantages. On the one hand, by including

the dynamics of the CEs into coupling operations through these identified models, we

will end-up with coupled models spoiled by spurious states. On the other hand, the

computational effort required to perform calculations (e.g. time-domain simulations)

with these coupled models and with the identified models of the CEs will be substan-

tially higher. These disadvantages will be more noticeable as the number of spurious

states included on the identified models of the CEs increases. Hence, as the number of

state-space models to be decoupled to identify the CEs increases and as these models

are composed by a higher number of states, more significant will be the disadvantages

of identifying models representative of CEs by performing decoupling operations.

Conversely, by extending the LM-SSS formulation to include the dynamics of the

CEs via compatibility relaxation, we have the possibility of embed the dynamics of

the CEs into the coupling operations by merely using models representative of their

diagonal dynamic stiffness terms [34],[50]. For this reason, there is no need of per-

forming decoupling operations to obtain the state-space models needed to include the

dynamics of the CEs into the coupling operations. In [51], it was proven that the off

diagonal terms of the dynamic stiffness of a mechanical system composed by two com-

ponents connected by a CE are the off diagonal terms of the CE as well. This means

that the off diagonal terms of the CE can be identified directly from the experimental

modal characterization of the assembly where it is included. From these off diagonal

terms, we may exploit the inverse substructuring (IS) approach [52],[53],[51],[54] (in

some publications also tagged as in-situ characterization) to obtain the correspondent

diagonal dynamic stiffness terms. IS assumes that the CEs are massless and that no
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cross couplings between their DOFs exist. In other words, each DOF on one side of the

CE associated with a determined direction is only coupled with the DOF on the other

side associated with the exact same direction. If the CEs under analysis verify the as-

sumptions underlying IS, we can compute the diagonal dynamic stiffness terms of these

components by simply multiplying their off diagonal ones by −1 [55],[54],[33]. Thereby,

in this section we will also present the state-space realization of IS (see [2]) to identify

the state-space models required by the LM-SSS formulation to include the dynamics of

the CEs via compatibility relaxation without performing decoupling operations.

In this way, it is straightforward to conclude that by extending the formulation of

LM-SSS to include CEs via compatibility relaxation, we may benefit from important

advantages. On the one hand, we avoid the use of decoupling operations making it

possible to identify models free of spurious states representative of the dynamics of the

CEs. Thus, the coupled state-space models computed by including the dynamics of the

CEs via compatibility relaxation will also be free of spurious states. On the other hand,

we are no longer required to know the dynamics of the fixtures used to test the CEs.

Hence, the CEs can be tested on the structure where they are included (i.e. in-situ),

avoiding the need of performing dismounting and mounting operations. On top of this,

we are not demanded to perform extra experimental modal characterization tests to

characterize the dynamics of the substructures to which the CEs are connected.

In this section, we will start by extending the LM-SSS formulation to include the

dynamics of CEs via compatibility relaxation (section 2.5.1). Then, in section 2.5.2 two

post-processing procedures to eliminate the extra states originated from the coupling

operations performed with LM-SSS via compatibility relaxation will be outlined. After-

wards, in section 2.5.3 we will present how to determine analytically and numerically

state-space models representative of CEs to be included in the LM-SSS formulation

via compatibility relaxation, while in section 2.5.4 the state-space realization of IS is

presented to enable the experimental determination of the same state-space models.

2.5.1 Including CEs into LM-SSS via compatibility relaxation

Here, the LM-SSS formulation (see section 2.2.3) will be extended to enable the

inclusion of CEs into the coupling operations via compatibility relaxation. To develop

this variant of LM-SSS, let us assume that it is intended to couple an unlimited number

of components connected by an unlimited number of CEs. Let us further assume that

these CEs respect the assumptions underlying IS, i.e. that they are massless and that no

cross couplings between their DOFs exist. If these conditions are met, expression (2.56)

holds. Moreover, the frequency domain compatibility conditions defined in equation

(2.57) are also valid in the time domain, hence we may rewrite them in state-space

model form as follows
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{ẋM (t)} = [AM,D]{xM (t)} + [BM,D] {λC(t)}
[BC ] {y(t)} = [CdispM,D]{xM (t)}

(2.133)

where, the defined state-space model is representative of the inverted diagonal dynamic

stiffness terms of the CEs to be included in the coupling operation, subscript M de-

notes state vectors and state-space matrices of state-space models representative of the

dynamics of CEs, while matrices [AM,D], [BM,D] and [CdispM,D] are given below.

[AM,D] =









AM1

AM2

. . .









, [BM,D] =









BM1

BM2

. . .









[CdispM,D] =









C
disp
M1

C
disp
M2

. . .









(2.134)

The output equations of the state-space model given in expression (2.133) represents

the compatibility conditions in terms of relative displacement between the interfaces

of the connected substructures. Yet, to develop the LM-SSS formulation with compat-

ibility relaxation we must define the compatibility conditions in terms of the relative

acceleration between the interfaces of the substructures to be coupled. Thus, we must

double-differentiate the state-space model given in expression (2.133) as follows (see

[45]):

{ẋM (t)} = [AM ]{xM (t)} + [BM,D] {λC(t)}

[BC ] {ÿ(t)} =
[

CaccelM,D

]

{xM (t)} +
[

Daccel
M,D

]

{λC(t)}
(2.135)

where, the established state-space model is representative of the inverted diagonal ap-

parent mass terms of the CEs, whereas
[

CaccelM,D

]

and
[

Daccel
M,D

]

are given hereafter.

[

CaccelM,D

]

=
[

C
disp
M,DAM,DAM,D

]

,
[

Daccel
M,D

]

=
[

C
disp
M,DAM,DBM,D

]

(2.136)

As the CEs are assumed to be massless, expression (2.1) continues to be valid.

Hence, the local equilibrium conditions defined in expression (2.71) still hold as well.

Thus, by using this expression and the compatibility conditions established by the

output equations of the model given in expression (2.135), we may define the following

system of equations:







(Daccel
S,D )−1(ÿ − CaccelS,D xS) +BT

CλC = u

BC ÿ = CaccelM,DxM +Daccel
M,DλC

(2.137)

after performing some mathematical manipulations, the system of equations (2.137),
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can be rewritten as follows:



















λC = ECR(−CaccelM,DxM +BCC
accel
S,D xS +BCD

accel
S,D u)

ÿ = (CaccelS,D −Daccel
S,D BT

CECRBCC
accel
S,D )xS +Daccel

S,D BT
CECRC

accel
M,DxM

+(Daccel
S,D −Daccel

S,D BT
CECRBCD

accel
S,D )u

(2.138)

where, matrix [ECR] is given below.

[ECR] = (BCD
accel
S,D BT

C +Daccel
M,D )−1 (2.139)

By using together expression (2.71) and the bottom equation of the system of equa-

tions (2.138), the state equation of the diagonal coupled state-space model (equation

(2.69)) can be rewritten as in expression (2.140).

ẋS = (AS,D −BS,DB
T
CECRBCC

accel
S,D )xS +BS,DB

TECRC
accel
M,DxM

+ (BS,D −BS,DB
T
CECRBCD

accel
S,D )u

(2.140)

From the upper equation of the system of equations (2.138), the state equation of

the state-space model given in expression (2.135) can be rewritten as given hereafter.

ẋM = BM,DECRBCC
accel
S,D xS + (AM,D −BM,DECRC

accel
M,D )xM

+BM,DECRBCD
accel
S,D u

(2.141)

By using equations (2.140), (2.141) and the bottom equations of the system of

equations (2.138), we may compute the coupled state-space model as follows:

{

˙̃xS(t)

˙̃xM (t)

}

= [Ã]

{

x̃S(t)

x̃M (t)

}

+ [B̃]{ũ(t)}

{¨̃y(t)} = [C̃accel]

{

x̃S(t)

x̃M (t)

}

+ [D̃accel]{ũ(t)}
(2.142)

with,

[Ã] =

[

ÃSS ÃSM

ÃMS ÃMM

]

, [B̃] =

[

B̃S

B̃M

]

[C̃accel] =
[

C̃accelS C̃accelM

]

, [D̃accel] =
[

D̃accel
S

]

(2.143)

where, the coupled state-space matrices can be computed by following the expressions

given below.
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[ÃSS ] = AS,D −BS,DB
T
CECRBCC

accel
S,D

[ÃSM ] = BS,DB
T
CECRC

accel
M,D

[ÃMS ] = BM,DECRBCC
accel
S,D

[ÃMM ] = AM,D −BM,DECRC
accel
M,D

[B̃S ] = BS,D −BS,DB
T
CECRBCD

accel
S,D

[B̃M ] = BM,DECRBCD
accel
S,D

[C̃accelS ] = CaccelS,D −Daccel
S,D BT

CECRBCC
accel
S,D

[C̃accelM ] = Daccel
S,D BT

CECRC
accel
M,D

[D̃accel
S ] = Daccel

S,D −Daccel
S,D BT

CECRBCD
accel
S,D

(2.144)

Note that, the used compatibility conditions to develop the coupling approach here

presented do not impose null relative acceleration between the interfaces of the coupled

substructures (see expression (2.135)). Thus, the output and input vectors of the

coupled state-space models (see expression (2.142)) obtained with this approach, will

be composed by the unique sets of coupled outputs and inputs, respectively. Hence,

there is no need to eliminate outputs and inputs from the computed coupled state-space

models.

Note also that the assumptions underlying the coupling approach here presented are

the same as the ones underlying IS method [17]. Thus, the CEs to be included in cou-

pling operations via compatibility relaxation, must respect the assumptions underlying

IS. When dealing with CEs that are not suitable to be characterized by IS, we must

include them into the coupling operations by treating them as a regular substructure

to be coupled, for example by exploiting LM-SSS (see section 2.2.3).

As final note, it is also worth mentioning that by exploiting expressions (2.143)

and (2.144), we can compute acceleration coupled state-space models that embed the

dynamics of CEs via compatibility relaxation. Furthermore, by simply adjusting the

expressions used to compute the output and feedthrough matrices (see expressions

(2.144)), we can also obtain displacement and velocity coupled state-space models (see

appendix C).

2.5.2 Minimal-order coupled state-space models

The coupled models obtained by exploiting LM-SSS via compatibility relaxation

(see section 2.5.1) are not minimal-order coupled models. Thus, here we will present

two post-processing procedures to compute minimal-order coupled models from the

coupled models obtained by exploiting LM-SSS with compatibility relaxation.

To start, let us assume that the components depicted in figure 2.3 were coupled by

using LM-SSS with compatibility relaxation. In addition, let us assume that the state-

space models representative of the inverted diagonal apparent mass terms of the CE

were previously transformed into coupling form and, that the acceleration state-space
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models representative of substructures α and β were also previously transformed into

coupling form. In this scenario, by exploiting LM-SSS with compatibility relaxation

and by dropping {•} and (t) for ease of readability, the state vector of the coupled

state-space model would be given as follows:

{z̃αMβ} =
{

˙̃yJα ỹJα x̃Iα
˙̃yJβ ỹJβ x̃Iβ [BC ] ˙̃y [BC ]ỹ x̃IM

}T

(2.145)

where, subscript αMβ denotes a variable associated with the assembled structure de-

picted in figure 2.3, while {ỹ} is given below.

{ỹ} =
{

ỹIα ỹJα ỹJβ ỹIβ

}T

(2.146)

By observing the coupled state vector given in expression (2.145), it is evident that

the coupled model is not composed by states, whose physical meaning is the same.

Indeed, this happens, because LM-SSS with compatibility relaxation includes the dy-

namics of the CEs by using state-space models, whose outputs are representative of the

relative motion between the interfaces of the substructures connected by the CEs (see

expression (2.135)). Hence, when these models are transformed into coupling form, they

will be composed by states, whose physical meaning is the relative displacement and

the relative velocity between the interfaces of the connected substructures. Although

these states cannot be classified as redundant, because they present different physical

meaning, their contribution to the dynamics of the coupled model can be retrieved by

the states of the coupled model representative of the displacement and velocity of the

interface DOFs of the connected substructures. Thus, these states can be classified as

extra states and, hence can be eliminated.

To eliminate these extra states, the post-processing procedure presented in section

2.3.3 that makes use of a state Boolean localization matrix continues to be valid. Never-

theless, the construction of the state mapping matrix [BT ] used to compute the required

state Boolean localization matrix [LT ] is now dependent on the mapping matrix [BC ]

used to perform coupling with LM-SSS via compatibility relaxation (see section 2.5.1).

To demonstrate how matrix [BT ] must be set-up, let us assume that [BC ] is constructed

as follows:

[BC ]{ỹ} =
[

0 IJα IJβ 0
]























ỹIα

ỹJα

ỹJβ

ỹIβ























=
{

0
}

(2.147)

where, IJα and IJβ are given as follows:

[IJα ] = φ[I] (2.148a) [IJβ ] = −φ[I] (2.148b)
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where, [I] ∈ R
nJ×nJ is an identity matrix, while φ is a numeric coefficient, which can be

selected to be either −1 or 1. Variable φ is responsible for adjusting the post-processing

procedures here presented in accordance with the computation of [BC ].

By exploiting expressions (2.147), (2.148a) and (2.148b), [BT ] can be set-up in

accordance with [BC ] by following the expression given hereafter.

[BT ]{z̃αMβ} =

[

IJβ 0 0 IJα 0 0 I 0 0

0 IJβ 0 0 IJα 0 0 I 0

]











































































˙̃yJα

ỹJα

x̃Iα
˙̃yJβ
ỹJβ

x̃Iβ

φ
(

˙̃yJα − ˙̃yJβ

)

φ
(

ỹJα − ỹJβ

)

x̃IM











































































=
{

0
}

(2.149)

After having set-up [BT ], [LT ] can be directly computed from the nullspace of [BT ]

(see expression (2.97)). Then, by applying the post-processing procedure presented in

section 2.3.3, the minimal-order coupled state-space model can be computed. The state

vector of this model is represented below.

{z̃αMβ} =
{

˙̃yJα ỹJα x̃Iα
˙̃yJβ ỹJβ x̃Iβ x̃IM

}T
(2.150)

Note that, the post-processing procedure just discussed to eliminate the extra states

originated from the performance of coupling operations with LM-SSS via compatibil-

ity relaxation are still valid, when these coupled models are originated from coupling

operations involving an unlimited number of substructures and CEs.

In contrast, the manual post-processing procedure presented in section 2.3.3 cannot

be used to compute minimal-order coupled models from the coupled models obtained

with LM-SSS via compatibility relaxation. Nonetheless, a manual post-processing pro-

cedure can also be defined to eliminate the extra states originated from coupling opera-

tions performed with this formulation. This manual post-processing procedure is given

below and must be applied for each pair of coupled interface outputs.

1. Add the column of [Ã] associated with the difference between the coupled interface

outputs previously multiplied by φ to the column that is associated with the

coupled interface output of the first substructure state-space model introduced in

the diagonal coupled model (see equation (2.66));

2. Add the column of [Ã] that is associated with the difference between the coupled

interface outputs previously multiplied by −φ to the column that is associated
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with the coupled interface output of the second substructure state-space model

introduced in the diagonal coupled model (see equation (2.66));

3. Repeat the procedures outlined in the first and second bullets for matrix [C̃];

4. Eliminate the row and column of matrix [Ã] associated with the difference between

the coupled interface outputs;

5. Eliminate the same row and column of matrices [B̃] and [C̃], respectively;

6. Repeat the procedure for the first derivative of the analyzed pair of coupled

interface DOFs.

2.5.3 Analytical and Numerical determination of state-space models

representative of inverted diagonal apparent mass terms of CEs

In case that a given CE is analytically or numerically characterized, its stiffness,

damping and mass matrices are usually known. Thereby, to identify a state-space

model representative of its diagonal apparent mass terms, we may start by retaining

from their stiffness, damping and mass matrices the coefficients associated with the

set of diagonal apparent mass terms intended to be identified. Afterwards, we must

construct a state-space model representative of the set of diagonal apparent mass terms

to be identified by exploiting expressions (B.3). Lastly, by inverting this model, the

intended state-space model representative of the inverted set of diagonal apparent mass

terms can be obtained.

It is worth mentioning that, if the CE under study is massless, the feedthrough

matrix of the model representative of its diagonal apparent mass terms will be null.

Thus, the inversion of this state-space model cannot be performed without facing ill-

conditioned numerical problems (see expressions (A.5)). To surpass this difficulty, we

can sum to the feedthrough matrix of this model an identity matrix multiplied by a

small residue. The value of this residue must be as small as possible, because its only

intent is to prevent ill-conditioned numerical problems, when inverting the feedthrough

matrix of the model representative of the set of diagonal apparent mass terms to be

identified. It is evident that summing this matrix is equivalent to couple small virtual

masses to the edges of the CE under analysis.

2.5.4 State-Space realization of IS

Performing direct excitation of an isolated CE is, in general, unfeasible. Thus, these

components are commonly tested with fixtures attached to its edges (see for example,

[51],[56],[33]). For this reason, to estimate state-space models representative of the

inverted diagonal apparent mass terms of a given CE, we will extend IS method into

the state-space domain.
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In this way, let us consider the generic test set-up used to experimentally charac-

terize the dynamics of CEs depicted in figure 2.5.

Figure 2.5: Typical measurement set up to characterize the dynamic behaviour of a connecting
element [2].

In addition, we will assume that state-space models representative of the apparent

mass of the CE M and of the fixtures A and B are available. In this scenario, by

exploiting the primal state-space assembly formulation (see section 2.4), we can set-

up the following coupled state-space model representative of the apparent mass of the

assembly shown in figure 2.5:











˙̃xFA
(t)

˙̃xM (t)

˙̃xFB
(t)











=
[

Ã
apm
FAMFB

]











x̃FA
(t)

x̃M (t)

x̃FB
(t)











+
[

B̃
apm
FAMFB

]

{

¨̃yJ1(t)

¨̃yJ2(t)

}

{

ũJ1(t)

ũJ2(t)

}

=
[

C̃
apm
FAMFB

]











x̃FA
(t)

x̃M (t)

x̃FB
(t)











+
[

D̃
apm
FAMFB

]

{

¨̃yJ1(t)

¨̃yJ2(t)

}

(2.151)

where, matrices [ÃapmFAMFB
], [B̃apm

FAMFB
], [C̃apmFAMFB

] and [D̃apm
FAMFB

] are given as follows:

[ÃapmFAMFB
] =







A
apm
FA

0 0

0 A
apm
M 0

0 0 A
apm
FB







[B̃apm
FAMFB

] =
[

B̃
apm
FAMFB ,J1

B̃
apm
FAMFB ,J2

]

=







B
apm
FA,J1

0

B
apm
M,J1

B
apm
M,J2

0 B
apm
FB ,J2







[C̃apmFAMFB
] =

[

C̃
apm
FAMFB ,J1

C̃
apm
FAMFB ,J2

]

=

[

C
apm
FA,J1

C
apm
M,J1

0

0 C
apm
M,J2

C
apm
FB ,J2

]

[D̃apm
FAMFB

] =

[

D̃
apm
FAMFB ,J1J1

D̃
apm
FAMFB ,J1J2

D̃
apm
FAMFB ,J2J1

D̃
apm
FAMFB ,J2J2

]

=

[

D
apm
FA,J1J1

+D
apm
M,J1J1

D
apm
M,J1J2

D
apm
M,J2J1

D
apm
FB ,J2J2

+D
apm
M,J2J2

]

(2.152)

where, subscripts J1 and J2 denote outputs or/and inputs associated with the inter-
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face DOFs of fixtures A and B, respectively, subscripts FA and FB denote variables

associated with fixtures A and B (see figure 2.5), respectively, while subscript FAMFB

denotes variables associated with the coupled model representative of the apparent

mass of the assembled structure composed by the fixtures A and B connected by the

CE M.

By applying a Fourier transformation on the state-space model given in expression

(2.151) and by dropping [•], {•} and (jω) for ease of readability, we arrive to the

following expression:

jωX̃FAMFB
= Ã

apm
FAMFB

X̃FAMFB
+ B̃

apm
FAMFB

(−ω2ỸFAMFB
)

ŨFAMFB
= C̃

apm
FAMFB

X̃FAMFB
+ D̃

apm
FAMFB

(−ω2ỸFAMFB
)

(2.153)

after making some mathematical manipulations, we may define the following expression:

Z̃A =
ŨFAMFB

−ω2ỸFAMFB

= C̃
apm
FAMFB

(jωI − Ã
apm
FAMFB

)−1B̃
apm
FAMFB

+ D̃
apm
FAMFB

(2.154)

where, [Z̃A(jω)] represents an apparent mass matrix.

By exploiting expression (2.151) and after making some mathematical manipula-

tions, equation (2.154) can be rewritten as follows:

[Z̃AFAMFB
(jω)] =

[

Z̃AFAMFB ,J1J1
(jω) Z̃AFAMFB ,J1J2

(jω)

Z̃AFAMFB ,J2J1
(jω) Z̃AFAMFB ,J2J2

(jω)

]

(2.155)

where, by dropping again [•], {•} and (jω), we have:

Z̃AFAMFB ,J1J1
= C̃

apm
FAMFB ,J1

(jωI − Ã
apm
FAMFB

)−1B̃
apm
FAMFB ,J1

+ D̃
apm
FAMFB ,J1J1

Z̃AFAMFB ,J1J2
= C̃

apm
FAMFB ,J1

(jωI − Ã
apm
FAMFB

)−1B̃
apm
FAMFB ,J2

+ D̃
apm
FAMFB ,J1J2

Z̃AFAMFB ,J2J1
= C̃

apm
FAMFB ,J2

(jωI − Ã
apm
FAMFB

)−1B̃
apm
FAMFB ,J1

+ D̃
apm
FAMFB ,J2J1

Z̃AFAMFB ,J2J2
= C̃

apm
FAMFB ,J2

(jωI − Ã
apm
FAMFB

)−1B̃
apm
FAMFB ,J2

+ D̃
apm
FAMFB ,J2J2

.

(2.156)

From expressions (2.156) and (2.152) and having in mind that [ÃapmFAMFB
] is a block

diagonal matrix, it is straightforward to conclude that the off diagonal apparent mass

terms of the assembled structure can be identified from the state-space model repre-

sentative of the CE. Hence, those terms are also the off diagonal apparent mass terms

of the CE as pointed out in [51]. This means that it is possible to identify state-space

models representative of the off diagonal apparent mass terms of the CE directly from

the state-space model representative of the apparent mass of the assembled structure.

To perform this identification, we must retain from the model of the assembly the

outputs and inputs associated with the off diagonal terms of interest. The rest of the

outputs and inputs must be eliminated. This can be done by only keeping the rows of
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[C̃apmFAMFB
] and [D̃apm

FAMFB
] associated with the outputs of the off diagonal apparent mass

terms to be identified and by solely keeping the columns of [B̃apm
FAMFB

] and [D̃apm
FAMFB

]

associated with the inputs of the off diagonal apparent mass terms to be identified.

If the assumptions underlying IS are verified for the CE under study, the diagonal

apparent mass terms can be obtained by multiplying the off diagonal terms by −1 (see

quation (2.56)). Thus, to compute a state-space model representative of the diagonal

apparent mass terms of the CE, we must transform the identified state-space model

representative of the off diagonal terms of these elements into negative form (see ap-

pendix B). By inverting the resultant state-space model, we are able to compute the

intended state-space model representative of the inverted diagonal apparent mass terms

of the CE.



Chapter 3

On the computation of stable

coupled models

3.1 Introduction

In this section, we will focus our attention on the computation of accurate stable

coupled models through SSS. To compute these models, we must start by making sure

that the state-space models involved in the coupling operations verify all the required

criteria to be suitable for being exploited in DS operations. Each of these state-space

models is responsible for characterizing the dynamics of one substructure involved on

the coupling operations. Thus, they must accurately represent the dynamic behaviour

of the substructures involved in these operations. On top of this, each of these state-

space models must be stable (i.e. their poles must be pure imaginary or present negative

real part), reciprocal (when representing the dynamics of reciprocal substructures),

verify the Newton’s second law, passive and must present outputs and inputs placed at

the interfaces of the substructures involved in the DS operations [46].

When estimated analytically or numerically, the state-space models generally fulfill

all the criteria outlined above. Thus, it is in general straightforward to compute stable

coupled models by coupling them. In contrast, by estimating state-space models from

experimentally acquired data (for example, from measured FRFs), it is usually difficult

to compute state-space models respecting the mentioned criteria. For this reason,

in this section we will only focus our attention on state-space models experimentally

identified.

To experimentally identify a state-space model representative of the dynamics of

a given mechanical system, it is common to exploit system identification algorithms

with data collected from the experimental modal characterization of that given me-

chanical system. Many different system identification algorithms have been proposed

in literature. Examples of these algorithms are the approaches, commonly, clustered

under the label subspace methods (see, for example, [57], [58], [59], [60]). This kind

of methods is capable of directly estimating state-space models from experimentally

59
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acquired data (either from time-domain or frequency-domain data depending on the

exploited subspace method). Other system identification approaches, specially, target-

ing structural dynamics applications can be found in literature as well. These methods

are usually tagged as Experimental Modal Analysis (EMA) methods and provide an

estimation for the modal parameters of the substructures under analysis [21]. These

parameters can then, be used to set-up state-space models (see, for instance, [40], [10]).

A classical EMA technique is the Rational Fractional Polynomial method presented

in [61], which was then, extended to deal with systems presenting multiple inputs in

[62]. After the publication of these techniques many other methods were published

(e.g. [63], [64], [65]). One of the most used and well-known EMA approaches is the

PolyMAX (Polyreference least-squares complex frequency-domain) method, which was

proposed in [66], [22]. This method makes use of the polyreference Least-Squares

Complex Frequency-domain (pLSCF) method to construct the so-called stabilization

diagram from which the poles and modal participation factors can be estimated. Then,

the Least-Squares Frequency-domain (LSFD) method (see, appendix D) is applied with

the poles, the modal participation factors and the reference FRFs to estimate the mode

shapes and the upper and lower residual matrices in a linear-least squares sense. To

improve the quality of the modal parameters estimated by PolyMAX, the Maximum

Likelihood Modal Model method (ML-MM) was developed in a series of papers [67],

[68], [69], [70]. ML-MM is an iterative method based on solving a non-linear optimiza-

tion problem. At each iteration, this method optimizes the modal parameters in two

different steps. Firstly, the poles and modal participation factors are updated by ex-

ploiting the Gauss-Newton optimization. Afterwards, the remaining modal parameters

(i.e. mode shapes, upper and lower residual matrices) are computed by using LSFD

with the optimized poles and modal participation factors and with the reference FRFs.

These optimized modal parameters are then used in the next iteration. The described

optimization loop runs until convergence is attained or the defined maximum number

of iterations is reached. Interesting overviews on the EMA techniques can be found in

[71], [72], [21], [73], [74].

Here, to experimentally identify state-space models, we will start by exploiting

PolyMAX to estimate modal parameters from sets of experimentally acquired FRFs.

Afterwards, if the estimated modal parameters are not of enough quality, the ML-

MM method will be exploited to improve them. Finally, by following the procedures

presented in [40], the state-space models will be constructed from the estimated modal

parameters. Note that, we have decided to exploit this methodology, because in [40] it

turned out to be accurate on experimentally estimating state-space models to be used on

real industrial applications. Furthermore, both PolyMAX and ML-MM approaches are

well established techniques that have already demonstrated to be accurate on estimating

modal parameters from challenging experimentally acquired data sets (see, for instance,

[22], [70], [75]).

When using PolyMAX and ML-MM approaches to estimate modal parameters form
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measured FRFs, we make sure that the identified poles are stable. Thus, we are sure

that the state-space models constructed from these modal parameters will be stable as

well. Moreover, if the substructure under analysis verifies reciprocity, we may construct

a reciprocal state-space model by estimating reciprocal modal parameters as reported

in [70].

The identification of state-space models verifying Newton’s second law is also manda-

tory, otherwise mismatches between the accelerance FRFs of the modal model (con-

structed from the identified modal parameters) and the accelerance FRFs of the iden-

tified state-space model will be observed [10]. On top of this, state-space models that

do not respect Newton’s second law cannot be properly transformed into coupling form

[8], making the elimination of the redundant states originated from DS operations im-

practicable, when the state-space models involved in these operations are not defined

in the physical domain (common situation in practice). Bylin et al. in [76] proposed an

iterative methodology that re-computes the input and output matrices of state-space

models to force them to obey Newton’s second law. Nevertheless, this approach makes

use of linear least-squares constraints. Therefore, the resultant state-space models only

respect Newton’s second law in a weak sense. Hence, as discussed in [46], the resultant

state-space models do not strictly verify this physical law and, consequently, they are

not suitable for being included in SSS operations. In alternative, the method proposed

by Liljerehn in [5] to force state-space models to respect Newton’s second law can be

exploited. This approach has already showed in [46], [10] to be reliable to, strictly,

force models estimated from experimentally acquired data to verify Newton’s second

law. Nevertheless, this method holds the disadvantage of imposing Newton’s second

law by means of undamped residual compensation modes (RCMs). This is, indeed, not

recommended, because the performance of time-domain simulations with state-space

models composed by undamped modes may lead to numerical instabilities [40]. Hence,

the approach presented in [5] is only suitable to impose Newton’s second law on state-

space models that will not be exploited in time-domain simulations. To overcome this

limitation, a novel approach to force state-space models to respect Newton’s second

law without using undamped RCMs will be proposed in this section.

Additionally, the estimated state-space models to be used in SSS must be passive.

If this requirement is not met the coupled state-space models resultant from SSS op-

erations will also be non-passive and most likely unstable. Thus, it is common that

by exploiting SSS approaches with experimentally identified models, we end-up with

coupled state-space models that cannot be used for performing stable time-domain

simulations. This strongly limits the applications of SSS methods.

Several approaches to impose passivity on state-space models are available in litera-

ture. These techniques can be roughly divided into two groups: optimal algorithms and

sub-optimal algorithms. The group of the optimal algorithms includes approaches that

impose passivity on the estimated state-space models by forcing them to respect the

Positive or Bounded real lemmas (see [77]). In addition, to make sure that the FRFs
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of the passive model match as close as possible the FRFs of the originally identified

model, the optimal approaches make also use of least-squares constraints. Even though

these methods lead in general to the computation of accurate passive models, they are

characterized for demanding very high computational effort. In [78], [79], [80], it is

possible to find examples of this kind of approaches. In contrast, the sub-optimal algo-

rithms require less computational effort than the optimal approaches. Yet, the passive

models computed by using these approaches are in general not as accurate as the pas-

sive models computed by exploiting optimal algorithms. A sub-optimal approach that

makes use of a constrained iterative scheme that is based on Hamiltonian eigenvalue

extraction and perturbation can be found in [81]. An interesting overview of different

approaches to impose passivity on state-space models can be found in [82].

Nevertheless, the algorithms listed above are not suitable to deal with some struc-

tural dynamics applications, because they either yield passive models with limited

accuracy or they require very high computational effort. Indeed, the determination

of passive models associated with high computation costs may unable the exploitation

of SSS in many practical applications. One may think, for instance, on applications

involving the characterization and the performance of time-domain simulations of as-

sembled systems presenting time-varying dynamic behaviour. To characterize this kind

of substructures, it is usual practice to exploit Linear Parameter-Varying (LPV) models

(see, [83], [84], [85], [86]). To construct these models, we must use a set of state-space

models representative of the dynamics of the assembled system for some pre-selected

fixed operating conditions. Thereby, assuming that a LPV model is set-up from, for

example, 5 coupled state-space models, we are required to force 5 × nsub state-space

models to be passive, where nsub represents the number of substructures to be coupled

to compute a coupled model representative of a given fixed operating condition. There-

fore, it is straightforward to conclude that to deal with this type of applications, there

is the need for direct methods that are capable of computing reliable passive state-space

models without demanding high computational effort.

In an attempt of computing accurate passive models, while avoiding high compu-

tational costs, Liljerehn and Abrahamsson in [4] proposed a direct method to impose

passivity on velocity state-space models. This approach was developed with the aim

of targeting structural dynamics applications involving SSS, which are also the ap-

plications that we are targeting in this document. To impose passivity on velocity

state-space models, this method relies on the application of a minimal adjustment on

the elements of both input and output state-space matrices associated with each mode

of the model to ensure that the direct elements of the FRFs of each of these modes are

positive real. This approach was successfully applied in [4] to impose passivity on a

state-space model estimated from experimentally acquired FRFs. Furthermore, in the

same publication it was demonstrated that a passive stable coupled model could be ob-

tained by coupling the model forced to be passive with a passive model computed from

information extracted from a Finite Element model. Nonetheless, both models involved
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in the coupling operation were representative of simple substructures. Moreover, im-

posing passivity by forcing the direct elements of the FRFs of all the modes included in

a given state-space model to present positive real part, represents a too strict passivity

requirement [43]. Hence, this approach might lead to relevant mismatches between the

FRFs of the computed passive model and the FRFs of the originally identified state-

space model, specially, when dealing with identified models representative of complex

substructures and composed by a high number of modes. More importantly, to exploit

this method we must select the frequency band for which the elements of the FRFs of

each mode will be investigated and forced to be positive real. Therefore, there is no

warranty that the computed passive state-space model will verify passivity for frequen-

cies outside of the selected frequency band and for frequencies in between consecutive

frequency points. Thereby, we run the risk of obtaining state-space models that are

not globally passive, i.e. that are not passive for the entire frequency axis. The com-

putation of models that are not globally passive is not acceptable, because the coupled

state-space models originated from DS operations involving this kind of models are, in

general, unstable.

To overcome the difficulties associated with imposing passivity on state-space mod-

els, a procedure to directly impose stability on unstable coupled models will be here

outlined. With this approach, we aim at enabling the direct calculation of stable cou-

pled models without strictly relying on iterative algorithms. Moreover, we intend to

come up with a methodology that enables the computation of accurate stable mod-

els even when performing SSS operations with state-space models representative of

complex substructures and presenting high model order.

Before being suitable to be exploited in SSS operations, the identified state-space

models have to present outputs and inputs collocated at the interface of the components

under analysis. Yet, in practice there are many substructures for which the placement of

sensors and/or actuators at their interfaces is infeasible. For this reason, it is sometimes

not possible to estimate state-space models, whose outputs and inputs are placed at

the interface of the experimentally characterized components. To surpass this difficulty,

it is common to exploit the so-called Virtual Point Transformation (VPT) approach

(see, [87], [27], [88]). By exploiting VPT we have the possibility of transforming the

outputs and inputs of the measured FRFs into the desired locations (i.e. into the

defined virtual points), provided that the components can be assumed to present rigid

local behaviour in the frequency band of interest. Thereby, enabling the computation

of the FRFs at the intended locations. This set of FRFs can then be used to construct

the intended state-space models. In alternative, we may think on directly applying

VPT on the state-space models to transform their outputs and inputs into the defined

virtual points. To make this approach possible, the VPT method will be extended into

the state-space model domain.

In the following, we will start by presenting in section 3.2 a state-of-the-art approach

to define state-space models from estimated modal parameters. Then, in section 3.3 a
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novel procedure to impose Newton’s second law on state-space models without relying

on undamped RCMs is presented, whereas the state-space realization of the VPT ap-

proach is outlined in section 3.4. Finally, in section 3.5 a novel procedure to impose

stability on unstable coupled state-space models is presented.

3.2 State-of-the-art method to experimentally estimate

state-space models

The purpose of this section is to explain in detail a state-of-the-art approach to

construct complete state-space models by using modal parameters estimated from ex-

perimentally acquired FRFs. We will start by presenting how to set-up a state-space

model from the modal parameters associated with the in-band poles (section 3.2.1).

Then, in section 3.2.2 we will show how to construct state-space models representative

of the contribution of both the upper and lower out-of-band modes. Finally, in section

3.2.3 we will present how to compute complete state-space models by using state-space

models constructed from the in-band and out-of-band modes.

3.2.1 In-band modes

Let us assume that the modal parameters of an experimentally characterized sub-

structure were estimated from their measured FRFs. From these identified modal

parameters, we may set-up a modal model representative of the displacement FRFs of

the characterized substructure as follows:

[H(jω)] =

nib
∑

r=1

(

{ψib,r}{lib,r}
jω − λib,r

+
{ψib,r}∗{lib,r}∗
jω − λ∗ib,r

)

+
[LR]

(jω)2
+ [UR] (3.1)

where, [H(jω)] ∈ C
no×ni represents a FRF matrix composed by no outputs and ni

inputs, nib represents the number of identified modes, subscript [•]∗ denotes the complex

conjugate of a vector/matrix, {ψr} ∈ C
no×1 is the rth mode shape, {lr} ∈ C

1×ni

is the rth modal participation factor, λr is the rth pole, while [LR] ∈ R
no×ni and

[UR] ∈ R
no×ni are the lower and upper residuals matrices, whose role is modelling

the contribution of the lower and upper out-of-band modes in the frequency band of

interest, respectively. Finally, subscript ib denotes vectors/matrices associated with the

in-band modes.

The modal model given in expression (3.1) can be rewritten in matrix form as

follows:

[H(jω)] = [Ψib Ψ∗
ib

]

[

jω[I] −
[

Λib 0

0 Λ∗
ib

]]−1 [

Lib

L∗
ib

]

+
[LR]

(jω)2
+ [UR] (3.2)

where, [Λ] ∈ C
nib×nib is a diagonal matrix composed by the system poles, [L] ∈ C

nib×ni

is a matrix including as rows the modal participation factors and their complex conju-
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gates and [Ψ] ∈ C
no×nib is a matrix including as columns the mode shape vectors and

their complex conjugates.

From expression (3.2), we may define a state-space model associated with the in-

band modes as follows (see [45]):

{ẋib(t)} = [Aib]{xib(t)} + [Bib]{uib(t)}
{yib(t)} = [Cdispib ]{xib(t)}

(3.3)

where, matrices [Aib], [Bib] and [Cdispib ] are given hereafter.

[Aib] =

[

Λib 0

0 Λ∗
ib

]

, [Bib] =

[

Lib

L∗
ib

]

, [Cdispib ] = [Ψib Ψ∗
ib

] (3.4)

3.2.2 Out-of-band modes

To construct a complete state-space model, the inclusion of the contribution of the

out-of band modes is mandatory. For this reason, in the following we will demonstrate

how to set-up state-space models representative of the contribution of both upper and

lower out-of-band modes. These models can then be concatenated with the state-space

model constructed from the in-band modal parameters (see expression (3.3)) to set-up

the intended complete state-space model.

Upper out-of-band modes

To include the contribution of the upper out-of-band modes, which is given by the

upper residual matrix (see expression (3.3)), we must start by performing the singular

value decomposition (SVD) (see, [89]) of matrix [UR] as follows:

[UR] = [PUR][σUR][WUR]T =

nUR
∑

r=1

{PUR,r}σUR,rr{WUR,r}T (3.5)

where, subscript UR denotes vectors/matrices associated with the upper out-of-band

modes, while nUR = min(ni, no). [PUR] ∈ R
no×nUR and [WUR] ∈ R

nUR×ni are the

matrices composed by the left and right eigenvectors of matrix [UR], respectively,

whereas [σUR] ∈ R
nUR×nUR is a diagonal matrix composed by the singular values of

[UR] [21]. Note also that, {PUR,r} ∈ R
no×1 represents the rth column of [PUR], σUR,rr

denotes the rth element on the diagonal of [σUR] and {WUR,r} ∈ R
1×ni represents the

rth row of [WUR]. By exploiting the SVD of [UR], we may define residual compensation

modes (RCMs) tailored to model the contribution of the upper out-of-band modes. The

modal parameters associated with these RCMs can be computed as follows:

λUR,r = −ξUR,rωUR,r ± jωUR,r

√

1 − ξ2UR,r (3.6)
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{lUR,r} = − j
2

√
σUR,rr{WUR,r}T (3.7)

{ψUR,r} =
ωUR,r

√

1 − ξ2UR,r

√
σUR,rr{PUR,r} (3.8)

where, ωUR,r and ξUR,r are the selected natural frequency and damping ratio of the rth

mode of the computed RCMs, respectively.

By using expressions (3.6), (3.7) and (3.8),we may define a proportionally damped

modal model (i.e. modal model, whose residue matrices are pure imaginary [90]) that

approximates the contribution of the upper out-of-band modes as hereafter.

[UR] ≈ [HUR(jω)] =

nUR
∑

r=1





2jωUR,r
√

1 − ξ2UR,r

(jω)2 + 2jωξUR,rωUR,r + ω2
UR,r

{ψUR,r}{lUR,r}



 (3.9)

Substituting expressions (3.7) and (3.8) in equation (3.9), it is evident that equations

(3.9) and (3.5) match for ω = 0 rad s−1. However, for other frequencies the same

match is no longer verified and, hence expression (3.9) represents no more than an

approximation of expression (3.5).

To understand the effect of selecting different values for the natural frequencies and

damping rations of the RCMs on the quality of the match between expressions (3.5)

and (3.9), let us start by assuming that the natural frequencies and the damping ratios

of all the RCMs are selected to be the same (which is usual in practice). In this way,

by exploiting expression (3.9), we may define the following identity for ω = 0 rad s−1:

[UR] = [HUR(0)] =

∑nUR

r=1

(

2jωUR

√

1 − ξ2UR{ψUR,r}{lUR,r}
)

ω2
UR

(3.10)

which is equivalent to the expression given hereafter.

nUR
∑

r=1

(

2jωUR

√

1 − ξ2UR{ψUR,r}{lUR,r}
)

= ω2
UR[UR] (3.11)

By observing equations (3.9) and (3.11), it is evident that as the value selected for

ωUR increases, the more accurate will be the proportionally damped modal model (see

expression (3.9)) to model the contribution of the upper out-of-band modes. Moreover,

we can also conclude that the accuracy of this modal model will increase as the value

selected for ξUR is selected to be lower.

At this point, we can exploit the RCMs computed from the SVD of [UR] to define

a state-space model representative of the contribution of the upper out-of-band modes

as follows:
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{ẋUR(t)} = [AUR]{xUR(t)} + [BUR]{uUR(t)}
{ẏUR(t)} = [CdispUR ]{xUR(t)}

(3.12)

with,

[AUR] =

[

ΛUR 0

0 Λ∗
UR

]

, [BUR] =

[

LUR

L∗
UR

]

[CdispUR ] =
[

ΨUR Ψ∗
UR

]

(3.13)

where, [ΛUR], [LUR] and [ΨUR] are given below.

[ΛUR] =









λUR,1

λUR,2
. . .









, [LUR] =









lUR,1

lUR,2
...









, [ΨUR] =









ψUR,1

ψUR,2
...









T

(3.14)

As discussed above, the proportionally damped modal model given in expression

(3.9) will be more accurate to approximate the contribution of the upper out-of-band

modes as the value selected for ωUR increases and as the value selected for ξUR decreases.

Obviously, the same conclusions hold for the accuracy of the state-space model given

in expression (3.12), because it was set-up from the modal parameters used to define

the proportionally damped modal model given in expression (3.9).

Nevertheless, if the state-space model under construction is to be discretized, for

instance, to perform time-domain simulations, the value selected for ωUR must not

be extremely high, because to properly discretize a state-space model, we must use a

sampling frequency that is at least twice the value of the highest natural frequency of

the modes included in the state-space model [40]. Thus, if an extremely high value is

selected for ωUR, we will be forced to discretize the constructed state-space model by

using an even higher sampling frequency. This would definitely lead to a substantial

increment of the computational effort associated with the performance of calculations

with the discretized model. Hence, it would make the constructed model less appealing

to be exploited in practice. Moreover, the RCMs computed from the SVD of [UR]

must not be undamped (i.e. the value selected for ξUR must not be zero), because

the performance of time simulations with state-space models composed by undamped

modes may give rise to numerical instabilities [40].

As a rule of thumb, it was proposed in [10] that the value selected for ωUR must

respect ωUR ≥ 5 × ωmax (where, ωmax denotes the maximum frequency of interest).

However, this value represents a lower limit for the selection of ωUR. In fact, there are

many cases for which the natural frequency of the RCMs computed from [UR] must be

selected to be higher than 5 × ωmax. In practice, we must select a value for ωUR that

ensures that the FRFs of the state-space model given in expression (3.12) well match
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the elements of [UR] in the frequency band of interest (see expression (3.1))).

To avoid numerical instabilities associated with the performance of time-domain

simulations with state-space models composed by undamped or slightly damped modes,

a default value of 0.4 was recommended for ξUR in [40]. Yet, the authors have noticed

that in the computation of many state-space models to be exploited in time-domain

simulations, it is not necessary to select such a high value for ξUR. Thus, as a rule

of thumb, we recommend that the value of ξUR must obey 0.1 ≤ ξUR < 1. In this

way, when constructing the state-space model, we must start by selecting the value of

ξUR to be 0.1. If the performance of time-domain simulations with the constructed

model leads to numerical instabilities, we must reconstruct the model by selecting a

higher value for ξUR. When an appropriate value for ξUR is found, we must re-check

the quality of the match between the FRFs of the state-space model computed from

the RCMs representative of the contribution of the upper out-of-band modes with the

elements of [UR] in the frequency band of interest. If this match turns out to not be

of sufficient quality, the state-space model must be reconstructed by selecting a higher

value for ωUR. It is worth noting, that as we are using a modal model (which, is only

made of pairs of complex conjugate poles) to define the modal parameters of the RCMs

calculated from the SVD of [UR], the value of ξUR has to remain below 1.

Lower out-of-band modes

To include the contribution of the lower out-of-band modes, tailored RCMs rep-

resentative of the contribution of these modes in the frequency band of interest must

be defined. However, the contribution of the lower out-of-band modes is modelled by

matrix [LR]
(jω)2

(see expression (3.3)), thus it is not evident, from which matrix these

RCMs must be computed. In an attempt to solve this question, let us assume that

the contribution of the lower out-of-band modes is approximated by a generic set of

RCMs. Additionally, let us further assume that by using this generic set of RCMs, we

can define the following proportionally damped modal model:

[LR]

(jω)2
≈ [HLR(jω)] =

nLR
∑

r=1





2jωLR,r
√

1 − ξ2LR,r

(jω)2 + 2jωξLR,rωLR,r + ω2
LR,r

{ψLR,r}{lLR,r}



 (3.15)

where, subscript LR denotes vectors/matrices associated with the lower out-of-band

modes, whereas nLR = min(ni, no).

From the observation of equation (3.15), it is straightforward to conclude that the

generic proportionally damped modal model will accurately approximate the contribu-

tion of the lower out-of-band modes (i.e. [LR]
(jω)2

), in case that its numerator is equal

to [LR] and if the values of the natural frequencies of the RCMs used to compute

this modal model are small when compared with ωmin (where, ωmin denotes the mini-
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mum frequency of interest). From now on, we will once again assume that the natural

frequencies and damping ratios associated with the RCMs are selected to be equal

(common approach in practice). In this way, for ω = 0 rads−1, expression (3.15) can

be rewritten as given hereafter.

[HLR(0)] =

∑nLR

r=1

(

2jωLR

√

1 − ξ2LR{ψLR,r}{lLR,r}
)

ω2
LR

(3.16)

By observing expression (3.16), it is evident that the numerator of the proportionally

damped modal model will be equal to [LR], if [HLR(0)] = [LR]
ω2

LR

. Thus, to compute RCMs

capable of modelling the contribution of the lower out-of-band modes, we must perform

the SVD of [LR]
ω2

LR

as follows:

[LR]

ω2
LR

= [PLR][σLR][WLR]T =

nLR
∑

r=1

{PLR,r}σLR,rr{WLR,r}T (3.17)

where, [PLR] ∈ R
no×nLR and [WLR] ∈ R

nLR×ni are the matrices composed by the

left and right eigenvectors of matrix [LR]
ω2

LR

, respectively, whereas [σLR] ∈ R
nLR×nLR

is a diagonal matrix composed by the singular values of [LR]
ω2

LR

[21]. Note also that,

{PLR,r} ∈ R
no×1 represents the rth column of [PLR], σLR,rr denotes the rth element on

the diagonal of [σLR] and {WLR,r} ∈ R
1×ni represents the rth row of [WLR].

From expression (3.17), the modal parameters associated with the RCMs responsible

for modelling the contribution of the lower out-of-band modes can be calculated as given

below.

λLR,r = −ξLRωLR + jωLR

√

1 − ξ2LR (3.18)

{lLR,r} = − j
2

√
σLR,rr{WLR,r}T (3.19)

{ψLR,r} =
ωLR

√

1 − ξ2LR

√
σLR,rr{PLR,r} (3.20)

By exploiting the modal parameters associated with the RCMs computed from the

SVD of [LR]
ω2

LR

(see expressions (3.18), (3.19) and (3.20)), we may define a state-space

model representative of the contribution of the lower out-of-band modes as follows:

{ẋLR(t)} = [ALR]{xLR(t)} + [BLR]{uLR(t)}
{yLR(t)} = [CdispLR ]{xLR(t)}

(3.21)

with,
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[ALR] =

[

ΛLR 0

0 Λ∗
LR

]

, [BLR] =

[

LLR

L∗
LR

]

[CdispLR ] =
[

ΨLR Ψ∗
LR

]

(3.22)

where, matrices [ΛLR], [LLR] and [ΨLR] are given below.

[ΛLR] =









λLR,1

λLR,2
. . .









, [LLR] =









lLR,1

lLR,2
...









, [ΨLR] =









ψLR,1

ψLR,2
...









T

(3.23)

From equations (3.15), it is evident that the RCMs computed from [LR]
ω2 will be

more accurate to approximate the contribution of the lower out-of-band modes as the

values for their natural frequencies and damping ratios are selected to be lower. Thus,

the same applies for the state-space model defined in expression (3.21) from this set of

RCMs.

As decreasing the value selected for the natural frequencies associated with the

RCMs computed from [LR]
ω2 is not linked with any negative consequence, this value can

be selected with freedom. In contrast, the value selected for the damping ratios of

these RCMs must follow the rule of thumb proposed to define the damping ratios of

the RCMs responsible for modelling the contribution of the upper out-of-band modes.

To assess the accuracy of the RCMs responsible for modelling the contribution of [LR]
(jω)2

,

we must compare the FRFs of the state-space model given in expression (3.21) with
[LR]
(jω)2

(which represents the contribution of the lower out-of-band modes, see expression

(3.1)) in the frequency band of interest. If relevant mismatches are observed, these

RCMs must be re-computed by choosing a lower value for their natural frequencies.

3.2.3 Complete state-space model

To construct a complete state-space model, we must concatenate the state-space

models representative of the in-band modes and of the upper and lower out-of-band

modes (expressions (3.3), (3.12) and (3.21), respectively). In this way, the complete

state-space model can be set-up as follows:

{ẋfull(t)} = [Afull]{xfull(t)} + [Bfull] {ufull(t)}

{yfull(t)} =
[

C
disp
full

]

{xfull(t)}
(3.24)

with,

[Afull] =

[

Λfull 0

0 Λ∗
full

]

, [Bfull] =

[

Lfull

L∗
full

]

, [Cdispfull ] = [Ψfull Ψ∗
full

] (3.25)
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where, matrices [Λfull], [Lfull] and [Ψfull] are given below.

[Λfull] =







Λib 0 0

0 ΛLR 0

0 0 ΛUR






, [Lfull] =







Lib

LLR

LUR






, [Ψfull] = [Ψib ΨLR ΨUR] (3.26)

Note that the complete state-space model given in expression (3.24) can be trans-

formed into block-diagonal form by applying a similarity transformation as presented

in [91],[39]. When a state-space model is transformed into real block-diagonal form,

its state-space matrices become real-valued matrices. Thereby, we have the possibility

of decreasing the numerical complexity of the calculations to be performed with the

complete state-space model.

3.3 Imposing Newton’s second law

The aim of this section is to present a novel approach to impose Newton’s second law

on state-space models without relying on the use of undamped RCMs. In section 3.3.1,

we will start by explaining in detail the negative consequences of computing state-space

models violating Newton’s second law. Afterwards, in section 3.3.2 a novel approach

to force state-space models to respect Newton’s second law without using undamped

RCMs is presented. Finally, a comparison between the proposed novel approach and

a state-of-the-art procedure to impose Newton’s second law on state-space models is

given in section 3.3.3.

3.3.1 Negative effects of violating Newton’s second law

Newton’s second law states that there is a direct relation between force and acceler-

ation, but there are no direct relations between force and displacement or velocity. For

this reason, the feedthrough matrices of displacement and velocity state-space models

(i.e. [Ddisp] and [Dvel], respectively) must be null. This requirement is always met for

displacement state-space models, because the feedthrough matrix of this kind of models

is by definition null. In contrast, the feedthrough matrix of a velocity state-space model

will not necessarily be null. To better understand the reason why the feedthrough ma-

trices of velocity models might not be null, let us consider the expression to calculate

the displacement FRFs of a generic state-space model as given below (see [45]).

[H(jω)] = [Cdisp](jω[I] − [A])−1[B] (3.27)

To get to a mathematical expression to calculate the mobility FRFs of a given

state-space model, we must differentiate equation (3.27) as follows:

[Hvel(jω)] = jω[H(jω)] = [Cvel](jω[I] − [Avel])−1[Bvel] + [Dvel] (3.28)
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with,

[Avel] = [A], [Bvel] = [B], [Cvel] = [Cdisp][A], [Dvel] = [Cdisp][B] (3.29)

where, superscript vel denotes vectors/matrices associated to a velocity state-space

model.

By observing expressions (3.28) and (3.29), it is evident that there is no guarantee

that the feedthrough matrix of velocity state-space models is always null. Hence, the

state-space models estimated from experimentally acquired data may violate Newton’s

second law. The computation of state-space models that violate Newton’s second law

presents two practical disadvantages. On the one hand, models not verifying Newton’s

second law cannot be properly transformed into coupling form [8]. This unables the

computation of minimal-order coupled state-space models, when performing coupling

operations with state-space models that are not represented in the physical domain

(common situation in practice) (see section 2.2.3). On the other hand, the accelerance

FRFs of a state-space model violating Newton’s second law cannot be properly com-

puted, which leads to a mismatch between these FRFs and the accelerance FRFs of

the modal model used to construct the state-space model (see section 3.2). To better

explain the second pointed disadvantage of estimating models that do not obey New-

ton’s second law, let us differentiate expression (3.28) to obtain the accelerance FRFs

of a generic state-space model as follows:

[Haccel(jω)] = (jω)2[H(jω)] = [Caccel](jω[I] − [A])−1[B] + [Daccel]

+ jω[Cdisp][B]
(3.30)

where, [Caccel] and [Daccel] are given below.

[Caccel] = [Cdisp][A][A], [Daccel] = [Cdisp][A][B] (3.31)

From the observation of expressions (3.30) and (3.31), it is clear that the term

jω[Cdisp][B] is not included on any state-space matrix of the acceleration state-space

model. If the state-space model violates Newton’s second law, [Cdisp][B] will not be

null. Hence, a mismatch between the accelerance FRFs of the state-space model and

of the modal model used to construct it will be observed.

3.3.2 Novel approach

To present a novel approach to impose Newton’s second law without relying on the

use of undamped RCMs, let us assume that a complete state-space model representative

of a given substructure was set-up by following the procedures discussed in section 3.2.

In this way, by using expression (3.28), we may compute the mobility FRFs of this
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model as follows

[Hvel
full(jω)] = [Cvelfull](jω[I] − [Afull])

−1[Bfull] + [Dvel
full] (3.32)

where, matrices [Cvelfull] and [Dvel
full] are given below.

[Cvelfull] = [Cdispfull ][Afull], [Dvel
full] = [Cdispfull ][Bfull] (3.33)

The product [Cdispfull ][Bfull] can be represented as follows:

[Cdispfull ][Bfull] = [Cdispib ][Bib] + [CdispLR ][BLR] + [CdispUR ][BUR] (3.34)

or, alternatively, by using expressions (3.24), (3.25) and (3.26), we may define the

product [Cdispfull ][Bfull] as given below.

[Cdispfull ][Bfull] =[ΨibLib + ΨLRLLR + ΨURLUR

+ Ψ∗
ibL

∗
ib + Ψ∗

LRL
∗
LR + Ψ∗

URL
∗
UR]

(3.35)

By computing the column-row expansion (see [28]) of each matrix product present

in expression (3.35), we may establish the following expression.

[Cdispfull ][Bfull] =

[

nib
∑

r=1

(ψib,rlib,r) +

nLR
∑

r=1

(ψLR,rlLR,r) +

nUR
∑

r=1

(ψUR,rlUR,r)

+

nib
∑

r=1

(

ψ∗
ib,rl

∗
ib,r

)

+

nLR
∑

r=1

(

ψ∗
LR,rl

∗
LR,r

)

+

nUR
∑

r=1

(

ψ∗
UR,rl

∗
UR,r

)

] (3.36)

By observing expression (3.36), it is clear that by estimating the in-band modal pa-

rameters by assuming a proportionally damped modal model (for example, by following

the approach reported in [70], which involves the use of the constrained version of LSFD

presented in appendix E), we can ensure that [Cdispib ][Bib] = [0], because the residue

matrices (i.e. {ψib,r}{lib,r}) of a proportionally damped modal model are pure imagi-

nary [90]. For this reason, [CdispLR ][BLR] = [0] and [CdispUR ][BUR] = [0] is always verified,

because the modal parameters of the RCMs responsible for modelling the contribu-

tion of both upper and lower out-of-band modes are defined by using proportionally

damped modal models (see section 3.2.2). Thus, it is straightforward to conclude that

[Cdispfull ][Bfull] = [Cdispib ][Bib] (see expression (3.34)). Therefore, from now on, to force

the complete state-space models to respect Newton’s second law, we will restrict our

attention to [Cdispib ][Bib]. Note also that, matrix [Cdispib ][Bib] will always be real, even

when the modal parameters are determined without assuming a proportionally damped

modal model.

Although the computation of state-space models respecting Newton’s second law by
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using modal parameters estimated by assuming a proportionally damped modal model

is possible, we must keep in mind that most of the real mechanical systems do not

present proportional damping. Thus, it is expected that the use of modal parameters

estimated without assuming a proportionally damped modal model lead to the com-

putation of state-space models presenting better accuracy. Hence, it continues to be

of interest to investigate how to properly force state-space models to verify Newton’s

second law.

To correctly force a complete displacement state-space model (see expression (3.24))

to respect Newton’s second law, we must make sure that the matrix resultant from the

product of its output and input matrices is a null matrix. On top of this, we must

also guarantee that the correspondent velocity state-space model properly includes the

contribution of [Cdispib ][Bib]. Recall that to include the contribution of the upper out-

of-band modes, we must make sure that [UR] is properly included in the displacement

state-space model (see expression (3.1)), whereas to properly impose Newton’s second

law we are demanded to ensure that the contribution of [Cdispib ][Bib] is properly included

in the complete velocity state-space model. Thus, it is evident that both problems are

similar. This suggests that to impose Newton’s second law, we can follow an approach

similar to the one exploited in section 3.2.2 to include the contribution of [UR] in the

displacement state-space models. Thereby, we must start by computing the SVD of

[Cdispib ][Bib] as follows:

[Cdispib ][Bib] = [PCB][σCB][WCB]T =

nCB
∑

r=1

{PCB,r}σCB,rr{WCB,r}T (3.37)

where, [PCB] ∈ R
no×nCB and [WCB] ∈ R

nCB×ni are the matrices composed by the left

and right singular vectors of matrix [Cdispib ][Bib], respectively, while [σCB] ∈ R
nCB×nCB is

a diagonal matrix composed by the singular values of [Cdispib ][Bib]. Subscript CB denotes

vectors/matrices associated with [Cdispib ][Bib], whereas nCB = min(ni, no). Note also

that, {PCB,r} ∈ R
no×1 represents the rth column of [PCB], σCB,rr denotes the rth

element on the diagonal of [σCB] and {WCB,r} ∈ R
1×ni represents the rth row of [WCB].

By using expression (3.37), we may define a set of RCMs, whose modal parameters

are given as follows:

λCB,r = −ξCB,rωCB,r + jωCB,r

√

1 − ξ2CB,r (3.38)

{lCB,r} = − j
2

√
σCB,rr{WCB,r}T (3.39)

{ψCB,r} =
ωCB,r

√

1 − ξ2CB,r

√
σCB,rr{PCB,r} (3.40)

where, ωCB,r and ξCB,r are the selected natural frequency and damping ratio of the rth
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mode of the RCMs computed from the SVD of matrix [Cdispib ][Bib], respectively. From

now on, we will assume that the natural frequencies and damping ratios of all the RCMs

computed from the SVD of [Cdispib ][Bib] are selected to be equal, i.e. ωCB = ωCB,r and

ξCB = ξCB,r (which is the common choice in practice to set-up the RCMs responsible

for modelling the out-of-band modes (see section 3.2.2)).

By exploiting the modal parameters of the RCMs defined from matrix [Cdispib ][Bib]

(see equations (3.38), (3.40) and (3.39)), a state-space model can be defined as follows

{ẋCB(t)} = [ACB]{xCB(t)} + [BCB]{uCB(t)}
{ẏCB(t)} = [CvelCB]{xCB(t)} + [Dvel

CB]{uCB(t)}
(3.41)

where, matrices [ACB], [BCB], [CvelCB] and [Dvel
CB] are given as follows (see expressions

(3.28) and (3.29)):

[ACB] =

[

ΛCB 0

0 Λ∗
CB

]

, [BCB] =

[

LCB

L∗
CB

]

[CvelCB] =
[

ΨCB Ψ∗
CB

]

, [Dvel
CB] = [CvelCB][ACB]−1[BCB]

(3.42)

while, [ΛCB], [LCB] and [ΨCB] are given hereafter.

[ΛCB] =









λCB,1

λCB,2
. . .









, [LCB] =









lCB,1

lCB,2
...









, [ΨCB] =









ψCB,1

ψCB,2
...









T

(3.43)

By using the state-space model defined in expression (3.41), we have the possibility

of imposing Newton’s second law on the complete velocity state-space model, while

properly including the contribution of [Cdispib ][Bib]. Nevertheless, it would be better to

have the possibility of directly imposing Newton’s second law on the complete displace-

ment state-space model, while making sure that [Cdispib ][Bib] is properly included into

the correspondent complete velocity model. This would be advantageous, because from

the complete displacement state-space model, we can easily compute the correspondent

complete velocity and complete acceleration state-space models (see expressions (3.29)

and 3.31). In contrast, to compute the complete displacement state-space model from

the complete velocity model, we are forced to perform matrix inversions (see expres-

sions (3.29)). Thus, to be able to directly impose Newton’s second law on the complete

displacement state-space model, we must compute the displacement state-space model

associated with the velocity model given in expression (3.41) as follows:

{ẋCB(t)} = [ACB]{xCB(t)} + [BCB]{uCB(t)}
{yCB(t)} = [CdispCB ]{xCB(t)} + [Ddisp

CB ]{uCB(t)}
(3.44)

where, [CdispCB ] and [Ddisp
CB ] are given as hereafter.
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[CdispCB ] = [CvelCB][ACB]−1, [Ddisp
CB ] = [0] (3.45)

Analyzing expression (3.45), we may notice that to compute the displacement state-

space model associated with the velocity model given in expression (3.41), we are re-

quired to invert matrix [ACB]. Nevertheless, this matrix is diagonal and it is of dimen-

sion 2nCB × 2nCB, thus the computation of its inverse will, in general, not demand a

high computational effort. On top of this, as the natural frequencies and damping ratios

of all the RCMs are often assumed to be equal, [ACB] is expected to present a low condi-

tion number. Therefore, the inversion of [ACB] will, in general, not introduce numerical

problems associated with ill-conditioned matrix inversions. Moreover, the performance

of this matrix inversion is definitely preferable than computing the complete displace-

ment state-space model from the velocity complete model, which would require the

inversion of a matrix of dimension 2(nib+nUR+nLR+nCB)×2(nib+nUR+nLR+nCB).

By exploiting the state-space model defined in expression (3.45), we may establish a

complete displacement state-space model that respects Newton’s second law as follows:

{ẋINLfull (t)} = [AINLfull ]{xINLfull (t)} + [BINL
full ]{uINLfull (t)}

{yINLfull (t)} = [CINL,dispfull ]{xINLfull (t)}
(3.46)

with,

[AINLfull ] =

[

Afull 0

0 ACB

]

, [BINL
full ] =

[

Bfull

BCB

]

, [CINL,dispfull ] =
[

C
disp
full C

disp
CB

]

(3.47)

while, superscript INL denotes variables associated with a state-space model that was

forced to respect Newton’s second law. Note that, in appendix F it is mathematically

proven that the RCMs here proposed are, indeed, capable of properly imposing New-

ton’s second law on displacement state-space models. It is also worth mentioning, that

the state-space model given in expression (3.46) can be transformed into block-diagonal

form by applying a similarity transformation as presented in [91], [39].

At this point, it is important to analyze how the accuracy of the RCMs depends

on the selected values for their natural frequencies and damping rations. To perform

this study, we must define and analyze the expression that enables the computation of

the FRFs of the velocity model given in expression (3.41). All the steps to get to this

expression are presented in appendix F. Thus, let us recall the intended expression (i.e.

expression (F.9)) as given below.

[Hvel
CB(jω)] =

ω2
CB[Cdispib ][Bib]

−ω2 + 2jωξCBωCB + ω2
CB

− [Cdispib ][Bib] (3.48)

Equation (3.48) presents two different right-hand side terms. The role of the first

term is to include the contribution of [Cdispib ][Bib] into the complete velocity state-space
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model, whereas the second term has the function of ensuring that [CINL,dispfull ][BINL
full ] =

[0] is verified. Therefore, the velocity model computed from the RCMs responsible for

imposing Newton’s second law (see expression (3.48)) will be more accurate as its FRFs

are closer to be null. Furthermore, expression (3.48) shows that the RCMs responsible

for imposing Newton’s second law will always make sure that [CINL,dispfull ][BINL
full ] is very

close to be a null matrix (not being a null matrix due to small numerical errors), not

mattering the selected values for the natural frequencies and damping ratios of these

RCMs. Nevertheless, the accuracy of the first right-hand side term is dependent on the

values selected for the natural frequencies and damping ratios of the RCMs responsible

for imposing Newton’s second law. By analyzing this term, it is evident that as the value

selected for the natural frequencies of the RCMs increases and as the value selected for

the damping ratios of the RCMs decreases, the value of the first right-hand side term

of expression (3.48) will be closer to [Cdispib ][Bib]. Thus, the contribution of [Cdispib ][Bib]

will be included on the complete velocity state-space model with greater accuracy and

hence, more precise will be the RCMs to impose Newton’s second law.

To select the value of the natural frequencies of these RCMs (i.e. ωCB), we propose,

as a rule of thumb, that this value must respect 10 × ωmax ≤ ωCB. Therefore, we

must start by comstructing the RCMs to impose Newton’s second law by defining

ωCB = 10 × ωmax. Then, to evaluate the accuracy of the constructed RCMs, we must

compute the first term of the right-hand side of equation (3.48) and compare it with

the elements of [Cdispib ][Bib] in the frequency band of interest. If this match turns out to

be of good quality, it means that the RCMs responsible for imposing Newton’s second

law were correctly set-up. Otherwise, these RCMs must be re-computed by selecting a

higher value for their natural frequencies.

To define the value of the damping ratios of these RCMs (i.e. ξCB), we suggest, as

a rule of thumb, that this value must obey 0.1 ≤ ξCB < 1 (ξCB must remain below 1,

because the modal parameters of the RCMs are defined by using a modal model). Even

though, we mentioned above that the RCMs will be more accurate as the value for their

damping ratios is selected to be lower, it is not a good practice to include undamped

or slightly damped modes on state-space models. Indeed, the inclusion of this kind of

modes may give rise to instabilities, when performing time-domain simulations with the

constructed models [40]. Thus, we must start by computing the RCMs responsible for

imposing Newton’s second law by using ξCB = 0.1. If numerical instabilities are found,

when simulating the constructed model in time-domain, the state-space model must be

re-computed by using RCMs set-up with a higher value for ξCB. When an appropriate

value for ξCB is found, we must re-evaluate the quality of the match between the first

term on the right-hand side of equation (3.48) and [Cdispib ][Bib] in the frequency band

of interest. If the match turns out to not be of sufficient quality, the RCMs must be

re-constructed by selecting a higher value for their natural frequencies.
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3.3.3 Comparing the novel approach with a state-of-the-art method

In this section, we will compare the approach proposed in section 3.3.2 to force

state-space models to verify Newton’s second law with the state-of-the-art approach

presented in [5]. An evident difference between both approaches is that unlike the

novel approach here presented, the method proposed in [5] does not make use of pairs

of complex conjugate RCMs. For this reason, the procedure proposed in [5] holds the

advantage of requiring the use of a lower number of RCMs than the approach pro-

posed in section 3.3.2. Nevertheless, the RCMs used in the technique presented in [5]

are undamped, while by exploiting the approach here presented we can use damped

RCMs. This represents a very important advantage of using the approach here pre-

sented, because the performance of time-domain simulations with models composed by

undamped modes may lead to numerical instabilities. On top of this, it is possible to

prove that the procedure developed in section 3.3.2 provides the possibility of properly

forcing state-space models to obey Newton’s second law by using RCMs presenting

lower natural frequencies. This represents another very important practical advantage,

if the computed state-space models are to be discretized. This is justified by the fact

that to properly discretize a state-space model, we must use a sampling frequency that

is at least twice the value of the highest natural frequency of the modes included in

the state-space model to be discretized (see [40]). Thereby, by using the novel ap-

proach to compute state-space models respecting Newton’s second law, we generally

have the possibility of discretizing these models by using lower sampling frequencies,

which substantially decreases the computational effort required to perform calculations

with them.

To mathematically prove the second pointed advantage to the method developed

in section 3.3.2, let us assume that we intend to impose Newton’s second law on a

SISO (Single Input Single Output) state-space model. In this way, by exploiting the

approach proposed in [5] and by recalling that [Cdispib ][Bib] is real (see section 3.3), the

following displacement state-space model representative of the RCMs proposed in [5]

can be defined:

{ẋCB,AL(t)} = [ACB,AL]{xCB,AL(t)} + [BCB,AL]{uCB,AL(t)}
{yCB,AL(t)} = [CdispCB,AL]{xCB,AL(t)}

(3.49)

with,

[ACB,AL] = [jωCB,AL] , [BCB,AL] =
[

−√
σCBW

T
CB

]

, [CdispCB,AL] = [PCB
√
σCB] (3.50)

where, subscript AL denotes matrices/vectors associated with the state-space model

representative of the RCMs proposed in [5] to impose impose Newton’s second law.

Thereby, we may compute the FRFs of the correspondent velocity state-space model
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as given below.

[Hvel
CB,AL(jω)] =

ωCB,ALPCBσCBW
T
CB

−ω + ωCB,AL
− PCBσCBW

T
CB (3.51)

By computing the FRFs of the velocity state-space model constructed from the

RCMs proposed in section 3.3.2 (see expression (3.41)) and by assuming ξCB = 0, we

obtain the following expression.

[Hvel
CB(jω)] =

ω2
CBPCBσCBW

T
CB

−ω2 + ω2
CB

− PCBσCBW
T
CB (3.52)

Analyzing expression (3.52), it is evident that the first right-hand side term of

this expression is responsible for including the contribution of [Cdispib ][Bib] into the

complete velocity state-space model, whereas the second term has the role of imposing

[CINL,dispfull ][BINL
full ] = [0]. Having in mind that ωCB > ωmax, by comparing expressions

(3.51) and (3.52), we may conclude that we are required to use a lower value of ωCB to

force the first right-hand side term of expression (3.52) to be, approximately, equal to

[Cdispib ][Bib] than to force the first right-hand side term of equation (3.51) to present the

same value. Thus, proving that by exploiting the approach proposed in 3.3.2, we have

the advantage of properly imposing Newton’s second law by using RCMs presenting

lower natural frequencies. Note that, this conclusion still applies for Multiple Input

Multiple Output (MIMO) state-space models.

3.4 State-Space realization of the VPT approach

Let us assume that an experimental modal characterization of a given mechanical

system, whose interface is not feasible to place actuators and/or sensors, is conducted.

Then, from the collected sets of FRFs and by following the procedures outlined in

sections 3.2 and 3.3.2, the state-space model given below can be identified.

{ẋ(t)} = [A]{x(t)} + [B]{u(t)}

{y(t)} = [Cdisp]{x(t)}
(3.53)

Let us now further assume that we intend to perform DS operations with the exper-

imentally characterized component. Hence, we are required to compute a state-space

model representative of this component, whose outputs and inputs are placed on its

interface. In this way, by assuming that the substructure under analysis behaves as a

rigid body in the frequency range of interest, we may start by applying VPT (see [87])

to transform the outputs and inputs of the FRFs of the state-space model given in

expression (3.53) into the defined virtual points (VPs) (i.e. into the intended locations,

in this case into the interface of the substructure under analysis). Thus, by exploit-

ing equation (3.27) to compute the FRFs of the state-space model given in expression

(3.53) and by applying the VPT approach, we may obtain the intended set of FRFs as
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follows:

[HV P (jω)] =
{YV P (jω)}
{UV P (jω)} = [Ty]([C

disp](jω[I] − [A])−1[B])[Tu]T (3.54)

where, subscript V P denotes vectors/matrices computed by exploiting VPT, whereas

matrices [Ty] and [Tu]T are given below:

[Ty] = (RTy Ry)
−1RTy (3.55a) [Tu]T = Ru(RTuRu)−1 (3.55b)

while, [Ry] and [Ru] represent, respectively, the output and input Interface Deformation

Mode (IDM) matrices. These matrices must be constructed as reported in [87].

By observing expression (3.54), it is straightforward that we can directly apply the

VPT approach on the state-space matrices of the state-space model given in expression

(3.53). Thereby, we can transform the outputs and inputs of this model into the

interface of the component under study, yielding the following state-space model:

{ẋ(t)} = [A]{x(t)} + [BV P ]{uV P (t)}
{yV P (t)} = [CdispV P ]{x(t)}

(3.56)

where, matrices [BV P ] and [CdispV P ] are given hereafter.

[BV P ] = [B][Tu]T (3.57a) [CdispV P ] = [Ty][C
disp] (3.57b)

Note that, the state-space model given in expression (3.56) could have been obtained

from the set of FRFs computed with VPT (see expression (3.54)) by applying the

procedures presented in sections 3.2 and 3.3. However, if a mistake on the construction

of [Ry] and/or [Ru] matrices is noticed after the estimation of the intended model,

we are required to repeat the full identification procedure. In contrast, by directly

applying VPT on the state-space matrices of the state-space model representative of

the measured FRFs (from now on this approach will be denoted as VPT-SS), possible

errors on the construction of [Ry] and/or [Ru] matrices can be easily fixed, because we

are only required to re-apply VPT by using the corrected transformation matrices (see

equations (3.55a) and (3.55b)) on the state-space model representative of the measured

sets of FRFs.

3.5 Imposing stability on coupled state-space models

The coupled state-space models obtained by exploiting SSS techniques are many

times unstable (i.e. state-space model composed by poles presenting positive real part),

in special, when they are originated from coupling operations involving non-passive

state-space models. For this reason, in general the SSS methods cannot be exploited
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to compute coupled state-space models to be used in time-domain simulations. This

tremendously limits the applications of SSS methods. To come up with an approach

to properly force coupled state-space models to be stable, let us start by transforming

a given displacement coupled model into complex diagonal form as follows (see [39]):

{ ˙̄xor,cdf (t)} = [Āor,cdf ]{x̄or,cdf (t)} + [B̄or,cdf ]{ūor,cdf (t)}

{ȳor,cdf (t)} = [C̄dispor,cdf
]{x̄or,cdf (t)}

(3.58)

where, subscript or denotes matrices/vectors of an unstable coupled state-space model

directly obtained from coupling operations (from now on denoted as original unstable

coupled state-space model), subscript cdf denotes matrices/vectors of a state-space

model transformed into complex diagonal form, while [Āor,cdf ], [B̄or,cdf ] and [C̄dispor,cdf ]

are given as follows:

[Aor,cdf ] = [Tor,cdf ]−1[Āor][Tor,cdf ], [Bor,cdf ] = [Tor,cdf ]−1[B̄or]

[Cdispor,cdf ] = [C̄dispor ][Tor,cdf ]
(3.59)

[Tor,cdf ] is a modal matrix composed by the eigenvectors of [Āor] and can be determined

by solving the following eigenvalue problem [39]:

[Āor][Tor,cdf ] = [Tor,cdf ][Λor] (3.60)

where, [Λor] is a diagonal matrix composed by the eigenvalues of [Āor] (which are also

the poles of the coupled system).

At this point, it is worth to recall the generic expression to compute the poles of a

given mechanical system as follows:

λ, λ∗ = −ξnωn ± jωn
√

1 − ξ2n (3.61)

where, ωn and ξn denote the natural frequency and the damping ratio associated with

a given pole. From the observation of equation (3.61), it is evident that an unstable

pole (i.e. presenting real positive part) can be interpreted as a nonphysical pole that

presents a negative damping ratio. Therefore, we will divide the original unstable

coupled model into two different models, one composed by the stable poles (from now

on denoted as stable state-space model) and the other one composed by the nonphysical

unstable poles (from now on tagged as unstable state-space model).

To set-up the stable state-space model, we must start by searching in the diagonal

of [Aor,cdf ] the stable poles. Then, by setting up a diagonal matrix with these stable

poles, we can compute the state matrix of the stable model (i.e. [Ast]). Afterwards, the

input matrix of the stable model (i.e. [Bst]) can be computed from the rows of [Bor,cdf ]

associated with the stable poles, whereas the output matrix of the stable model (i.e.

[Cdispst ]) can be defined by using the columns of [Cdispor,cdf ] associated with the stable poles.

To construct the unstable state-space model, the same methodology must be followed,
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however in place of looking for the stable poles included in the diagonal of [Aor,cdf ], we

have to search for the unstable ones.

To impose stability on the defined unstable state-space model, we must firstly solve

the system of equations given below to determine the natural frequency and the damp-

ing ratio associated with each unstable pole:



















−ξut,rωut,r = ℜ(λut,r)

ωut,r

√

1 − ξ2ut,r = |ℑ(λut,r)|

ωut,r ≥ 0

(3.62)

where, subscript ut denotes variables associated with the unstable state-space model,

| • | represents the absolute value of a variable, while ℜ and ℑ denote, respectively, the

real and imaginary parts of a variable.

Analyzing the system of equations (3.62) and by taking into account that all the

poles of the unstable model are unstable, it is evident that all the determined damping

rations will be negative. Thereby, to impose stability on the unstable model, we must

start by multiplying all the determined damping ratios by −1. Afterwards, the poles of

the unstable model must be re-constructed by following equation (3.61) and introduced

in the diagonal of [Aut]. Thus, making it possible to compute a stabilized version of

the unstable model. Nevertheless, the FRFs of this stabilized model are expected to be

significantly different from the FRFs of the unstable model. This is expected, because

by multiplying the damping ratios calculated with the system of equations (3.62) by

−1 to obtain the stabilized model, the FRFs of the unstable model are altered. To

compensate the difference between the FRFs of the stabilized and unstable models, we

will exploit the Least-Squares Frequency Domain estimator (see, for example, [66]).

By using LSFD, we have the possibility of computing the mode shapes and the

lower and upper residual matrices in a linear least-squares sense, provided that the

reference FRFs, the poles and the modal participation factors are available in advance.

Therefore, to exploit this estimator, the mode shapes of the stabilized state-space model

will be assumed to be unknown.

To implement LSFD, we must start by defining the modal model in matrix form

(see equation (3.1)) as follows:

[

Ĥ(jω)
]

=
[

[Υ] [LR] [UR]
] [

Â(L, λ, jω)
]

(3.63)

matrices
[

Ĥ(jω)
]

∈ R
no×2ninf , [Υ] ∈ R

no×2nm and
[

Â(L, λ, jω)
]

∈ R
(2nm+2ni)×2ninf

(being nm and nf the number of modes and frequency lines, respectively) are given

below:

[

Ĥ(jω)
]

=

[

ℜ([Htarget(jω)]1 . . . [Htarget(jω)]nf
)

ℑ([Htarget(jω)]1 . . . [Htarget(jω)]nf
)

]T

(3.64)
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[Υ] =
[

ℜ([Ψ]) ℑ([Ψ])
]

(3.65)

[

Â(L, λ, jω)
]

=
[

Âℜ(L, λ, jω) Âℑ(L, λ, jω)
]

(3.66)

where, [Htarget(jω)] represents the displacement FRF matrices that the stabilized state-

space model must present, whereas
[

Âℜ(L, λ, jω)
]

and
[

Âℑ(L, λ, jω)
]

are given here-

after.

[

Âℜ(L, λ, jω)
]

=





[âℜ(L, λ, jω)]1 . . . [âℜ(L, λ, jω)]nf
[

b̂ℜ(ω)
]

1
. . .

[

b̂ℜ(ω)
]

nf



 (3.67)

[

Âℑ(L, λ, jω)
]

=

[

[âℑ(L, λ, jω)]1 . . . [âℑ(L, λ, jω)]nf

[0] . . . [0]

]

(3.68)

while, [âℜ(L, λ, jω)], [âℑ(L, λ, jω)] and
[

b̂ℜ(ω)
]

must be computed as follows:

[âℜ(L, λ, jω)]1 =



























ℜ( l1
jω1−λ1 ) + ℜ(

l∗
1

jω1−λ∗1
)

...

ℜ( lnm

jω1−λnm
) + ℜ(

l∗nm

jω1−λ∗nm
)

−ℑ( l1
jω1−λ1 ) + ℑ(

l∗
1

jω1−λ∗1
)

...

−ℑ( lnm

jω1−λnm
) + ℑ(

l∗nm

jω1−λ∗nm
)



























(3.69)

[âℑ(L, λ, jω)]1 =



























ℑ( l1
jω1−λ1 ) + ℑ(

l∗
1

jω1−λ∗1
)

...

ℑ( lnm

jω1−λnm
) + ℑ(

l∗nm

jω1−λ∗nm
)

ℜ( l1
jω1−λ1 ) −ℜ(

l∗
1

jω1−λ∗1
)

...

ℜ( lnm

jω1−λnm
) −ℜ(

l∗nm

jω1−λ∗nm
)



























(3.70)

[

b̂ℜ(ω)
]

1
=

[

[I]
−ω2

1

[I]

]

(3.71)

where [I] ∈ R
ni×ni is an identity matrix. In appendix D, a mathematical proof for the

construction of matrix
[

Â(L, λ, jω)
]

is presented and it is also shown how
[

Â(L, λ, jω)
]

must be computed, when exploiting LSFD with mobility or accelerance reference FRFs.

Even though in general it leads to less accurate results, LSFD can also be used by

assuming that both upper and lower residual matrices are null. This is also presented

in appendix D.

By using expression (3.63), the mode shapes, the lower and the upper residual
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matrices can be estimated in a linear least-squares sense as given below.

[

[Υ] [LR] [UR]
]

=
[

Ĥ(jω)
] [

Â(L, λ, jω)
]†

(3.72)

Note that the poles of a given mechanical system can be real (when ξn ≥ 1) or

appear as complex conjugate pairs (see [39]). However, the LSFD estimator relies on

the modal model. This means that LSFD is unable to re-estimate the mode shapes

associated with real poles. To overcome this difficulty, we must divide the stabilized

model into two different models, being one of them composed by the real poles and the

other one composed by the pairs of complex conjugate poles. These two models can be

defined from the stabilized state-space model by following the described methodology to

construct the stable and unstable models from the original unstable coupled state-space

model.

After having partitioned the stabilized model, we have to identify the modal pa-

rameters of the model composed by the pairs of complex conjugate poles. To extract

the modal parameters from this model, we must start by identifying from the diagonal

of its state matrix, one pole of each pair of complex conjugate poles, the associated

row of its input matrix, which represents the correspondent modal participation factor

and the correspondent column of its output matrix representative of the correspondent

mode shape. As final step before exploiting LSFD, we have to establish the FRFs that

the state-space model composed by the pairs of complex conjugate poles must present

(target FRFs). We aim that the FRFs of the stabilized state-space model perfectly

match the FRFs of the unstable model. Thus, having in mind that the modal parame-

ters of the state-space model containing the real poles will not be optimized, we must

define the target FRFs as follows:

[Htarget(jω)] = [Hut(jω)] − [Hstbz
rp (jω)] (3.73)

where, [Hut(jω)] and [Hstbz
rp (jω)] denote the FRFs of the unstable model and of the

model composed by the real poles constructed from the stabilized state-space model,

respectively.

After exploiting LSFD, we end-up with a set of modal parameters (i.e. poles,

modal participation factors, mode shapes, lower and upper residual matrices) that can

be used to construct an optimized model composed by the pairs of complex conjugate

poles identified from the stabilized model (see section 3.2). Before constructing this

optimized model, we must compare the FRFs of the modal model that can be computed

with the optimized modal parameters with the target FRFs (see equation (3.73)). If this

comparison turns out to not be a match of enough quality, we have to further optimize

the modal parameters of the model composed by the pairs of complex conjugate poles

by, for example, exploiting ML-MM (see [67], [68], [69], [70]). After being satisfied with

the quality of the optimized modal parameters, we are ready to use these parameters

to set-up an optimized state-space model composed by the pairs of complex conjugate
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poles by following the procedures discussed in section 3.2. Afterwards, by concatenating

in block-diagonal form the stable model, the stabilized model composed by the real poles

and the optimized model, we may define the intended stable coupled state-space model

as follows:

{ ˙̄xstbzor (t)} =







Āst

Ā
op,stbz
pcp

Āstbzrp






{x̄stbzor (t)} +







B̄st

B̄
op,stbz
pcp

B̄stbz
rp







{

ūstbzor (t)
}

{ȳstbzor (t)} =
[

C̄
disp
st C̄

op,stbz,disp
pcp C̄

stbz,disp
rp

]

{x̄stbzor (t)}

(3.74)

where, subscripts st denote matrices/vectors associated with the stable coupled state-

space model computed from the original unstable coupled model, whereas subscripts rp

and pcp denote matrices/vectors associated with the state-space models composed by

the real poles and by the pairs of complex conjugate poles identified from the stabilized

model, respectively. Superscript stbz denotes matrices/vectors related to state-space

models that were forced to be stable, while superscript op denotes matrices/vectors

related to a state-space model constructed with the optimized modal parameters.

In the event that the stable coupled state-space model given in expression (3.74)

does not obey Newton’s second law, it must be forced to verify this physical law by

exploiting the approach proposed in section 3.3.2.

Note that the stable coupled state-space models computed by exploiting the pro-

cedures here proposed, might be composed by more states than the original unstable

coupled models. This increment on the number of states of the stable coupled model

may result from the use of RCMs to incorporate the contribution of the lower and upper

residual matrices associated with the optimized modal parameters (in case that LSFD

is used without assuming that [UR] and [LR] are null matrices) and, if demanded, due

to the inclusion of an extra set of RCMs to impose Newton’s second law. Thereby, the

inclusion of these sets of RCMs may represent at most an increment of 6×min(no, ni)

states.

It is also worth mentioning that the approach here proposed to impose stability on

coupled state-space models still holds and, can be applied in similar way to impose

stability on unstable models computed from decoupling operations.





Chapter 4

Numerical and experimental

validation

In this section, numerical and experimental substructuring cases will be analyzed. In

section 4.1, numerical substructuring cases are exploited to validate: the novel technique

to force state-space models to obey Newton’s second law introduced in section 3.3.2,

the post-processing procedures proposed in section 2.3 to mitigate the limitations of

LM-SSS method, the primal state-space assembly formulation derived in section 2.4,

the LM-SSS via compatibility relaxation method presented in section 2.5.1, the post-

processing procedures presented in section 2.5.2 to compute minimal-order coupled

models with LM-SSS via compatibility relaxation and the state-space realization of

the IS method introduced in section 2.5.4. Then, in section 4.2.3 an experimental

substructuring case is used to experimentally validate: the approaches numerically

validated in section 4.1 and the methodology presented in section 3.5 to impose stability

on unstable coupled state-space models.

4.1 Numerical Validation

In section 4.1.1, we will start by analyzing an assembled structure composed by two

substructures rigidly coupled to validate the approaches outlined in section 2.3. Then,

in section 4.1.2 an assembly composed by the same two substructures connected by two

mounts is used to validate the approaches presented in sections 2.4 and 2.5.

4.1.1 Numerical validation of LM-SSS enhanced with post-processing

procedures

In this section, the LM-SSS (see section 2.2.3) method enhanced with the post-

processing procedures presented in section 2.3 will be numerically validated. To perform

this numerical validation, we will analyze the components depicted in figure 4.1.

When coupled, the components shown in figure 4.1 give rise to the assembled struc-

87
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Figure 4.1: Uncoupled components [3].

ture depicted in figure 4.2. The value of the physical parameters denoted in figures 4.1

and 4.2 are listed in table 4.1.

Figure 4.2: Assembled system [3].

Table 4.1: Physical parameter values of the analytical assembled structure composed by the
substructures A and B rigidly connected [3].

i mi (kg) ci (Nsm−1) ki (Nm−1)

a1 10 30 1.5 × 105

a2 3 50 5 × 105

a3 3 50 4.5 × 105

p1 5 50 1 × 105

p2 7 50 1.5 × 105

p3 10 10 5 × 103

p4 1 - -

In the following, we will start by estimating state-space models from the FRFs of

components A and B perturbed by artificial noise, these models will be then trans-

formed into SACF and UCF. Afterwards, the identified state-space models are cou-

pled by exploiting LM-SSS. Three coupled state-space models are determined: a non

minimal-order coupled model obtained by exploiting LM-SSS with the untransformed

identified models and two minimal-order coupled models obtained by using LM-SSS

to couple the identified state-space models transformed into SACF and UCF together

with the post-processing procedures outlined in section 2.3.3 to eliminate the redun-

dant states originated from the coupling operations. Finally, LM-SSS is exploited to
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decouple the component A from the three computed coupled state-space models to

identify three different state-space models representative of component B. These three

state-space models of component B are obtained by the following approaches: decou-

pling from the non minimal-order coupled model the identified state-space model of

component A and by exploiting LM-SSS together with the post-processing procedures

presented in section 2.3.3 to decouple from the minimal-order coupled models obtained

by coupling the estimated models transformed into SACF and UCF the identified state-

space model of component A transformed into SACF and UCF, respectively, leading

to the computation of two models representative of component B free of the redundant

states originated from the decoupling operations.

Identified State-Space Models

To start, we must determine an exact state-space model representative of the com-

ponents and of the assembled structure shown in figures 4.1 and 4.2, respectively. These

state-space models were directly computed from the stiffness, damping and mass ma-

trices of the systems under analysis. Both stiffness and mass matrices were defined by

exploiting the Lagrange equations (see, for instance, [92]), whereas, for the sake of sim-

plicity, the damping matrix of each mechanical system was defined from the respective

stiffness matrix by replacing the stiffness terms with the damping ones.

However, to perform a more robust numerical validation, the exact state-space

models will not be used to perform DS operations. The models to be coupled will

instead be estimated from the FRFs of the mechanical systems under study perturbed

with artificial noise. These artificially perturbed FRFs will be computed as follows (see

[8]):

HP,ij(ωkf ) = HP,ij(ωkf ) + γij,kf + jθij,kf (4.1)

where, subscript P denotes the FRFs of a given substructure P , whereas subscripts

i, j and kf denote, respectively, the output, input and the discrete frequency of the

FRF term to be perturbed. Variables γ and θ denote Gaussian distributed independent

stochastic variables with zero mean and a standard deviation, in this case, assumed to

be 5× 10−3 m s−2 N−1. It is worth noticing that by following this approach to perturb

the FRFs, we are only adding artificial noise on the response (output) part of the FRFs.

To estimate state-space models directly from the perturbed FRFs, we started by

computing modal parameters from these FRFs with the Simcenter Testlab® imple-

mentation of both PolyMAX [66], [22] and Maximum Likelihood Modal Model method

(ML-MM) [67], [68], [69], [74]. State-space models were constructed with the estimated

modal parameters by following the procedures discussed in section 3.2. Then, these

models were forced to obey Newton’s second law by exploiting the approach discussed

in section 3.3.2, leading to the computation of state-space models representative of

components A and B composed by 24 and 30 states, respectively. Note that, to con-
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struct both state-space models, the RCMs responsible for including the contribution of

the upper out-of-band modes were set-up by selecting a natural frequency of 5 × 102

Hz, while the RCMs responsible for including the contribution of the lower out-of-band

modes were defined by selecting a natural frequency of 1 × 10−1 Hz. In addition, the

RCMs responsible for imposing Newton’s second law were set-up by selecting a natural

frequency of 1× 103 Hz. Furthermore, as time-domain simulations are not intended to

be performed with the state-space models computed in this section, all sets of RCMs

were defined to be undamped.

In figure 4.3, it is shown the comparison between an accelerance FRF of the exact

state-space model of component A with the same artificially perturbed FRF and with

the same FRF of the estimated state-space model, whereas the same comparison is

shown in figure 4.4 for an accelerance FRF of component B.
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Figure 4.3: Comparison of the accelerance FRF, whose output is the DOF a3 and the input
is the DOF a1, of the exact state-space model representative of component A
with: a) the same FRF artificially perturbed; b) the same FRF of the estimated
state-space model.

After having estimated the state-space models from the artificially perturbed FRFs,

these models were transformed into SACF (see [8]) and into UCF (see section 2.3.2).

Figures 4.5 shows the comparison of an accelerance FRF of the identified state-space

model representative of component A with the same FRF of the same state-space model

transformed into SACF and UCF. The same comparison is shown in figure 4.6 for an

accelerance FRF of the identified state-space model representative of component B.

By observing figures 4.3 and 4.4, we may conclude that the state-space models

representative of both components A and B estimated from the artificially perturbed

FRFs are very well-matching the correspondent exact FRFs. Thus, it is evident that

these models were successfully identified. Moreover, from the analysis of figures 4.5

and 4.6, it is straightforward to conclude that both identified state-space models were

successfully transformed into SACF and UCF, because the FRFs of the transformed
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Figure 4.4: Comparison of the accelerance FRF, whose output is the DOF p1 and the input
is the DOF p3, of the exact state-space model representative of component B
with: a) the same FRF artificially perturbed; b) the same FRF of the estimated
state-space model.

models perfectly match the correspondent FRFs of the unstransformed state-space

models.

Coupling Results

To compute a coupled state-space model representative of the assembled structure

depicted in figure 4.2, we started by exploiting LM-SSS to couple the state-space models

identified in section 4.1.1. This coupling operation lead to the computation of a non

minimal-order coupled model presenting 54 states. Then, to retain the unique set of

outputs and inputs from the computed coupled model, the post-processing procedure

discussed in section 2.3.4 was applied. The same coupling operation was done by using

LM-FBS to couple the FRFs of the identified state-space models. In figure 4.7, it is

shown the comparison between an accelerance FRF of the exact state-space model of

the assembled structure with the same FRF obtained by using LM-FBS and with the

same FRF of the coupled model obtained with LM-SSS.

By observing figure 4.7, we may conclude that the coupled FRF obtained with LM-

FBS and the FRF of the coupled model obtained with LM-SSS are very well-matching

the correspondent FRF of the exact state-space model of the assembled structure.

Moreover, the FRF of the coupled model computed with LM-SSS is perfectly matching

the coupled FRF obtained with LM-FBS. This demonstrates that both methods lead

to the same coupling result, when the FRFs involved on the coupling operation with

LM-FBS are the FRFs of the state-space models coupled with LM-SSS.

At this point, to assess the accuracy of LM-SSS to compute minimal-order coupled

models, the coupling operation described above was performed with the identified state-
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Figure 4.5: Comparison of the accelerance FRF, whose output and input is the DOF a2, of
the estimated state-space model representative of component A with the same
FRF of the same state-space model transformed into SACF and UCF.

space models transformed into SACF and UCF (see section 4.1.1). Then, from the

obtained coupled state-space models, minimal-order coupled state-space models were

computed by eliminating the extra states originated from the coupling operation. For

ease of implementation, the elimination of these redundant states was performed by

exploiting the post-processing procedure presented in section 2.3.3 that relies on the use

of a state Boolean localization matrix. As expected, it was found that both computed

minimal-order coupled models were composed by 50 states. Finally, the post-processing

procedure outlined in section 2.3.4 was used to retain the unique set of outputs and

inputs from the computed minimal-order coupled models. In figure 4.8, it is depicted

the comparison of an accelerance FRF of the computed non minimal-order coupled

model with the same FRF of the minimal-order coupled models obtained by coupling

state-space models previously transformed into SACF and UCF.

By analyzing figure 4.8, we conclude that the accelerance FRFs of the non minimal-

order coupled model and of the minimal-order coupled models obtained by coupling

state-space models previously transformed into SACF and UCF are perfectly matching.

Thus, it is evident that by exploiting LM-SSS to couple identified models previously

transformed into UCF together with the post-processing procedures presented in section

2.3.3, it is possible to compute accurate minimal-order coupled models.

Decoupling Results

To evaluate the performance of LM-SSS to implement decoupling operations, we will

start by identifying a state-space model representative of component B by decoupling

with LM-SSS the estimated state-space model of component A (see section 4.1.1) from

the non minimal-order coupled state-space model of the assembled structure computed
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Figure 4.6: Comparison of the accelerance FRF, whose output is the DOF p4 and the input
is the DOF p1, of the estimated state-space model representative of component
B with the same FRF of the same state-space model transformed into SACF and
UCF.

in section 4.1.1. The same decoupling operation will also be performed by exploiting

LM-FBS to decouple the FRFs of the estimated state-space model of component A

from the FRFs of the non minimal-order coupled model.

In figure 4.9, it is depicted the comparison between an accelerance FRF of the

exact state-space model of component B with the same accelerance FRF of component

B obtained by performing decoupling with LM-FBS and with the same FRF of the

identified state-space model of component B computed by performing decoupling with

LM-SSS.

From the observation of figure 4.9, it is possible to conclude that the FRF of com-

ponent B identified by performing decoupling with LM-FBS and the same FRF of

the state-space model identified by performing decoupling with LM-SSS are very well-

matching with the same FRF of the exact state-space model of component B. On

top of this, we may realize that the FRF of component B identified by performing

decoupling with LM-FBS perfectly matches the FRF of the identified model of compo-

nent B obtained by implementing decoupling with LM-SSS. This clearly indicates that

by performing decoupling with LM-FBS and with LM-SSS, the same coupling results

are obtained, provided that the FRFs involved on the decoupling operation with the

LM-FBS method are the FRFs of the state-space models involved on the decoupling

operation performed with LM-SSS.

It is now important to show that LM-SSS is also capable of decoupling state-space

models previously transformed into coupling form and that the redundant states orig-

inated from decoupling operations can be correctly eliminated by exploiting the post-

processing procedures presented in section 2.3.3. In this way, the state-space model

of component B will be re-estimated by decoupling the identified state-space model
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Figure 4.7: Comparison of the accelerance FRF, whose output is the DOF 2 and the input
is the DOF p3, of the exact state-space model of the assembled structure with
the same FRF obtained by using LM-FBS and with the same FRF of the non
minimal-order coupled model computed by exploiting LM-SSS.

of component A previously transformed into SACF and UCF from the minimal-order

coupled models (which are directly obtained in coupling form) determined in section

4.1.1 by using state-space models transformed into SACF and UCF, respectively. Then,

the post-processing procedure presented in section 2.3.3 that relies on the use of a state

Boolean localization matrix will be exploited to erase the redundant states originated

from the coupling operation.

Figure 4.10 shows a comparison of an accelerance FRF of the state-space model

representative of component B identified by directly using the estimtaed state-space

models (see section 4.1.1) with the same FRFs of the identified state-space models

computed by performing decoupling operations with models previously transformed

into SACF and UCF.

Figure 4.10 clearly demonstrates that the FRFs of the three identified models are

perfectly matching. Thus, validating the use of LM-SSS to perform decoupling opera-

tions with identified state-space models previously transformed into UCF together with

the post-processing procedures described in section 2.3.3 to erase the redundant states

originated from decoupling operations.

At this point, we must reflect on the number of states of the state-space models of

component B identified through decoupling with LM-SSS. By directly exploiting the

state-space models estimated in section 4.1.1, we were able to identify a state-space

model representative of component B composed by 78 states, whereas by using the

same state-space models previously transformed into SACF and UCF, we were able to

compute two state-space models representative of component B composed by 70 states.

Note that, the models of component B identified through decoupling with LM-SSS

are composed by a number of states substantially higher than the state-space model
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Figure 4.8: Comparison of the accelerance FRF, whose output is the DOF 1 and the input is
the DOF p4, of the non minimal-order coupled model with the same FRFs of the
minimal-order coupled models obtained by coupling identified state-space models
prevoiously transformed into SACF and UCF.

directly estimated from the artificially perturbed FRFs of component B (see section

4.1.1). Thus, we may conclude that all the state-space models estimated through

decoupling operations are non minimal-order models.

The high number of states composing the models identified through decoupling can

be explained by the introduction of the dynamics of component A to decouple it from

the assembled structure, which leads to the identification of models representative of

component B including the dynamics of the component A twice. This double inclusion

of the dynamics of component A leads to the presence of pairs of spurious modes on

the identified models of component B [47]. The elimination of these spurious modes is

usually hard to be performed, because it is difficult to distinguish spurious modes from

physical ones, when there is no previous knowledge regarding the dynamics of the com-

ponent to be identified (which is the common situation in practice). Therefore, when

possible, we suggest to avoid decoupling operations, by exploiting system identification

algorithms to estimate state-space models directly from data collected during the ex-

perimental modal characterization of the components or, by numerically modelling the

components to construct state-space models representative of their dynamic behaviour.

4.1.2 Numerical validation of LM-SSS via compatibility relaxation

In this section, the LM-SSS via compatibility relaxation method outlined in section

2.5.1, the state-space realization of IS presented in section 2.5.4 and the primal state-

space assembly formulation presented in section 2.4 will be numerically validated. To

perform these numerical validations, we will analyze an assembled structure, which

is composed by the components A and B analyzed in section 4.1.1 connected by two
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Figure 4.9: Comparison of the accelerance FRF, whose output is the DOF p2 and the input
is the DOF p3, of the exact state-space model of component B with the same
coupled FRF obtained by performing decoupling with LM-FBS and with the same
FRF of the identified state-space model of component B computed by performing
decoupling with LM-SSS.

mounts that respect the underlying assumptions of IS (see section 2.5) (see figure 4.11).

The assembled structure can be observed in figure 4.12, while the value of the physical

parameters indicated in figures 4.11 and 4.12 is given in table 4.2. Note that, the

mounts are assumed to present two fixtures attached to their edges (see figure 4.11),

because this is the common set-up used in practice to test CEs (see section 2.5.4).

Moreover, by assuming that the mounts present fixtures attached to their edges, we

have the possibility of numerically validate the state-space realization of the IS method

to identify the diagonal apparent mass terms of these mounts from the state-space

models representative of the mounts with attached fixtures to their edges.

Table 4.2: Physical parameter values of the analytical assembled structure composed by sub-
structures A and B connected by the mounts m1 and m2 [2].

i mi (kg) ci (N s m−1) ki (N m−1)

a1 10 30 1.5 × 105

a2 3 50 5 × 105

a3 3 50 4.5 × 105

p1 5 50 1 × 105

p2 7 50 1.5 × 105

p3 10 10 5 × 103

p4 1 - -
m1 - 20 1 × 105

m2 - 20 2 × 105

T 2 - -
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Figure 4.10: Comparison of the accelerance FRF, whose output and input is the DOF p2, of
the state-space model representative of component B identified by directly apply-
ing decoupling with LM-SSS on the unstransformed estimated state-space mod-
els with the same FRFs of the identified state-space models computed by per-
forming decoupling operations with models previously transformed into SACF
and UCF.

Figure 4.11: Isolated components [2].

In the following, we will start by estimating state-space models from the FRFs of the

components and mounts with attached fixtures perturbed with artificial noise, these

models are then transformed into UCF (which was already numerically validated in

section 4.1.1). Afterwards, LM-SSS via compatibility relaxation is exploited to couple

the components and mounts depicted in figure 4.11. By exploiting this method, two

different coupled models are calculated: a non minimal-order coupled model obtained

by coupling the untransformed identified models and a minimal-order coupled model

computed by coupling the identified models transformed into UCF and by exploiting

the post-processing procedures presented in section 2.5.2 to eliminate the extra states

originated from the coupling operation. The same coupling operation is then, per-

formed with LM-SSS by treating the mounts as regular substructures to be coupled.

To implement this coupling operation, primal disassembly (see section 2.4) is firstly

exploited to identify state-space models representative of the mounts without fixtures

attached to their edges. Subsequently, two coupled state-space models are computed
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Figure 4.12: Assembled structure [2].

by coupling with LM-SSS the identified state-space models of the mounts with the

identified models of components A and B. One of the computed coupled models is a

non minimal-order coupled model obtained by exploiting LM-SSS with the untrans-

formed identified state-space models, while the other is a minimal-order coupled model

obtained by coupling the identified state-space models transformed into UCF and by

exploiting the post-processing procedures presented in section 2.3.3. Afterwards, the

FRFs of both models are compared with the FRFs of the non minimal-order coupled

state-space model obtained with LM-SSS via compatibility relaxation. Finally, the

obtained coupling results are discussed.

Identification of State-Space Models

The exact state-space models of the components, mounts and assembled structure

were computed by exploiting the same methodology used to define the exact state-space

models of the numerical structures analyzed in section 4.1.1.

To perform a more robust numerical validation, the state-space models represen-

tative of the substructures and mounts with attached fixtures (see figure 4.11) to be

involved in DS operations will be computed from the FRFs of these mechanical sys-

tems perturbed with artificial noise. The perturbation of these FRFs will be performed

as reported in section 4.1.1. For this reason, the state-space models representative of

components A and B estimated in section 4.1.1 will be here exploited. Thus, we are

only required to estimate state-space models representative of the mounts m1 and m2

with fixtures attached to their edges.

By exploiting once again the Simcenter Testlab® implementation of both PolyMAX

[66], [22] and Maximum Likelihood Modal Model method (ML-MM) [67], [68], [69], [74],

modal parameters were estimated from the artificially perturbed FRFs of mounts m1

and m2 with fixtures attached to their edges. By using the estimated modal parameters

and by following the procedures discussed in section 3.2, state-space models represen-

tative of the mounts m1 and m2 with fixtures attached to their edges were set-up.

Then, the constructed state-space models were forced to verify Newton’s second law

by exploiting the approach presented in section 3.3.2, leading to the computation of

state-space models representative of the mounts m1 and m2 with fixtures attached

to their edges composed by 14 states. It is worth mentioning that to construct both
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state-space models, the RCMs used to model the contribution of the upper out-of-band

modes were defined by selecting a natural frequency of 5 × 102 Hz, whereas the RCMs

responsible for including the contribution of the lower out-of-band modes were set-up

by selecting a natural frequency of 1× 10−1 Hz. In addition, the RCMs responsible for

imposing Newton’s second law were defined by selecting a natural frequency of 1× 103

Hz. Moreover, as time-domain simulations will not be performed with the state-space

models here computed, the damping ratio of all the sets of RCMs was selected to be

zero.

Afterwards, the estimated state-space models were double-differentiated and in-

verted (see appendix A). From the resultant models, state-space models representative

of an off diagonal apparent mass term of mounts m1 and m2 can be obtained by retain-

ing from these inverted models, the output and input associated with the off diagonal

term of interest, while the other outputs and inputs must be eliminated (see section

2.5.4). For the mount m1, we have decided to retain the off diagonal term associated

with the output yT1 and the input uT2, whereas the off diagonal term of mount m2

associated with the output yT3 and uT4 was retained. To obtain state-space models

representative of the diagonal apparent mass terms of the mounts under analysis the

state-space realization of IS must be exploited (see section 2.5.4). Thereby, we have the

possibility of determining models representative of the diagonal apparent mass terms

of the mounts by transforming into negative form (by following the approach presented

in appendix 3.3.1) the identified state-space models representative of an off diagonal

term of each mount. Then, the computed state-space models representative of the

diagonal terms of the mounts must be inverted to compute the state-space models re-

quired to include the dynamics of mounts m1 and m2 in the LM-SSS formulation via

compatibility relaxation (see section 2.5.1). In addition, diagonal apparent mass terms

of mounts m1 and m2 were identified from the accelerance noisy FRFs of the mounts

with fixtures attached to their edges. This was done by inverting the noisy accelerance

FRFs of mount m1 with attached fixtures and by retaining the off diagonal apparent

mass term associated with the output yT1 and with the input uT2. The identified off

diagonal term was then, multiplied by -1 to estimate the intended diagonal apparent

mass term of mount m1. To estimate the diagonal apparent mass term of mount m2,

the same methodology was applied, however, the retained off diagonal term was the

one associated with the output yT3 and with the input is uT4.

In figure 4.13, it is possible to observe the comparison of the exact inverted diagonal

apparent mass term of mount m1 with the same term identified from the accelerance

noisy FRFs of mount m1 with attached fixtures and from the acceleration state-space

model representative of mount m1 with fixtures attached to its edges. The same com-

parison is reported for mount m2 in figure 4.14.

Figures 4.3 and 4.4, clearly demonstrate that accurate inverted state-space models

representative of the diagonal apparent mass terms of CEs respecting the assumptions

underlying IS (see section 2.5) can be identified from state-space models representative
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Figure 4.13: Comparison of the exact inverted diagonal apparent mass term of mount m1
with the same term identified from the accelerance noisy FRFs of mount m1 with
attached fixtures and from the acceleration state-space model representative of
mount m1 with fixtures attached to its edges.

of the assemblies, where they are included, by using the state-space realization of IS

(see section 2.5.4).

Coupling by Relaxing the Compatibility Conditions

To compute a non minimal-order coupled state-space model representative of the as-

sembled structure depicted in figure 4.12, the LM-SSS formulation via compatibility re-

laxation will be exploited (see section 2.5.1) with the state-space models representative

of the components A and B (identified in section 4.1.1 ) and with the inverted models

representative of the diagonal apparent mass terms of the mounts m1 and m2 identified

in section 4.1.2. In addition, a coupled state-space model will also be computed by ex-

ploiting the LM-SSS via compatibility relaxation with the same identified state-space

models previously transformed into UCF (which was already numerically validated in

section 4.1.1). From this coupled model, a minimal-order coupled state-space model

will then be computed by exploiting the post-processing procedure presented in section

2.3.3 that relies on the use of a state Boolean localization matrix to eliminate the extra

states originated from the performed coupling operation. The performance of these

coupling operations leads to the computation of a non minimal-order coupled state-

space model presenting 82 states and to the calculation of a minimal-order coupled

model composed by 78 states. Moreover, the same coupling operation was performed

by exploiting the LM-FBS formulation via compatibility relaxation (see section 2.2.2)

with the FRFs of the state-space models representative of the components A and B

and of the diagonal apparent mass terms of the mounts m1 and m2.

Note that we have obtained the state-space models representative of the inverted
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Figure 4.14: Comparison of the exact inverted diagonal apparent mass term of mount m2
with the same term identified from the accelerance noisy FRFs of mount m2 with
attached fixtures and from the acceleration state-space model representative of
mount m2 with fixtures attached to its edges.

diagonal apparent mass terms of the mounts transformed into UCF from the state-space

models representative of the mounts with attached fixtures transformed into UCF by

exploiting the state-space realization of IS presented in section 2.5.4. The intended

state-space models were obtained in this way, because to transform the state-space

models representative of the inverted diagonal apparent mass terms of the mounts into

coupling form, we are required to know their displacement output matrices (see section

2.3.2). However, these matrices are not known, being only available their acceleration

output matrices. As to compute the displacement output matrix of a given state-space

model from the acceleration one, we are required to perform the inversion of its state

matrix (see expressions (3.30) and (3.31)), the direct transformation of the state-space

models representative of the inverted diagonal apparent mass terms of the mounts into

UCF is not recommended. This is the reason why, we decided to compute the intended

models from the state-space models representative of the mounts with attached fixtures,

whose displacement output matrices are available, transformed into UCF.

In figure 4.15, it is shown the comparison of an accelerance FRF of the exact state-

space model representative of the assembled structure with the same coupled FRF

obtained with LM-FBS via compatibility relaxation and with the same FRFs of the

non minimal-order and of the minimal-order coupled models computed with LM-SSS

via compatibility relaxation.

By analyzing figure 4.15, it is evident that the accelerance FRF of the coupled

models obtained with LM-SSS via compatibility relaxation and the coupled accelerance

FRF obtained through LM-FBS via compatibility relaxation are very well matching

the same accelerance FRF of the exact state-space model of the assembled structure.

Thus, we may claim that LM-SSS via compatibility relaxation is, indeed, accurate to
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Figure 4.15: Comparison of the accelerance FRF, whose output is the DOF p3 and the input
is the DOF a1, of the exact state-space model of the assembled structure with
the same coupled FRF computed with LM-FBS via compatibility relaxation and
with the same FRFs of the non minimal-order and of the minimal-order coupled
models obtained by exploiting LM-SSS via compatibility relaxation.

compute coupled models representative of substructures connected by CEs respecting

the assumptions underlying IS.

By further observing figure 4.15, we may conclude that the FRFs of the coupled

models are perfectly matching the coupled accelerance FRFs obtained by LM-FBS via

compatibility relaxation. Therefore, it is evident that both LM-SSS via compatibility

relaxation and LM-FBS via compatibility relaxation lead to the same coupling results,

provided that the FRFs involved on the coupling operation with LM-FBS via com-

patibility relaxation are the FRFs of the state-space models coupled with LM-SSS via

compatibility relaxation. On top of this, as the FRFs of the non minimal-order and

minimal order coupled models are perfectly matching, it is straightforward to infer

that the post-processing procedures described in section 2.5.2 are valid to eliminate the

extra states originated from the performance of coupling operations with LM-SSS via

compatibility relaxation.

Coupling by treating the Mounts as Regular Components

In this section, we will start by using the primal state-space assembly formulation

outlined in section 2.4 to decouple the fixtures attached to the edges of mounts m1

and m2 to compute state-space models representative of these mounts without fixtures

attached to their edges (see figure 4.11). As the fixtures to be decoupled do not present

stiffness (see Table 4.2), they will not present any flexible mode. For this reason, there

is no point on estimating modal parameters from the FRFs of the fixtures to compute

state-space models representative of their dynamics. Thus, the state-space models

representative of the fixtures will be directly estimated from their mass matrices.
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Figure 4.16 compares the apparent mass term, whose output is the DOF T2 and

the input is the DOF T1, of the exact state-space model of mount m1 with the same

off diagonal apparent mass term obtained by the following methodologies: i) identified

from the inverted noisy accelerance FRFs, by performing primal disassembly with ii)

the untransformed state-space models representative of the fixtures and of the mount

m1 with the fixtures attached to its edges and with iii) the same state-space models

previously transformed into UCF and by using the post-processing procedure presented

in section 2.3.3 that relies on the use of a state Boolean localization matrix, leading to

the computation of a minimal-order model free of the redundant states originated from

the primal disassembly operation. The same comparison is performed in figure 4.17 for

the off diagonal apparent mass term of the mount m2, whose output is the DOF T3

and the input is the DOF T4.
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Figure 4.16: Comparison of the apparent mass term, whose output is the DOF T1 and the
input is the DOF T2, of the exact state-space model of mount m1 with the
same off diagonal apparent mass term computed by the following approaches:
i) identified from the inverted noisy accelerance FRFs, by performing primal
disassembly with ii) the unstansformed state-space models and with iii) the
same state-space models previously transformed into UCF and by exploiting the
post-processing procedure presented in section 2.3.3 that relies on the use of a
state Boolean localization matrix.

From the analysis of figures 4.16 and 4.17, it is clear that the apparent mass terms

of the state-space models identified through primal disassembly are very well-matching

the same term of the correspondent exact state-space models. Moreover, it is straight-

forward that the FRFs of the state-space models identified through primal disassembly

by using the untransformed models are perfectly matched by the FRFs of the minimal-

order models obtained with primal disassembly. Thus, we may claim that the primal

state-space assembly formulation presented in section 2.4 and the strategy discussed

in the same section to remove the redundant states originated from the performance

of primal assembly/disassembly operations are numerically validated. Note that, the
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Figure 4.17: Comparison of the apparent mass term, whose output is the DOF T3 and the
input is the DOF T4, of the exact state-space model of mount m2 with the
same off diagonal apparent mass term computed by the following approaches:
i) identified from the inverted noisy accelerance FRFs, by performing primal
disassembly with ii) the unstansformed state-space models and with iii) the
same state-space models previously transformed into UCF and by exploiting the
post-processing procedure presented in section 2.3.3 that relies on the use of a
state Boolean localization matrix.

state-space model identified by exploiting primal disassembly is composed by 18 states,

whereas the minimal-order model computed with the same approach presents 14 states.

At this point, the state-space models of mounts m1 and m2 identified through primal

disassembly will be inverted and coupled with the state-space models of substructures

A and B by exploiting LM-SSS. This coupling operation will lead to the computation of

a non minimal-order coupled model. Additionally, the same coupling operation will be

conducted by using the same models previously transformed into coupling form and by

exploiting the post-processing procedure presented in section 2.3.3 that relies on the use

of a state Boolean localization matrix, enabling the computation of a minimal order-

coupled model representative of the assembled structure given in figure 4.12. After

performing these coupling operations, it was found that the non minimal-order coupled

state-space model was composed by 90 states, while the minimal-order coupled model

presented 74 states.

In figure 4.18, an accelerance FRF of the exact model of the assembled structure

under analysis is compared with the same FRF of the coupled state-space models com-

puted by the following methodologies: i) non minimal-order coupled model computed

with LM-SSS via compatibility relaxation, ii) non minimal-order coupled model com-

puted by using LM-SSS and iii) minimal-order coupled model computed with LM-SSS.

By performing this comparison, we intend to prove that, if the CEs obey the assump-

tions underlying IS, all the approaches used to compute the coupled state-space model

lead to the calculation of coupled models presenting the same FRFs. Note that, the
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inverted non minimal-order and minimal-order coupled state-space models that could

have been computed by exploiting the primal state-space assembly formulation would

also present the same FRFs.
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Figure 4.18: Comparison of the accelerance FRF, whose output is the DOF a3 and the input
is the DOF a1, of the exact state-space model of the assembled structure with
the same FRF of the following coupled state-space models: i) non minimal-order
coupled model computed by exploiting LM-SSS via compatibility relaxation, ii)
non minimal-order coupled model obtained with LM-SSS and iii) minimal-order
coupled model computed with LM-SSS.

Results and discussion

By analyzing the results reported in this section, it is clear that by performing

decoupling/disassembly operations or by using the state-space realization of IS (see

section 2.5.4), we can accurately identify state-space models representative of the dy-

namics of both m1 and m2 mounts. However, it was found that the state-space models

identified through the state-space realization of IS (made of 14 states) were composed

by a lower number of states than the state-space models obtained through primal disas-

sembly (composed by 18 states). The state-space models obtained by exploiting primal

disassembly present more states due to the performed disassembly operations to remove

the dynamics of the fixtures attached to the mounts (see section section 2.5).

Nevertheless, the minimal-order models representative of the mounts obtained with

primal disassembly (made of 14 states) are composed by the same number of states

as the models identified with the state-space realization of IS. Indeed, the state-space

models obtained by both strategies present the same number of states, because the

models of the masses are solely composed by a single interface DOF and were analyt-

ically computed. Hence, these models only present two states (i.e. twice the number

of their DOFs). Thus, having in mind that the post-processing procedures exploited

to compute minimal-order models (see section 2.3.3) remove from the state-space mod-
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els originated from primal assembly/disassembly operations a number of states that

is twice the value of the coupled interface DOFs, it is evident that all the introduced

states to perform the disassembly operation are eliminated.

Turning our attention to the computed coupled state-space models, we may realize

that the non minimal-order coupled models computed by exploiting LM-SSS via com-

patibility relaxation and by using LM-SSS present, respectively, 82 and 90 states. As

expected, due to the performance of decoupling operations to estimate the state-space

models of the mounts m1 and m2 to be included in the coupling operation with LM-

SSS, the coupled model obtained by using this approach presents more states than the

coupled model computed through LM-SSS via compatibility relaxation. In contrast, the

minimal-order coupled state-space model computed with LM-SSS presents 74 states,

while the minimal-order coupled model computed with LM-SSS via compatibility relax-

ation is composed by 78 states. The minimal-order coupled model computed through

LM-SSS via compatibility relaxation presents a larger number of states, because the

compatibility conditions are defined by calculating the relative motion between the

interface DOFs of components A and B. Thus, the extra states to be eliminated to

compute the minimal-order coupled model are the ones representative of the relative

displacement between these interface DOFs and the respective first-order derivatives

(see section 2.5.2). This renders the elimination of 4 states. Conversely, by exploiting

LM-SSS, we impose that the interface DOFs of each mount must present the same

physical motion as the interface DOFs of the components A and B to which the mount

is connected. Therefore, per each pair of matching interface DOFs, the computed cou-

pled model will present a pair of states presenting the same physical meaning. The

same is valid for the states representative of the respective first-order derivatives (see

section 2.3.3). Hence, to compute the minimal-order coupled model we are required

to eliminate 8 states. As we eliminate more states from the coupled state-space model

computed with LM-SSS, the minimal-order coupled model obtained with this method

presents less states than the minimal-order coupled model computed with LM-SSS via

compatibility relaxation.

It is now straightforward to infer that the minimal-order coupled state-space model

calculated by exploiting LM-SSS is the most interesting one, because it is composed by

the lowest number of states, while presenting the same FRFs as the other computed

coupled state-space models. However, it is worth mentioning that this model is the most

interesting, because we are dealing with an analytical substructuring case. Indeed, in an

experimental scenario, the fixtures could not generally be represented by an analytically

determined state-space model. Thus, we would very likely be required to identify

state-space models representative of the dynamics of the fixtures by exploiting system

identification algorithms (see section 3.1), which in general lead to the estimation of

state-space models presenting a number of states higher than twice the number of the

outputs (which is the number of states of analytically computed state-space models) of

the structures under study. Hence, the performance of decoupling operations with these
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estimated state-space models would lead to the identification of models representative

of the CEs spoiled by spurious states. For this reason, the coupled state-space models

obtained with LM-SSS are expected to be composed by a number of states significantly

higher than the number of states of the coupled model obtained with LM-SSS via

compatibility relaxation. This is verified for the experimental substructuring case to

be analyzed in section 4.2.

4.2 Experimental Validation

In this section, the approaches presented in sections 2.3, 2.4, 2.5, 3.3.2, 3.4 and 3.5

are experimentally validated. To start, in section 4.2.1 the components/assemblies to be

studied are presented and the conducted experimental tests to characterize them are de-

scribed. Then, in section 4.2.2 state-space models representative of the experimentally

characterized components/assemblies are computed in accordance with the procedures

presented in sections 3.2 and 3.3.2. Afterwards, in section 4.2.3 the performance of

decoupling/coupling operations with LM-SSS and the use of the post-processing pro-

cedures presented in section 2.3.3 to eliminate the redundant states originated from

these DS operations is experimentally validated. In section 4.2.4, the quality of the

state-space models computed by exploiting primal state-space disassembly (see section

2.4) is evaluated and the accuracy of the post-processing procedures outlined in section

2.3.3 to eliminate the redundant states originated from primal disassembly operations

is assessed, while the state-space realization of IS (see section 2.5.4) is experimentally

validated. Then, in section 4.2.5 the use of the primal state-space assembly formulation

together with the tailored post-processing procedures presented in section 2.3.3 is ex-

perimentally validated to compute minimal-order coupled models. Additionally, in the

same section, the use of LM-SSS via compatibility relaxation with the tailored post-

processing procedures outlined in section 2.5.2 to eliminate the extra states originated

from this coupling operation is experimentally validated. Finally, the approach pro-

posed in section 3.5 to impose stability on coupled state-space models is experimentally

validated in section 4.2.6.

4.2.1 Testing Campaign

To experimentally validate the techniques presented in sections 2.3, 2.4, 2.5, 3.3.2,

3.4 and 3.5, the following mechanical systems were experimentally characterized:

• Two aluminum crosses (from now on tagged as aluminum cross A and B);

• Two steel crosses (from now on tagged as steel cross A and B);

• Assembly A composed by the two aluminum crosses linked by a rubber mount;

• Assembly B composed by the two steel crosses linked by a rubber mount.
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To perform the intended experimental validations, we will be required to perform

DS operations with the state-space models representative of the dynamics of the ex-

perimentally characterized mechanical systems. For this reason, we are required to

estimate state-space models, whose outputs and inputs are located at the interfaces

of the crosses/assemblies under analysis. Nevertheless, the instrumentation of sensors

and the performance of excitation at the interfaces of these components is infeasible.

Thus, to surpass this difficulty, the crosses were produced to behave as rigid bodies in

the frequency band of interest, which was defined to be from 2× 101 Hz to 5× 102 Hz.

Thereby, we can compute the intended state-space models by exploiting VPT-SS (see

section 3.4) with the state-space models identified from FRFs collected from experi-

mental tests performed on the crosses/assemblies by applying excitation and by placing

sensors at accessible locations.

The test set-ups used to experimentally characterize the crosses and assemblies are

depicted in figures 4.19a and 4.19b, respectively. The experimental modal characteri-

zation tests were performed by using the roving hammer approach. Each cross, either

isolated or included in the assembly, was excited at sixteen different locations with an

instrumented hammer (PCB Model 086C03), while the responses of each cross were

measured by using three accelerometers (PCB Model TLD356A32) as shown in figure

4.20.

(a) Crosses. (b) Assemblies.

Figure 4.19: Test set-ups used to perform the experimental modal characterization of the
isolated crosses and assemblies [3].

To demonstrate that the aluminum and steel crosses can be assumed to behave

as rigid bodies in the frequency band of interest, Finite Element (FE) analysis of

both components were conducted in COMSOL Multiphysics® to determine their first

flexible eigenfrequencies. In figure 4.21a, the mesh used to analyze the aluminum cross

is shown, while figure 4.21b depicts the first flexible eigenmode of this component.

From the performance of these FE analysis, it was found that the first flexible modes

of the aluminum and steel crosses presented eigenfrequencies of 5.187 × 103 Hz and

5.950 × 103 Hz, respectively. Thus, we can conclude that these components can be

assumed to behave as rigid bodies in the frequency band of interest (i.e. from 2 × 101

Hz to 5 × 102 Hz). Moreover, it is worth noting that the fixtures attached to the
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Figure 4.20: Locations of measurement accelerometers (red), hammer impact directions
(black arrows) and virtual point (yellow) [3].

rubber mount were designed with a cross shape to enable an accurate excitation of the

rotational DOFs of the rubber mount. In this way, it is possible to perform a reliable

six DOFs characterization of each isolated cross and to make a reliable twelve DOFs

characterization of both assemblies A and B (see [33],[56]).

(a) Mesh used to analyze the aluminum cross. (b) First flexible eigenmode of the aluminum cross.

Figure 4.21: Finite element model analysis performed on the aluminum cross.

4.2.2 State-space models identification

Here, we will estimate state-space models representative of the aluminum and steel

crosses alone and of the assemblies A and B (see section 4.2.1). To estimate these

models, we will start by exploiting the Simcenter Testlab® implementation of both

PolyMAX and ML-MM methods to identify modal parameters from the measured FRFs

of each mechanical components and assemblies. It is worth mentioning, that these

modal parameters will not be identified by assuming a proportional damped modal

model. Thereby, we have the chance of evaluating in practice the suitability of the

RCMs proposed in section 3.3.2 to impose Newton’s second law on state-space models.

In addition, we circumvent the use of a modal model that is likely to not be the most

adequate to describe the dynamic behaviour of the mechanical systems under study,

in special the dynamics of the assemblies A and B, which are composed by a rubber

mount.

From the identified modal parameters, state-space models representative of the

systems under study were set-up by following the procedures reported in section 3.2.1.
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To include the contribution of the lower and upper out-of-band modes in the frequency

band of interest, sets of RCMs were set-up as reported in section 3.2.2 and inserted into

the state-space models. On top of this, a set of RCMs defined by following the approach

presented in section 3.3.2 was included into the constructed state-space models to force

them to respect Newton’s second law. The sets of RCMs inserted in each constructed

state-space model to include the contribution of the lower out-of-band models were

set-up by selecting ωLR = 1 × 10−1 Hz and ξLR = 1 × 10−1, whereas the sets of RCMs

included in each of the constructed state-space models to account for the contribution

of the upper out-of-band modes and to impose Newton’s second law were defined by

selecting ωUR = ωCB = 1.5×104 Hz and ξUR = ξCB = 1×10−1 (see, sections 3.2.2 and

3.3.2). After including these sets of RCMs on the state-space models computed from

the identified modal parameters, complete state-space models describing the dynamics

of the mechanical systems under analysis and respecting Newton’s second law were

obtained. Nevertheless, as these models are to be exploited in DS operations, they

must contain inputs and outputs collocated at the interface of the mechanical systems.

To fulfill this requirement, the VPT-SS method (see, section 3.4) was used to transform

the positions of the inputs and outputs of the estimated state-space models into the

interface of the respective mechanical systems.

Subsequently, the approach proposed in [4] was implemented to compute passive

models from the state-space models resultant from the application of VPT-SS. This

method requires the user to define the frequency band for which the FRFs of the

modes included in the state-space models are going to be monitored and imposed

to be positive real. However, no recommendations on how to properly define this

frequency band are reported in [4]. Here, to make sure that the dynamics of all the

modes included in the state-space models is well monitored, this frequency band was

selected to range from 1 × 10−2 Hz to 1.8 × 104 Hz. On top of this, in an attempt to

circumvent possible passivity violations for frequencies in between successive frequency

points included in the selected frequency band, these points were defined to be spaced

by 1 × 10−2 Hz. It is worth mentioning that, we have decided to exploit this approach

to compute passive models for two reasons. Firstly, it was developed by targeting

applications involving SSS. Secondly, it is a direct approach that does not rely on the

use of iterative algorithms and, hence, does not demand high computational effort.

Thus, obtaining coupled models by coupling state-space models forced to be passive by

using the technique proposed in [4] is the strategy that shares more similarities with

the approach that we proposed in section 3.5 to compute stable coupled state-space

models.

In figures 4.22, 4.23, 4.24 and 4.25 interface FRFs of each of the components/assemblies

under analysis computed by exploiting VPT on the measured FRFs are compared: i)

with the same FRFs of the respective estimated state-space model, ii) with the same

FRFs of the respective estimated state-space model transformed into UCF and iii) with

the same FRFs of the passive state-space model computed from the respective identi-
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fied model by using the method outlined in [4]. It is worth mentioning that from now

on, the virtual point responses of the crosses aluminum and steel A will be denoted v1,

whereas the virtual point loads of the same components will be tagged m1. Further-

more, the virtual point responses of the crosses aluminum and steel B will be denoted

v2, while the virtual point loads of the same crosses will be tagged m2

From the analysis of figures 4.22, 4.23, 4.24 and 4.25, we may conclude that the

identified state-space models accurately describe the dynamics of the systems under

analysis. On top of this, it was found that all the estimated state-space models obey

Newton’s second law. In fact, the [CINL,dispfull ][BINL
full ] matrix of the model describing

the dynamics of assembly A is the one presenting the term with the highest maximum

value. The absolute value of this term is, approximately, 1× 10−12. Thus, it is evident

that the approaches presented in section 3.2 are accurate to compute state-space models

from experimentally acquired FRFs and that the method discussed in section 3.3.2 is

reliable to impose Newton’s second law on these models. Moreover, it is also clear that

the FRFs of the estimated state-space models and of the same models transformed

into UCF are perfectly matching. Hence, we may conclude that state-space models

estimated from measured FRFs can be accurately transform into UCF.

Focusing our analysis on the computed passive models, it is straightforward to con-

clude that they poorly represent the dynamics of the mechanical systems under study.

Indeed, as discussed in section 3, the method proposed in [4] was already expected to

lead to the computation of low quality passive models. The poor accuracy of these

models is directly linked to the adjustments made on the terms of the output and input

matrices of the respective identified state-space models to force them to obey passivity.

As the mismatches between the FRFs of the estimated and passive models resultant

from these adjustments are not compensated in a later stage, they tend to sum up lead-

ing to the significant deviations between the FRFs of both models observed in figures

4.22, 4.23, 4.24 and 4.25. Moreover, the computed passive models were found to violate

passivity for frequency values not included in the chosen frequency band. Thus, these

models are not globally passive. In fact, the enforcement of passivity by solely con-

sidering the frequency points included in a selected frequency band, commonly, leads

to the computation of models that obey passivity for the considered frequency points,

but that do not necessarily verify this criteria for other frequency values (see, [78]). On

top of this, the computed passive models violate Newton’s second law. This is linked

to the fact that the method proposed in [4] does not use any constraint to guarantee

that the adjustments performed on the output and input matrices of the state-space

models do not promote the computation of passive models violating Newton’s second

law. As a result of the lack of global passivity and of the poor quality of the models

defined by exploiting the method outlined in [4], these models will not be exploited to

conduct the DS operations reported in the following sections.

At this point, it is important to report that the models representative of the dynam-

ics of the aluminum crosses A and B are composed, respectively, by 204 and 210 states.
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Figure 4.22: Comparison of some accelerance interface FRFs (black solid line) (the left y
axis must be used to interpret the amplitude of these FRFs) with the same
accelerance FRFs of the: i) respective estimated state-space model (red dash-
dotted line) (the left y axis must be used to interpret the amplitude of these
FRFs), ii) of the respective estimated state-space model transformed into UCF
(cyan dashed line) (the left y axis must be used to interpret the amplitude of these
FRFs) and iii) of the passive model obtained by using the technique outlined in
[4] (blue dotted line) (the right y axis must be used to interpret the amplitude
of these FRFs): a) FRF of the aluminum cross A, whose output and input are
v
y
1

and m
y
1
, respectively; b) FRF of the aluminum cross B, whose output and

input are vRx

2
and mRx

2
, respectively.
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Figure 4.23: Comparison of some accelerance interface FRFs (black solid line) (the left y
axis must be used to interpret the amplitude of these FRFs) with the same
accelerance FRFs of the: i) respective estimated state-space model (red dash-
dotted line) (the left y axis must be used to interpret the amplitude of these
FRFs), ii) of the respective estimated state-space model transformed into UCF
(cyan dashed line) (the left y axis must be used to interpret the amplitude
of these FRFs) and iii) of the passive model obtained by using the technique
outlined in [4] (blue dotted line) (the right y axis must be used to interpret the
amplitude of these FRFs): a) FRF of the steel cross A, whose output and input
are vRx

1
and mRx

1
, respectively; b) FRF of the steel cross B, whose output and

input are vz
2

and mz
2
, respectively.
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Figure 4.24: Comparison of some accelerance interface FRFs (black solid line) (the left y
axis must be used to interpret the amplitude of these FRFs) with the same
accelerance FRFs of the: i) respective estimated state-space model (red dash-
dotted line) (the left y axis must be used to interpret the amplitude of these
FRFs), ii) of the respective estimated state-space model transformed into UCF
(cyan dashed line) (the left y axis must be used to interpret the amplitude
of these FRFs) and iii) of the passive model obtained by using the technique
outlined in [4] (blue dotted line) (the right y axis must be used to interpret the
amplitude of these FRFs): a) FRF of assembly A, whose output and input are
vz
2

and mz
1
, respectively; b) FRF of assembly A, whose output and input are vRz

1

and mRz

1
, respectively.
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Figure 4.25: Comparison of some accelerance interface FRFs (black solid line) (the left y
axis must be used to interpret the amplitude of these FRFs) with the same
accelerance FRFs of the: i) respective estimated state-space model (red dash-
dotted line) (the left y axis must be used to interpret the amplitude of these
FRFs), ii) of the respective estimated state-space model transformed into UCF
(cyan dashed line) (the left y axis must be used to interpret the amplitude
of these FRFs) and iii) of the passive model obtained by using the technique
outlined in [4] (blue dotted line) (the right y axis must be used to interpret the
amplitude of these FRFs): a) FRF of assembly B, whose output and input are

v
y
1

and my
1
, respectively; b) FRF of assembly B, whose output and input are v

Ry

1

and m
Ry

2
, respectively.
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The estimated state-space models describing the dynamic behaviour of the steel crosses

A and B are made of 206 and 192 states, respectively, while the models representative

of assemblies A and B are composed by 260 and 272 states, respectively. Naturally,

in the frequency band of interest, the mechanical systems under study present a sig-

nificant lower number of modes. However, to compute state-space models presenting

FRFs matching as closely as possible the correspondent reference FRFs (i.e. FRFs

obtained by applying VPT on the measured FRFs), we decided to compute the esti-

mated models by using a significant number of modes. On top of this, we would expect

the identified models describing the dynamics of the aluminium crosses A and B to

be composed by the same number of states (the same was, naturally, foreseen for the

models representative of crosses steel A and B). Yet, the identified state-space models

representative of these crosses were identified from different sets of FRFs. As these

sets of FRFs were experimentally acquired they did not match. This can be explained,

for instance, due to slight differences on the mechanical properties of the crosses. For

this reason, the estimated state-space models representative of the crosses aluminum

A and B are not equal neither made of the same number of states (the same holds for

the models representative of the steel crosses A and B).

When comparing the approach presented in section 3.3.2 to impose Newton’s second

law with the technique proposed by Liljerehn in [5], it is obvious that the approach

outlined in section 3.3.2 presents the relevant advantage of not making use of undamped

RCMs. Additionally, in section 3.3, we proved mathematically that by exploiting the

method presented in section 3.3.2, the state-space models can be accurately forced to

verify Newton’s second law by using RCMs presenting lower natural frequencies than

by using the approach outlined in [5]. To show this advantage in practice, we defined

two extra models representative of assembly A by using the previously identified modal

parameters and by following the procedures presented in section 3.2. To compute these

models, the RCMs responsible for including the contribution of the lower and upper

out-of-band modes were set-up by selecting ωLR = 1×10−1 Hz, ωUR = 1.5×104 Hz and

ξLR = ξUR = 1 × 10−1. Then, one of these models was imposed to respect Newton’s

second law by exploiting the method proposed in [5] (from now on, this model will be

tagged state-space model A), while the other one was forced to verify this physical law

by exploiting the approach discussed in section 3.3.2 (from now on, this model will be

denoted state-space model B). The RCMs used to impose Newton’s second law on both

state-space models A and B were set-up by defining ωCB = 5 × 103 Hz and ξCB =0.

Figure 4.26 clearly shows that the FRFs of the state-space model B are better

matching the interface FRFs of assembly A than the FRFs of the state-space model

A. As expected, this is more evident for higher frequencies (see, expressions (3.51) and

(3.52))). Therefore, it is straightforward to conclude that by following the method

presented in section 3.3.2, Newton’s second law can be accurately imposed by using

RCMs presenting lower natural frequencies than by exploiting the approach outlined

in [5].
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Figure 4.26: Comparison of two accelerance interface FRFs of assembly A with the same
accelerance FRFs of state-space model A (forced to obey Newton’s second law
by using the method presented in [5]) (red dash-dotted line) and of state-space
model B (forced to verify Newton’s second law by exploiting the method dis-
cussed in section 3.3.2) (cyan dashed line): a) FRF of the assembly A, whose
output and input are, respectively, vy

2
and my

1
; b) FRF of the assembly A, whose

output and input are, respectively, vRx

2
and mRx

1
.
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4.2.3 Experimental validation of LM-SSS enhanced with post-processing

procedures

To identify state-space models representative of the rubber mount, we will start

by decoupling the two aluminum crosses from assembly A by exploiting LM-SSS. Two

different state-space models will be computed. One of them will be obtained by using

the untransformed estimated displacement state-space models leading to the compu-

tation of a displacement non minimal-order model, while the other will be computed

by exploiting the same models previously transformed into UCF together with the

post-processing procedures presented in section 2.3.3 enabling the computation of a

displacement minimal-order model. Unfortunately, the FRFs of the rubber mount are

not known. For this reason, the FRFs of the rubber mount identified by performing

decoupling with LM-FBS will be considered as reference to assess the quality of the

FRFs of the models computed through LM-SSS decoupling. In figure 4.27, it is shown

the comparison of two dynamic stiffness terms of the rubber mount obtained by the

following approaches: i) by inverting and multiplying by −ω2 the accelerance FRFs

obtained by exploiting LM-FBS to decouple the accelerance interface FRFs of the alu-

minum crosses (computed by applying VPT on the respective sets of experimentally

acquired FRFs) from the accelerance interface FRFs of assembly A determined by ap-

plying VPT on the respective set of measured FRFs; ii) by inverting the FRFs of the

displacement non minimal-order state-space model computed by decoupling with LM-

SSS the untransformed displacement state-space models representative of the aluminum

crosses from the untransformed displacement state-space model of assembly A and iii)

by inverting the FRFs of the displacement minimal-order state-space model calculated

by implementing the decoupling operation performed in ii) by using the displacement

state-space models transformed into UCF (i.e. the state-space models representative

of both aluminum crosses and assembly A) and by exploiting the post-processing pro-

cedure presented in section 2.3.3 that relies on the use of a state Boolean localization

matrix to eliminate the redundant states originated from the decoupling operation.

From the observation of figure 4.27, it is clear that the dynamic stiffness terms of

the rubber mount identified by using LM-FBS are very well matched by the correspon-

dent dynamic stiffness terms of both non minimal-order and minimal-order state-space

models computed by performing decoupling with LM-SSS. On top of this, for low fre-

quencies, the identified dynamic stiffness terms are, roughly, given by a straight line

as expected (see, [33]). This observation further validates the identified rubber mount

dynamic stiffness terms. It is worth mentioning that, as expected, the non minimal-

order and minimal-order rubber mount models obtained by implementing decoupling

with LM-SSS are composed by 674 and 650 states, respectively.

At this point, the identified rubber mount state-space models will be coupled with

both steel crosses by exploiting LM-SSS. Figure 4.28 compares two interface acceler-

ance FRFs of assembly B obtained by exploiting VPT on its measured FRFs with
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Figure 4.27: Comparison of two dynamic stiffness terms obtained by the following approaches:
i) by inverting and multiplying by −ω2 the accelerance FRFs obtained by ex-
ploiting LM-FBS to decouple the accelerance interface FRFs of the aluminum
crosses from the accelerance interface FRFs of assembly A; ii) by inverting the
FRFs of the displacement non minimal-order state-space model computed by
LM-SSS decoupling and iii) by inverting the FRFs of the displacement minimal-
order state-space model calculated by implementing decoupling with LM-SSS:
a) dynamic stiffness term of the rubber mount, whose output is vRZ

1
and the

input is mRZ

1
; b) dynamic stiffness term of the rubber mount, whose output is

vz
2

and the input is mz
2
.
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the same accelerance interface FRFs computed by the following methodologies: i) by

using LM-FBS to couple the identified accelerance rubber mount FRFs with the accel-

erance interface FRFs of the steel crosses (computed by using VPT with the respective

measured FRFs); ii) by multiplying by −ω2 the FRFs of the displacement non minimal-

order coupled state-space model computed by applying LM-SSS to couple the identified

displacement non minimal-order state-space model of the rubber mount with the esti-

mated displacement state-space models representative of the steel crosses and iii) by

multiplying by −ω2 the FRFs of the displacement minimal-order coupled model ob-

tained by exploiting LM-SSS to couple the identified displacement minimal-order rubber

mount model (already identified in UCF) with the estimated displacement state-space

models representative of the steel crosses transformed into UCF and by exploiting the

approach relying on the use of a state Boolean localization matrix (presented in section

2.3.3) to eliminate the redundant states originated from the coupling operation. Note

that, to retain a unique set of outputs and inputs from the coupled models computed

with strategies ii) and iii), the post-processing procedure discussed in section 2.3.4 was

applied.

Analyzing figure 4.28, we may conclude that the accelerance interface FRFs of

assembly B are very well-matched by the accelerance coupled FRFs obtained with LM-

FBS and by the accelerance FRFs computed from the displacement coupled state-space

models computed with LM-SSS. Thus, it is clear that LM-SSS can be used to perform

accurate coupling operations with state-space models defined from experimentally ac-

quired data. Moreover, we may also claim that by using LM-SSS to perform DS opera-

tions with state-space models transformed into UCF together with the post-processing

procedures outlined in section 2.3.3, reliable minimal-order state-space models can be

computed, even when working with models directly estimated from experimentally ac-

quired data. It is worth mentioning that, as expected, the non minimal-order and

minimal-order coupled models computed with LM-SSS are composed by 1072 and 1024

states, respectively.

The coupling operation here performed was re-implemented by exploiting the ap-

proach proposed by Su and Juang in [9] (here also labelled as classical SSS). It turned

out that the FRFs of the acceleration coupled state-space model computed with classi-

cal SSS perfectly match the accelerance FRFs computed from the displacement coupled

models obtained with LM-SSS. As discussed in section 2.3.5, the LM-SSS method holds

the advantage of being more computationally efficient, because it just requires the per-

formance of a matrix inversion to compute the coupled state-space model, while classical

SSS demands the performance of two different matrix inversions. Thus, to demonstrate

the benefit of using LM-SSS in place of classical SSS in terms of computation time, we

measured the time required to compute the two matrix inversions involved in classical

SSS and the time used to compute the matrix inversion involved in LM-SSS. To give

statistical consistency to the measured time results, the matrix inversions involved in

classical SSS and LM-SSS were repeated 1× 104 times. It was concluded that, the ma-
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Figure 4.28: Comparison of two accelerance interface FRFs obtained by exploiting VPT on
its measured FRFs with the same accelerance interface FRFs computed by the
following methodologies: i) by using LM-FBS to couple the identified rubber
mount FRFs with the interface FRFs of the steel crosses; ii) by multiplying
by −ω2 the FRFs of the displacement non minimal-order coupled state-space
model computed with LM-SSS and iii) by multiplying by −ω2 the FRFs of the
displacement minimal-order coupled model obtained by exploiting LM-SSS: a)
accelerance FRF of the assembly B, whose output is vx

1
and the input is mx

2
; b)

accelerance FRF of the assembly B, whose output is vRx

2
and the input is mRx

2
.
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trix inversions involved in classical SSS are performed in 2.12 × 10−5s (average value),

whereas the matrix inversion involved in LM-SSS takes place in 5.49 × 10−6s (average

value). Thus, it is clear that the performance of the matrix inversion involved in LM-SSS

is, approximately, four times faster than the performance of the matrix inversions in-

volved in classical SSS. This analysis was performed on an Intel(R) Core(TM) i7-8550U

CPU and 8 GB RAM machine. The reported improvement in terms of computational

time by using LM-SSS is not relevant for the coupling operation here performed. Nev-

ertheless, when dealing with some applications demanding the performance of several

coupling operations, e.g. real-time substructuring applications involving mechanical

components presenting time-varying dynamics (see section 2.3.5), the use of LM-SSS

might substantially decrease the computational cost associated with the application.

Moreover, the benefit of exploiting LM-SSS in terms of computational time is expected

to be more important as the number of interface DOFs of the substructures involved

in the coupling operations increases (see section 2.3.5).

4.2.4 Experimental validation of primal state-space disassembly and

of the state-space realization of IS

Here, state-space models representative of the rubber mount will be identified by

exploiting primal disassembly (see section 2.4) and the state-space realization of IS

(see section 5.3.3). To assess the accuracy of these identified models, the rubber mount

dynamic stiffness obtained by LM-FBS and by applying IS on the apparent mass of

assembly A, will be considered as reference. In [33], these approaches have already

shown to be reliable to characterize the dynamics of a rubber mount. Furthermore,

the rubber mount dynamic stiffness of the displacement non minimal-order state-space

model obtained by using LM-SSS decoupling (which was already experimentally val-

idated in section 4.2.3) will also be exploited to evaluate the accuracy of the rubber

mount state-space models to be identified in this section.

In figure 4.29, it is shown the comparison of two rubber mount dynamic stiffness

terms identified by using the following strategies: i) by inverting and multiplying by

−ω2 the accelerance FRFs computed by using LM-FBS to decouple the accelerance

interface FRFs of both aluminum crosses from the accelerance FRFs of assembly A

(see section 4.2.3); ii) by multiplying by −ω2 the rubber mount diagonal apparent

mass terms obtained by exploiting IS with the off diagonal apparent mass terms of

assembly A, whose outputs and inputs are the interface DOFs of the aluminum crosses

A and B, respectively; iii) by inverting the FRFs of the displacement non minimal-

order rubber mount state-space model obtained with LM-SSS (see section 4.2.3); iv)

by multiplying by −ω2 the apparent mass of the non minimal-order state-space model

computed by primarily disassembling the inverted acceleration models representative

of the aluminum crosses from the inverted acceleration model of assembly A and v)

by multiplying by −ω2 the apparent mass of the state-space model representative of



4.2. Experimental Validation 123

the rubber mount diagonal apparent mass terms computed by exploiting the state-

space realization of IS (see section 5.3.3) with the state-space model representative of

the rubber mount off diagonal terms, whose outputs and inputs are, respectively, the

interface DOFs of aluminum crosses A and B, identified from the inverted acceleration

model of assembly A.

From the analysis of figure 4.29, it is straightforward that the dynamic stiffness

terms of the state-space model obtained by using primal disassembly are very well

matching the dynamic stiffness terms obtained through the performance of decoupling

with LM-FBS. Moreover, as expected the dynamic stiffness terms of the state-space

models obtained by applying LM-SSS decoupling and primal disassembly are perfectly

matching. These observations demonstrate that the primal state-space assembly for-

mulation presented in section 2.4 is reliable to perform disassembly operations with

state-space models estimated from experimentally acquired data.

Further observing figure 4.29, it is clear that the dynamic stiffness terms obtained

by applying IS on the apparent mass of assembly A and by exploiting the state-space

realization of IS on the state-space model representative of the apparent mass of as-

sembly A are very well-matching. This demonstrates that the state-space realization of

IS is accurate even when working with models estimated from experimentally acquired

data.

Additionally, in figure 4.29 it is evident that the dynamic stiffness terms computed

through decoupling/disassembly operations (i.e. through strategies i, iii and iv) and

the dynamic stiffness terms computed by applying IS (i.e. strategies ii and v) are well

matching at low frequencies. Yet, as the frequency increases, more relevant deviations

between the results obtained by both approaches are observed. As the IS approach

assumes that the rubber mount is massless, the more pronounced deviations observed

at higher frequencies are expected. Indeed, the observed deviations indicate that for

higher frequencies, the massless assumption is no longer valid to properly characterize

the dynamics of the rubber mount.

To validate the post-processing procedures outlined in section 2.3.3 to eliminate the

redundant states originated from primal disassembly operations, a minimal-order rub-

ber mount state-space model was computed by using the state-space models previously

transformed into UCF (i.e. state-space models of both aluminum crosses and assembly

A) together with the post-processing procedure that relies on the use of a state Boolean

localization matrix. In addition, the state-space realization of IS was applied on the

inverted acceleration state-space model of assembly A transformed into UCF to iden-

tify the diagonal apparent mass terms of the rubber mount. Figure 4.30 compares the

dynamic stiffness terms of the rubber mount determined by the following approaches:

by multiplying by −ω2 the apparent mass of the non minimal-order state-space model

computed by primal state-space disassembly (solution iv); by multiplying by −ω2 the

minimal-order model obtained by exploiting primal disassembly with the state-space

models previously transformed into UCF (i.e. state-space models of both aluminum
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Figure 4.29: Comparison of some rubber mount dynamic stiffness terms obtained by exploit-
ing the following strategies: i) LM-FBS decoupling, ii) IS on the apparent mass of
assembly A, iii) dynamic stiffness of the displacement non minimal-order state-
space model computed with LM-SSS decoupling, iv) dynamic stiffness of the
state-space model obtained with primal disassembly and v) dynamic stiffness of
the model obtained by applying the state-space realization of IS on the state-
space model representative of the apparent mass of assembly A: a) rubber mount
dynamic stiffness term, whose output and input are, respectively, vRz

1
and mRz

1
;

b) rubber mount dynamic stiffness term, whose output and input are, respec-
tively, vz

2
and mz

2
.



4.2. Experimental Validation 125

crosses and assembly A) with the post-processing procedure that relies on the use of

a state Boolean localization matrix (see section 2.3.3) (solution vi); by multiplying by

−ω2 the apparent mass of the state-space model representative of the rubber mount

diagonal apparent mass terms computed by exploiting the state-space realization of IS

(solution v) and by multiplying by −ω2 the apparent mass of the state-space model

representative of the rubber mount diagonal apparent mass terms transformed into

UCF computed by using the state-space realization of IS (see section 5.3.3) with the

state-space model representative of the rubber mount off diagonal terms, whose out-

puts and inputs are, respectively, the interface DOFs of aluminum crosses A and B,

identified from the inverted acceleration model of assembly A previously transformed

into UCF (solution vii).

Analyzing figure 4.30, we may conclude that the dynamic stiffness terms of the non

minimal-order and minimal-order state-space models obtained by using primal disas-

sembly are perfectly matching. Thus, it is obvious that the post-processing procedures

outlined in section 2.3.3 are accurate to eliminate the redundant states originated from

primal disassembly operations involving models estimated from experimentally acquired

data. On top of this, it is clear that the FRFs of the state-space models representative

of the rubber mount diagonal apparent mass terms obtained by applying IS on the in-

verted untrnsformed acceleration model of assembly A and on the inverted acceleration

model of assembly A previously transformed into UCF perfectly match. Hence, proving

that the state-space realization of IS can be applied on state-space models previously

transformed into UCF.

Analyzing the computed rubber mount state-space models, it is possible to con-

clude that by exploiting strategies iii) and iv), rubber mount state-space models made

of 674 states were computed, whereas with strategy vi), it was possible to compute a

state-space model representative of the mount composed by 650 states. In contrast,

by following strategies v) and vii), state-space models representative of the diagonal

apparent mass terms of the rubber mount composed by 260 states were obtained. It

is straightforward to conclude that the strategies iii), iv) and vi) lead to the compu-

tation of rubber mount models made of a substantially higher number of states, when

compared with the state-space models computed by following strategies v) and vii).

The strategies involving decoupling or primal disassembly operations lead to the com-

putation of rubber mount models composed by more states, because of the inclusion of

the dynamics of both aluminum crosses A and B to decouple them from assembly A.

These DS operations lead to the determination of state-space models that include the

dynamics of the decoupled/disassembled components twice (see section 2.5). Hence,

these state-space models include pairs of spurious modes, whose identification and elim-

ination is difficult, when the dynamics of the component to be identified is unknown

(usual scenario in practice).

Therefore, we may conclude that by performing decoupling with LM-SSS or by ex-

ploiting primal state-space disassembly, we have the advantage of not performing any
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Figure 4.30: Comparison of the rubber mount dynamic stiffness terms obtained by the fol-
lowing approaches: dynamic stiffness of the non minimal-order model com-
puted with primal state-space disassembly (solution iv); dynamic stiffness of
the minimal-order model computed with primal state-space disassembly (solu-
tion vi), dynamic stiffness of the model obtained by applying the state-space
realization of IS on the inverted acceleration state-space model of assembly A
(approach v) and the dynamic stiffness of the model obtained by applying the
state-space realization of IS on the inverted acceleration state-space model of
assembly A previously transformed into UCF (approach vii): a) rubber mount
dynamic stiffness term, whose output and input are, respectively, vx

1
and mx

1
; b)

rubber mount dynamic stiffness term, whose output and input are, respectively,
vz
1

and mz
1
.
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assumption regarding the dynamics of the CE. Thus, these strategies hold to identify

the dynamics of any component/CE. Conversely, IS can only be applied to identify com-

ponents verifying its underlying assumptions (i.e. the components must be massless and

must not present cross couplings between their DOFs (see section 2.5)). Nevertheless,

IS has the advantage of enabling the experimental characterization of CEs included

in assemblies without requiring dismounting and mounting operations and knowledge

regarding the dynamics of the structures to which the CE is connected, hence, avoiding

the performance of additional experimental tests to characterize the structures to which

the CE is linked. Moreover, the characterization of CEs through IS avoids the perfor-

mance of decoupling/disassembly operations, enabling the identification of state-space

models made of a lower number of states. Thus, the advantage of using IS will be more

pronounced as the number of substructures to be decoupled/disassembled enlarges and

as the state-space models that represent their dynamics are made of a higher number of

states. On top of this, as the state-space models computed by IS are generally composed

by a lower number of states, the computational cost associated with the performance

of calculations with them will generally be significantly lower. For this reason, these

models are more suitable to be exploited, for example, in real-time applications.

4.2.5 Experimental validation of primal state-space assembly and LM-

SSS via compatibility relaxation

In this section, state-space models representative of assembly B, will be obtained

by coupling the rubber mount state-space models identified in section 4.2.4 with the

identified state-space models representative of both steel crosses (see section 4.2.2).

Figures 4.31 and 4.32 report the comparison of some interface accelerance FRFs of

assembly B computed by applying VPT on the experimentally acquired FRFs with

the accelerance FRFs obtained by the following approaches: a) by using LM-FBS to

couple the interface accelerance FRFs of both steel crosses with the rubber mount

accelerance FRFs obtained with LM-FBS decoupling; b) by exploiting LM-FBS via

compatibility relaxation (see section 2.2.2) to couple the interface accelerance FRFs

of both steel crosses with the inverted rubber mount diagonal apparent mass terms

determined by applying IS on the inverted interface accelerance FRFs of assembly A; c)

by multiplying by −ω2 the FRFs of the displacement non minimal-order coupled state-

space model obtained by using LM-SSS to couple the rubber mount displacement non

minimal-order model obtained with LM-SSS decoupling with the displacement state-

space models of both steel crosses; d) accelerance FRFs of the inverted coupled model

calculated by exploiting primal state-space assembly to couple the non minimal-order

state-space model representative of the rubber mount identified by primal disassembly

with the inverted acceleration state-space models of both steel crosses and e) FRFs

of the acceleration non minimal-order coupled model computed by using LM-SSS via

compatibility relaxation (see section 2.5) to couple the inverted model representative of
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the diagonal rubber mount apparent mass terms obtained through the application of the

state-space realization of IS on the inverted model of assembly A with the acceleration

state-space models of both steel crosses.

By analyzing figures 4.31 and 4.32, it is clear that the coupled accelerance FRFs

obtained with LM-FBS (methodology a), the accelerance FRFs computed from the

displacement non minimal-order model obtained with LM-SSS (methodology c) and of

the inverted non minimal-order model computed with primal assembly (methodology

d) are very well matching with the interface accelerance FRFs of assembly B. On top

of this, it is obvious that the accelerance FRFs of the coupled model obtained with

LM-SSS are perfectly matching the same FRFs of the inverted coupled model obtained

by primal state-space assembly (see section 2.4). Hence, we may claim that the primal

state-space assembly formulation presented in section 2.4 is reliable to couple state-

space models estimated from experimentally acquired data.

By focusing our attention on figure 4.31a, it is clear that the axial (z axis direction

represented in figure 4.20) driving point interface FRF of assembly B is well matched

by the same FRF of the non minimal-order coupled state-space model obtained with

LM-SSS via compatibility relaxation (methodology e). The same is also verified in

figure 4.31b for the driving point FRF associated with the rotation DOF around the

axial direction. The good quality of the FRFs of the non minimal-order coupled model

obtained with LM-SSS via compatibility relaxation is probably justified by the fact that

the weight of the rubber mount (approximately, 27 g) is substantially lower than the

weight of each steel cross (approximately, 560 g). Moreover, cross couplings between

the z direction and the rotations around the x and y axis (see figure 4.20 to observe

the orientation of the axis) are not expected (see [33]). The same holds for the cross

couplings between the rotation around the z axis and the x and y directions. Hence, the

IS assumptions do not significantly deteriorate the coupled results related with both z

axis and rotation around z. In contrast, figures 4.32a and 4.32b show that the FRFs of

the coupled model obtained with LM-SSS via compatibility relaxation associated with

both x and y directions are poorly matching the same interface FRFs of assembly B.

The poor quality of the FRFs of the coupled model obtained with LM-SSS via com-

patibility relaxation are due to the existence of significant cross couplings between the

rotations around one of the radial directions (i.e. x or y directions, see figure 4.20) and

the displacement on the other radial direction (see [33]). These important cross cou-

plings are ignored when computing the coupled model with LM-SSS via compatibility

relaxation, because the dynamics of the rubber mount is included with a state-space

model identified by using the state-space realization of IS (see section 2.5.4).

Further observing figures 4.31a and 4.31b, we may conclude that the coupled FRFs

computed by exploiting LM-FBS via compatibility relaxation are very well matched by

the FRFs of the non minimal-order coupled model obtained with LM-SSS via compat-

ibility relaxation. Indeed, both sets of FRFs are not perfectly matching, because the

FRFs of the identified state-space models do not perfectly match the correspondent
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Figure 4.31: Comparison of two interface accelerance FRFs of assembly B with the coupled
accelerance FRFs computed by exploiting the following approaches: LM-FBS
(methodology a), LM-FBS via compatibility relaxation (methodology b), LM-
SSS (methodology c), primal state-space assembly (methodology d) and LM-SSS
via compatibility relaxation (methodology e): a) accelerance FRF of assembly
B, whose output and input are, respectively, vz

2
and mz

2
; b) accelerance FRF of

assembly B, whose output and input are, respectively, vRz

2
and mRz

2
.
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Figure 4.32: Comparison of two interface accelerance FRFs of assembly B with the coupled
accelerance FRFs computed by exploiting the following approaches: LM-FBS
(methodology a), LM-FBS via compatibility relaxation (methodology b), LM-
SSS (methodology c), primal state-space assembly (methodology d) and LM-SSS
via compatibility relaxation (methodology e): a) accelerance FRF of assembly
B, whose output and input are, respectively, vx

1
and mx

1
; b) accelerance FRF of

assembly B, whose output and input are, respectively, vRx

2
and mRx

1
.
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measured FRFs (see section 4.2.2). For this reason, it is clear that LM-SSS via com-

patibility relaxation (see section 2.5.1) is an accurate approach to include the dynamics

of CEs into LM-SSS formulation even when dealing with state-space models estimated

from measured FRFs.

It is now important to assess the quality of the minimal-order coupled state-space

models computed by using primal state-space assembly and LM-SSS via compatibility

relaxation, when coupling substructures and CEs characterized by state-space models

estimated from measured FRFs. In figures 4.33, it is compared the accelerance FRFs

of coupled state-space models obtained by exploiting different methodologies: inverted

non minimal-order coupled model obtained by exploiting primal state-space assem-

bly (methodology d); inverted minimal-order coupled model obtained by using primal

state-space assembly and the post-processing procedure presented in section 2.3.3 that

makes use of a state Boolean localization matrix with the inverted state-space models

of both steel crosses transformed into UCF and with the minimal-order rubber mount

state-space model (already computed in UCF) identified by using primal state-space

disassembly (see section 4.2.4) (methodology f); non minimal-order coupled state-space

model obtained by exploiting LM-SSS via compatibility relaxation (methodology e) and

the minimal-order coupled state-space model obtained by exploiting LM-SSS via com-

patibility relaxation with the inverted model of the rubber mount diagonal apparent

mass terms computed from the inverted acceleration model of assembly A transformed

into UCF (see section 4.2.4) with the state-space models of both steel crosses trans-

formed into UCF and by exploiting the post-processing procedure presented in section

2.5.2 that makes use of a state Boolean localization matrix (methodology g).

From figures 4.33, it is possible to conclude that the FRFs of both inverted non

minimal-order and inverted minimal-order coupled state-space models obtained by ex-

ploiting the primal state-space assembly formulation are perfectly matching. There-

fore, we may claim that the use of the primal state-space assembly formulation with

the post-processing procedures outlined in section 2.3.3 represents a reliable method-

ology to compute minimal-order coupled state-space models even when working with

state-space models estimated from measured FRFs.

In addition, by analyzing figures 4.33, it is clear that the accelerance FRFs of the

non minimal-order and minimal-order coupled state-space models computed by LM-

SSS via compatibility relaxation are perfectly matching. Thus, it is evident that the use

of LM-SSS via compatibility relaxation together with the post-processing procedures

presented in section 2.5.2 is an accurate approach to obtain minimal-order coupled

state-space models even when coupling substructures and CEs characterized by state-

space models estimated from measured FRFs.

At this point, it is interesting to compare the number of states of the coupled

state-space models determined in this section. By following methodologies c) and d),

coupled state-space models composed by 1072 states were computed, whereas by ex-

ploiting methodology f) a coupled state-space model made of 1024 states was deter-
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Figure 4.33: Comparison of the accelerance FRFs of the coupled state-space models computed
by the following methodologies: non minimal-order coupled state-space model
computed by using the primal state-space assembly formulation (methodology
d), minimal-order coupled state-space model determined by exploiting the pri-
mal state-space assembly formulation (methodology f), non minimal-order cou-
pled state-space model computed through LM-SSS via compatibility relaxation
(methodology e) and the minimal-order coupled state-space model obtained by
using LM-SSS via compatibility relaxation (methodology g): a) accelerance FRF
of assembly B, whose output and input are, respectively, vz

1
and mz

2
; b) accel-

erance FRF of assembly B, whose output and input are, respectively, v
Ry

2
and

m
Ry

2
.
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mined. Methodologies e) and g) lead to the calculation of coupled models made of,

respectively, 658 and 646 states. The methodologies c), d) and f), lead to the com-

putation of coupled state-space models composed by a substantially higher number of

states, because by following these methodologies the dynamics of the rubber mount is

included by using state-space models identified by performing decoupling/disassembly

operations (see section 2.5). Thus, we may infer that by including CEs into the cou-

pling operations by treating them as regular substructures, we have the advantage of

not making any assumption regarding their dynamic behavior. Thereby, the appli-

cation of this strategy is not limited in terms of frequency range and it is valid to

characterize any CE and substructure. Nevertheless, in general this strategy leads to

the determination of coupled state-space models made of spurious states and hence,

made of a larger number of states.

Conversely, by performing coupling with LM-SSS via compatibility relaxation, the

CEs are characterized by IS. Thus, LM-SSS via compatibility relaxation can only be

successfully applied to compute coupled state-space models representative of assembled

structures composed by CEs respecting the underlying assumptions of IS (see section

2.5). Therefore, this coupling formulation can only be applied on CEs that do not

present important cross couplings between their DOFs and up to frequencies for which

the mass of the CEs does not significantly contribute to their dynamic behaviour.

However, if the mass of the substructures linked by a given CE is significantly higher

than the mass of the CE, the violation of the massless assumption will in general not lead

to an important deterioration of the quality of the coupled results [33]. Furthermore,

the use of LM-SSS via compatibility relaxation opens the possibility of calculating

coupled state-space models free of spurious states and hence, it generally leads to

the determination of coupled models made of a substantially lower number of states.

Thus, the coupled models obtained through LM-SSS via compatibility relaxation are

interesting, when the coupled state-space models are to be exploited in time-domain

analysis. Thereby, when analyzing CEs suitable to be characterized by IS or when the

coupled models obtained by LM-SSS via compatibility relaxation are reliable, there is

no point on using decoupling/disassembly operations to compute state-space models

representative of the CEs.

4.2.6 Imposing stability on coupled state-space models

In this section, the displacement minimal-order coupled state-space model represen-

tative of assembly B computed in section 4.2.3 will be imposed to be stable by following

the approach discussed in section 3.5. Even though all the coupled state-space models

computed in sections 4.2.3, 4.2.4 and 4.2.5 are unstable, we have decided to impose

stability solely on this model, because the approach proposed in section 3.5 can only be

applied on displacement models. Indeed, by exploiting the primal state-space assem-

bly formulation (see section 2.4), it is not possible to directly compute displacement
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coupled models, because the coupling operation is performed with inverted state-space

models. As reported in appendix A, the inversion of a given state-space model re-

quires the inversion of its feedthrough matrix. Yet, the feedthrough matrix of both

displacement and velocity models is null (see section 3.3.1). Hence, we are required

to use inverted acceleration state-space models to perform assembling operations with

the primal state-space assembly formulation. By inverting the resultant models, one

will always compute acceleration coupled state-space models. For the same reason, the

state-space realization of IS (see section 2.5.4) can only be applied on inverted acceler-

ation state-space models. Thus, by inverting the models identified with this approach,

we will always obtain a state-space model representative of the inverted diagonal appar-

ent mass terms of the CEs and not of their inverted diagonal dynamic stiffness terms.

This is the reason why in section 4.2.5, we were only capable of computing accelera-

tion coupled state-space models with LM-SSS via compatibility relaxation. To surpass

these difficulties, one could think of exploiting expression (2.78) to compute displace-

ment coupled models from these acceleration coupled models computed with the primal

state-space assembly formulation and LM-SSS via compatibility relaxation. However,

the computation of a given displacement model from the respective acceleration one is

not recommended, because this operation involves the inversion of the state matrix of

the model, which may introduce numerical problems associated with the performance

of ill-conditioned matrix inversions. For this reason, stability will only be imposed on

the displacement minimal-order coupled state-space model computed with LM-SSS in

section 4.2.3.

In this way, to impose stability on this displacement coupled model, we started

by computing two state-space models from this model, one made of its stable poles

(composed by 959 states) and the other one made of its unstable poles (made of 65

states). Subsequently, by following the approach presented in section 3.5, a stabilized

model was computed from the state-space model made of the unstable poles. From this

stabilized model, two additional models were constructed, one containing its real poles

(composed by 3 states) and the other composed by its pairs of complex conjugate poles

(made of 62 states).

In accordance with section 3.5, the LSFD estimator was, then, used to improve the

quality of the modal parameters of the state-space model constructed from the pairs

of complex conjugate poles of the stabilized model. Note that the LSFD estimator

was exploited by using as reference the accelerance target FRFs (see, appendix D)

computed by subtracting the accelerance FRFs of the state-space model composed by

the real poles of the stabilized model from the accelerance FRFs of the state-space

model composed by the unstable poles of the minimal-order coupled model computed

with LM-SSS (see section 4.2.3). Figures 4.34 and 4.35 present the comparison of the

displacement target FRFs calculated by dividing the correpondent accelerance FRFs

by −ω2 with the same displacement FRFs of the: i) state-space model composed by

the pairs of complex conjugate poles of the stabilized model and ii) of the modal model
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defined from the modal parameters improved with LSFD.

By analyzing figures 4.34 and 4.35, it is clear that the displacement FRFs of the

state-space model composed by the pairs of complex conjugate poles of the stabilized

model are poorly matching the respective target FRFs. As discussed in section 3.5,

this observation was expected, because the pairs of complex conjugate poles composing

the state-space model computed from the stabilized model were forced to be stable by

multiplying their real part by −1, leading to a significant modification of their FRFs.

Thereby, due to the poor quality of the state-space model composed by the pairs of

complex conjugate poles of the stabilized model, it will not be used to compute a

stable state-space model represnetative of the unstable minimal-order coupled model

computed with LM-SSS in section 4.2.3.

Conversely, by observing figures 4.34 and 4.35, it is evident that the target FRFs

are very well-matched by the FRFs of the modal model constructed from the modal

parameters refined with LSFD. It is important to mention, that we have decided to ex-

ploit the LSFD estimator with accelerance target FRFs, because LSFD estimates the

modal parameters by solving a linear least-squares problem. Thus, the modal model de-

fined from the modal parameters estimated with this estimator will better approximate

the reference FRFs at frequencies for which their amplitudes are higher. By observing

figures 4.34 and 4.35, it is evident that the amplitude of the displacement target FRFs

at lower frequencies is significantly higher than at higher frequencies. Thus, the dis-

placement FRFs of the modal model computed from the modal parameters estimated

with LSFD by taking as reference the displacement target FRFs would not well match

these FRFs at higher frequencies. In contrast, the acceleration target FRFs present

less pronounced differences in terms of their amplitude at lower and higher frequencies.

This is the reason why, by exploiting LSFD with accelerance target FRFs, the accel-

erance FRFs of the modal model constructed from the estimated modal parameters

well match the accelerance target FRFs in the full frequency band of interest. Natu-

rally, in this situation, the displacement target FRFs are also well approximated by the

displacement FRFs of the modal model defined from the modal parameters estimated

with LSFD as can be observed in figures 4.34 and 4.35.

After having optimized the modal parameters of the model composed by the pairs

of complex conjugate poles of the stabilized state-space model, we can set-up a stable

coupled model (from now on denoted as SSM LSFD) representative of the unstable

displacement minimal-order coupled model computed with LM-SSS in section 4.2.3.

To define the SSM LSFD model, we must use the model composed by the stable poles

of the minimal-order coupled model computed with LM-SSS, the model composed by

the real poles of the stabilized model and the complete state-space model computed

from the modal parameters refined with LSFD (see, section 3.5). Note that to define a

complete state-space model from the modal parameters obtained with LSFD, we have

computed sets of RCMs to include the contribution of both lower and upper out-of-band

modes. These sets of RCMs were set-up by following the procedures described in section
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Figure 4.34: Comparison of two displacement target FRFs with: i) the displacement FRFs of
the model containing the pairs of complex conjugate poles of the stabilized state-
space model and ii) with the displacement FRFs of the modal model constructed
from the modal parameters refined with LSFD: a) displacement target FRF,
whose output and input are, respectively, vx

1
and mx

2
; b) displacement target

FRF, whose output and input are, respectively, vz
1

and mz
1
.
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Figure 4.35: Comparison of two displacement target FRFs with: i) the displacement FRFs of
the model containing the pairs of complex conjugate poles of the stabilized state-
space model and ii) with the displacement FRFs of the modal model constructed
from the modal parameters refined with LSFD: a) displacement target FRF,
whose output and input are, respectively, vRz

2
and mRz

1
; b) displacement target

FRF, whose output and input are, respectively, v
Ry

2
and m

Ry

2
.
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3.2.2 and by selecting ωLR = 1×10−2 Hz, ωUR = 7.5×104 Hz and ξLR = ξUR = 1×10−1.

To impose Newton’s second law on the SSM LSFD model, a set of RCMs was defined

as reported in section 3.3.2. The natural frequencies of these RCMs were selected to be

7.5×104 Hz, while their damping ratios were chosen to be 1×10−1. Thereby, leading to

the computation of a displacement stable coupled model (denoted SSM LSFD model)

composed by 1096 states representative of the unstable displacement minimal-order

coupled model computed with LM-SSS.

To assess the accuracy of the defined sets of RCMs, we will compute the set of

FRFs that the SSM LSFD model would present if these sets of RCMs were able to

perfectly model the contribution of the out-of-band modes estimated with LSFD and

to perfectly impose Newton’s second law on the SSM LSFD model. This set of FRFs

is given by the sum of the displacement FRFs of the model composed by the stable

poles of the unstable minimal-order coupled model obtained with LM-SSS, with the

displacement FRFs of the model composed by the real poles of the stabilized state-

space model and with the displacement FRFs of the modal model constructed from the

modal parameters estimated with LSFD (from now on, this set of FRFs will be labelled

FRFs LSFD). Figures 4.36 and 4.37 compare some accelerance FRFs computed from the

unstable displacement minimal-order coupled model determined with LM-SSS, with the

same accelerance FRFs obtained by multiplying the set FRFs LSFD by −ω2 and with

the same accelerance FRFs of the state-space model obtained by double-differentiating

SSM LSFD (see expression (2.78)).

Figures 4.36 and 4.37 clearly show that the FRFs of the unstable minimal-order

coupled model computed with LM-SSS are very well-matched by the FRFs LSFD.

It is also evident that the FRFs of SSM LSFD well match these two sets of FRFs.

Nevertheless, at higher frequencies, the FRFs of SSM LSFD plotted in figures 4.36a

and 4.37a deviate from the same FRFs of the set FRFs LSFD and of the unstable

coupled model. These deviations are triggered by two distinct factors. Firstly, the

FRFs of the state-space model defined from the RCMs responsible for modelling the

dynamic participation of the upper out-of-band modes (see expression (3.12)) estimated

with LSFD do not approximate the elements of the upper residual matrix so closely

at higher frequencies (see, section 3.2.2). Secondly, the FRFs of the velocity model

constructed from the defined RCMs to force the SSM LSFD model to verify Newton’s

second law (see, expression (3.41)) do not present zero amplitude. In fact, the amplitude

of these FRFs increases with frequency (see section 3.3.2). On top of this, as the FRFs

plotted in figures 4.36a and 4.37a present low amplitudes at higher frequencies, small

inaccuracies on the performance of the defined sets of RCMs will promote pronounced

mismatches between the FRFs of SSM LSFD and of the set FRFs LSFD. The same

mismatches are not observed for the FRFs plotted in figures 4.36b and 4.37b, because

their amplitude is relevant at higher frequencies.

To mitigate the deviations observed between the accelerance FRFs of SSM LSFD

and the accelerance FRFs of FRFs LSFD, we could simply re-compute the RCMs used
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Figure 4.36: Comparison of two accelerance FRFs computed from the unstable displacement
minimal-order coupled model determined with LM-SSS in section 4.2.3 with the
same accelerance FRFs of the set FRFs LSFD and with the same accelerance
FRFs computed from SSM LSFD: a) FRF of assembly B, whose output and
input are vx

2
and mx

1
, respectively; b) FRF of assembly B, whose output and

input are vz
2

and mz
2
, respectively.
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Figure 4.37: Comparison of two accelerance FRFs computed from the unstable displacement
minimal-order coupled model determined with LM-SSS in section 4.2.3 with the
same accelerance FRFs of the set FRFs LSFD and with the same accelerance
FRFs computed from SSM LSFD: a) FRF of assembly B, whose output and
input are vRx

1
and mRx

2
, respectively; b) FRF of assembly B, whose output and

input are vRz

1
and mRz

1
, respectively.
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to include the contribution of the upper residual matrix computed by LSFD and to force

the SSM LSFD to obey Newton’s second law by choosing lower damping ratios or/and

by choosing higher natural frequencies (see, sections 3.2.2 and 3.3.2). However, we aim

at constructing a stable coupled model representative of the unstable minimal-order

coupled model computed with LM-SSS that is adequate for performing time-domain

simulations. Thus, these RCMs must not be defined to be undamped or to hold a

damping ratio very close to be null, otherwise numerical instabilities might be faced,

when performing time-domain simulations with the constructed model [40]. The re-

construction of these RCMs by selecting much higher values for their natural frequencies

is also not advised, because to properly discretize the constructed state-space model, we

would be demanded to use a significantly higher sampling frequency (see, section 3.2).

In this way, to get to an appropriate trade-off between the precision of the constructed

SSM LSFD model and its adequacy to be used in time-domain simulations, the RCMs

used to set-up SSM LSFD were defined as reported above.

At this point, it is important to demonstrate the benefits of determining a stable

coupled model instead of an unstable one. Thereby, a time-domain output simula-

tion will be performed by exploiting the identified state-space model representative of

the dynamics of assembly B (see, section 4.2.2), the double-differentiated unstable dis-

placement minimal-order coupled model computed with LM-SSS in section 4.2.3 and

the model resultant from the double-differentiation of SSM LSFD. To carry-out this

time-domain simulation, we will discretize the three state-space models by using the

first-order-hold method (see [93]) and a sampling frequency of 1 × 106 Hz, which is

higher than the highest natural frequency of the modes composing the three state-

space models to be exploited to perform the intended time-domain simulation (which

is 7.5×104 Hz). Moreover, the input mz
2 of these discretized models will be fed with a 1

second faded in/out sine sweep signal ranging from 2×101 Hz to 5×102 Hz to properly

excite frequencies included in the frequency band of interest (i.e. between 2 × 101 Hz

and 5 × 102 Hz). In figure 4.38, the responses of the outputs vz1 and vz2 calculated by

using each of the three discretized state-space models are compared.

Analyzing figure 4.38, it is straightforward to conclude that the unstable minimal-

order coupled model computed with LM-SSS in section 4.2.3 is not adequate to perform

time-domain simulations. To be capable of performing a proper comparison between

the output responses computed by using the estimated acceleration model represen-

tative of assembly B with the responses simulated with the model resultant from the

double-differentiation of SSM LSFD, we have plotted in figure 4.39 the responses of the

outputs vz1 and vz2 calculated with these models without showing the responses of these

ouputs determined with the unstable minimal-order coupled model computed with LM-

SSS. Note that the real time-domain response of the assembly B is, unfortunately, not

available. Thus, to evaluate the accuracy of the time-domain responses computed with

the double-differentiated SSM LSFD model, we will take as reference the time-domain

responses simulated with the identified model representative of assembly B.
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Figure 4.38: Comparison of the time-domain responses of outputs vz
1

and vz
2

computed by
exploiting: the acceleration model representative of assembly B estimated in
section 4.2.2, by using the double-differentiated unstable displacement minimal-
order coupled state-space model computed with LM-SSS in section 4.2.3 and by
exploiting the double-differentiated SSM LSFD model: a) Time-domain response
of the output vz

1
; b) Time-domain response of the output vz

2
.
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Figure 4.39: Comparison of the time-domain responses of outputs vz
1

and vz
2

computed by
exploiting: the acceleration model representative of assembly B estimated in
section 4.2.2 and by using the double-differentiated SSM LSFD model: a) Time-
domain response of the output vz

1
; b) Time-domain response of the output vz

2
.
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From the analysis of figure 4.39, we can conclude that the model directly estimated

from the measured FRFs of assembly B and the SSM LSFD model are stable and ad-

equate to conduct time-domain simulations. Moreover, it is evident that the responses

simulated with the estimated state-space model (which are taken as the reference re-

sponses) are well-matched by the responses simulated with SSM LSFD. However, it is

also visible that SSM LSFD model is clearly overestimating the time-domain responses

computed with the identified model of assembly B in the time interval between 0.35 s

and 0.4 s. To figure out the reason why SSM LSFD is not simulating so accurately the

responses of the system in this time interval, we have plotted in figure 4.40 the acceler-

ance interface FRF of assembly B, whose output and input are vz2 and mz
2, respectively,

with the same accelerance FRF of the estimated model of assembly B, with the same

accelerance FRF computed from the unstable minimal-order coupled model computed

with LM-SSS and with the same accelerance FRF of the double-differentiated SSM

LSFD model.

Figure 4.40 clearly demonstrates that the interface FRFs of assembly B are very

well-matched by the FRFs of the unstable coupled model computed with LM-SSS and

by the FRFs of the double-differentiated SSM LSFD model. Nevertheless, for frequen-

cies surrounding the resonance of this FRF, i.e. in between, approximately, 1.80 × 102

Hz and 2.10 × 102 Hz, we can clearly observe that the interface FRF of the coupled

models presents higher amplitude than the corresponding interface FRF of assembly

B. Yet, the interface FRF of the estimated model does not overestimate this interface

FRF of assembly B. Interestingly, in the time interval corresponding to the observed

mismatches between the responses computed with the identified model of assembly B

and the double-differentiated SSM LSFD model, the frequencies being excited are in-

cluded in the frequency interval for which the SSM LSFD model overeestimates the

interface FRF of assembly B (see Figure 4.39b). Thereby, it is evident that SSM LSFD

overestimates the time-domain responses obtained with the identified model of assem-

bly B, because of the deviations observed between the interface FRFs of assembly B

and of the unstable minimal-order coupled model computed with LM-SSS. In this way,

we may conclude that the methodology discussed in section 3.5 is robust enough to

determine high quality stable coupled state-space models from unstable displacement

coupled models resultant from many DS operations performed with models estimated

from measured FRFs.

Unfortunately, as accurate passive models could not be computed from the identified

models (see section 4.2.2), it was not possible to perform a comparison between the

exactness of the stable coupled models computed by performing DS operations with

passive models and by exploiting the methodology presented in section 3.5. However,

it continuous to be possible to perform a well-argued prediction of the exactness of

the stable coupled model (obtained by using passive models) that could have been

computed, in case that accurate passive models could have been set-up from the models

estimated in section 4.2.2. To perform this prediction, we must have in mind that



4.2. Experimental Validation 145

20 50 100 150 200 250 300 350 400 450 500
10-1

100

101

A
m

p
lit

u
d

e
 [

m
s

-2
N

-1
]

VPT Measured FRFs

Identified SSM

LM-SSS UCF

SSM LSFD

20 50 100 150 200 250 300 350 400 450 500

Frequency [Hz]

-180

-90

0

90

180
P

h
a

s
e

 [
°]

Figure 4.40: Comparison of the accelerance interface FRF of assembly B, whose output and
input are, respectively, vz

1
and mz

1
, with: the same accelerance FRF of the esti-

mated state-space model representative of assembly B (see section 4.2.2), with
the same accelerance FRF determined from the unstable displacement minimal-
order coupled state-space model obtained with LM-SSS in section 4.2.2 and with
the same accelerance FRF of the double-differentiated SSM LSFD model.

passivity is generally imposed on velocity state-space models by forcing them to obey

different passivity criteria (such as, the Positive Real Lemma (see [77])). In addition, the

methods reported in literature to impose passivity on state-space models make use of

constraints to compute passive models, whose velocity FRFs match as closely as possible

the FRFs of the originally non passive models (see, for instance [78]). Therefore, if the

best passive models could be computed, they would present the same FRFs as the

original non passive model. Yet, in practice the FRFs of the passive model will not

perfectly match the FRFs of the original non passive model, at least small mismatches

between both sets of FRFs will always be observed.

Moreover, the methods reported in literature to force state-space models to be

passive do not make use of any constraint to ensure that the determined passive model

verifies Newton’s second law. Thereby, the passive models computed by exploiting

these methods are expected to violate Newton’s second law. For this reason, RCMs

to force the computed passive models to obey this physical law would have to be set-

up and introduced into these models. Despite the introduction of these RCMs on the

passive models, the computation of stable coupled models by performing DS operations

with passive models will in general continue to lead to the computation of stable models

composed by a lower number of states than the models that would be computed by using

the methodology discussed in section 3.5. Thus, this is definitely a benefit of performing

DS operations with passive models in place of using the methodology presented in

section 3.5. Nonetheless, hinging on how many DS operations are made at the same

interface DOFs, on how many substructures are involved on those operations and on

how many internal DOFs each model presents, the stable coupled models resultant from

the performance of DS operations with passive models may be made of a number of

states equal or even higher than the stable coupled models obtained by exploiting the
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approach discussed in section 3.5. For the experimental substructuring case analyzed

in this section, to force the passive models representative of each aluminum and steel

crosses to verify Newton’s second law, we would be required to introduce 12 extra

states, whereas to force the passive model of assembly A to obey Newton’s second law,

24 additional states would have to be introduced on this model (see section 3.3.2).

Thus, the stable coupled model that would be computed by performing DS operations

with passive models would present the same number of states as the SSM LSFD model,

here determined by following the methodology presented in section 3.5.

On top of this, the stable coupled model computed by performing DS operations

with passive models is very likely to present less accuracy than the SSM LSFD model.

First of all, the passive models will in general be less accurate than the original non-

passive models. Secondly, the used RCMs to force the passive models to verify New-

ton’s second law might promote an additional loss on the accuracy of these models

(see, section 3.3.2). Thirdly, it is very likely that by implementing DS operations with

the defined passive models, we get to stable coupled models, whose FRFs present more

significant deviations from the unstable coupled model than the deviations observed be-

tween the FRFs of the passive models and the respective original non passive models.

Therefore, we may conclude that the determination of stable coupled models from pas-

sive state-space models involves the performance of three procedures that degradate the

correctness of the coupling results (i.e. forcing models to obey passivity, imposing New-

ton’s second law on the passive models and the implementation of DS operations). The

degradation of accuracy associated with forcing the passive models to verify Newton’s

second law can be easily attenuated by increasing the selected value for the natural fre-

quencies of the RCMs responsible for imposing this physical law. Yet, the degradation

of accuracy associated with the other two procedures cannot be attenuated. In con-

trast, the method discussed in section 3.5 to determine stable coupled models involves

the performance of only two procedures that foster the deterioration of the accuracy of

the coupled results. These procedures are the application of LSFD to make the FRFs

of the model composed by the pairs of complex conjugate poles of the stabilized model

to match as closely as possible the target FRFs and the exploitation of sets of RCMs to

introduce the contribution of the out-of-band modes estimated by LSFD and to force

the complete stable coupled model to obey Newton’s second law. The deterioration of

the accuracy of the coupled results due to the application of these two procedures can

be easily reduced. Indeed, the loss of accuracy associated with the use of LSFD can

be attenuated by further improving the quality of the estimated modal parameters by

exploiting ML-MM algorithm (see, for instance, [74]). The loss of accuracy resultant

from the use of RCMs to define the complete stable coupled state-space model can also

be simply attenuated by tuning the value selected for their natural frequencies (see,

sections 3.2.2 and 3.3.2). The benefit of computing stable coupled state-space models

from passive models is that, it leads, in general, to the computation of a coupled model

that is passive as well (see [4]). Thereby, this coupled model would be more physically
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consistent than the SSM LSFD model, which violates passivity. However, it is quite

common in practice to describe the dynamics of real structures by making use of non

passive models. As an example, we may think on the FRFs collected during the per-

formance of experimental modal characterization tests that are often not passive due,

for instance, to slight inaccuracies in the test set-up.

Having in mind the reasons elaborated above, the stable coupled models defined

by exploiting the methodology presented in section 3.5 are likely to be more accurate

than the stable coupled models obtained by performing DS operations with models

imposed to be passive. On top of this, the approach discussed in section 3.5 presents

some practical benefits, when compared with the computation of stable coupled mod-

els by exploiting state-space models forced to be passive. To start, the methodology

presented in section 3.5 demonstrated to be capable of determining accurate stable

coupled models originated from the performance of DS operations involving models

composed by a high number of states without making use of iterative algorithms. In

addition, this approach must be applied on displacement models, while the strategies

exploited to enforce passivity take, in general, action over velocity models. In this way,

in case that we aim at determining a displacement stable coupled model, we are forced

to follow one of two different strategies. On the one hand, we can obtain the displace-

ment coupled model directly from the velocity coupled model (see, expression (3.45))

determined by performing DS operations with passive velocity models representative

of the components. On the other hand, we may think on determining the intended dis-

placement coupled model by using the displacement models of the components directly

obtained from the respective passive velocity state-space models. Nevertheless, these

two strategies hold the drawback of demanding the performance of matrix inversions

to compute displacement models from the velocity ones. On top of this, to compute

stable coupled models, we are solely demanded to apply the methodology presented

in section 3.5 on the unstable state-space model originated from all the implemented

DS operations. This benefit is more significant for DS operations involving a higher

number of state-space models.





Chapter 5

Novel applications of LPV

models in TPA

5.1 Introduction

In this section, we will focus our attention on the TPA techniques commonly clus-

tered under the labels classical and component-based. Due to their wide popularity,

the matrix-inverse and the in-situ methods of the classical and component-based TPA

methods (see, for instance, [94]), respectively, will be the analyzed techniques. In par-

ticular, we aim at using these methods to tackle applications in time-domain involving

mechanical systems, whose dynamics is continuously changing over time.

The performance of TPA analysis in time-domain is, indeed, advantageous to deal

with applications involving transient phenomena, for example, to perform the char-

acterization of injector noise and to perform ride comfort analysis while driving over

bumps. There are many methods available in literature that can be used to compute

connecting and equivalent forces in time-domain (see, for example, [95], [96], [97]).

Nonetheless, the determination of time-domain forces in the context of applications

involving mechanical systems, whose dynamics changes continuously over time, has

received little attention. Yet, there are many structures made of components, whose

dynamic behaviour may present time-variations due to different external factors (for

example, rubber mounts, whose dynamics is dependent on temperature, on the applied

static pre-load, etc [33]).

Therefore, to tackle this kind of applications, we will propose the use of the state-

space formulation. In fact, the use of state-space models to deal with these problems

seems promising, because these models are specially targeted to deal with problems

posed in time-domain. Moreover, there are many approaches reported in literature

based on the state-space formulation that are capable of characterizing systems pre-

senting time-domain variations on their dynamics. On top of this, the state-space

models are also known to be very well suited to perform real-time simulations.

Thereby, in this section we aim at proposing an approach to compute time-domain

149
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connecting and equivalent forces by using the matrix-inverse classical TPA and the

in-situ component-based TPA methods, respectively, when dealing with mechanical

systems, whose dynamic behaviour is time-dependent. As first step, this approach

makes use of local interpolating LPV models (see, for instance, [83]) to characterize

the dynamics of the substructures at each time-sample. Then, if the component-based

TPA method is to be exploited, the use of LM-SSS enhanced by post-processing proce-

dures (see sections 2.2.3 and 2.3) is proposed, in case that one is interested on coupling

at each time sample the state-space models of the substructures to compute models

representative of the dynamics of the assemblies at each time-sample (for example, in

case that the experimental modal characterization of the assembled structure is not

convenient to be performed). Finally, the time-domain connecting forces of the assem-

blies and the time-domain equivalent forces of the sources are computed by exploiting,

respectively, the state-space realizations of the matrix-inverse classical TPA and of the

in-situ component-based TPA methods.

In the following, we will start by presenting in section 5.2 the strategy that will be

here used to construct interpolating LPV models. In the same section, this methodology

is numerically and experimentally validated. Then, in section 5.3, the state-space

realizations of the matrix-inverse classical TPA and of the in-situ component-based

TPA methods are presented. Finally, in section 5.4 a numerical case is analyzed to

validate the use of the state-space realization of the matrix-inverse classical TPA and of

the in-situ component-based TPA methods together with LPV models to compute time-

domain connecting and equivalent forces, respectively, when dealing with mechanical

systems presenting time-varying dynamics.

5.2 Linear Parameter-Varying models

During the last decades, the Linear Parameter-Varying (LPV) models have received

significant attention. These models are used to characterize systems, whose dynamic

behaviour is dependent on a single or multiple time-varying parameters, commonly

denominated as scheduling parameters [83]. Indeed, the LPV models have been suc-

cessfully exploited to characterize real systems, whose dynamics is dependent on the

value of one or more scheduling parameters, in several different areas [98], for instance,

in automotive and aerospace applications (see [99] and [100], respectively), to model

computing systems (see [101]), to characterize mechatronic systems (see [102]) and to

model thermal and fluid processes (see [103] and [104], respectively).

However, the use of LPV models in structural dynamics applications is not common.

Yet, many structural dynamics applications involving the characterization of mechan-

ical components presenting time-varying dynamic behaviour would benefit from the

exploitation of LPV models. Actually, there are several mechanical structures that

when operating under normal conditions promote significant changes on the dynamics

of some of their components. An example of these components are the rubber mounts,
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whose dynamics is known to depend on several external factors, e.g. on the applied

static pre-load and on the temperature at which they are submitted (see [105], [106],

[33]). In this way, LPV models can be exploited to either characterize the time-varying

behaviour of complete assemblies or to characterize the time-varying dynamic behaviour

of isolated components, whose time-varying dynamics can be, subsequently, embedded

on the complete assembly by exploiting SSS techniques (see, for instance, [8], [1], [3],

[2]).

The methodologies presented in literature to construct LPV models are usually

divided in two main classes: the class of the global approaches and the class of the

local approaches [83]. In the global methodologies, the LPV models are constructed

from data collected during the excitation of the target systems, while the value of

the scheduling parameters characterizing their dynamics is continuously changing (see,

for instance, [107], [108]). In contrast, the local methodologies rely on experimentally

characterizing the dynamics of the target structure submitted to a pre-selected set of

different fixed operating conditions associated with constant values of the scheduling

parameters. Subsequently, by using the data collected from these experimental tests,

a set of Linear Time-Invariant (LTI) state-space models can be estimated. These LTI

models are then, interpolated to compute state-space models representative of the dy-

namics of the target structure for intermediate operating conditions characterized by

values of the scheduling parameters in between the values of the scheduling parameters

associated with the estimated LTI models (see, for instance, [109], [85]). This interpo-

lation is implemented through an interpolating LPV model defined from the computed

LTI models.

The global approaches hold the disadvantage of not being able to characterize the

time-varying dynamic behaviour of mechanical systems that cannot be persistently ex-

cited, while their dynamics is continuously changing (see, for instance the vibro-acoustic

system studied in [110] and the flight applications tackled in [111]). Conversely, in the

local approaches the LPV model is defined by using LTI models identified from data col-

lected during the experimental modal characterization of the target structure submitted

to pre-selected fixed operating conditions. Thus, well-known system identification al-

gorithms (see section 3) can be used to determine the intended LTI models. Moreover,

these approaches hold the advantage of being able to interpolate either continuous or

discrete state-space models.

Nevertheless, the local approaches present the important disadvantage of not in-

cluding information regarding the variation of the scheduling parameters characterizing

the dynamics of the target structures, because these approaches construct interpolating

LPV models by using LTI models representative of the dynamics of the target structures

for fixed operating conditions. For this reason, the computed LPV models are less suited

to characterize mechanical components, whose dynamics change significantly with the

value of the scheduling parameters and/or in case that the values of these scheduling

parameters exhibit fast time-variations. On top of this, the local methodologies are only
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applicable to analyze structures that can be tested, while the values of the scheduling

parameters characterizing their dynamics is kept constant. Although, there are several

structures that can be experimentally characterized in this fashion, there are some ap-

plications involving the characterization of structures, whose dynamics is governed by

scheduling parameters presenting persist time-variations on their values. To deal with

this kind of applications, one must exploit the global methodologies. Even though the

local approaches present some disadvantages, many structural dynamics applications

involving the characterization of components presenting time-varying dynamics can be

tackled by exploiting these approaches. For this reason, in this section we will focus

our attention on the construction of LPV models by using local approaches.

To estimate state-space models from experimentally acquired data, it is common

to exploit system identification algorithms (see section 3.1). However, by computing

state-space models with these algorithms, it is usual to end-up with state-space mod-

els that are not represented with respect to the same unique state-space realization.

Thus, to properly interpolate a set of estimated LTI state-space models, we must start

by coherently represent these models with respect to the same state-space realization.

Several different approaches to coherently represent sets of identified LTI models have

been reported in literature. For instance, in [112], a set of estimated SISO LTI mod-

els is made coherent by transforming each of the estimated state-space models into

controllable form, while in [84], the computation of similarity transformation matrices

from the observability and controllability matrices of identified LTI models is suggested

to transform these models into the same coherent state-space realization. However, by

following these approaches we may run into numerical ill-conditioned problems, be-

cause both observability and controllability matrices are known to be ill-conditioned

for medium and high-order state-space models [113]. Another proposed approach to

make a set of state-space models coherent can be found in [114]. This procedure re-

lies on the transformation of LTI state-space models identified by exploiting subspace

algorithms (see, for example, [59], [57]) into internally balanced realizations (see, for

example, [115], [116]). Nevertheless, the internally balanced realization is not unique,

which may lead to problems during the interpolation of the identified LTI models (see,

[83], [102]). Furthermore, the transformation of each of the identified LTI models into

the internally balanced realization is based on the correspondent controllability and

observability Gramians (see, [115], [116]) hence, these models must be observable and

controllable. In [83], a set of SISO LTI models is made coherent by representing each

of the estimated LTI models as a series connection of low-order sub-models. This

technique was then, generalized in [102] to deal with MIMO LTI state-space models.

Nonetheless, the approaches proposed in [83] and [102] hold the important disadvan-

tage of requiring a manual sorting of the poles and zeros of each LTI model. Thereby,

demanding experience, intuition and interaction from the user.

More recently, in [117], [118], [119], it was discussed and proven that a given set

of estimated LTI state-space models does not contain sufficient information to define
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similarity transformations capable of making them coherent. For this reason, we are

left with two different strategies to make a given set of LTI models coherent. The

first strategy is to assume particular global structural assumptions for the state-space

matrices of the estimated LTI models. For instance, by transforming the LTI models

into a state-space realization for which some elements of the state, input or output

matrices of all the LTI models are equal (e.g. by transforming them into the controllable

canonical form, see [118]). As second strategy, one may compute a set of coherent

state-space models by exploiting adequate input-output data sequences. These data

sequences must include time instants for which the target structure is submitted to

several jumps between the fixed operating conditions associated with the estimated LTI

models. From these data sequences, similarity matrices that enable the transformation

of the identified LTI models into the same unique state-space representation can be

computed. This strategy was firstly introduced in the framework of piecewise linear

systems in [120], while variants of this method in the context of local LPV model

identification can be found in [117], [85].

Here, to coherently represent a given set of estimated LTI state-space models, we will

start by transforming each of the LTI state-space models into complex diagonal form.

Thereby, transforming the state matrix of each of these LTI models into a diagonal

matrix composed by its poles (see, for instance, [39]). Then, the poles of each LTI

model will be sorted in terms of ascending damped natural frequency. In this way, the

poles can be automatically sorted without requiring interaction from the user. Finally,

to obtain a coherent representation of the set of identified models, a global structural

assumption will be performed.

After having computed a coherent set of LTI models, the state-space matrices of

these models can be directly interpolated by performing for instance, a linear interpola-

tion of each of their elements (see [121]). Alternatively, one can exploit the coherently

represented set of LTI models to compute an interpolating LPV model. A possible ap-

proach to define a LPV model is to represent each element of each state-space matrix

as a sum of unknown variables multiplied by shape functions dependent on the corre-

spondent values of the scheduling parameters. Polynomial and sinusoidal functions are

examples of types of shape functions that can be used to define LPV models (see [121]).

The unknown variables of the defined LPV model can then be determined by fitting in

a linear least-squares sense the state-space matrices associated with the selected fixed

operating conditions (expressed as a sum of the unknown variables multiplied by the

shape functions) with the estimated LTI models. Yet, other approaches to construct

interpolating LPV models have been presented in literature. For example, the compu-

tation of affine LPV models, whose associated unknown variables are determined by

solving a nonlinear least-squares problem, is proposed in [83].

Here, the LPV models will be defined by exploiting the approach presented in [102].

This approach defines LPV models by assuming that they present an homogeneous

polynomial dependency on the parameterized values of the scheduling parameters in
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a multisimplex Λ. By following this methodology, the unknown variables associated

with the LPV modeld under computation are found by solving a linear least-squares

problem.

The strategy exploited in this document to compute interpolating LPV models

is presented in section 5.2.1. Afterwards, in sections 5.2.2 and 5.2.3, the presented

approach to compute LPV models is numerically and experimentally validated, respec-

tively.

5.2.1 Constructing Linear Parameter-Varying models

In this section, a local approach to compute LPV models will be discussed. The

construction of LPV models by using local approaches can be divided into three different

steps. As first step, we must identify a set of LTI state-space models that accurately

characterize the dynamics of the mechanical system under analysis, when submitted

to different pre-selected fixed operating conditions. Then, we must guarantee that

the identified set of estimated states-space models is coherently represented. Finally,

we must construct an interpolating LPV model by using the identified coherent set

of state-space models. Here, the construction of LPV models will be presented by

exploiting displacement LTI state-space models. Indeed, the use of displacement state-

space models is beneficial, because the feedthrough matrices of these models are by

definition null. Thus, by using displacement models, we have the possibility to decrease

the amount of variables to be calculated in order to define the LPV models. Hence,

reducing not only the computational cost associated with the construction of the LPV

models, but also the computational cost associated with the use of the constructed

LPV models to calculate interpolated state-space models.

To start, we must discuss how to properly select the fixed operating conditions for

which LTI models must be identified. There are no rigorous procedures to select fixed

operating conditions that enable the computation of a set of LTI models suitable to

define an accurate LPV model. However, there are some guidelines that one must follow

to properly select these fixed operating conditions. As first guideline, the selected fixed

operating conditions must ensure that there is no need of performing extrapolation.

This means that if the value of a given scheduling parameter ranges from a minimum

value of β to a maximum value of β̂, we must select one fixed operating condition

associated with a value of that scheduling parameter slightly lower or equal to β and

another one associated with a value of that scheduling parameter slightly higher or

equal to β̂. It is also recommended to select fixed operating conditions associated with

equidistant values of the scheduling parameters. Furthermore, the number of selected

fixed operating conditions must be large enough to well capture the influence of the

scheduling parameters over the dynamics of the system under analysis. Additionally,

we must ensure that between consecutive fixed operating conditions, the dynamics

of the system under analysis do not change abruptly. At same time, the number of
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selected fixed operating conditions must be as small as possible to decrease the number

of LTI models to be estimated (see [102]). This is specially important to reduce the

number of experimental tests required to be performed, when each of the LTI state-

space models is estimated from the experimental modal characterization of the target

structure submitted to the associated fixed operating condition.

After having selected the fixed operating conditions, LTI state-space models repre-

sentative of the dynamics of the target structure submitted to those conditions must be

estimated. If these LTI models are analytically computed from the mechanical prop-

erties of the mechanical system under analysis, they will represent a coherent set of

state-space models. Nonetheless, when the state-space models are to be identified from

experimentally acquired data, we are generally required to exploit system identification

algorithms (see section 3.1) to compute them. By computing state-space models by

using system identification algorithms, it is common to end-up with state-space models

that are not represented with respect to the same unique state-space realization. To

coherently represent the identified set of state-space models, we may start by trans-

forming each of the estimated state-space models into complex diagonal form as follows

(see, section 3.5):

{ẋicdf (t)} = [Aicdf ]{xicdf (t)} + [Bi
cdf

]{uicdf (t)}

{yicdf (t)} = [Ci,dispcdf
]{xicdf (t)}

(5.1)

where,

[Aicdf ] = [Λi] = [T icdf ]−1[Ai][T icdf ], [Bi
cdf ] = [T icdf ]−1[Bi]

[Ci,dispcdf ] = [Ci,disp][T icdf ]
(5.2)

while, superscript i denotes variables/vectors/matrices associated with the estimated

state-space model representative of the system under study submitted to the ith fixed

operating condition, [Λi] is a diagonal matrix including the eigenvalues of [Ai] (which

are also the poles of the state-space model [39]) and matrix [T icdf ] is a modal matrix

composed by the eigenvectors of [Ai] that can be calculated by solving the eigenvalue

problem given hereafter.

[Ai][T icdf ] = [T icdf ][Λi]. (5.3)

With the identified state-space models represented in complex diagonal form, we

have the possibility of coherently sort their poles. Thereby, the poles of each state-space

model will be sorted in ascending damped natural frequency to take into account the

values of their natural frequencies and damping ratios. The damped natural frequency

of a given pole can be calculated as follows:

ωd,r = ωn,r

√

1 − (ξn,r)2 (5.4)
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where, ωd,r and ωn,r denote, respectively, the damped natural frequency and the natural

frequency of the rth pole, whereas ξn,r represents the damping ratio of the rth pole.

It is worth mentioning that, when sorting pairs of complex conjugate poles, ties in

terms of the value of their damped natural frequencies are broken by firstly placing the

pole, whose imaginary part is positive, and by placing subsequently the pole, whose

imaginary part is negative. Obviously, when sorting each of the poles of each of the

estimated state-space models, the associated row of the input matrix and the associated

column of the output matrix must be sorted accordingly.

However, as the representation of a given state-space model in complex diagonal

form is not unique with respect to the scaling of both output and input matrices, to

compute the intended set of coherent state-space models, we also have to coherently

scale both input and output matrices of each of the estimated state-space models (see

[121], [84]). These matrices can be coherently scaled in accordance with the following

expressions:

[Bi
cdf,sc] = [Θi]−1[Bi

cdf ] (5.5)

[Ci,dispcdf,sc ] = [Ci,dispcdf ][Θi] (5.6)

where, subscript sc denotes a coherently scaled state-space matrix, whereas [Θ] rep-

resents the scaling matrix responsible for scaling both input and output matrices of a

given state-space model. To coherently scale the input and output matrices of each of

the estimated state-space models, we may, for example, normalize each row of [Bi
cdf ]

with respect to one of its elements [121]. Therefore, by presuming that the normaliza-

tion of each row of [Bi
cdf ] is to be performed with respect to its first element, [Θi] must

be defined as hereafter:

[Θi] =









Bi
11,cdf

Bi
21,cdf

. . .









(5.7)

where, the first and second subscripts represent, respectively, the number of the row

and column associated with the element of [Bi
cdf ]. Note that by scaling both input

and output matrices of a given state-space model in accordance with expressions (5.5)

and (5.6) and by exploiting the diagonal scaling matrix defined in expression (5.7),

the input-output properties of the state-space model remain unaltered. To prove this

statement, let us compute the FRFs of the coherently scaled model associated with the

fixed operating condition i as hereafter.
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[H i
cdf,sc(jω)] =[Ci,dispcdf ][Θi](jω[I] − [Λi])−1[Θi]−1[Bi

cdf ]

=[Ci,dispcdf ](jω[I] − [Λi])−1[Bi
cdf ]

(5.8)

By analyzing equation (5.8) and by remembering that [Θi] and [Λi] are diagonal

matrices, it is clear that by scaling the input and output matrices of the estimated LTI

models in accordance with expressions (5.5) and (5.6), respectively, the input-output

properties of the LTI state-space models are not perturbed.

At the end of this scaling process, we obtain a coherent representation of the set

of estimated state-space models. Thus, we can now exploit this coherent set of models

to compute an interpolating LPV model. The computation of this LPV model will be

performed by following the methodology proposed in [102]. Moreover, for the sake of

simplicity, we will assume that the dynamics of the target system depends on a single

scheduling parameter. Nevertheless, the approach presented in [102] continues to be

valid to compute LPV models representative of systems, whose dynamics depends on

multiple scheduling parameters.

The methodology presented in [102] presumes that the interpolating LPV model

to be set-up presents an homogeneous polynomial dependency on the parameterized

values of the scheduling parameter in a multisimplex Λ. Therefore, as first step to

implement this approach, we must define the dimension of the multisimplex Λ in which

the values of the scheduling parameter will be parameterized. Here, the dimension of

the multisimplex Λ will be selected to be Ξ = 2, which is a commonly chosen dimension

(see [102]). In this way, it is possible to parameterize the value of a given scheduling

parameter β associated with a given fixed operating condition l as hereafter.

∆β,1 =
βl − β

β̂ − β
, ∆β,2 = 1 − ∆β,1 (5.9)

By using the parameterized values of the scheduling parameter, we may represent

the interpolated state-space matrices associated with the fixed operating condition l

computed by exploiting the LPV model under construction as follows:
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diag[A(αl)] =

JΞ(χ)
∑

a=1

αla{Ăa} (5.10a)

[B(αl)] =

JΞ(χ)
∑

a=1

αla[B̆
a] (5.10b)

[Cdisp(αl)] =

JΞ(χ)
∑

a=1

αla[C̆
a] (5.10c)

where, diag[•] is a column vector containing the diagonal elements of matrix [•], whereas

αla represents the element placed on the ath column of {αl}, which can be defined as

follows:

{αl} =
[

∆χ
β,1∆

0
β,2 ∆χ−1

β,1 ∆1
β,2 . . . ∆0

β,1∆
χ
β,2

]

(5.11)

where, χ denotes the degree of the homogeneous polynomial dependency of the LPV

model under construction on the parameterized value of the scheduling parameter in

a multisimplex Λ (see equation (5.9)). The number of columns of the vector {αl} is

represented by variable JΞ(χ), whose value can be calculated as hereafter.

JΞ(χ) =
(Ξ + χ− 1)!

χ!(Ξ − 1)!
(5.12)

To define the interpolating LPV model, we must determine the unknown vectors

{Ăa} ∈ C
n×1 and the unknown matrices [B̆a] ∈ C

n×ni and [C̆a] ∈ C
no×n (see expression

(5.10)). To calculate these vectors/matrices, we must formulate a linear-least squares

problem by defining expression (5.10) for the selected fixed operating conditions and by

using the state-space matrices of the estimated LTI models. This linear-least squares

problem can be established as follows:

[a]{p} = {b} (5.13)

with,
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[a] =









































α1
⊗

IA,A
...

αm
⊗

IA,A

α1
⊗

IB,B
...

αm
⊗

IB,B

α1
⊗

IC,C
...

αm
⊗

IC,C









































(5.14a)

{p} =
{

{pA}T {pB}T {pC}T
}T

(5.14b)

{b} =
{

{bA}T {bB}T {bC}T
}T

(5.14c)

while,

{pA} =
{

{Ă1}T . . . {ĂJΞ(χ)}T
}T

{pB} =
{

(vec[B̆1])T . . . (vec[B̆JΞ(χ)])T
}T

{pC} =
{

(vec[C̆1])T . . . (vec[C̆JΞ(χ)])T
}T

{bA} =
{

(diag[A1
cdf ])T . . . (diag[Amcdf ])T

}T

{bB} =
{

(vec[B1
cdf,sc])

T . . . (vec[Bm
cdf,sc])

T
}T

{bC} =
{

(vec[C1,disp
cdf,sc ])T . . . (vec[Cm,dispcdf,sc ])T

}T

(5.15)

where,
⊗

denotes the Kronecker matrix product (see, for instance, [122]), [IA,A] ∈
Rn×n, [IB,B] ∈ R(n×ni)×(n×ni) and [IC,C ] ∈ R(n×no)×(n×no) are identity matrices, vec[•]

is the vector obtained by stacking all columns of matrix [•] and m is the number of state-

space models included in the set of estimated state-space models. It is worth mentioning

that in expression (5.10) and in the construction of {b} (see expression (5.15)) we

have only considered the diagonal elements of the state matrices of the estimated LTI

models, because these models were transformed into complex diagonal form and hence,

present diagonal state matrices. In fact, constructing LPV models by exploiting LTI

state-space models transformed into complex diagonal form is advantageous, because

instead of being required to define the LPV model by determining unknown matrices

composed by n2 elements to calculate the state matrices of the interpolated models, we
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are only required to determine unknown vectors composed by n elements (see expression

(5.10a)). Thereby, we have the possibility of reducing the computational cost associated

with the computation of the LPV models and with the computation of interpolated

state-space models by using the defined LPV models.

By observing expression (5.13), it is evident that the unknown vector {q} can be

determined in a linear least-squares sense as follows:

{p} = [a]†{b} (5.16)

the error vector associated with the determination of {q} is given hereafter.

{E(p)} =









































diag[A1
cdf ] −

∑JΞ(χ)
a=1 α1

a{Ăa}
...

diag[Amcdf ] −
∑JΞ(χ)

a=1 αma {Ăa}
vec[B1

cdf,sc] −
∑JΞ(χ)

a=1 α1
avec[B̆

a]
...

vec[Bm
cdf,sc] −

∑JΞ(χ)
a=1 αma vec[B̆

a]

vec[C1,disp
cdf,sc ] −

∑JΞ(χ)
a=1 α1

avec[C̆
a]

...

vec[Cm,dispcdf,sc ] −
∑JΞ(χ)

a=1 αma vec[C̆
a]









































(5.17)

As final note, it is important to mention that if the estimated LTI models are

solely composed by pairs of complex conjugate poles (for instance, in case the LTI

models are identified by using the approaches presented in sections 3.2 and 3.3.2), the

number of variables to be determined by solving the linear-least squares problem given

in equation (5.14) can be halved. Hence, the number of variables to be calculated to

compute interpolated state-space models with the constructed LPV models can also be

halved.

5.2.2 Numerical Validation

Here, LPV models representative of the three components (from now on, denoted

as components A, B, and C) depicted in figure 5.1 will be computed by exploiting the

procedures presented in section 5.2.1. The values of the physical parameters indicated

in figure 5.1 are reported in table 5.1.

By analyzing figure 5.1 and table 5.1, we may conclude that one damping and one

stiffness parameters associated with substructures A, B and C exhibit a non-linear

variation with respect to the value of n1, n2 and n3, respectively. The value of these

parameters over time is represented by the curves reported in figure 5.2. A sampling

frequency of 2 × 104 Hz was used to discretize each of these curves. Then, state-space

models representative of each of the components under study at each time sample were

computed directly from their mechanical properties. For the sake of simplicity, the
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Figure 5.1: Components [6].

Table 5.1: Physical parameter values of components A, B and C [6].

i mi (kg) ci (N s m−1) ki (N m−1)

a1 6 10 4 × 103

a2 4 (5)n1(t) (2 × 103)n1(t)

b1 5 20 1 × 103

b2 3 (15)n2(t) (3.5 × 103)n2(t)

b3 1.5 5 4 × 103

c1 7 10 5 × 103

c2 3.5 (20)n3(t) (7.5 × 103)n3(t)

c3 5 12 1 × 103

damping matrix of each of the components at each time sample was defined from the

respective stiffness matrix by replacing the stiffness terms with the damping ones.

At this point, three LPV models representative of the three components under study

(see figure 5.1) will be constructed by following the procedures presented in section

5.2.1. To define each of these LPV models, four LTI state-space models representative

of each of the substructures under study submitted to four different pre-selected fixed

operating conditions were used. The values of the time-dependent parameters associ-

ated with the selected fixed operating conditions to define each of the LPV models are

reported in table 5.2. These conditions were chosen to avoid the need of performing ex-

trapolation and to make sure that between consecutive fixed operating conditions, the

dynamics of the systems under analysis do not change abruptly (see section 5.2.1). The

state-space models associated with the selected fixed operating conditions were directly

set-up by using the mechanical properties of the components under study. Then, to

ensure that the obtained sets of state-space models were not represented with respect
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Figure 5.2: Value of parameters n1, n2 and n3 over time.

to the same unique state-space representation (hence, that did not represented coherent

sets of models), each of the computed models was transformed into complex diagonal

form. Afterwards, the procedures presented in section 5.2.1 were applied to compute

sets of coherent state-space models from the estimated sets of LTI models associated

with each of the components under analysis. Note that to compute the coherent sets

of models, we have normalized the first column of the input matrix of each state-space

model (see section 5.2.1).

Table 5.2: Values of the time-varying parameters associated with the selected fixed operating
conditions to compute the LPV models representative of components A, B and C,
where FOC stands for fixed operating condition [6].

Parameter FOC 1 FOC 2 FOC 3 FOC 4

n1 1 1.05 1.1 1.15
n2 0.85 0.9 0.95 1
n3 0.7 0.75 0.8 0.85

In figures 5.3, 5.4 and 5.5, it is compared two displacement FRFs of the analytically

determined state-space models with the same displacement FRFs of the correspondent

coherent state-space models used to compute the LPV models representative of the

dynamics of substructures A, B and C, respectively.

By analyzing figures 5.3, 5.4 and 5.5, it is clear that by following the procedures

presented in section 5.2.1, we can make a set of state-space models coherent with-

out perturbing their FRFs. Hence, the input-output properties of the models remain

unchanged as well.

Finally, by following the procedures outlined in section 5.2.1 and by exploiting

the constructed sets of coherent state-space models, LPV models representative of the

three components under study were obtained. To construct each of these models, we

have parameterized the values of the associated time-varying parameter in a multi-

simplex Λ of dimension two. Furthermore, to define the degree of the homogeneous
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Figure 5.3: Comparison of two displacement FRFs of the set of analytically determined mod-
els with the same FRFs of the coherent set of state-space models to be exploited
to define a LPV model representative of component A: a) displacement FRF,
whose output and input are the DOFs a1 and a2, respectively; b) driving point
displacement FRF, whose output and input is the DOF a2.

polynomial dependency of the LPV models on the parameterized values of the asso-

ciated time-varying parameter, we have computed each of those models by assuming

polynomial dependencies of degrees ranging from 1 to 4. It was found that the error

vectors associated with the solved linear least-squares problems (see expression (5.17))

to calculate the LPV models by selecting a dependency of degree three presented the

lowest 2-norms. For this reason, the three LPV models were constructed by assuming

an homogeneous polynomial dependency of degree three on the parameterized values

of the associated time-varying parameter.

To validate the computed LPV models, they were exploited to compute interpolated

state-space models associated with the fixed operating conditions given in table 5.3.

Figures 5.6, 5.7 and 5.8 report the comparison of two displacement FRFs of the analyt-

ically determined state-space models with the same FRFs of the interpolated models

computed by exploiting the constructed LPV models representative of components A,

B and C, respectively.
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Figure 5.4: Comparison of two displacement FRFs of the set of analytically determined mod-
els with the same FRFs of the coherent set of state-space models to be exploited
to define a LPV model representative of component B: a) driving point displace-
ment FRF, whose output and input is the DOF b3; b) displacement FRF, whose
output and input are the DOFs b1 and b2, respectively.

Table 5.3: Values of the time-varying parameters associated with the fixed operating condi-
tions used to validate the computed LPV models representative of components A,
B and C, where FOC stands for fixed operating condition [6].

Parameter FOC 1 FOC 2 FOC 3 FOC 4

n1 1.025 1.075 1.115 1.135
n2 0.875 0.915 0.935 0.97
n3 0.715 0.735 0.775 0.825

From the observation of figures 5.6, 5.7 and 5.8, it is clear that the FRFs of the

analytical models are very well-matched by the same FRFs of the correspondent inter-

polated state-space models. Thus, we may conclude that the computed LPV models

are indeed, accurate to model the dynamics of the substructures A, B and C, provided

that they are subjected to operating conditions associated with values of n1 between
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Figure 5.5: Comparison of two displacement FRFs of the set of analytically determined mod-
els with the same FRFs of the coherent set of state-space models to be exploited
to define a LPV model representative of component C: a) displacement FRF,
whose output and input are the DOFs c2 and c3, respectively; b) driving point
displacement FRF, whose output and input is the DOF c1.

1 and 1.15, of n2 between 0.85 and 1 and of n3 between 0.7 and 0.85 (see table 5.2),

respectively.

5.2.3 Experimental Validation

Here, the strategy proposed in section 5.2.1 will be exploited to compute an interpo-

lating LPV model representative of the time-varying dynamics of assembly A (presented

in section 4.2.3), when submitted to a temperature run-up. To start, we will describe

the performed experimental test to characterize the time-varying dynamics of assem-

bly A. Then, an interpolating LPV model representative of the time-varying dynamic

behaviour of assembly A will be set-up. Finally, the interpolated state-space models

computed from the defined LPV model will be, firstly, used to reconstruct the measured

time-domain accelerations during the performed experimental test. Subsequently, these

interpolated models will be exploited with the Minimum-Variance Unbiased (MVU) es-

timator together with the measured time-domain responses to predict the time-domain
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Figure 5.6: Comparison of two displacement FRFs of the analytically determined state-space
models representative of system A submitted to the fixed conditions reported in
table 5.3 with the same FRFs of the interpolated models obtained by exploiting
the constructed LPV model of component A: a) driving point displacement FRF,
whose output and input is the DOF a1; b) displacement FRF, whose output and
input are the DOFs a2 and a1, respectively.

load applied on assembly A during the conducted experimental test. To demonstrate

the benefit of taking into account the variation on the dynamics of assembly A, the

obtained results will be compared with the time-domain reconstructions obtained by

ignoring the time-domain variations on the dynamics of this system.

Testing Campaign

To experimentally validate the strategy discussed in section 5.2.1 to construct LPV

models, the assembly A (presented in section 4.2.3), which is composed by two alu-

minum crosses connected by a rubber mount, will be analyzed.

To promote time-domain variations on the dynamic behaviour of assembly A, this

system was experimentally tested inside of a climate chamber (see figure 5.9), where

it was exposed to a six minute temperature run-up. During this temperature run-up,

the temperatures of the air inside the climate chamber and at the surface of the rubber
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Figure 5.7: Comparison of two displacement FRFs of the analytically determined state-space
models representative of system B submitted to the fixed conditions reported in
table 5.3 with the same FRFs of the interpolated models obtained by exploiting
the constructed LPV model of component B: a) displacement FRF, whose output
and input are the DOFs b2 and b3, respectively; b) displacement FRF, whose
output and input are the DOFs b3 and b1, respectively.

mount were continuously registered by two thermocouples. These temperatures are

reported in figure 5.10.

By observing figure 5.10, it is clear that the temperature at the surface of the mount

increased from, roughly, 14 ℃ to, approximately, 35.2 ℃. This temperature variation

promoted a continuous change on the dynamics of the rubber mount over time (see

section 5.2). Hence, leading to time-domain variations on the dynamic behaviour of

assembly A.

While submitted to the temperature run-up, the assembly A was continuously ex-

cited by a shaker. The force applied by this device was permanently registered by a

load cell. Moreover, three accelerometers were instrumented in each cross to measure

the acceleration responses of the system. To control the band of excited frequencies,

the shaker was provided with a random signal defined as:
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Figure 5.8: Comparison of two displacement FRFs of the analytically determined state-space
models representative of system C submitted to the fixed conditions reported in
table 5.3 with the same FRFs of the interpolated models obtained by exploiting
the constructed LPV model of component C: a) driving point displacement FRF,
whose output and input is the DOF c1; b) displacement FRF, whose output and
input are the DOFs c1 and c2, respectively.

v(tk) =

250
∑

f=10

γf,kcos(2 × 2πf + θf,k) (5.18)

where, subscript k denotes the kth discrete time instant and γf,k and θf,k are Gaussian

distributed stochastic variables, whose means are, respectively, 5 × 10−2 V and 0 rad,

whereas the standard deviations of γf,k and θf,k are, respectively, 1 × 10−2 V and 2

rad.

It is worth mentioning that we could have fed the shaker with any kind of signal,

provided that it enables the excitation of frequencies belonging to the frequency band

of interest (i.e. between 2×101 Hz to 5×102 Hz, see section 4.2.3), because the sole aim

of this section is to evaluate the accuracy of the LPV models constructed by exploiting

the strategy presented in section 5.2.1 to characterize the dynamics of real structures

presenting time-varying dynamic behaviour.
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Figure 5.9: Exploited test set-up to experimentally characterize the dynamics of assembly A,
when submitted to a temperature run-up [7].
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Figure 5.10: Temperatures of the air inside the climate chamber (black solid curve) and at
the surface of the rubber mount (blue dashed curve) over time.

Computation of the Linear Parameter Varying model

The strategy presented in section 5.2.1 will be here used to define a LPV model

representative of the dynamics of assembly A, when submitted to the described tem-

perature run-up. To start, we must define a set of fixed operating conditions for which

LTI state-space models will be estimated. As the dynamics of assembly A changes over

time due to variations on the temperature of the rubber mount (from now on denoted

as Trb), this temperature will be considered as the scheduling parameter governing the

dynamics of assembly A. In this way, to prevent the need of performing extrapolation,

we will define two fixed operating conditions to be associated with temperatures at the

surface of the rubber mount of 14 ℃ and 35.2 ℃. In addition, to avoid abrupt variations

on the dynamics of assembly A between consecutive fixed operating conditions, three

LTI state-space models representative of assembly A for rubber mount temperatures of

20 ℃, 25 ℃ and 30 ℃ will be estimated.

To estimate the intended set of LTI state-space models, we must start by computing
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the FRFs of assembly A, when the surface of the rubber mount is at the temperatures

associated with the selected fixed operating conditions (i.e. 14 ℃, 20 ℃, 25 ℃, 30 ℃

and 35.2 ℃). Besides computing these sets of FRFs, we will also calculate a set of FRFs

representative of assembly A for Trb =27.5 ℃. This set of FRFs will serve as reference

to evaluate the accuracy of the LPV model to be constructed.

The intended sets of FRFs will be computed directly from the time-domain accel-

eration signals measured by the accelerometers and from the time-domain load signal

measured with the load cell. Thereby, to compute each set of FRFs, chunks of the

time-domain acceleration signals and of the time-domain load signal will be exploited.

To establish the initial time instant of the chunks of the time-domain acceleration and

load signals to compute each set of FRFs, we will look in the curve of the registered

temperatures at the surface of the rubber mount (see figure 5.10) for the time instant

corresponding to the temperature associated with the set of FRFs under computation

minus, approximately, 0.5 ℃. Identically, to establish the final time instants of the

chunks of signals to be used to compute each set of FRFs, we will look in the curve of

the registered temperatures at the surface of the rubber mount (see figure 5.10) for the

time instant corresponding to the temperature associated with the set of FRFs under

construction plus, roughly, 0.5 ℃.

The defined initial and final time instants of the chunks of time-domain signals

used to determine each of the intended sets of FRFs (i.e. representative of the system

at 14 ℃, 20 ℃, 25 ℃, 27.5 ℃, 30 ℃ and 35.2 ℃) and the correspondent measured

temperatures at the surface of the rubber mount at those time instants are reported in

table 5.4.

Table 5.4: Initial and final time instants associated with the chunks of signals used to deter-
mine each set of FRFs and temperatures measured at the surface of the rubber
mount at those time instants [7].

Trb (℃) tinitial (s) tfinal (s) Trb,initial (℃) Trb,final (℃)

14 11 38 14.5 15.5
20 113.5 127 19.5 20.5
25 178.5 192 24.5 25.5
27.5 211 223 27 28
30 241.5 252.5 29.5 30.5
35.2 352 361 34.5 35.2

Note that we have decided to establish the initial and final time instants of the

chunks of time-domain signals as described in table 5.4 to allow the computation of

several averages of each set of FRFs. Moreover, the set of FRFs of the system for

Trb =14 ℃ was computed from chunks of signals, whose initial time instant is associated

with a rubber mount temperature of 14.5 ℃ (see table 5.4). We have made this choice

to ensure that during the full time-interval included in the chunks of signals used to
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compute the FRFs for Trb =14 ℃, the system was being properly excited. In fact, at

the beginning of the performed experimental test, the assembly A was at rest. Thus,

it is not recommended to compute sets of FRFs by using chunks of data including

the initial time-instants of the measured time-domain signals. On the other hand, we

do not expect that a variation of 0.5 ℃ on the rubber mount temperature leads to

important changes on the FRFs of assembly A. For this reason, by using the defined

chunks of time-domain signals, we expect to compute accurate FRFs representative of

the dynamics of assembly A for Trb =14 ℃.

The defined chunks of signals (see table 5.4) were used to compute the intended sets

of FRFs (i.e. for rubber mount temperatures of 14 ℃, 20 ℃, 25 ℃, 27.5 ℃, 30 ℃ and

35.2 ℃) by exploiting an overlap process with 50% of overlap to enable the computation

of more averages of each set of FRFs. On top of this, to reduce the effect of leakage,

we have also applied an Hanning window on the output and input time-domain signals

used to determine each average of each set of FRFs (see [123]).

Figure 5.11 reports the comparison of the computed FRFs, whose output and input

are, respectively, Sy4 (where, superscript denotes the direction of the output) and LCz1

(where, superscript denotes the direction of the input) (see figure 5.9), of the system

under study at the fixed operating conditions selected to define a LPV model represen-

tative of the dynamics of assembly A (i.e. for rubber mount temperatures of 14 ℃, 20

℃, 25 ℃, 30 ℃ and 35.2 ℃).
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Figure 5.11: Comparison of the determined FRFs of assembly A, when the surface of the
rubber mount is at 14 ℃, 20 ℃, 25 ℃, 30 ℃ and 35.2 ℃, whose output and
input are, respectively, Sy

4
and LCz

1
.

In figure 5.11, we can clearly observe that the FRFs of assembly A change with the

rubber mount temperature, in particular, for frequencies between 2×102 Hz and 3×102

Hz. Furthermore, as the temperature of the rubber mount increases, the amplitude of

the resonance of the FRFs of assembly A included in this frequency band increases and

its natural frequency decreases. In fact, these observations were expected, because the

value of the dynamic stiffness of rubber mounts is known to drop with the increment of
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the temperature at which they are subjected (see [124],[125]). On top of this, in figure

5.11, we can also notice that between rubber mount temperature values associated

with consecutive selected fixed operating conditions, the FRFs of assembly A change

smoothly. This is a clear indication that the set of selected fixed operating conditions

is suitable to compute the intended LPV model.

At this point, the LTI state-space models associated with the selected fixed operat-

ing conditions can be computed from the respective determined sets of FRFs (from now

on denoted as measured FRFs). To compute these models, we will, firstly, estimate

modal parameters from the measured set of FRFs representative of assembly A for

Trb =14 ℃, by using the Simcenter Testlab® implementation of PolyMAX (see, [22])

and ML-MM (see, [70]) algorithms. Then, to compute modal parameters representa-

tive of the dynamics of the system at the other selected fixed operating conditions, the

modal parameters identified from the set of measured FRFs associated with a rubber

mount temperature of 14 ℃ will be updated by using the ML-MM algorithm. All the

modal parameters will be estimated without assuming a proportionally damped modal

model. Subsequently, by using the estimated modal parameters and the approaches

presented in sections 3.2 and 3.3.2, LTI state-space models representative of assembly

A at the selected fixed operating conditions will be computed.

At the end of this process, five LTI state-space models representative of each selected

fixed operating condition were obtained. Each of these models is made of five in-band

pairs of complex conjugate poles, of two RCMs that model the contribution of the lower

out-of-band modes in the frequency band of interest, of two other RCMs, whose task

is modelling the contribution of the upper out-of-band modes in the frequency band of

interest and of two RCMs responsible for imposing Newton’s second law (see section

3.3.2). The RCMs used to include the contribution of the lower out-of-band modes

were defined by choosing a value for their natural frequencies of 1× 10−1 Hz, while the

RCMs responsible for including the contribution of the upper out-of-band modes and

for imposing Newton’s second law were set-up by choosing a value for their natural

frequencies of 1.5 × 103 Hz. Moreover, the value of the damping ratio of these RCMs

was selected to be 1 × 10−1 (see section 3.2).

In figure 5.12, the measured accelerance FRF, whose output and input are, respec-

tively, Sz5 and LCz1 , of assembly A for Trb =30 ℃, is compared with the same FRF of

the correspondent estimated state-space model.

By analyzing figure 5.12, it is clear that the measured FRF of assembly A is very

well-matched by the correspondent FRF of the estimated state-space model. Thus, we

may conclude that the estimated LTI state-space model represents an accurate descrip-

tion of the dynamics of assembly A for Trb =30 ℃. Moreover, identical match quality

was observed between the FRFs of the computed state-space models representative of

the other fixed operating conditions and the correspondent measured FRFs. Therefore,

we may conclude that all the LTI state-space models were successfully computed.

Before computing the intended LPV model, the set of estimated state-space models
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Figure 5.12: Comparison of the measured accelerance FRF, whose output and input are,
respectively, Sz

5
and LCz

1
, of the assembly A for Trb =30 ℃, with the same FRF

of the correspondent estimated state-space model.

must be coherently represented by exploiting the strategy outlined in section 5.2.1.

Then, the obtained coherent set of models can be used to define the intended LPV

model by following the strategy described in section 5.2.1. Nevertheless, to compute this

LPV model, we are also required to select the degree χ of the homogeneous polynomial

dependency of the LPV model on the parameterized values of the scheduling parameter

(i.e. rubber mount temperature) associated with each of the estimated LTI models.

However, we have no knowledge regarding the dependency of the dynamics of assembly

A on the rubber mount temperature. For this reason, to define a degree of dependency

that enables the construction of a reliable LPV model representative of assembly A, we

will construct different LPV models by choosing the value of χ to be 1, 2, 3 and 4. The

2-norms of the error vectors (see expression 5.17) associated with the solved linear-least

squares problems to compute each of these LPV models is indicated in table 5.5.

Table 5.5: 2-norms of the error vectors (see expression 5.17) associated with the solved linear-
least squares problems to define LPV models by selecting the value of χ to be 1,
2, 3 and 4.

χ 1 2 3 4

||E(p)|| 49.9402 27.0592 18.0371 4.3743 × 10−11

From table 5.5, it is evident that the 2-norm of the error vector associated with

the solved linear least-squares problem to calculate the LPV model by selecting χ = 4

is very close to zero. Thus, by using this LPV model, we are capable of computing

state-space models representative of the dynamics of the system submitted to the se-

lected set of fixed operating conditions presenting state-space matrices elements closely

matching the elements of the identified LTI models. Thereby, presuming that the set

of identified LTI state-space models well captures the influence of the temperature of
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the rubber mount over the dynamics of assembly A, we expect the LPV model defined

by assuming χ = 4 to be accurate to describe the dynamics of assembly A for rubber

mount temperatures ranging from 14 ℃ to 35.2 ℃. Hence, the interpolated models

computed from the defined LPV model representative of the dynamics of assembly A,

when submitted to fixed operating conditions in between the selected ones to compute

the LPV model, are expected to be accurate.

In case that the LPV model is, indeed, accurate, the FRFs of the computed in-

terpolated models must not change abruptly for rubber mount temperatures ranging

from 14 ℃ to 35.2 ℃ (see figure 5.11). Moreover, the variation of the FRFs of the

interpolated models with the rubber mount temperature must follow the same trend

observed for the measured sets of FRFs (see figure 5.11). Figure 5.13 reports a surface

obtained from the FRF, whose output and input are, respectively, Sy4 and LCz1 , of the

computed interpolated state-space models representative of the dynamics of assembly

A for rubber mount temperatures between 14 ℃ and 35.2 ℃ and spaced by 0.1 ℃.

Figure 5.13: Surface constructed from the accelerance FRF, whose output and input are,
respectively, Sy

4
and LCz

1
, of the interpolated state-space models representative

of the dynamics of assembly A for rubber mount temperatures between 14 ℃

and 35.2 ℃ and spaced by 0.1 ℃.

By analyzing figure 5.13, it is clear that the FRF of the interpolated state-space

models varies smoothly with the rubber mount temperature. It was found that the other

FRFs of the interpolated state-space models also vary smoothly with this temperature.

Furthermore, the variation of the FRFs of the interpolated models with the rubber

mount temperature follows the same trend observed for the measured sets of FRFs

(see figure 5.11). Thereby, these observations indicate that the LPV model is correctly

set-up and that it is accurate to characterize the dynamics of assembly A, when the

rubber mount temperature is between 14 ℃ and 35.2 ℃.

To further evaluate the accuracy of the constructed LPV model, this model was

exploited to compute an interpolated state-space model representative of assembly A

for Trb =27.5 ℃. In figure 5.14, the accelerance FRF of this interpolated model, whose
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output and input is SZ2 and LCz1 , respectively, is compared with the correspondent

measured FRF.
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Figure 5.14: Comparison of the measured accelerance FRF, whose output and input is Sz
2

and LCz
1
, respectively, of assembly A, when the rubber mount is at 27.5 ℃, with

the same accelerance FRF of the correspondent interpolated state-space model
obtained by exploiting the defined LPV model by selecting χ = 4.

By analyzing figure 5.14, we may conclude that the measured accelerance FRF of

assembly A, when the rubber mount is at 27.5 ℃, is very well-matched by the same FRF

of the correspondent interpolated model obtained with the constructed LPV model.

Thereby, further proving that the LPV model constructed by selecting χ = 4 is valid

to characterize the time-varying dynamics of assembly A.

Time-domain responses simulation and time-domain load identification

As first analysis, the time-domain responses measured during the performed ex-

perimental test (see section 5.2.3) will be reconstructed by exploiting the interpolated

models computed from the constructed LPV model (see section 5.2.3) together with the

measured time-domain load signal applied by the shaker. Additionally, to demonstrate

the benefit of considering the time-domain variations on the dynamics of assembly A,

the same time-domain responses will be reconstructed by solely exploiting the estimated

LTI model representative of the dynamics of the assembly A for Trb =14 ℃.

Note that to restrict our analysis to frequencies for which variations on the rubber

mount temperature lead to the most important variations on the measured FRFs of

assembly A (see figure 5.11), the measured time-domain responses and load signals

will be filtered with a band-pass filter presenting passband frequencies ranging from

1.2 × 102 Hz to 3.5 × 102 Hz.

In figures 5.15 and 5.16, it is reported the comparison of the measured time-domain

response of two different outputs of assembly A with the correspondent reconstructed

responses obtained by using the measured time-domain load signal with i) the identified

LTI model of assembly A for Trb =14 ℃ and with ii) the interpolated state-space models
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computed at each time sample from the defined LPV model of assembly A.
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Figure 5.15: Comparison of the experimentally acquired time-domain response of output Sz
7

with the predicted response of the same output obtained by i) exploiting the
identified LTI model representative of the dynamics of assembly A, when the
rubber mount is at 14 ℃, and by ii) exploiting the interpolated state-space
models calculated at each time sample by using the defined LPV model.
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Figure 5.16: Comparison of the experimentally acquired time-domain response of output Sy
8

with the predicted response of the same output obtained by i) exploiting the
identified LTI model representative of the dynamics of assembly A, when the
rubber mount is at 14 ℃, and by ii) exploiting the interpolated state-space
models calculated at each time sample by using the defined LPV model.

Figures 5.15 and 5.16 demonstrate that the measured time-domain responses are

very well-matched by the correspondent predicted responses by exploiting the interpo-

lated models computed from the constructed LPV model. Moreover, it is evident that

the time-domain responses predicted with the LTI state-space model representative of

assembly A for Trb =14 ℃ are less accurate. This is, particularly, evident at time

instants for which the rubber mount temperature is higher (see figures 5.10 and 5.15).

Thereby, it is straightforward to conclude that the methodology described in section
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3.2 is valid to determine accurate LPV models characterizing the dynamics of real com-

ponents, presenting time-varying dynamic behaviour. On top of this, the performed

comparison clearly illustrates the benefit in terms of the quality of the predicted time-

domain responses of taking into account the time-domain variations on the dynamics

of assembly A.

At this point, we will exploit the experimentally acquired responses together with

the MVU estimator presented in [126] to reconstruct the measured time-domain load

signal (see appendix G). Figure 5.17 reports the comparison of the measured time-

domain load signal with the predicted time-domain load signal by exploiting the ac-

quired time-domain responses and the MVU estimator together with the following

state-space models: a) LTI model representative of the dynamics of assembly A for

Trb =14 ℃ and b) by using the interpolated state-space models computed at each time

sample with the defined LPV model.

Once again, to restrict our study to frequencies for which variations on the rubber

mount temperature lead to the most important variations on the measured FRFs of

assembly A (see figure 5.11), the measured time-domain responses and load signals were

filtered with a band-pass filter presenting passband frequencies ranging from 1.2 × 102

Hz to 3.5 × 102 Hz. Moreover, as during the performed experimental test (see section

5.2.3) the assembly A was not properly excited by the shaker in the x direction (see

figure 5.9), the time-domain load applied by the shaker was reconstructed without using

the time-domain responses measured in this direction.

Note also that, to implement the MVU estimator, we must know the state vector

at the initial time-instant and the associated covariance matrix. On top of this, we

must also define the covariance matrices associated with both process and measure-

ment noises (see appendix G). At the beginning of the conducted experimental test

(see section 5.2.3), assembly A was in steady-state. For this reason, the state vector

and its associated covariance matrix were assumed to be null. The covariance ma-

trix associated with the process noise was also defined to be a null matrix, because the

identified LTI models and the constructed LPV model demonstrated to be able to accu-

rately describe the dynamic behaviour of assembly A (see section 5.2.3). Moreover, the

covariance matrix associated with the measurement noise was defined from the statisti-

cal noise properties of the accelerometers reported by the manufacture (see [127]) and

by presuming that the measurement noise of the used accelerometers is not correlated

with each other. In this way, the covariance matrix associated with the measurement

noise was defined to be 6.16 × 10−6 × [I], where [I] is a nout × nout identity matrix

(where, nout represents the number of exploited outputs to predict the load applied by

the shaker).

From the analysis of figure 5.17, it is evident that the measured time-domain load

signal is very well-matched by the load signal predicted with the interpolated models

computed from the defined LPV model. On top of this, it is clear that the load

signal predicted with the LTI model representative of assembly A for Trb =14 ℃ is not
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Figure 5.17: Comparison of the measured time-domain load with the time-domain loads pre-
dicted by exploiting the experimentally acquired time-domain responses and the
MVU estimator together with: a) the identified LTI model representative of the
dynamics of assembly A for Trb =14 ℃ and with b) the interpolated models
determined at each time-sample with the defined LPV model.

matching so well the measured time-domain load signal. Thus, we may conclude that to

accurately reconstruct time-domain load signals, possible time-domain variations on the

dynamics of the mechanical systems under study must not be ignored. Moreover, it is

once again evident that the computed LPV model accurately describes the time-varying

dynamic behaviour of assembly A. Hence, we may claim that the approach presented

in section 5.2.1 is experimentally validated to set-up interpolating LPV models.

5.3 Transfer Path Analysis

In this section, we will start by presenting a brief review of some state-of-the-

art Transfer Path Analysis (TPA) techniques (section 5.3.1). Then, the state-space

realizations of both matrix-inverse classical TPA and in-situ component-based TPA

methods are presented in sections 5.3.2 and 5.3.3, respectively.

5.3.1 State-of-the-art

TPA has revealed to be a valuable family of techniques to identify and assess the

importance of transmission paths of noise and vibration from sources (active compo-

nents, e.g. engines) to passive components (see, [128]). The TPA problem is in general

represented by an assembled structure composed of a source in operation connected

to a passive component through rigid connections or via connecting elements. As the

source is under operation, its internal mechanisms originate structural and acoustical

excitation that is transmitted to the passive system through structural and airborne

transfer paths, respectively. The passive system is assumed to not receive any excitation

besides the one transmitted through these transfer paths.
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In practice, the performance of TPA usually aims at lessen the transmission of noise

and vibration from the active to the passive components. Applications of this concept

can be found in diverse areas, such as, in the automotive (see, for instance, [129],

[130], [131], [132]) and in the aerospace industries (see, for example, [133], [134], [135]).

Following the general framework for TPA presented by Van der Seijs et al. in [94], we

will divide the TPA techniques in three different groups, namely, in the classical TPA,

component-based TPA and transmissibility-based TPA methods.

The classical TPA methods aim at identifying a set of connecting forces acting at

the interface between the active and passive components. These forces can, then, be

used to compute the operational responses on the intended DOFs (commonly, denoted

as target DOFs) at the passive side of the assembled structure (i.e. source connected to

the passive system) resultant from the excitation provided by the active component. In

the family of classical TPA methods are included approaches that make use of different

strategies to compute this set of connecting forces. We can start by mentioning the

direct force method, which makes use of force transducers installed at the interface

between the active and passive components to measure the intended set of connecting

forces. While this method might be adequate to deal with massive structures (see,

[128]), when analyzing smaller mechanical systems the instrumentation of force sensors

at the interface between the active and passive components is many times impossible

due to lack of room or inconvenient, because it changes the mounting conditions be-

tween the components. On top of this, the measurement of the connecting forces on

all intended DOFs might not be possible. Another technique belonging to the classical

TPA family is the mount stiffness method (see, [128], [136]). This technique is appli-

cable, when the active and passive components are connected by flexible mounts. To

determine the connecting forces, the mounts are assumed to respect the assumptions

underlying IS (see section 2.5.1), being the connecting forces determined by using the

diagonal dynamic stiffness terms of the mounts and the difference between the dis-

placements at the interface of the active and passive systems (see, bottom equation of

expression (2.59)) [94]. An important drawback of this approach is that some mounts

do not obey the assumptions underlying IS.

Lastly, we may also refer the widely popular matrix-inverse classical TPA method.

This method determines the connecting forces between the active and passive compo-

nents by solving an inverse problem involving operational responses collected at the

interface and/or at the passive side of the assembled structure (i.e. active compo-

nent connected to the passive system) and a model characterizing the dynamics of the

passive system (for example, set of FRFs or a state-space model). However, it is well-

known that the inverse force identification problem is ill-posed [137]. In practice, to

make the inverse problem better conditioned, it is common to determine the connecting

forces in an over-determined fashion by exploiting operational responses acquired at a

number of DOFs at least two times higher than the number of connecting forces to be

determined (see [136], [50], [94]). The location of these DOFs (also known as indicator
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DOFs) must be close to the interface between the active and passive components to

properly observe the full set of connecting forces. On top of this, to further improve

the conditioning of the inverse problem, the use of regularization methods is common.

In frequency-domain, the matrix-inverse method is usually regularized by either trun-

cating the lowest singular values (see, for instance, [138]) or by exploiting the Tikhonov

regularization approach [139], [140] (see, for example, the force identification strategies

presented in [141], [142]).

In time-domain, many techniques enabling the identification of time-domain forces

by solving inverse problems were proposed. Even though, many of these approaches

were developed without specifically targeting the determination of connecting forces

in the context of TPA, they can be exploited for this purpose. An example of these

techniques is the adaptive algorithm proposed in [143], which was directly derived

from the Least Mean Square algorithm [144]. By following the approach presented

in [143], the time-domain forces are estimated recursively based on the error between

the measured operational responses and the operational responses computed with the

estimated forces. Thus, avoiding the need of performing possible ill-conditioned matrix

inversions (see, [96]). Another force identification method was derived in [145]. This

approach estimates the time-domain forces by using the inverse Markov parameters of

the system under study together with measured operational responses. Moreover, to

regularize the inverse problem, Tikhonov regularization is applied. In [146], a method

that reconstructs time-domain forces by using an inverse structural filter that takes

as input the operational responses of the system under analysis was presented. In

this approach, the inverse problem is regularized by truncating the lowest singluar

values. More recently, a novel force identification method based on the use of a precise

time-step integration method for Markov parameters (PTIM-MP) together with the

Tikhonov regularization approach was also proposed in [147]. Finally, we can mention

some of the Kalman filter versions derived from the original work proposed by Kalman

in [148] to solve the inverse force identification problem. Examples of these works are

the dual Kalman filter proposed by Azam et al. in [149] and the Augmented Kalman

Filter (AKF) presented by Lourens et al. in [150].

The family of component-based TPA methods aims at determining sets of forces

that are an inherent property of the active components alone. These forces are usually

addressed as equivalent forces. The interesting feature of these forces is that they can

be used together with a model characterizing the dynamics of the assembled structure

(i.e. source connected to passive system) to simulate the operational responses (i.e.

when the source is running) on its passive side. Additionally, the equivalent forces of

a given active component can be exploited to determine the operational responses on

the passive side of any assembled system made of this component connected to any

other passive system, provided that the operational excitation exerted by the active

component is the same. This is possible, because these forces are an inherent property

of the active component alone. However, as discussed in [26], [151], [94] these equivalent
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forces cannot be used to predict the operational responses on the active side of the

assemblies (i.e. on DOFs belonging to the active component).

To determine the equivalent forces of a given active component, we can follow differ-

ent methodologies. For example, we may think of exploiting the blocked force method.

This approach is based on the fact that if the boundary of the active component is

completely blocked, while it is running, the reaction forces at the interface of the active

system are, actually, its equivalent forces (see, for instance, [94], [50]). Thus, in this

situation, the equivalent forces can be measured by using force transducers. In con-

trast, one may think of measuring the interface operational responses of the source by

leaving it completely free. It can be proven that these free interface responses are also

an inherent property of the source being related to the equivalent forces. Indeed, in

frequency domain, one can compute the equivalent forces by using the inverted driving

point interface FRFs of the source and its free interface responses (see, for instance,

[152]).

However, in practice, these methods are hard to apply. On the one hand, the

blocked force method requires the source to be blocked in all directions by a test bench

presenting infinite stiffness. On the other hand, the measurement of free interface re-

sponses is challenging, because to be able to operate, the sources need to be mounted.

Therefore, we expect the blocked force method to perform better at low frequencies,

for which the interface of the source can be assumed to behave as a rigid body, whereas

the characterization of active components by using free interface responses is expected

to be more accurate for higher frequencies [94]. To surpass the practical difficulties

inherent to both discussed component-based TPA methods, we may exploit the ap-

proach presented by de Klerk and Rixen in [151]. In this method, the operational tests

are conducted with the source connected to a regular test-bench. During these tests,

interface operational responses and connecting forces are collected. Then, by using

these measured quantities, the equivalent forces can be computed as reported in [151].

The main drawback of this method is that it requires the measurement of collocated

responses and forces in all directions and for all the connection points of the source

with the test-bench. To avoid the need of measuring the forces at these connection

points, Van der Seijs et al. proposed in [153] an approach that enables the determina-

tion of the equivalent forces by only using measured interface responses. Nevertheless,

by exploiting this method, we are required to hold two models, one characterizing the

dynamics at the interface of the source and another one characterizing the dynamics of

the test-bench, while the approach proposed in [151] only requires the use of one model

describing the dynamics at the interface of the source.

In the family of the component-based TPA techniques, it is also included the widely

popular in-situ component-based TPA method (see, [154],[155]). This approach deter-

mines the equivalent forces by solving an inverse problem involving a model characteriz-

ing the dynamics of the assembled system (i.e. source connected to the passive system)

and operational responses measured at the interface or/and at the passive side of the
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assembly. In this way, by using this method we are able to calculate the equivalent

forces without using special test-rigs and without dismounting any component, which

makes this method very attractive to the scientific community. Yet, one must guarantee

that the assembled system is only excited by forces applied on the active side. Thereby,

the in-situ component-based TPA method is very similar to the matrix-inverse method.

The main difference is that the in-situ TPA method is based on solving an inverse prob-

lem involving a model characterizing the dynamics of the assembled structure, while

the matrix-inverse method is based on solving an inverse problem that involves a model

describing the dynamics of the passive system. Thus, the strategies described above

to better the conditioning of the inverse problem, when applying the matrix-inverse

method still hold for the in-situ component-based TPA approach. Moreover, the time-

domain approaches discussed above to implement the matrix-inverse method can also

be exploited to implement the in-situ component-based TPA method. In literature,

several works and studies exploiting the in-situ component-based TPA approach can

be found, see for example, [156], [97], [157], [158], [159], [160].

Lastly, we may also mention the pseudo-forces method proposed in [161]. In this

method, a given source is characterized by pseudo-forces placed on its outer surface.

These forces are computed by solving an inverse problem involving a model character-

izing the dynamics of the assembled system and operational responses acquired at the

interface or/and at the passive side of the assembly. Thereby, the in-situ component-

based TPA method is completely identical to the pseudo-forces method, in case that

the pseudo-forces are assumed to be positioned at the interface between the source and

the passive component. In [162], the pseudo-forces method was successfully applied to

characterize an air-compressor mounted on a framework.

The family of transmissibility-based TPA methods aims at identifying and evaluat-

ing the importance of the paths of noise and vibration from the source to the passive

system. In this way, the responses at the target DOFs are commonly decomposed into

partial contributions coming from the operational responses measured at the indica-

tors. To determine these partial contributions, this family of methods makes use of

transmissibilities that are a property of the passive system alone (see, for instance,

[163], [94]). In [164], Magrans proposed a method based on two steps that is capable

of performing the decomposition of the operational responses at the target DOFs in

terms of the responses at the indicators. The first step involves the measurement of

a set of so-called general transmissibilities, whereas in the second step operational re-

sponses are acquired, while the source is under operation. Nevertheless, the general

transmissibilities cannot be used to evaluate the contribution of the indicator responses

to the target responses, instead we must use the so-called direct transmissibilities (also

known in literature as global transmissibilities) that can be computed from the general

transmissibilities (see, for instance, [164], [165]). This approach (also known as Global

Transmissibility Direct Transmissibility method (see, for example, [166], [167])) has

already demonstrated to lead to robust results, even when dealing with applications
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involving real mechanical systems (see, [168], [169]).

To alleviate the experimental effort required by the approach proposed in [164],

Noumura and Yoshida proposed a novel approach in [170] commonly denoted as Op-

erational Transfer Path Analysis (OTPA). This method proposes the performance of

several experimental tests during which the source is running under different operational

conditions. By performing these tests, we aim at collecting operational responses at

the target and indicator DOFs representative of several independent excitation cases.

Then, the transmissibilities can be computed, for example, with the H1 estimator (see,

for instance, [21], [123]), by using the cross-power spectra matrix between the target

and indicator DOFs and the auto-power spectra matrix of the indicators. Thereby, this

method holds the important advantage of being a single step approach, allowing the

determination of transmissibilities and the analysis of the transmission paths by solely

exploiting operational data. Nevertheless, to properly estimate the transmissibilities,

the auto-power spectra matrix of the indicators must be well-conditioned. Yet, the

generation of independent excitation scenarios is difficult specially at low frequencies

[171]. To improve the conditioning of the problem, we may, for instance, truncate the

lowest singular values of the auto-power spectra matrix of the indicators. However,

as discussed in [171], [172], this approach may lead to the computation of incorrect

transmissibilities. For detailed discussions on the limitations of the OTPA method the

readers are forward to [173], [171], [174], [175], [172]. Guidelines on how to apply this

method in practice and a practical tire noise application are discussed in [176]. An

application of OTPA in the context of time-domain auralisation can also be found in

[177].

Finally, we may also mention the Operational Path Analysis with eXogenous Inputs

(OPAX) method (see, [178], [179]). OPAX was developed with the aim of combining the

advantages of both OTPA and classical TPA methods. In this approach, the connecting

forces of the target assembly (i.e. active component rigidly connected to a passive sys-

tem or connected via flexible mounts) are computed by exploiting the mount-stiffness

classical TPA method. In case that the dynamics of the mounts are unknown, one can

exploit models to parameterise they dynamic stiffness (for instance, single DOF models

or multi-band models [179]). The parameters of these models can then be determined

by solving a linear least-squares problem involving a model representative of the dy-

namics of the passive system and operational responses measured at the interface of the

source and passive systems and at the indiator and/or target DOFs. If the assembled

structure under study is composed of a source rigidly connected to a passive system,

it is suggested to exploit the mount-stiffness method by using passive-side interface

operational responses together with a narrow-band mount model (see, [179]). Then,

by using the connecting forces together with a model representative of the dynamics

of the passive system, the path contributions to the passive side DOFs of interest can

be determined. The main disadvantage of this approach is that it requires the use of

a model characterizing the dynamics of the passive system. If this model is to be de-
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termined experimentally, we are required to perform experimental tests on the passive

system alone.

Here, as mentioned in section 5.1, we will focus our attention on the matrix-inverse

classical TPA and on the in-situ component-based TPA methods. In particular, we

aim at presenting the state-space realizations of these methods that will be exploited

in section 5.4 to determine connecting and equivalent forces, when analyzing mechnical

systems presenting time-varying dynamic behaviour.

5.3.2 State-space realization of the matrix inverse method

In this section, we will present the state-space realization of the matrix inverse

method. This approach will be presented to demonstrate, which state-space models

and operational responses must be used to compute connecting forces in time-domain

by exploiting the state-space formulation. To simplify, here, we will assume that the es-

timation of the connecting forces is performed in a linear-least squares sense. However,

the force identification problem is known to be ill-posed. For this reason, when identi-

fying forces from measured operational responses, the use of a linear-least squares ap-

proach is not recommended, because it generally leads to the amplification of the noise

present in the measured operational responses (see, for example, [146],[147]). Thus, to

estimate connecting forces by using measured operational responses, one must exploit

more robust approaches, for instance, joint input-state estimation algorithms (see, for

example, [126], [180]) and the Augmented Kalman filter (AKF) (see, for example, [150],

[181], [182]).

To present the state-space realization of the matrix inverse method, we will consider

the assembled structure AB depicted in figure 5.18 composed by a source A and a

passive system B rigidly connected. In this figure, four different sets of DOFs can

be observed. A set of internal DOFs a located on the source A, where the internal

force generated by its internal mechanism is applied, a set of interface DOFs b, a set of

indicator DOFs c and a set of target DOFs d.

Let us now, virtually separate the mechanical systems composing the assembled

structure shown in figure 5.18. After performing this virtual operation, the mechanical

systems of the assembled structure can be represented as shown in figure 5.19. In this

figure, it is possible to observe the connecting forces, which are responsible for keeping

the source and passive systems connected, acting on the interface of both mechanical

Figure 5.18: Assembled structure made of a source and a passive component rigidly con-
nected.
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systems.

Figure 5.19: Assembled structure virtually separated.

To identify the connecting forces acting on the interfaces of the source and passive

component in time-domain, one may think on using force transducers. Nevertheless,

this would require the placement of these transducers in between the interfaces of the

source and passive system. As argued in [94], for many applications, the instrumenta-

tion of these force transducers is neither desired nor even possible. In alternative, we

may also think on using the LM-SSS method (see section 2.2.3) to define a state-space

model, whose outputs are the connecting forces intended to be identified. This state-

space model can simply be set-up by using the state equation of the coupled model given

in expression (2.75) and the first equation of the system of equations (2.73). Thus, by

using these equations and by retaining a unique set of inputs (see section 2.3.4), the

intended state-space model can be obtained as follows:

{ ˙̄x(t)} = [ĀAB(t)]{x̄(t)} +
[

B̄AB(t)
]{

ūAB(t)
}

{λC(t)} =
[

C
g
AB(t)

]

{x̄(t)} +
[

D
g
AB(t)

]

{ūAB(t)}
(5.19)

with,

[ĀAB(t)] = [AS,D(t)] − [BS,D(t)][BC ]T ([BC ][Daccel
S,D (t)][BC ]T )−1[BC ][CaccelS,D (t)]

[B̄AB(t)] = [BS,D(t)] − [BS,D(t)][BC ]T ([BC ][Daccel
S,D (t)][BC ]T )−1[BC ][Daccel

S,D (t)]

[CgAB(t)] = ([BC ][Daccel
S,D (t)][BC ]T )−1[BC ][CaccelS,D (t)]

[Dg
AB(t)] = ([BC ][Daccel

S,D (t)][BC ]T )−1[BC ][Daccel
S,D (t)]

{ūAB(t)} =
{

ūaAB(t) ūbAB(t) ūcAB(t) ūdAB(t)
}T

(5.20)

while, [AS,D(t)], [BS,D(t)], [CS,D(t)] and [DS,D(t)] are given as follows:

[AS,D(t)] =

[

AA(t)

AB(t)

]

, [BS,D(t)] =

[

BA(t)

BB(t)

]

[CaccelS,D (t)] =

[

CaccelA (t)

CaccelB (t)

]

, [Daccel
S,D (t)] =

[

Daccel
A (t)

Daccel
B (t)

] (5.21)

where, subscripts A and B denote, respectively, variables associated with the source
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and with the passive system, subscript AB represents variables associated with the

assembled structure AB, while {λC(t)} is given as hereafter.

{

gA(t)

gB(t)

}

= −[BC ]T {λC(t)} (5.22)

By analyzing expressions (5.19) and (5.22), it is clear that if [BC ] (see section

2.2.1) is set-up by assigning negative unitary coefficients to the interface DOF of the

source, {λC(t)} = {gA(t)}. In contrast, if [BC ] is defined by assigning negative unitary

coefficients to the interface DOFs of the passive system, {λC(t)} = {gB(t)}.

It is worth mentioning that in expression (5.19) the state-space matrices were as-

sumed to be dependent on time, because by using state-space models to calculate the

connecting forces in time-domain, we can take into account possible variations on the

dynamics of the source and of the passive component (see section 5.2). Thus, from now

on, when working on time-domain, the state-space matrices of the state-space models

will be assumed to be time-dependent.

Even though by using LM-SSS we can compute the intended connecting forces,

we are required to know the excitation forces generated by the internal mechanism

of the source (see expression (5.19)). In practice, these internal forces are unknown

and impossible to be measured [94]. Thus, to circumvent the need of measuring the

forces generated by the internal mechanism of the source, we may exploit the matrix

inverse method. This method enables the computation of the connecting forces by

using a representation of the dynamics of the passive system (e.g. FRFs or state-space

model) together with the operational responses measured at the passive system or at the

interface between this component and the source, provided that the passive system is

only excited by the source [94]. In the frequency domain, this method can be exploited

to compute the connecting forces as follows [94]:

{GB(jω)} =







H
bb,accel
B (jω)

H
cb,accel
B (jω)

H
db,accel
B (jω)







†








¨̄Y b
AB(jω)

¨̄Y c
AB(jω)

¨̄Y d
AB(jω)











(5.23)

where, superscripts d and c denote, respectively, variables related to the target and

indicator DOFs (see figure 5.18). Expression (5.23) can be rewritten by using the

state-space matrices of a state-space model representative of the dynamics of the passive

system as given hereafter.

{GB(jω)} =







[Cb,accelB ](jω[I] − [AB])−1[Bb
B] + [Dbb,accel

B ]

[Cc,accelB ](jω[I] − [AB])−1[Bb
B] + [Dcb,accel

B ]

[Cd,accelB ](jω[I] − [AB])−1[Bb
B] + [Ddb,accel

B ]







†








¨̄Y b
AB(jω)

¨̄Y c
AB(jω)

¨̄Y d
AB(jω)











(5.24)

To estimate the connecting forces in time-domain, we may exploit the inverted
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acceleration state-space model of the passive system (see appendix A) as follows:

{ẋB(t)} = [AinvB (t)]{xB(t)} +
[

Binv
B (t)

]











¨̄ybAB(t)

¨̄ycAB(t)
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{gB(t)} =
[

CinvB (t)
]

{xB(t)} +
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Dinv
B (t)

]











¨̄ybAB(t)

¨̄ycAB(t)

¨̄ydAB(t)




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(5.25)

where,

[AinvB (t)] = [AB(t)] − [Bb
B(t)][Dbcd,b

B (t)]†[CbcdB (t)]

[Binv
B (t)] = [Bb

B(t)][Dbcd,b
B (t)]†

[CinvB (t)] = −[Dbcd,b
B (t)]†[CbcdB (t)]

[Dinv
B (t)] = [Dbcd,b

B (t)]†

(5.26)

while, [CbcdB (t)] and [Dbcd,b
B (t)] are given below.

[CbcdB (t)] =







C
b,accel
B (t)

C
c,accel
B (t)

C
d,accel
B (t)






, [Dbcd,b

B (t)] =







D
bb,accel
B (t)

D
cb,accel
B (t)

D
db,accel
B (t)






(5.27)

For the sake of completeness, in expressions (5.23), (5.24) and (5.25) the connecting

forces are calculated by exploiting measured operational responses at the interface,

indicators and targets location. However, in practice it is common to determine those

forces by only using operational responses measured at the indicators [94]. Indeed,

the measured responses at the target DOFs are generally not used to estimate the

connecting forces, because the number of target DOFs is commonly small and these

DOFs are many times placed far away from the interface. Hence, they do not properly

observe the connecting forces. On the other hand, the responses at the interface DOFs

are usually difficult to be measured. Conversely, the location of the indicator DOFs is

specially chosen to be accessible and close to the interface between the source and the

passive system to ensure a proper observation of the full set of connecting forces. On

top of this, the number of these DOFs is typically at least two times higher than the

number of connecting forces to be identified to guarantee over-determination [136], [94]

and hence, better conditioning of the feedthrough matrix to be inverted.

Note that as the matrix inverse method requires the characterization of the dynam-

ics of the passive system, we are demanded to dismount this system from the assembly

where it is included, in case that its characterization is to be experimentally performed.

In addition, we must bear in mind that the connecting forces are a property of the as-

sembly (i.e. source connected to the passive system) (see expression (5.19)), thus this
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set of forces is not transferable to an assembled system composed by the same source

connected to a different passive component.

5.3.3 State-Space realization of the in-situ component-based TPA

method

In this section, we will present the state-space realization of the in-situ component-

based TPA method. This approach will be presented to demonstrate, which state-

space models and operational responses must be used to compute equivalent forces in

time-domain by exploiting the state-space formulation. Once again, for the sake of

simplicity, we will assume that the estimation of the equivalent forces is performed in a

linear-least squares sense. However, as mentioned in section 5.3.2, when the forces are

to be estimated from measured operational responses, the use of a linear-least squares

approach is not recommended. Hence, when estimating equivalent forces from measured

operational responses, one must exploit more robust techniques, for instance, joint

input-state estimation algorithms (see, for example, [126], [180]) and the Augmented

Kalman filter (AKF) (see, for example, [150], [181], [182]).

To start, let us once again consider the assembled structure shown in figure 5.20a,

which is composed by a source A and a passive system B rigidly connected. The

family of the component-based TPA methods aims at determining a set of forces that

when applied on the source at rest, reproduce the operational responses at the passive

system. This is illustrated in figure 5.20b. These estimated forces are usually denoted

as equivalent forces and are an inherent property of the source itself. Thus, these forces

can be used to simulate the operational responses on the passive side of any assembly

composed by the same source connected to any passive system [94], [34].

By analyzing figures 5.20, it is evident that the operational responses at the indicator

DOFs can be computed by following two different strategies. On the one hand, we may

compute these operational responses by exploiting the internal forces originated by the

internal mechanism of the source, on the other hand, we can determine the operational

responses by using the equivalent forces of the source. Thus, by following both strategies

and assuming that we aim at computing the acceleration operational responses at the

indicators, we may define the following identity

(a) Operational responses resultant from the

forces originated by the internal mecha-

nisms of the source.

(b) Operational responses resultant from

the equivalent forces computed with

component-based TPA.

Figure 5.20: Assembly composed by a source and a passive system rigidly connected.
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[

H̄
db,accel
AB (jω)

]{

U b,eq(jω)
}

=
[

H̄
da,accel
AB (jω)

]

{UaAB(jω)} (5.28)

where,
{

U b,eq(jω)
}

∈ C
nJ×1 is the vector containing the equivalent forces of the

source in the frequency domain. By exploiting LM-FBS (see section 2.2.2) and by

dropping [•], {•} and (jω) for ease of readability, we may rewrite expression (5.28) as

given below (see, for instance, [94]).

H
db,accel
B EABH

bb,accel
A U b,eq = H

db,accel
B EABH

ba,accel
A UaAB (5.29)

where, EAB is given below.

EAB = (Hbb,accel
A +H

bb,accel
B )−1 (5.30)

Expression (5.29) can be rewritten as hereafter:

U b,eq = (Hbb,accel
A )−1H

ba,accel
A UaAB (5.31)

by using the state-space model of the source, we may define
[

H
bb,accel
A (jω)

]

and
[

H
ba,accel
A (jω)

]

as given below.

H
bb,accel
A = C

b,accel
A (jωI −AA)−1Bb

A +D
bb,accel
A

H
ba,accel
A = C

b,accel
A (jωI −AA)−1Ba

A +D
ba,accel
A

(5.32)

Analyzing expressions (5.31) and (5.32), we may realize that the equivalent forces

are, indeed, a property of the source itself. To compute the equivalent forces in time-

domain, we may exploit the inverted acceleration state-space model (see appendix A)

representative of the assembled structure as follows:

{ẋinvA (t)} =
[

AinvA (t)
] {

xinvA (t)
}

+
[

B
b,inv
A (t)

]{

ÿbA(t)
}

{

ub,eq(t)
}

=
[

C
b,inv
A (t)

]

{xinvA (t)} +
[

D
bb,inv
A (t)

]{

ÿbA(t)
} (5.33)

where,

[AinvA (t)] = [AA(t)] − [Bb
A(t)][Dbb,accel

A (t)]−1[Cb,accelA (t)]

[Binv
A (t)] = [Bb

A(t)][Dbb,accel
A (t)]−1

[CinvA (t)] = −[Dbb,accel
A (t)]−1[Cb,accelA (t)]

[Dinv
A (t)] = [Dbb,accel

A (t)]−1

(5.34)

while, the acceleration responses {ÿbA(t)} can be computed by exploiting the state-space

model given below.
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{ẋA(t)} = [AA(t)] {xA(t)} +
[

Ba
A(t)

]{

uaA(t)
}

{

ÿbA(t)
}

=
[

C
b,accel
A (t)

]

{xA(t)} +
[

D
ba,accel
A (t)

]{

uaA(t)
} (5.35)

By exploiting expression (5.33) and (5.35), we can compute the intended set of

time-domain equivalent forces, however we are required to know the internal forces

originated by the internal mechanisms of the source. As mentioned in section 5.3.2,

these internal forces are unknown and impossible to be measured in practice. Thus, to

compute the equivalent forces, we may, for instance, exploit the in-situ method proposed

by Moorhouse and Elliott (see [154],[155]). This method enables the calculation of the

equivalent forces by using a representation of the dynamics of the assembled structure

(e.g. FRFs or state-space model) together with operational responses measured at the

passive system or at the interface between this component and the source, provided

that the passive system is only excited by the source [94]. In this way, by using this

method we are able to calculate the equivalent forces without using special test-rigs

and without dismounting any component. By following this approach, the equivalent

forces at the interface between the source and the passive system can be computed as

hereafter.

{

U b,eq(jω)
}

=







H̄
bb,accel
AB (jω)

H̄
cb,accel
AB (jω)
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AB (jω)







†








¨̄Y b
AB(jω)

¨̄Y c
AB(jω)

¨̄Y d
AB(jω)











(5.36)

Alternatively, by exploiting a state-space model representative of the dynamics of

the assembled structure (see figure 5.20a), expression (5.36) can be rewritten as given

below.

{

U b,eq(jω)
}

=







[C̄b,accelAB ](jω[I] − [ĀAB])−1[B̄b
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AB ]
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¨̄Y c
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¨̄Y d
AB(jω)











(5.37)

To compute the equivalent forces in time-domain by using the in-situ method, we

may exploit the state-space model of the assembled structure as follows:

{ ˙̄x(t)} =
[

ĀinvAB(t)
]

{x̄(t)} +
[

B̄
b,inv
AB (t)

]
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
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¨̄ybAB(t)
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¨̄ydAB(t)




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{

ub,eq(t)
}

=
[
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bcd,inv
AB (t)

]

{x̄(t)} +
[

D̄
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AB (t)

]











¨̄ybAB(t)

¨̄ycAB(t)

¨̄ydAB(t)











(5.38)

where,
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[ĀinvAB(t)] = [ĀAB(t)] − [B̄b
AB(t)][D̄bcd,b

AB (t)]†[C̄bcdAB(t)]

[B̄b,inv
AB (t)] = [B̄b

AB(t)][D̄bcd,b
AB (t)]†

[C̄bcd,invAB (t)] = −[D̄bcd,b
AB (t)]†[C̄bcdAB(t)]

[D̄bcd,b,inv
AB (t)] = [D̄bcd,b

AB (t)]†

(5.39)

while, [C̄bcd(t)] and [D̄bcd,b(t)] are given below.

[

C̄bcdAB(t)
]

=







C̄
b,accel
AB (t)

C̄
c,accel
AB (t)

C̄
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AB (t)




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]
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bb,accel
AB (t)

D̄
cb,accel
AB (t)

D̄
db,accel
AB (t)






(5.40)

It is worth mentioning that, for the sake of completeness, in expressions (5.36),

(5.37) and (5.38), we have assumed that the equivalent forces are computed from the

measured operational responses at the interface, indicator and target DOFs. However,

for the reasons presented in section 5.3.2, in practice the equivalent forces are in general

computed by only using operational responses measured at the indicator DOFs.

5.4 Numerical Validation

In this section, the state-space realizations of the matrix inverse method (see section

5.3.2) and of the in-situ component-based TPA (see section 5.3.3) will be applied on

numerical TPA cases. The two assemblies depicted in figure 5.21 will be analyzed. The

assembly AB is composed by the substructures A and B studied in section 5.2.2 rigidly

connected, while assembly AC is composed by the substructure A rigidly connected to

the substructure C, which was also analyzed in section 5.2.2.

In the following, we will assume that the substructure A is a source, while substruc-

Figure 5.21: Assembled structures AB and AC [6].
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tures B and C are two different passive components. Additionally, we will assume that

the mechanical properties of the three substructures are time-varying and dependent

on the three time-varying parameters presented in section 5.2.2 (i.e. n1, n2 and n3),

whose variation over time is given in figure 5.2. Moreover, assemblies AB and AC (see

figure 5.21) will be analyzed for a time period of 4 s. During this time period, we will

presume that the source (substructure A) is turned on during 1 s originating a transient

load at DOF a1 of 10 N. Then, the source is shut down and hence, the force acting on

DOF a1 during the remaining 3 s drops to zero.

We will start this section by applying the state-space realization of the matrix

inverse method to determine the connecting forces acting on the interface of assembly

AB (section 5.4.1). Afterwards, in section 5.4.2 the state-space realization of the in-

situ component-based TPA method will be applied to determine the equivalent forces

of substructure A (which is assumed to be an active component).

5.4.1 Numerical Validation of the state-space realization of the matrix

inverse method

In this section, we will start by computing the analytical time-domain connecting

force acting on the interface of component B. This force will then serve as reference

to evaluate the accuracy of the state-space realization of the matrix-inverse method

presented in section 5.3.2. To compute the intended analytical time-domain connecting

force, we will define at each time sample a state-space model as given in expression

(5.19). These state-space models must be computed by using the models representative

of the dynamics of components A and B at each time sample (computed in section 5.2.2)

in accordance with expressions (5.20). Moreover, the mapping matrix [BC ] involved in

the computation of the intended models must be set-up by assigning negative unitary

values to the interface DOFs of substructure B. Thereby, the computed state-space

models will enable the determination of the connecting force acting on the interface of

substructure B instead of leading to the determination of the connecting force acting

on the interface of substructure A (which is equal in intensity and opposite in direction)

(see section 5.3.2). In this way, by using the force generated by the internal mechanism

of source A and by discretizing the computed state-space models with a sampling

frequency of 2× 104 Hz and by exploiting the first-order-hold (foh) method (see [183]),

the analytical time-domain connecting force acting on the interface of component B

can be determined as follows:
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{x̄AB,k+1} = [ĀAB,k]{x̄AB,k} +
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(5.41)

where, subscript AB denotes variables associated with a state-space model represen-

tative of the dynamics of assembly AB, while k represents the time sample under

analysis.

At this point, by exploiting the state-space realization of the matrix inverse method

(see section 5.3.2), we will compute the connecting force acting on the interface of

substructure B in time-domain by using two different approaches. Nevertheless, before

being able to exploit the matrix inverse method, we must compute the operational

responses of assembly AB. To determine these operational responses, we will start by

constructing at each time sample state-space models representative of the dynamics of

assembly AB directly from its mechanical properties. Again, for the sake of simplicity,

the damping matrix of assembly AB at each time sample will be defined from the

respective stiffness matrix by replacing the stiffness terms with the damping ones. Then,

by using the input force generated by the source (substructure A) and by discretizing

the computed state-space models with a sampling frequency of 2 × 104 Hz and by

using the foh method, the time-domain operational responses of assembly AB can be

determined as given below.
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(5.42)

Note that, from now on the state-space models involved in calculations/simulations

performed in time-domain will always be discretized with the foh method and by using

a sampling frequency of 2 × 104 Hz.

After having determined the operational responses of assembly AB, we can exploit

the state-space realization of the matrix inverse method to compute the time-domain

connecting force acting on the interface of substructure B. To start, the intended
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connecting force will be calculated by exploiting the state-space realization of the matrix

inverse method with the computed operational responses at the interface DOF and at

the DOF b2 of assembly AB and by using the discretized analytically determined models

representative of the dynamics of substructure B at each time sample (see section 5.2.2).

Afterwards, the connecting force will be re-determined by following the same procedure,

but by exploiting discretized state-space models computed at each time sample from

the LPV model representative of the dynamics of component B calculated in section

5.2.1.

It is worth mentioning that, as discussed in section 5.3.2, it is not usual to determine

connecting forces by exploiting operational responses measured at the interface between

the source and the passive system. Nevertheless, in this numerical example, we were

forced to exploit the operational responses measured at the interface of assembly AB,

because to implement the state-space realization of the matrix inverse method we are

required to invert the feedthrough matrix of substructure B. As the mass matrices of

this substructure are assumed to be diagonal, the feedthrough matrices of the state-

space models computed from its mechanical properties will be diagonal as well. For

this reason, to avoid the inversion of null matrices, we performed the estimation of

the connecting force acting on the interface of substructure B by using the operational

responses at the interface of assembly AB. In contrast, when dealing with structures,

whose dynamics is represented by state-space models estimated from experimentally

acquired data, the state-space realization of the matrix inverse method can be exploited

without using the operational responses at the interface between the source and the

passive side, because the feedthrough matrices of models estimated from measured data

are not diagonal.

Figure 5.22a shows the comparison of the analytical connecting force with the two

estimations of the connecting force obtained by exploiting the state-space realization

of the matrix inverse method (see expression (5.19)). Moreover, figure 5.22b shows

the comparison of the operational acceleration response of assembly AB at DOF b3

with the operational acceleration response estimated at the same DOF by using the

connecting forces obtained by implementing the state-space realization of the matrix

inverse method with the discretized analytical models of substructure B and with the

discretized models of the same substructure computed by using the correspondent in-

terpolating LPV model (see section 5.2.2).

By observing figure 5.22a, we conclude that the connecting force computed by

exploiting the state-space realization of the matrix inverse method with discretized

analytical models is perfectly matching the analytical connecting force. Additionally,

the operational response at DOF b3 computed by using this connecting force with the

discretized analytical models of component B is also perfectly matching the analytical

operational response at DOF b3 of assembly AB (see figure 5.22b). Thus, showing that

the state-space realization of the matrix inverse method is indeed valid to compute

time-domain connecting forces (see section 5.3.2) even when dealing with components
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(b) Operational acceleration response at DOF b3 of assembly AB.

Figure 5.22: Comparison of the computed connecting force and of the operational acceleration
response at the DOF b3 of assembly AB by following three different methodolo-
gies: analytically (represented by the black solid curve); by using the analytically
determined models representative of the dynamics of substructure B at each time
sample (represented by the red dashed curve) and by using state-space models
representative of component B computed at each time sample by exploiting the
correspondent constructed LPV model (represented by the green dash-dotted
curve).
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presenting time-varying dynamic behaviour.

Moreover, by further analyzing figure 5.22a, it is clear that the connecting force

estimated by exploiting the state-space realization of the matrix inverse method with

discretized state-space models computed from the interpolating LPV model of substruc-

ture B is well matching the analytical connecting force. On top of this, the operational

response at DOF b3 of assembly AB can be accurately reconstructed by using the

estimated connecting force (see figure 5.22b). Therefore, we may conclude that the

use of an interpolating LPV model to take into account the time-varying behaviour of

mechanical systems, while computing connecting forces is a valid approach.

To demonstrate the benefit of taking into account the time-varying behaviour of

component B, the connecting force was re-calculated by assuming that the parameter

n2 is kept constant and equal to one during the time period under analysis. Figure

5.23a shows the comparison of the analytical connecting force with: i) the same force

obtained by using the state-space realization of the matrix inverse method with dis-

cretized state-space models representative of component B determined at each time

sample from the correspondent LPV model (see section 5.2.2) and ii) with the dis-

cretized analytical state-space model of component B for n2 = 1. In figure 5.23b, it is

also shown the comparison of the reference operational acceleration response at DOF b3

of assembly AB with the operational acceleration responses predicted by the following

approaches: a) by exploiting the discretized state-space models of component B com-

puted at each time sample from the correspondent estimated LPV model (see section

5.2.2) with the connecting force obtained through approach i) and b) by exploiting the

discretized analytical state-space model of component B associated with n2 = 1 with

the connecting force determined from approach ii).

By analyzing figure 5.23a, it is evident that the connecting force computed by

taking into account the time-varying dynamic behaviour of component B by exploiting

the correspondent constructed LPV model (see section 5.2.2) is better matching the

analytical connecting force than the estimation obtained by using the analytical state-

space model associated with n2 = 1, which neglects the time-varying dynamic behaviour

of component B. Moreover, the same conclusions can be taken when comparing the

reconstructed operational response at DOF b3 of assembly AB by using each of the

estimated connecting forces. These observations clearly demonstrate that to accurately

determine connecting forces by using the matrix inverse method, we must take into

account possible time-domain variations on the dynamics of the target structures.

5.4.2 Numerical Validation of the state-space realization of the in-situ

component-based TPA method

Here, we will start by computing the time-domain analytical equivalent force of

component A. This force will be computed in two steps. Firstly, the operational ac-

celeration responses at the interface of component A (see expression (5.35)) will be
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(b) Operational acceleration response at DOF b3 of assembly AB.

Figure 5.23: Comparison of the computed connecting force and of the operational acceleration
response at the DOF b3 of assembly AB by following three different method-
ologies: analytically (represented by the black solid curve), by using state-space
models representative of component B computed at each time sample by ex-
ploiting the correspondent constructed LPV model (represented by the green
dash-dotted curve) and by using the analytical state-space model of component
B associated with n2 = 1 (represented by the red dashed curve).
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determined from the applied force at DOF a1 and by using the discretized analytically

determined state-space models (see section 5.2.2) representative of the dynamics of this

substructure at each time instant. Then, the intended equivalent force will be calcu-

lated by exploiting those operational responses and the discretized inverted analytical

acceleration models representative of component A at each time sample (see expression

(5.33)).

To evaluate the accuracy of the in-situ component-based TPA method (see section

5.3.3), when dealing with substructures presenting time-varying dynamics, the time-

domain equivalent force of component A will be re-estimated by using this method

with the operating acceleration responses at the interface DOF and at DOFs b2 and

b3 of assembly AB together with discretized acceleration models representative of the

dynamics of assembly AB at each time sample. The acceleration models of assembly

AB will be computed by using two different methodologies. Firstly, the intended models

will be calculated by using LM-SSS to couple the analytically determined displacement

models representative of substructures A and B (see section 5.2.2) at each time sample.

To remove the originated redundant states from each of the computed coupled models,

we will exploit the post-processing procedure presented in section 2.3.3 that makes

use of a state Boolean localization matrix, while to eliminate the redundant DOFs

of each of the computed coupled models, the method presented in section 2.3.4 will

be used. In the second strategy, the intended coupled models will be obtained by

exploiting LM-SSS to couple the displacement models representative of the dynamics

of substructures A and B at each time sample computed by using the interpolating LPV

models defined in section 5.2.2. It is important to mention that the state-space models

computed from the LPV models were transformed into UCF, before being coupled.

This was done, because the state-space models estimated from the defined LPV models

are represented in complex diagonal form (see sections 5.2.1 and 5.2.2). Thus, to be

able to compute minimal-order coupled models, we were required to transform these

models into UCF (see section 2.3.2) before coupling them. Once again, the originated

redundant states and DOFs of each of the coupled state-space models were eliminated

by using, respectively, the post-processing procedure presented in section 2.3.3 that

makes use of a state Boolean localization matrix and the post-processing procedure

presented in section 2.3.4. Obviously, by following both described strategies, we obtain

displacement coupled state-space models representative of assembly AB at each time

sample. Thus, these models must be double-differentiated to compute the intended

acceleration state-space models to be exploited in the state-space realization of the

in-situ component-based TPA method (see section 5.3.3).

To demonstrate that the calculated equivalent forces are indeed, a property of the

source and that they can be used to predict the responses on the passive side of struc-

tures made of the same source and different passive systems, coupled state-space models

representative of assembly AC will also be computed by using the analytical models of

substructures A and C at each time sample and by exploiting the models of the same
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components computed from the respective constructed LPV models at each time sample

(see section 5.2.2). The elimination of the originated redundant states and DOFs from

the computed coupled models will be done by exploiting the same post-processing pro-

cedures used to eliminate the redundant states and DOFs from the computed coupled

models representative of assembly AB.

In figure 5.24a, the time-domain analytical equivalent force of component A is com-

pared with the equivalent force computed by using the following approaches: a) time-

domain equivalent force obtained by exploiting the state-space realization of the in-situ

component-based TPA method with the discretized coupled models obtained by cou-

pling the analytically determined models representative of substructures A and B at

each time sample and b) time-domain equivalent force determined by exploiting the

state-space realization of the in-situ component-based TPA approach with the dis-

cretized coupled models calculated by coupling the interpolated models representative

of the dynamics of components A and B at each time sample obtained from the re-

spective interpolating LPV models constructed in section 5.2.2. Figure 5.24b reports

the comparison of the analytical operational acceleration response at DOF c3 of as-

sembly AC (computed by following the methodology used to calculate the analytical

operational responses of assembly AB in section 5.4.1) with the operational acceler-

ation responses at the same DOF computed by exploiting the following approaches:

i) operational acceleration response obtained by using the equivalent force computed

through approach a) with the discretized coupled models of AC obtained by coupling

at each time sample the analytical models representative of substructures A and C and

ii) operational acceleration response estimated by using the equivalent force computed

with approach b) together with the discretized coupled models of AC determined by

coupling at each time sample the state-space models representative of the dynamics of

substructures A and C computed by using the respective interpolating LPV models

defined in section 5.2.2.

By observing figure 5.24a, it is clear that the equivalent force computed by exploiting

methodology a) is perfectly matching the analytical one. Moreover, by analyzing figure

5.24b, it is clear that the analytical operational response at the DOF c3 of assembly AC

is perfectly matched by the correspondent operational response computed by using the

equivalent force obtained from approach b). Thus, demonstrating that the equivalent

forces obtained by using the state-space realization of the in-situ component-based TPA

are in fact, an inherent property of the source and hence, that can be used to predict the

operational responses on the passive side of assemblies composed by the same source

connected to any different passive system.

Further analyzing figure 5.24a, it is evident that the analytical equivalent force

of component A is well-matched by the equivalent force computed with approach b).

Furthermore, the operational response at the DOF c3 of assembly AC computed with

approach ii) is well-matching the analytical one (see figure 5.24b). Therefore, we may

conclude that the use of the state-space realization of the in-situ component-based TPA
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(b) Operational acceleration response at DOF c3 of assembly AC.

Figure 5.24: Comparison of the time-domain equivalent force of component A and of the
operational acceleration response at the DOF c3 of assembly AC obtained by
exploiting three different approaches.
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method together with coupled models obtained by coupling state-space models com-

puted from LPV models is an accurate approach to calculate time-domain equivalent

forces, when dealing with assemblies, whose dynamics is time-dependent.

As final analysis, to evaluate the importance of taking into account the time-domain

variation on the dynamics of assembly AB, we will compute an additional estimation of

the equivalent force of component A by exploiting the state-space realization of the in-

situ method with the discretized acceleration analytical state-space model of assembly

AB associated with n1 = n2 = 1 and by using the analytical operational acceleration

responses of assembly AB at the interface DOF and at DOFs b2 and b3 (from now

on denoted as methodology c)). In figure 5.25a, it is reported the comparison of the

analytical equivalent force of component A with the same equivalent force estimated by

exploiting approaches b) and c). Moreover, in figure 5.25b, it is reported the comparison

of the analytical operational acceleration response at the DOF c3 of assembly AC with

the operational response at the same DOF computed with approach ii) and by using the

equivalent force computed with approach c) together with the discretized acceleration

analytical state-space model representative of assembly AC associated with n1 = 1 and

n3 = 0.7 (from now on denoted as approach iii)).

By analyzing figure 5.25a, we may conclude that the equivalent force obtained by

exploiting approach c) (by neglecting the time-dependency of the dynamics of assembly

AB) does not represent a good estimation of the analytical equivalent force. On top of

this, the operational acceleration response at DOF c3 of assembly AC obtained through

methodology iii) is poorly matching the correspondent analytical response (see figure

5.25b). The poor quality of the estimated equivalent force obtained with approach

c) and of the operational response at DOF c3 of assembly AC predicted by using

approach iii) is a direct consequence of ignoring the time-varying dynamic behaviour of

assemblies AB and AC (see figure 5.25b). Hence, it is evident that to estimate accurate

equivalent forces and to exploit them to predict the operational responses at the passive

side of assemblies composed by the same source and different passive systems, we must

not ignore possible time-domain variations on the dynamics of the assemblies under

analysis.

Note that, to compute the equivalent force of component A by exploiting the state-

space realization of the in-situ component-based TPA method, we have used the in-

terface operational responses of assembly AB. In practice, it is not common to de-

termine equivalent forces by using interface operational responses (see section 5.3.3).

However, in this section we dealt with analytically modelled substructures/assemblies,

whose mass matrices are assumed to be diagonal and hence, that are characterized by

state-space models presenting diagonal feedthrough matrices. Thus, if the operational

responses at the interface of assembly AB were not used, we would be demanded to

invert null matrices. When dealing with real assemblies, whose state-space models are

estimated from experimentally acquired data, we can exploit the state-space realiza-

tion of the in-situ component-based TPA method without using operational responses
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(b) Operational acceleration response at DOF c3 of assembly AC.

Figure 5.25: Comparison of the time-domain equivalent force of component A and of the
operational acceleration response at the DOF c3 of assembly AC determined
by exploiting two different strategies that take into account the time-domain
variation on the dynamics of assemblies AB and AC with the equivalent force
and operational acceleration response at the DOF c3 of assembly AC estimated
by exploiting a strategy that ignores the time-dependency of the dynamics of
assemblies AB and AC.
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collected at their interface, because the feedthrough matrices of state-space models

estimated from measured data are not diagonal.





Chapter 6

Conclusion

6.1 Conclusions

In this thesis, we have analyzed and discussed in detail the limitations of the state-

of-the-art SSS methods (see chapter 2). A similar debate on the limitations of the

state-of-the-art approaches to experimentally identify state-space models was also con-

ducted in chapter 3. Along with these discussions, novel methodologies to mitigate the

pointed limitations were proposed. This led to a detailed and justified presentation of

all the steps to be performed from the experimental identification of state-space models

to the computation of stable accurate coupled state-space models. As a result, chap-

ters 2, 3 and 4 demonstrate a substantial evolution of the state-of-the-art that enables

the determination of accurate stable coupled state-space models from unstable coupled

models originated from the performance of DS operations with non-passive models rep-

resentative of complex substructures. Moreover, in chapter 5 we have also proposed

two novel applications of LPV models in time-domain TPA. These applications clearly

demonstrate the benefit of using the state-space formulation and the SSS methods in

time-domain TPA applications involving mechanical systems presenting time-domain

variations on their dynamics. In the following, conclusions for these three main topics

are presented.

State-Space Substructuring

The LM-SSS method was exploited in sections 4.1.1 and 4.2.3 to perform decou-

pling and coupling operations with state-space models representative of analytical and

real mechanical systems, respectively. The accurate results reported on those sections

clearly demonstrate that LM-SSS is a reliable SSS method. On top of this, LM-SSS

showed to be capable of performing decoupling and coupling operations with mod-

els previously transformed into coupling form. In addition, the novel post-processing

procedures presented in section 2.3.3 showed to be able to correctly eliminate the redun-

dant states originated from the performance of SSS operations with LM-SSS leading,

205
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in this way, to the computation of accurate minimal-order coupled models. The post-

processing procedure presented in section 2.3.4 also demonstrated to perform well, en-

abling a correct retention of a unique set of DOFs from the coupled state-space models

computed with LM-SSS. Moreover, the novel coupling form, denoted UCF, proposed

in section 2.3.2 demonstrated to be applicable on state-space models representative of

analytical and real mechanical systems. UCF and the coupling form presented in [8]

showed to perform similarly. Nevertheless, as discussed in section 2.3.2, UCF presents

the relevant advantage of not requiring the selection of a subspace from a nullspace.

In sections 4.1.2 and 4.2.4, the state-space realization of IS demonstrated to be a

reliable approach to compute models representative of diagonal apparent mass terms

of CEs, whose dynamic behaviour can be accurately characterized by the assumptions

underlying IS (see sections 4.1 and 4.2.4). Moreover, the use of these models to in-

troduce the dynamics of CEs into the LM-SSS coupling formulation via compatibility

relaxation demonstrated to be an accurate approach to compute coupled models repre-

sentative of substructures connected by CEs suitable for being characterized by IS (see

section 4.2.5). The novel post-processing procedures presented in section 2.5.2 showed

to be reliable to eliminate the extra states originated from the performance of coupling

operations with LM-SSS via compatibility relaxation leading to the computation of

accurate minimal-order coupled models.

Furthermore, by analyzing the rubber mount models computed in the context of

the experimental substructuring case analyzed in section 4.2, it is evident that the

state-space models determined by exploiting the state-space realization of IS present a

significant lower number of states than the models identified by performing decoupling

operations with LM-SSS or by implementing primal state-space disassembly operations.

This is observed, because the state-space realization of IS does not make use of decou-

pling operations to compute the rubber mount models. Therefore, these models are not

composed by spurious modes and hence, they are made of a relevant lower number of

states than the models computed by implementing decoupling with LM-SSS or by per-

forming primal state-space disassembly operations. On top of this, the coupled models

determined by including the CEs into LM-SSS via compatibility relaxation are made

of a significant lower number of states than the coupled state-space models computed

with LM-SSS or with primal state-space assembly. Once again, this is justified by the

fact that the rubber mount models used in the LM-SSS method and in the primal state-

space assembly formulation are identified from decoupling/disassembly operations and

hence, they are contaminated by spurious modes. Thereby, it is straightforward to

conclude that the state-space realization of IS is the most suitable approach to identify

models of CEs, while LM-SSS via compatibility relaxation is the most adequate ap-

proach to include the dynamics of CEs into the LM-SSS formulation. However, the user

must bare in mind that both state-space realization of IS and LM-SSS via compatibility

relaxation rely on the assumptions underlying IS. Therefore, their application must be

restricted in frequency and must be applied on CEs, whose dynamic behaviour is ade-
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quate for being characterized by IS (see sections 2.5.1 and 4.2.4), i.e. the contribution

of the mass of the CEs must be unimportant for their dynamics in the frequency range

of interest and the CEs must not present relevant cross couplings between their DOFs.

Estimation of state-space models

The novel method proposed in section 3.3.2 demonstrated to be accurate to strictly

impose Newton’s second law on state-space models representative of analytical (see

sections 4.1.1 and 4.1.2) and real mechanical systems (see sections 4.2.2 and 5.2.3).

Moreover, it was shown that the proposed novel approach presents two important ad-

vantages over the state-of-the-art method presented in [5]. On the one hand, the method

developed in section 3.3.2 does not rely on the use of undamped RCMs to impose New-

ton’s second law. On the other hand, by using the approach here proposed, Newton’s

second law can be imposed by using RCMs presenting lower natural frequencies than by

exploiting the method outlined in [5] (see section 4.2.2). Therefore, we may claim that

the method proposed in section 3.3.2 is, particularly, interesting to set-up state-space

models that, besides strictly respecting Newton’s second law, are adequate for being

exploited in time-domain simulations.

In addition, the novel strategy developed in section 3.5 to impose stability on un-

stable coupled models was experimentally validated in section 4.2.6. This approach

demonstrated to be robust enough to compute an accurate coupled state-space model

from an unstable coupled model resultant from the performance of several SSS opera-

tions involving models estimated from the measured FRFs of many mechanical systems.

This approach holds the advantages of not strictly requiring the use of iterative algo-

rithms and of being simple to apply. Furthermore, in section 4.2.6, we have clearly

shown that, in contrast with the originally computed unstable coupled model, the de-

termined stable coupled model is adequate for performing time-domain simulations. In

this way, by exploiting the approach proposed in section 3.5, it is possible to compute

accurate stable coupled models by performing SSS operations with non-passive state-

space models estimated from experimentally acquired data.

State-space models and SSS methods in TPA

The local approach discussed in section 5.2.1 showed to be capable of computing

interpolating LPV models that accurately describe the dependency of the dynamics

of three analytical mechanical systems on scheduling parameters (see section 5.2.2).

Moreover, in section 5.2.3, this approach lead to the determination of an interpolating

LPV model that accurately describes the temperature dependency of the dynamics of

a real assembled structure. Indeed, by exploiting this LPV model, very good estima-

tions of the time-domain responses of this assembled structure, when submitted to a

temperature run-up, could be performed. Accurate estimations of the time-domain
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load applied on this structure during the performed temperature run-up could also be

obtained by using the computed LPV model. It was also evident that ignoring the

temperature dependency of the dynamics of the assembled structure leads to lower-

quality predictions of the time-domain responses and of the time-domain load applied

on this structure. Thereby, this case study motivates the exploitation of LPV models

to describe the dependency of the dynamics of more complex structures on scheduling

parameters. Alternatively, one may think on using interpolating LPV models to charac-

terize the dependency of the dynamics of simple components (such as, rubber mounts)

on scheduling parameters and subsequently, introduce them in complex structures via

SSS.

To validate the novel applications of LPV models in TPA proposed in chapter 5,

the three substructures analyzed in section 5.2.1 were once again studied, by assuming

that their dynamic behaviour is continuously changing over time and by presuming

that one of those substructures is a source (hence, it generates excitation) and that the

other two are passive systems. The use of the LPV models computed in section 5.2.2

together with the state-space realization of the matrix-inverse method demonstrated

to lead to the computation of an accurate estimation of the time-domain connecting

force (see section 5.4.1). Moreover, it was found that an accurate prediction of the

time-domain equivalent force could be performed by exploiting coupled models com-

puted at each time-sample with LM-SSS (by coupling interpolated models calculated

from the interpolating LPV models) together with the state-space realization of the

in-situ component-based TPA method (see section 5.4.2). Moreover, in sections 5.4.1

and 5.4.2, it is clearly shown that if the time-varying dynamics of the analytical sub-

structures are ignored, the quality of the estimated connecting and equivalent forces

is significantly deteriorated. Thus, this study clearly demonstrates the suitability of

the state-space formulation and SSS methods to tackle time-domain TPA applications

involving mechanical systems, whose dynamics vary over time.

6.2 Future Research

Many research topics must still be investigated to improve the SSS methods and

the methodologies to experimentally estimate state-space models suitable for being

exploited in SSS operations. In the following, some of these research topics are proposed

by the author:

• Automatic selection of the natural frequencies of the RCMs included

in state-space models: When computing complete state-space models, it is

common to use RCMs to include the contribution of the lower and upper out-

of-band modes (see section 3.2). Additionally, in section 3.3.2, we proposed the

use of RCMs to impose Newton’s second law on the constructed complete state-
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space models. As discussed in sections 3.2 and 3.3.2, to define these RCMs we

are required to select their natural frequencies and damping ratios. The value

of the damping ratio of these RCMs must be selected to be the minimum value

that allows the performance of stable time-domain simulations with the complete

state-space model under construction, while the natural frequency of the RCMs

responsible for modelling the contribution of the lower out-of-band modes can be

selected with freedom to make sure that the FRFs of these RCMs well match the

contribution of the lower out-of-band modes. Nonetheless, the selection of opti-

mal values for the natural frequencies of the RCMs responsible for including the

contribution of the upper out-of-band modes and for imposing Newton’s second

law on state-space models must be performed in an iterative fashion by following

a ”try and error” approach. Thus, it would be convenient to possibly get to a

mathematical expression that allows the user to directly calculate optimal values

for the natural frequencies of these RCMs.

• Uncertainty quantification: In this thesis, the state-space models representa-

tive of real mechanical systems are estimated from modal parameters identified

from their measured FRFs. Therefore, the random uncertainties in the measured

FRFs will definitely influence the accuracy of the identified modal parameters and

hence, will be propagated during the performance of SSS operations. Thereby,

we propose the performance of a study on the quantification and propagation of

measurement uncertainties in SSS operations.

• Model order reduction: It is evident that the coupled state-space models

computed in chapter 4 are composed by a significant larger number of states than

the strictly needed to characterize the dynamics of the assembled structures. This

is definitely a consequence of using a large amount of modes to compute the state-

space models in order to make sure that their FRFs match as closely as possible

the measured FRFs of the components that they represent. Nevertheless, the

use of model order reduction techniques will always make the models computed

with SSS techniques more appealing to be exploited in time-domain applications

(e.g. in real-time applications). Moreover, as discussed in section 2.5, the state-

space models originated from decoupling operations include the dynamics of the

decoupled substructures twice and hence, they are contaminated with pairs of

spurious modes. Thus, the use of model order reduction techniques could be the

solution to eliminate these undesired modes.

• Direct computation of state-space models representative of inverted

diagonal dynamic stiffness terms of CEs: As the inversion of a given state-

space model involves the inversion of its feedthrough matrix, by exploiting the

state-space realization of IS (see section 2.5.4), it is only possible to determine

state-space models representative of inverted diagonal apparent mass terms of



210 6. Conclusion

CEs. This is problematic, because to compute the correspondent state-space

model representative of the inverted diagonal dynamic stiffness terms of the CEs,

we would be required to invert its state matrix, which may lead to numerical prob-

lems associated with ill-conditioned matrix inversions. Moreover, this prevents

the computation of displacement coupled state-space models by using LM-SSS

via compatibility relaxation (see section 2.5.1) and hence, the methodology pro-

posed in section 3.5 cannot be used to stabilize the coupled state-space models

computed with this SSS technique. To overcome this difficulty, one may think on

determining the inverted diagonal dynamic stiffness terms of the CEs by using

IS in the frequency domain. Then, a state-space model could be estimated from

these FRFs by exploiting the methodology presented in section 3.2. However, this

is not recommended, because the IS method assumes that the CEs are massless.

Therefore, no resonances are expected to be observed on the inverted diagonal

dynamic stiffness terms of the CEs obtained with IS. The absence of resonances

will certainly make the estimation of modal parameters harder and hence, it will

be more difficult to construct the intended state-space models. Thus, it is neces-

sary to investigate an alternative approach to compute models representative of

the inverted diagonal dynamic stiffness terms of CEs.

• Experimental validation of the novel applications of LPV models in

TPA: The use of LPV models together with the matrix-inverse classical TPA

and the in-situ component-based TPA methods demonstrated to be promising to

compute connecting and equivalent time-domain forces, respectively, when deal-

ing with components presenting time-varying dynamics (see section 5.4). Never-

theless, these approaches were tested in numerical cases. To assess their robust-

ness, it is essential to apply them on experimental cases, involving real mechanical

systems, whose dynamics change over time.
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[165] F. X. Magrans, P. V. Rodŕıguez, and G. C. Cousin. Low and mid-high frequency

advanced transmission path analysis. In Proceedings of the 12th International

Congress on Sound and Vibration 2005, page 3292–3299, Lisbon, Portugal, 2005.

[166] O. Guasch and F.X. Magrans. The global transfer direct transfer method applied

to a finite simply supported elastic beam. Journal of Sound and Vibration, 276

(1):335–359, 2004. doi:https://doi.org/10.1016/j.jsv.2003.07.032.

[167] Oriol Guasch. Direct transfer functions and path blocking in a discrete

mechanical system. Journal of Sound and Vibration, 321(3):854–874, 2009.

doi:https://doi.org/10.1016/j.jsv.2008.10.006.
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Appendix A

Inverting state-space models

To demonstrate how the inversion of state-space models can be performed, let us

consider a generic acceleration model as given below.

{ẋ(t)} = [A]{x(t)} + [B]{u(t)}
{ÿ(t)} = [Caccel]{x(t)} + [Daccel]{u(t)}

(A.1)

Solving the output equations of the state-space model given in expression (A.1) to

find the value of {u(t)}, we may define the following expression.

{u(t)} = [Daccel]−1({ÿ(t)} − [Caccel]{x(t)}) (A.2)

By using equation (A.2), the state equations of the state-space model given by

expression (A.1) can be rewritten as given hereafter.

{ẋ(t)} = [A]{x(t)} + [B][Daccel]−1({ÿ(t)} − [Caccel]{x(t)}) (A.3)

By using equations (A.3) and (A.2), the inverted state-space model can be computed

as follows:

{ẋ(t)} = [Ainv]{x(t)} + [Binv]{ÿ(t)}
{u(t)} = [Cinv]{x(t)} + [Dinv]{ÿ(t)}

(A.4)

where, matrices [Ainv], [Binv], [Cinv] and [Dinv] are given hereafter.

[Ainv] = [A] − [B][Daccel]−1[Caccel], [Binv] = [B][Daccel]−1

[Cinv] = −[Daccel]−1[Caccel], [Dinv] = [Daccel]−1
(A.5)
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Appendix B

Negative form of a state-space

model representative of apparent

mass

To demonstrate how to define the negative form of a state-space model represen-

tative of apparent mass, let us consider the following acceleration state-space model

directly derived from the mass, stiffness and damping matrices of a given mechanical

system (see [45]).

{ẋ(t)} = [A]{x(t)} + [B]{u(t)}
{ÿ(t)} = [Caccel]{x(t)} + [Daccel]{u(t)}

(B.1)

where, matrices [A], [B], [Caccel] and [Daccel] are given below.

[A] =

[

−M−1V −M−1K

I 0

]

, [B] =

[

M−1

0

]

[Caccel] =
[

−M−1V −M−1K
]

, [Daccel] =
[

M−1
]

(B.2)

By using expression (A.5), we may invert the state-space model given in expression

(B.1) to obtain the correspondent apparent mass model. The state-space matrices of

this model are given below.

233
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[Aapm] = [A] − [B][Daccel]−1[Caccel]

=

[

−M−1V −M−1K

I 0

]

−
[

M−1

0

]

[

M−1
]−1 [

−M−1V −M−1K
]

=

[

−M−1V −M−1K

I 0

]

−
[

−M−1V −M−1K

0 0

]

=

[

0 0

I 0

]

[Bapm] = [B][Daccel]−1 =

[

M−1

0

]

[

M−1
]−1

=

[

I

0

]

[Capm] = −[Daccel]−1[Caccel] = −
[

M−1
]−1 [

−M−1V −M−1K
]

=
[

V K
]

[Dapm] = [Daccel]−1 =
[

M−1
]−1

= [M ]

(B.3)

In [47],[43], it was argued that to compute the negative form of a state-space model,

its [M ], [K] and [V ] matrices must be multiplied by −1. Thereby, we may define the

negative form of the state-space matrices given in expression (B.3) as follows

[Aapmneg ] =

[

0 0

I 0

]

, [Bapm
neg ] =

[

I

0

]

[Capmneg ] = [−V −K], [Dapm
neg ] =

[

−M
]

(B.4)

where, subscript neg denotes a state-space matrix transformed into negative form.

By observing expression (B.4), it is evident that to define the negative form of a

state-space model representative of apparent mass, we must multiply its output and

feedthrough matrices by −1. Note that this procedure continues to be valid to compute

the negative form of state-space models defined in the modal domain.



Appendix C

Displacement and velocity

coupled models with LM-SSS via

compatibility relaxation

Here, the expressions developed in section 2.5.1 to compute acceleration coupled

state-space models by using LM-SSS with compatibility relaxation (see expressions

(2.144)) will be modified to directly provide displacement and velocity coupled mod-

els. The displacement, velocity and acceleration models of a given mechanical system

present the same state and input matrices. Hence, we are only required to perform

modifications on the expressions associated with the computation of the output and

feedthrough matrices of the acceleration coupled model.

Let us start by rewriting the expressions responsible for computing matrices [C̃accel]

and [D̃accel] by using displacement state-space matrices as follows (see expression (2.78)):

[C̃accelS ] = C
disp
S,DAS,DAS,D − (CdispS,DAS,DBS,D)BT

CECRdBCC
disp
S,DAS,DAS,D

[C̃accelM ] = (CdispS,DAS,DBS,D)BT
CECRdC

disp
M,DAM,DAM,D

[D̃accel
S ] = C

disp
S,DAS,DBS,D − (CdispS,DAS,DBS,D)BT

CECRdBC(CdispS,DAS,DBS,D)

(C.1)

where, matrix [ECRd] is given below.

[ECRd] = (BC(CdispS,DAS,DBS,D)BT
C + (CdispM,DAM,DBM,D))−1 (C.2)

By using the relations between the output and feedthrough matrices of acceleration

and displacement state-space models (see expression (2.78)), we may define the follow-

ing expressions to compute the output and feedthrough matrices of the displacement

coupled model.
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[C̃dispS ] = C
disp
S,D − (CdispS,DAS,DBS,D)BT

CECRdBCC
disp
S,D

[C̃dispM ] = (CdispS,DAS,DBS,D)BT
CECRdC

disp
M,D

[D̃disp
S ] = C

disp
S,DAS,DBS,D − (CdispS,DAS,DBS,D)BT

CECRdBC(CdispS,DAS,DBS,D)−

C̃dispÃB̃ = 0

(C.3)

From the relations between the acceleration and velocity output and feedthrough

matrices (see, [45]), we may establish expressions to compute both output and feedthrough

matrices of the velocity coupled state-space model as follows:

[C̃velS ] = C
disp
S,DAS,D − (CdispS,DAS,DBS,D)BT

CECRdBCC
disp
S,DAS,D

[C̃velM ] = (CdispS,DAS,DBS,D)BT
CECRdC

disp
M,DAM,D

[D̃vel
S ] = C

disp
S,DBS,D − (CdispS,DAS,DBS,D)BT

CECRdBC(CdispS,DBS,D)

(C.4)

where, if the coupled state-space model obeys Newton’s second law [CdispS,DB
disp
S,D ] = [0]

[45],[8], hence [D̃vel
S ] = [0].

As mentioned above, the state and input matrices of displacement, velocity and

acceleration state-space models are the same and are given in expression (2.144). Nev-

ertheless, those expressions can also be easily rewritten in terms of displacement state-

space matrices.



Appendix D

LSFD matrices construction

In this section, the construction of [Â(L, λ, jω)] (see expression (3.66)) will be math-

ematically proven. It will also be shown how this matrix must be set-up, when using

LSFD with mobility or accelerance reference FRFs. Furthermore, the implementation

of LSFD by assuming that both upper and lower residual matrices are null will also be

presented.

Let us start by considering the following modal model composed by a single pair of

complex conjugate poles and defined for a single frequency line:

[Href (jω)]1 =

({ψ1}{l1}
jω1 − λ1

+
{ψ1}∗{l1}∗
jω1 − λ∗1

)

+
[LR]

(jω1)2
+ [UR] (D.1)

where, [Href (jω)] represents the displacement reference FRFs.

Let us now define {ψ1}, {l1}
jω1−λ1 and {l1}∗

jω1−λ∗1
as hereafter.

{ψ1} = {a} + {b}j (D.2)

{l1}
jω1 − λ1

= {c} + {d}j (D.3)

{l1}∗
jω1 − λ∗1

= {e} + {f}j (D.4)

By using expressions (D.2), (D.3) and (D.4), we may redefine the terms {ψ1}{l1}
jω1−λ1

and {ψ1}∗{l1}∗
jω1−λ∗1

as given below.

{ψ1}{l1}
jω1 − λ1

= ({a} + {b}j)({c} + {d}j) = {a}{c} + {a}{d}j + {b}{c}j − {b}{d} (D.5)

{ψ1}∗{l1}∗
jω1 − λ∗1

= ({a}−{b}j)({e}+{f}j) = {a}{e}+{a}{f}j−{b}{e}j+{b}{f} (D.6)
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From expressions (D.1), (D.5) and (D.6), we may express [Href (jω)]1 as follows

[Href (jω)]1 = {a}{c} + {a}{d}j + {b}{c}j − {b}{d} + {a}{e}

+ {a}{f}j − {b}{e}j + {b}{f} +
[LR]

(jω1)2
+ [UR]

(D.7)

thus, we may also write

[

Ĥref (jω)
]

1
=

[

{a}{c} − {b}{d} + {a}{e} + {b}{f} + [LR]
(jω1)2

+ [UR]

{a}{d} + {b}{c} + {a}{f} − {b}{e}

]T

(D.8)

with,

[

Ĥref (jω)
]

1
=
[

ℜ([Href (jω)]1) ℑ([Href (jω)]1)
]

(D.9)

or, by representing equation (D.8) in matrix form, we may define the expression given

below.

[

Ĥref (jω)
]

1
=
[

{a} {b} [LR] [UR]
]













{c} + {e} {d} + {f}
−{d} + {f} {c} − {e}

[I]
(jω1)2

[0]

[I] [0]













(D.10)

By using equation (3.65), expression (D.10) can be rewritten as follows:

[

Ĥref (jω)
]

1
=
[

[Υ]1 [LR] [UR]
] [

Â(L, λ, jω)
]

1
(D.11)

with,

[Υ]1 =
[

ℜ({ψ1}) ℑ({ψ1})
]

(D.12)

where,
[

Â(L, λ, jω)
]

1
is given as:

[

Â(L, λ, jω)
]

1
=





[âℜ(L, λ, jω)]1 [âℑ(L, λ, jω)]1
[

b̂ℜ(ω)
]

1
[0]



 (D.13)

while, [âℜ(L, λ, jω)]1, [âℑ(L, λ, jω)]1 and
[

b̂ℜ(ω)
]

1
are given hereafter.

[âℜ(L, λ, jω)]1 =

[

ℜ( {l1}
jω1−λ1 ) + ℜ(

{l∗
1
}

jω1−λ∗1
)

−ℑ( {l1}
jω1−λ1 ) + ℑ(

{l∗
1
}

jω1−λ∗1
)

]

(D.14)
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[âℑ(L, λ, jω)]1 =

[

ℑ( {l1}
jω1−λ1 ) + ℑ(

{l∗
1
}

jω1−λ∗1
)

ℜ( {l1}
jω1−λ1 ) −ℜ(

{l∗
1
}

jω1−λ∗1
)

]

(D.15)

[

b̂ℜ(ω)
]

1
=

[

[I]
(jω1)2

[I]

]

(D.16)

Expressions (D.11) and (D.13) conclude the mathematical proof for the construction

of
[

Â(L, λ, jω)
]

, when exploiting LSFD with displacement reference FRFs. If mobility

reference FRFs are to be used, we have to rewrite expression (D.11) as follows:

[

Ĥvel
ref (jω)

]

1
= jω1

[

Ĥref (jω)
]

1
=
[

[Υ]1 [LR] [UR]
] [

Âvel(L, λ, jω)
]

1
(D.17)

where,
[

Âvel(L, λ, jω)
]

1
is given below.

[

Âvel(L, λ, jω)
]

1
= jω1

[

Â(L, λ, jω)
]

1
(D.18)

While, in case LSFD is implemented with accelerance reference FRFs, expression

(D.11) must be rewritten as follows

[

Ĥaccel
ref (jω)

]

1
= (jω1)

2
[

Ĥref (jω)
]

1
=
[

[Υ]1 [LR] [UR]
] [

Âaccel(L, λ, jω)
]

1
(D.19)

where,
[

Âaccel(L, λ, jω)
]

1
is given hereafter.

[

Âaccel(L, λ, jω)
]

1
= (jω1)

2
[

Â(L, λ, jω)
]

1
(D.20)

If LSFD is to be used by assuming that the lower and upper residual matrices are

null, we must re-establish expression (D.11) as follows:

[

Ĥref (jω)
]

1
=
[

Υ
]

1

[

Å(L, λ, jω)
]

1
(D.21)

where,
[

Å(L, λ, jω)
]

1
is given below.

[

Å(L, λ, jω)
]

1
=
[

[âℜ(L, λ, jω)]1 [âℑ(L, λ, jω)]1

]

(D.22)

When exploiting mobility reference FRFs, expression (D.22) must be rewritten as

follows:

[

Ĥvel
ref (jω)

]

1
=
[

Υ
]

1

[

Åvel(L, λ, jω)
]

1
=
[

Υ
]

1
jω1

[

Å(L, λ, jω)
]

1
(D.23)

while, when using accelerance FRFs, expression (D.22) must be redefined as given
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below.

[

Ĥaccel
ref (jω)

]

1
=
[

Υ
]

1

[

Åaccel(L, λ, jω)
]

1
=
[

Υ
]

1
(jω1)

2
[

Å(L, λ, jω)
]

1
(D.24)

It is worth mentioning that, although we have used a modal model composed by

a single pair of complex conjugate poles and defined for a single frequency line to

mathematically demonstrate how to set-up the matrices involved in the LSFD method,

the same methodology is applicable, when dealing with modal models made of an

unlimited number of pairs of complex conjugate poles and defined for an unlimited

number of frequency lines.



Appendix E

LSFD by applying the real mode

constraint

In this section, the implementation of LSFD by applying the real mode constraint

together with displacement, velocity and accelerance reference FRFs will be discussed.

Moreover, it will be shown how to exploit this constrained version of LSFD by assuming

that both lower and upper residual matrices are null.

Having in mind that the estimation of real modes is equivalent to model a given

structure by assuming that it has a proportional damping (see, for example [70]), let us

consider the following proportionally damped modal model composed by a single pair

of complex conjugate poles and defined for a single frequency line (see, for example,

[70]):

[Href (jω)]1 =

(

j{ψ1}{l1}
jω1 − λ1

+
−j{ψ1}{l1}
jω1 − λ∗1

)

+
[LR]

(jω1)2
+ [UR] (E.1)

where, [Href (jω)] represents the displacement reference FRFs.

Let us now define {ψ1}, {l1}
jω1−λ1 and {l1}

jω1−λ∗1
as hereafter.

{ψ1} = {a} (E.2)

{l1}
jω1 − λ1

= {b} + {c}j (E.3)

{l1}
jω1 − λ∗1

= {d} + {e}j (E.4)

By using expressions (E.2), (E.3) and (E.4), we may rewrite the terms j{ψ1}{l1}
jω1−λ1 and

−j{ψ1}{l1}
jω1−λ∗1

as given below.

j{ψ1}{l1}
jω1 − λ1

= j{a}({b} + {c}j) = {a}{b}j − {a}{c} (E.5)

241



242 E. LSFD by applying the real mode constraint

−j{ψ1}{l1}
jω1 − λ∗1

= −j{a}({d} + {e}j) = −{a}{d}j + {a}{e} (E.6)

From expressions (E.1), (E.5) and (E.6), we may express [Href (jω)]1 as follows

[Href (jω)]1 = {a}{b}j − {a}{c} − {a}{d}j + {a}{e} +
[LR]

(jω1)2
+ [UR] (E.7)

thus, we may also write

[

Ĥref (jω)
]

1
=
[

−{a}{c} + {a}{e} + [LR]
(jω1)2

+ [UR] {a}{b} − {a}{d}
]

(E.8)

with,

[

Ĥref (jω)
]

1
=
[

ℜ([Href (jω)]1) ℑ([Href (jω)]1)
]

(E.9)

or, by representing equation (E.8) in matrix form, we may define the expression given

below.

[

Ĥref (jω)
]

1
=
[

{a} [LR] [UR]
]







−{c} + {e} {b} − {d}
[I]

(jω1)2
[0]

[I] [0]






(E.10)

Expression (E.10) can also be rewritten as follows:

[

Ĥref (jω)
]

1
=
[

{ψ1} [LR] [UR]
] [

ÂPD(L, λ, jω)
]

1
(E.11)

where,
[

ÂPD(L, λ, jω)
]

1
is given as:

[

ÂPD(L, λ, jω)
]

1
=





[

âPDℜ (L, λ, jω)
]

1

[

âPDℑ (L, λ, jω)
]

1
[

b̂PDℜ (ω)
]

1
[0]



 (E.12)

while,
[

âPDℜ (L, λ, jω)
]

1
,
[

âPDℑ (L, λ, jω)
]

1
and

[

b̂PDℜ (ω)
]

1
are given hereafter.

[

âPDℜ (L, λ, jω)
]

1
=
[

−ℑ( {l1}
jω1−λ1 ) + ℑ( {l1}

jω1−λ∗1
)
]

(E.13)

[

âPDℑ (L, λ, jω)
]

1
=
[

ℜ( {l1}
jω1−λ1 ) −ℜ( {l1}

jω1−λ∗1
)
]

(E.14)

[

b̂PDℜ (ω)
]

1
=

[

[I]
(jω1)2

[I]

]

(E.15)

By using expression (E.11), the real mode shapes, the lower and upper residual
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matrices can be estimated in a linear-least squares sense as given below.

[

{ψ1} [LR] [UR]
]

=
[

Ĥref (jω)
]

1

[

ÂPD(L, λ, jω)
]†

1
(E.16)

Expressions (E.16) concludes the presentation of LSFD by applying the real mode

constraint, when exploiting displacement reference FRFs. If mobility reference FRFs

are to be used, we have to rewrite expression (E.11) as follows:

[

Ĥvel
ref (jω)

]

1
= jω1

[

Ĥref (jω)
]

1
=
[

{ψ1} [LR] [UR]
] [

ÂPD,vel(L, λ, jω)
]

1
(E.17)

where,
[

ÂPD,vel(L, λ, jω)
]

1
is given below.

[

ÂPD,vel(L, λ, jω)
]

1
= jω1

[

ÂPD(L, λ, jω)
]

1
(E.18)

Whereas, if accelerance reference FRFs are used, expression (E.11) must be rewrit-

ten as follows

[

Ĥaccel
ref (jω)

]

1
= (jω1)

2
[

Ĥref (jω)
]

1

=
[

{ψ1} [LR] [UR]
] [

ÂPD,accel(L, λ, jω)
]

1

(E.19)

where,
[

ÂPD,accel(L, λ, jω)
]

1
is given hereafter.

[

ÂPD,accel(L, λ, jω)
]

1
= (jω1)

2
[

ÂPD(L, λ, jω)
]

1
(E.20)

If this constrained version of LSFD is to be used by assuming that the lower and

upper residual matrices are null, we must re-establish expression (E.11) as follows:

[

Ĥref (jω)
]

1
= {ψ1}

[

ÅPD(L, λ, jω)
]

1
(E.21)

where,
[

ÅPD(L, λ, jω)
]

1
is given below.

[

ÅPD(L, λ, jω)
]

1
=
[

[

âPDℜ (L, λ, jω)
]

1

[

âPDℑ (L, λ, jω)
]

1

]

(E.22)

When exploiting mobility reference FRFs, expression (E.22) must be rewritten as

follows:

[

Ĥvel
ref (jω)

]

1
= {ψ1}

[

ÅPD,vel(L, λ, jω)
]

1
= {ψ1} jω1

[

ÅPD(L, λ, jω)
]

1
(E.23)

whereas, when using accelerance FRFs, expression (E.22) must be redefined as given

below.
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[

Ĥaccel
ref (jω)

]

1
= {ψ1}

[

ÅPD,accel(L, λ, jω)
]

1
= {ψ1} (jω1)

2
[

ÅPD(L, λ, jω)
]

1
(E.24)

It is worth mentioning that, even though we have used a modal model composed by

a single pair of complex conjugate poles and defined for a single frequency line to present

LSFD by applying the real mode constraint, this approach continues to be valid, when

dealing with modal models made of an unlimited number of pairs of complex conjugate

poles and defined for an unlimited number of frequency lines.



Appendix F

Suitability of the proposed RCMs

to impose Newton’s second law

Here, it will be mathematically proven that the RCMs proposed in section 3.3 are,

indeed, suitable to impose Newton’s second law on displacement state-space models.

Let us start by assuming that we aim at imposing Newton’s second law on a complete

displacement state-space model computed by following the procedures presented in sec-

tion 3.2. Thus, to be suitable to impose Newton’s second law, the proposed RCMs

must ensure that [CINL,dispfull ][BINL
full ] = [0] and that the contribution of [Cdispib ][Bib]

is properly included in the correspondent complete velocity state-space model. To

demonstrate that the proposed set of RCMs fulfil the first requirement, we must de-

fine [CINL,dispfull ][BINL
full ] (see expression (3.47)) by remembering that [Cdispfull ][Bfull] =

[Cdispib ][Bib] (as argued in section 3.3) as follows.

[CINL,dispfull ][BINL
full ] = [Cdispib ][Bib] + [CdispCB ][BCB] (F.1)

Further assuming that the state-space model to be forced to respect Newton’s second

law is of SISO type and by exploiting equations (3.42), (3.38), (3.39) and (3.40), we

may define [ACB], [BCB] and [CvelCB] as:

[ACB] =





−ξCBωCB + jωCB

√

1 − ξ2CB

−ξCBωCB − jωCB

√

1 − ξ2CB



 (F.2)

[BCB] =

[

− j
2

√
σCBW

T
CB

j
2

√
σCBW

T
CB

]

(F.3)

[CvelCB] =
[

ωCB√
1−ξ2

CB

√
σCBPCB

ωCB√
1−ξ2

CB

√
σCBPCB

]

. (F.4)

By using expressions (F.2), (F.3), (F.4) and (3.45), it is evident that [CdispCB ] must

be computed as hereafter.
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[CdispCB ] = [CvelCB][ACB]−1 =







ωCB
√
σCBPCB√

1−ξ2
CB

(

−ξCBωCB+jωCB

√
1−ξ2

CB

)

ωCB
√
σCBPCB√

1−ξ2
CB

(

−ξCBωCB−jωCB

√
1−ξ2

CB

)







T

(F.5)

From equations (F.3) and (F.5) and after making some mathematical manipulations,

we may define the following expression to compute [CdispCB ][BCB].

[CdispCB ][BCB] = −
[

PCBσCBV
T
CB

]

(F.6)

By exploiting expressions (3.37) and (F.6), equation (F.1) can be rewritten as given

below.

[CINL,dispfull ][BINL
full ] = [PCBσCBV

T
CB] − [PCBσCBV

T
CB] = [0] (F.7)

Expression (F.7) proves that the proposed set of RCMs forces [CINL,dispfull ][BINL
full ]

to be a null matrix. To prove that these RCMs are also capable of including the

contribution of [Cdispib ][Bib] on the correspondent complete velocity state-space model,

let us compute the FRFs of the velocity model given in expression (3.41) as given below.

[Hvel
CB(jω)] = [CvelCB](jω[I] − [ACB])−1[BCB] + [CdispCB ][BCB] (F.8)

By using expressions (F.2), (F.3), (F.4) , (3.37) and (F.6) and after performing

some mathematical manipulations, equation (F.8) can be redefined as hereafter.

[Hvel
CB(jω)] =

ω2
CB[Cdispib ][Bib]

−ω2 + 2jωξCBωCB + ω2
CB

− [Cdispib ][Bib] (F.9)

The right-hand side of expression (F.9) is composed by two different terms. The

first has the role of including the contribution of [Cdispib ][Bib] into the complete velocity

state-space model, whereas the second ensures that [CINL,dispfull ][BINL
full ] = [0] is always

verified. Hence, the RCMs will be more accurate as the value of the first term is

closer to [Cdispib ][Bib]. This will happen as the value selected for the natural frequencies

of the RCMs increases and as the value selected for their damping ratios decreases.

Thereby, we may claim that by properly selecting the value for the natural frequencies

and damping ratios of the proposed set of RCMs (see section 3.3.2), we can use these

RCMs to correctly force displacement state-space models to obey Newton’s second law.

It is worth mentioning that the mathematical proofs here performed continue to be

valid for MIMO state-space models.



Appendix G

Minimum-Variance Unbiased

estimator

In this section, the Minimum-Variance Unbiased (MVU) estimator developed in

[126] will be, briefly, presented. This approach enables the estimation of the inputs and

of the states of a given system, provided that the state-space model of the system is

known and that a set of response measurements of the system are available (for details,

see [126],[180]). To initialize this algorithm, the user needs to provide an estimate of

the initial state vector (i.e. x[0|−1]) and its error covariance matrix Px[0|−1]. In addition,

the user must also know the covariance matrices associated with the process noise and

with the measurement noise (see [126]). Assuming that the state-space matrices are

known, time-varying and that have been previously discretized, we may present all

steps to implement the MVU estimator as follows:

Input estimation:

R̃k = CkPx[k|k−1]C
T
k +R

Mk = (DT
k R̃

−1
k Dk)

−1DT
k R̃

−1
k

u[k|k] = Mk(yk − Ckx[k|k−1])

Pp[k|k] = (DT
k R̃

−1
k Dk)

−1

(G.1)

Measurement update:

Kk = Px[k|k−1]C
T
k R̃

−1
k

x[k|k] = x[k|k−1] +Kk(yk − Ckx[k|k−1] −Dku[k|k])

Px[k|k] = Px[k|k−1] −Kk(R̃k −DkPp[k|k]D
T
k )KT

k

Pxp[k|k] = P Tpx[k|k] = −KkDkPp[k|k]

(G.2)

Time update:
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x[k+1|k] = Akx[k|k] +Bku[k|k]

[Px[k+1|k]] =
[

Ak Bk

]

[

Px[k|k] Pxp[k|k]
Ppx[k|k] Pp[k|k]

][

ATk

BT
k

]

+Q
(G.3)

where, superscript k denotes the time sample under analysis, uk is the estimated input

vector at the kth time instant, Q is the covariance matrix associated with the process

noise, R is the covariance matrix associated with the measurement noise and yk is

the measured output vector at the kth time instant. Subscript [k|k − 1] denotes the

estimation of a given variable at time instant k given the measured output sequence

yδk−1
with δk−1 = 0, 1, 2, .., k − 1, while subscripts [k + 1|k] and [k|k] represent the

estimation of a given variable at time instants k + 1 and k, respectively, given the

measured output sequence yδk with δk = 0, 1, 2, .., k.
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