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Abstract

The performances of energy management systems or electric vehicles and hybrid elec-
tric vehicles are highly dependent on the forecast of future driver torque/power request
sequence that affects vehicle efficiency and economy. Since the behaviour of the driver
is challenging to model/predict by first-principles models, modern artificial intelligence
algorithms would represent feasible methods for approaching this problem in real-world
automotive systems. This work provides a comparative study and analysis of performances
of different data-driven torque prediction strategies. The studied and compared torque
demand prediction techniques are exponentially varying model, linear regression, shallow
and deep neural networks, and least square support vector machine-based approaches.
The prediction performance and computational cost of these techniques are evaluated
and reported, and the possibility of exploiting these techniques in real-world scenarios is
also discussed.

1 INTRODUCTION

In the last years, the climate crisis has oriented worldwide
research labs and companies to investigate technologies to
reach substantial decarbonisation and the consequent emission
reduction. In particular, the automotive field has been heavily
involved in this process, with resulting massive production of
hybrid electric vehicles (HEVs) and pure electric vehicles (EVs).
These vehicles are featured by higher efficiency with respect to
internal combustion engine (ICE) vehicles, achieved by recent
advances in energy management systems (EMSs) [1]. Modern
EMSs are designed according to optimisation-based techniques
and aim to manage the vehicle power flow, following an opti-
mal approach that leads the powertrain to operate at the best
operating point of its characteristics. Common optimisation-
based EMSs are designed according to Pontryagin’s minimum
principle (PMP), equivalent consumption minimisation strategy
(ECMS), and its adaptive version termed A-ECMS [2]. Fur-
thermore, model-based techniques have been recently studied
and applied to hybrid/electric vehicles (H/EVs). In particu-
lar, model predictive control (MPC) paradigm has been recently
considered due to its capability to evaluate the H/EV perfor-
mances over a certain future horizon [3–5] directly exploiting
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physical and logical constraints featuring the controlled plant
[6, 7]. Mentioned EMSs are led by the driver’s action that is
mapped on the demanded torque control, and the use of pre-
dicted driver control signal is considered a standard approach in
order to increase the H/EV performances. Driving cycle pat-
tern, vehicle velocity and torque demand have been considered
as the main factors to be studied and analysed to optimize the
H/EV powertrain [8].

Driving cycle pattern prediction consists of the forecast of
aggregated features of the whole cycle segment, leading to an
approximate knowledge of next route characteristics. In [9],
driving cycles have been clustered in six different groups by
means of a k-shape algorithm, a technique that employs a shape-
based distance as a clustering metric. Then, each driving series
has been divided into several shorter segments on which fea-
tures such as maximum velocity, average velocity, minimum
acceleration, maximum acceleration and maximum decelera-
tion have been computed. All this information has been used
as input for a convolutional neural network (CNN) to pre-
dict the type of driving cycle. Niu et al. [10] have combined
two neural networks to predict both driving trends and syn-
thetic driving cycles with a time horizon of 1 s. Driving trends
have been grouped in a set of five possible types, whereas
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synthetic driving cycles in a set of 11. Features used in both
neural networks have been built on signals related to velocity,
acceleration, and time spent at a specific velocity. The authors
aimed to develop a fuzzy-based controller to manage energy
consumption. Furthermore, the use of learning vector quantisa-
tion neural network (LVQNN) has been exploited to recognize
real-time driving patterns and improve velocity prediction in
[11].

Driving cycle patterns could be considered for EMS inte-
gration and optimisation, but their use within mentioned EMS
frameworks would be limited due to the hard customisation
required to exploit this information. On the other side, veloc-
ity predictors have been widely studied due to the possibility
of directly exploiting vehicle speed prediction within EMSs to
achieve superior H/EV performances. Due to the stochastic
nature of driving profiles, many studies have employed Bayesian
network and Markov process in their predictive algorithms.
Zhang et al. [12] have developed an algorithm to predict veloc-
ity based upon a Bayesian network that uses information about
driving characteristics of succeeding vehicles, geographic infor-
mation system (GIS) and global positioning system (GPS) data.
Several studies have employed Markov processes, another kind
of stochastic process, as in [11] mentioned before. In [13], a
discrete Markov process has been built on velocity and accel-
eration: similar values of velocity and acceleration compose a
state of transition matrix, each representing similar driving con-
ditions. Then, combining the Markov chain and Monte Carlo
theory, an adaptive-horizon prediction method has been pro-
posed and used to anticipate future moments. Furthermore, the
combination of Markov process with backpropagation neural
network (BPNN) has been explored [14]. A vehicle speed pre-
diction has been proposed using both approaches to forecast
velocity in a horizon of 5 s. Another study [15] has involved
velocity and acceleration data from highways and urban driving
cycles and has compared forecasting results obtained by sev-
eral predictors: a Markov chain, an exponential-based predictive
model and the outcomes from three types of neural networks
(NNs), a BPNN, a layer recurrent neural network (LRNN),
and a radial basis function neural network (RBFNN). In [16],
authors have proposed a driving profile prediction approach
employing and comparing a Markov chain and a feedforward
neural network (FNN) for a horizon up to 30 s. A dataset com-
posed of four different test driving profiles in terms of velocity,
acceleration, and road slope has been used, reaching the best
performance with the FNN approach. Thus, NN-based mod-
els have widely been employed to predict velocity, as reported
before ([14, 15]). Moreover, Rezaei et al. [17] have employed
an autoregressive model to predict the desired driver’s veloc-
ity with a horizon of 10 s. Data from three driving cycles have
been used, and GPS and GIS information have been involved
in the predictive model to improve forecasting, depending on
upcoming events.

The principal drawback of speed prediction models is that
velocity does not exactly reflect the driver’s guide style because
it depends on torque demanded by the driver, which instead
represents directly driver’s reaction. Furthermore, the desired
velocity contains an intrinsic delay in its information about the

driver’s will, owed to engine time response and time elapsed
to reach the desired velocity. The main approaches explored
in literature for torque prediction have been neural networks,
stochastic processes, autoregressive models, and support vec-
tor machine (SVM). In [18], a three-layer NN has been used
to predict torque demand and vehicle velocity at 2.5 s horizon.
Six driving cycles have been recorded from a vehicle conducted
by the same driver on different days. Five driving cycles have
been used for training and the other one for testing. In the study
conducted by Zeng et al. [19], a single-hidden layer feedforward
neural network (SLFN) has been presented to predict gasoline
engine output torque with high accuracy but using features com-
puted on engine characteristics rather than driving profiles, such
as engine speed, intake manifold pressure, barometric pressure,
intake air. Also, stochastic approaches have been employed to
predict torque demand. Shi et al. [20] have used a one-step
Markov chain for an MPC model with a time horizon of 1 s. Pos-
itive driving torque has been discretized between the maximum
and minimum values to create a transition probability map based
on two real drive cycles and CTBCDC (China Transit Bus City
Driving Cycle) profile. In [21], a fixed gain algorithm method
has been developed for an online, multi-step and real-time
prediction for the demanding power of an electro-mechanical
transmission based on an autoregressive model with external
inputs. Both desired power demand and actual power demand
of the vehicle have been used as input. The prediction horizon
has been set at 0.3 s. Meng et al. [22] have applied an autoregres-
sive model for torque demand prediction as well. Simulated data
have been generated with 0.01 s sampling interval and ten steps,
and this interval has been set as horizon prediction; features
have been computed by means of torque and vehicle-to-vehicle
(V2V) information, such as distance, speed and acceleration of
preceding vehicle. In [23], a second order polynomial regressor
and a Volterra model have been compared using engine velocity
and throttle signal. Dataset has been collected from 300 sam-
ples of real vehicle data and prediction step has been set at 1 s.
At last, a different approach has been proposed by Vong et al.
[24], using a least squares SVM (LS-SVM) based on engine char-
acteristics. 200 different engine setups have been acquired from
a Honda B16A DOHC to predict output torque.

A segment of intelligent transport literature has also dealt
with driving style recognition in order to provide signifi-
cant information and assist automotive-related contexts, such
as insurances, near-misses, theft prevention and others. For
instance, Martinelli et al. [25] have proposed an analysis of five
decision tree-based techniques to classify different driving styles
considering a feature set related to the vehicle in the attempt of
recognizing if the driver is the car owner or an impostor. In [26],
employing telematic data, such as velocity, GPS information and
acceleration, the study has been focused on two approaches:
first, a driver classification and thus, driving style, using a CNN
has been proposed; at last, both aggregated time series data and
single trips have been statistically modelled in order to predict
claims frequency. De Rango et al. [27] have developed a fuzzy
inference system able to recognize driver behaviour by taking
into account the environment, speed and jerk. Another driving
style detection approach based on a combination of a Bayesian
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model with a Euclidean distance has been proposed by Han
et al. [28]. The dataset has been collected through a driving sim-
ulator and included driver-dependent, vehicle-dependent and
driving environment-dependent information.

Another emerging scenario that has been addressed in the
literature is the vehicle-to-everything (V2X) context, where the
vehicle is connected to the surrounding environment and it is
able to exchange information with any entity that can affect its
performance and energy consumption. For example, Deng et al.
[29, 30] have proposed a model-free approach and a multi-layer
architecture to predict long-distance traffic velocity in real-world
V2X considering the future dynamics of V2X information. The
prediction has been based on the most similar past trajectories
to the given route and this information has been exploited for
forecasting up to 20 min; then, traffic velocity predicted has
been adopted for an MPC control approach. In V2X context,
the study proposed in [31] and consistent with the attempt of
our work, has developed a novel real-time EMS based on an
improved torque demand predictor. A Gaussian process (GP)-
based predictor is employed aiming to forecast torque demand
at 2-s and 4-s horizon. The dataset has been generated using
a co-simulation platform for traffic and powertrain models; 12
real-time traffic information have been included as input fea-
tures, related to vehicle torque demand, brake, throttle, speed
data and information about preceding vehicle and distance to
the successive intersection.

In this work, a comparative study of different strategies for
torque prediction requested by the driver for optimal H/EVs
energy management is presented. Exponentially varying torque
predictor, linear regressor, shallow and deep NN and LS-SVM-
based strategies have been considered [32, 33]. The choice fell
on the above techniques since they allow developing multiple-
input and multiple-output (MIMO) models and direct models
for accurate long-term prediction. MIMO and direct models
permit to obtain better results in terms of forecasting accuracy
with respect to iterative one-step-ahead models [34]. Mentioned
predictors are systematically compared in terms of prediction
capability and computation burden. This work adds two original
contributions to the related literature. First, an extensive analy-
sis of data-driven based torque demand predictors is conducted,
for the first time, for HEV energy management. Second, the LS-
SVM-based torque predictor is investigated to fully explore its
potential in the model adaptation when the driving style changes
over time. Finally, the predictors are tested with real data
over two benchmarks in order to model the driving cycles in
real-world scenarios with driver dynamic/stochastic behaviours.

The work is organized as follows. The paper presents the
prediction techniques and the online updating procedure in Sec-
tion 2, datasets used in this study are described in Section 3 and
results and comparison of the different predictors are reported
in Section 4. Conclusions are provided in Section 5.

2 METHODOLOGY

In this section, the considered data-driven estimation poli-
cies for driver torque demand prediction are presented. The

included methods belong to the supervised learning class, as
they are trained offline on data containing known outputs or
labels. Then, these methodologies can be employed online to
provide the required torque forecast.

2.1 Exponential predictor

Exponential torque demand predictor assumes that power
request increases or decreases exponentially over the predic-
tion horizon. In each prediction horizon, the exponential torque
prediction model is formulated as

Tk+n = Tk (1 + 𝜖)n, n = 1, 2, … , p (1)

where p is the prediction horizon, Tk is the initial torque at
time step k, and 𝜖 is the exponential coefficient. Different 𝜖 val-
ues are considered to evaluate the sensitivity of the model. The
exponential model is included due to its ease of integration in a
real-time application [15].

2.2 Multivariate linear regression

Multivariate linear regression (MLR) considers the following
model:

yi = W T xi + ei (2)

where yi is the l -dimensional output vector, xi is a design d -
dimensional vector of predictor variables, W ∈ ℝd×l is the
matrix of regression coefficients and ei ≈  (0, Σ) is the l -
dimensional vector of error terms with multivariate normal
distribution. The prediction is computed as ŷi = W T xi , where
regression coefficients matrix W is obtained by means of ECM
algorithm [35].

2.3 Cascade forward neural network

The cascade forward neural network is a class of NNs similar
to feedforward networks, characterised by forward connection
between the input and every following layer. The advantage of
this network is given by the ability to emulate input–output
relationships by maintaining a linear mapping between the lay-
ers. Figure 1 shows the general structure of a cascade forward
neural network.

2.4 Deep neural network

With the advancement of computational hardware resources
and algorithms, deep learning methods such as the long short-
term memory (LSTM) and sequence-to-sequence (seq2seq)
model have shown a good deal of promise in dealing with time
series forecasting by considering long-term dependencies and
multiple outputs [36]. An LSTM network is a type of recurrent
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FIGURE 1 Cascade neural network

neural network (RNN) used in the field of deep learning
that can learn long-term dependencies between time steps
of sequence data; it is used for several tasks such as anomaly
detection, speech recognition and time series forecasting as
well. This study presents a regression model based on LSTM
and the seq2seq structure to predict the driver torque demand.

2.5 Least squares support vector machine

The LS-SVM solves the regression equation according to the
following optimal problem:

min
w;e;b

J (w; e) =
1
2

wT w +
1
2
𝛾

n∑
i=1

e2
i (3)

subject to yi = wT 𝜙(xi ) + b + ei , i = 1, … , n (4)

where w, b ∈ ℝ, 𝛾 is a regularisation constant, 𝜙(xi ) is the fea-
ture map to the high dimensional future space and ei denotes
the prediction error term for the ith data point. The Lagrangian
function is

L(w; b; e; 𝛼) = J (w; b) +
n∑

i=1

𝛼i

(
yi − wT 𝜙(xi ) − b − ei

)
(5)

where 𝛼i are the Lagrange multipliers. Thus, by using Lagrange
multipliers, the solution can be obtained by considering the
Karush–Kuhn–Tucker (KKT) conditions for optimality and
solving:

𝜕L

𝜕w
= 0 → w =

n∑
i=1

𝛼i𝜙(xi ) (6)

𝜕L

𝜕b
= 0 →

n∑
i=1

𝛼i = 0 (7)

𝜕L

𝜕ei

= 0 → ei =
𝛼i

𝛾
(8)

𝜕L

𝜕𝛼i

= 0 → yi = wT 𝜙(xi ) + b + ei (9)

Standard LS-SVM framework is based on a primal-dual formu-
lation and the solution in 𝛼, b is given by the following linear
system [

Ω+ I∕𝛾 1T
n

1n 0

][
𝛼

b

]
=

[
Y

0

]
, (10)

with Y = [y1, … , yn]T , 𝛼 = [𝛼1, … , 𝛼n]T , 1n = [1, … , 1], Ωi j =

𝜙(xi )
T 𝜙(x j ) = K (xi , x j ) and with K (xi , x j ) a positive definite

kernel. The previous linear system can be rearranged as

Θn𝛼̂n = Yn (11)

where 𝛼̂n = [𝛼, b]T , Yn = [Y , 0]T and the Lagrangian multi-
plier can be estimated by inverting the matrix Θn. According
to Mercer’s theorem, the resulting LS-SVM model for function
estimation becomes ŷ(x ) =

∑n

i=1 𝛼iK (x, xi ) + b. When work-
ing with large datasets, it is important to emphasize that the use
of the entire training sample of size n to compute kernel matrix
and the solution of Equation (10) can be prohibitive. Thus, in
[37, 38], the authors proposed an explicit approximation for the
feature map 𝜙 when working in the primal space. The method is
based on the Nyström method [39] that determines an approxi-
mation of 𝜙. This finite dimensional approximation 𝜙̂(x ) can be
used in the primal problem to estimate w, b and authors pro-
vided an algorithm to properly find the support vectors and
a methodology to choose a working set of fixed size m ≪ n.
In order to make a more suitable selection of the support vec-
tors instead of a random selection, one can relate the Nyström
method to kernel principal component analysis, density estima-
tion and entropy criteria to select the m support vectors which
maximize the quadratic Rényi’s entropy approximated by

∫ p̂(x )2dx =
1

N 2
1T

n Ω1n (12)

Once the fixed size m is set, points from the pool of training
data have to be actively selected as candidate support vectors.
An algorithm that finds the points from the training dataset
that iteratively improves the entropy criterion was proposed in
[37, 38] and included in this paper. Fixed-size LS-SVM model is
considered for its ability to handle large datasets [38].

2.6 Fixed-size LS-SVM with online
updating procedure

The online updating procedure for fixed-size LS-SVM based
predictor is described in this section. In literature, an incre-
mental procedure for standard LS-SVM has been described in
[40]. The same approach has been proposed in [41, 42] for an
application in the automotive context. In [43], the authors have
proposed an online learning algorithm based on an incremen-
tal chunk for LS-SVM. In this work, conversely to literature,
the entropy value is adopted for a fixed-size LS-SVM model
to evaluate the amount of novelty of information introduced
by a new sample with respect to the training dataset N which
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538 CAVANINI ET AL.

is composed of predictor variables. The incremental algorithm
updates the trained LS-SVM model whenever the entropy of a
new sample (xn+1, yn+1) overcomes a fixed threshold, enhancing
the LS-SVM model generalisation and boosting model accuracy.
Since the solution is given by the set of linear equations Θn𝛼̂n =
Yn, in order to compute the online procedure in the dual space
the new updated model is given by

Θn+1𝛼̂n+1 = Yn+1 (13)

where Yn+1 is the vector of samples [Yn, yn+1, 0]. In order to effi-
ciently update Θn+1 whenever a new sample is included without
explicit computation of the matrix inverse, the matrix inverse
Θn+1 can be evaluated from Θn with the bordering method as
in the following

Θn+1 =

[
Θn u

uT a

]
(14)

Θ−1
n+1 =

⎡⎢⎢⎢⎣
Θ−1

n +
Θ−1

n uuT Θ−1
n

q
−
Θ−1

n u

q

−
uT Θ−1

n

q

1

q

⎤⎥⎥⎥⎦ (15)

where q = a − uT Θ−1
n u, a = 𝛾−1 + K (xn+1, xn+1) , and u =

[K (xn+1, x1), … ,K (xn+1, xn ), 1]. The above incremental proce-
dure can update, reboost and improve the built LS-SVM model
continually. When a new sample occurs, the training dataset and
the data vectors are incremented as follows

n → n+1 (16)

xtrain =
[
xtrain, xn+1

]T
(17)

Ytrain =
[
Ytrain, yn+1

]T
(18)

and the Lagrangian multiplier becomes

𝛼̂ = Θ−1
n+1Ytrain (19)

The incremental procedure continuously increases the mem-
ory length, resulting in both increase in model complexity
and reduction in computational speed; thus, a first in first
out (FIFO) decremental procedure is therefore employed after
every incremental step by removing the earliest trained data in
the training dataset. Similar to the case of the incremental pro-
cedure, in order to avoid the computation of the matrix inverse,
Θn is updated from Θn+1, where Θn+1 is the matrix without
the first row and the first column. Following the decremental
procedure, the resulting matrix is obtained as follows:

Θn(i − 1, j − 1) = Θn+1(i, j ) −
Θn+1(i, 1)Θn+1(1, j )

Θn+1(1, 1)
(20)

where i, j = 2, … , n + 1 and the training dataset and the data
vectors are decremented as follows:

n+1 → n (21)

xtrain(1) → ∅ (22)

Ytrain(1) → ∅ (23)

3 DATASETS DESCRIPTION

Three datasets are used in this study. The first dataset is based
on synthetic data of standard driving cycles, that is, NEDC,
WLTP (class 1, 2, and 3 termed as WLTP1, WLTP2, and
WLTP3, respectively), FTP75 and the US06. The Mathworks
MATLAB/Simulink HEV P3 reference application simulation
model has been considered to generate the datasets evaluated
in this study. The second dataset consists of collected signals
in real driving cycles [44]. 70 real driving trips with a BMW i3
were recorded in different weather conditions and different sea-
sons (winter, summer) for a total of 1340 km and 1824 min of
route. The third dataset is a collection of streamed data from real
vehicles collected by adapter OpenXC which is a combination
of open-source hardware and software that lets to extend the
vehicle with custom applications and pluggable modules [45].
In this study, nine trips are considered for a total of 156 min
of route. The considered scenarios are New York City, U.S.A.
(Downtown Crosstown, East Downtown, West Downtown,
West Downtown 2, Uptown Crosstown, Uptown Crosstown 2,
West Uptown, West Uptown 2) and aggressive driving with hard
acceleration and braking.

Algorithms evaluated in this study have been developed by
considering the last ten samples of the torque demand signal,
the last five samples of vehicle speed and acceleration as inputs.
These signals compose the buffer whose size represents the
algorithm memory load and that is iteratively updated at each
sampling time with the last measured values. It has been empir-
ically established that using longer historical series does not
significantly improve the performances in this specific experi-
mentation. The telemetry signals of the third dataset have been
synchronized considering linear interpolation. A sampling time
Ts of 0.1 s is considered for all datasets. The prediction horizon
is 20 steps ahead in this study.

The working strategy for modelling the synthetic driving
cycles in terms of training, validation and testing is:

∙ Training and validation samples: models are estimated using
50% of data for training and validation. Bayesian optimisation
algorithm and tenfold CV are used to set the hyperpa-
rameters. The BFR on the validation set is computed for
hyperparameter selection.

∙ Testing samples: the models are tested considering the last
50% of data. After defining the optimal model (using the
validation BFR), the prediction for the test set is done.

The working strategy for modelling the second real dataset in
terms of training, validation and testing is:

∙ Training and validation samples: a total of 48712 datapoints
related to the first five trips. Bayesian optimisation algorithm

 17519578, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12278 by C

ochraneItalia, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CAVANINI ET AL. 539

and tenfold CV are used to set the hyperparameters. The
BFR on the validation set is computed for hyperparameter
selection.

∙ Testing samples: a total of 1043 812 datapoints. The dataset
presents the last 65 trips. After defining the optimal model
(using the validation BFR), the prediction for the test set is
done.

The working strategy for modelling the third real dataset in
terms of training, validation and testing is:

∙ Training and validation samples: a total of 27 542 datapoints
related to the first two trips. Bayesian optimisation algorithm
and tenfold CV are used to set the hyperparameters. The
BFR on the validation set is computed for hyperparameter
selection.

∙ Testing samples: a total of 66 386 datapoints. The dataset
presents the seven trips. After defining the optimal model
(using the validation BFR), the prediction for the test set is
done.

4 RESULTS

In this section, the prediction results of synthetic and real driv-
ing cycles are reported. The achieved prediction results have
been evaluated according to the best fit rate (BFR) index,
adjusted root mean square error (RMSE), and adjusted mean
absolute error (aMAE), computed as

BFR = 100 × max
⎛⎜⎜⎝0, 1 −

‖y − ŷ‖2‖y −
1

N

∑N

k=1 y(k)‖2

⎞⎟⎟⎠ , (24)

aRMSE =

(
1

N

∑N

k=1

(
y(k) − ŷ(k)

)2)0.5

max(y) − min(y)
, (25)

aMAE =

1

N

∑N

k=1

(
y(k) − ŷ(k)

)
max(y) − min(y)

. (26)

where y and ŷ are the real and the predicted torque, respectively,
and y(k) is the real torque at the time instance k.

4.1 Synthetic driving cycles

This section shows the torque prediction results obtained with
synthetic data. Results are reported comparing the performance
of the baseline predictor with the considered supervised learn-
ing methods. Then, the proposed policy based on the online
model updating technique is validated. The working strategy for
modelling the synthetic driving cycles in terms of training, val-
idation and testing has been replicated with 20 Monte Carlo
simulations, and the results shown in this paragraph are the
average and standard deviation of the performance indexes.

FIGURE 2 Baseline: (a) BFR, (b) adjusted RMSE and (c) adjusted MAE

4.1.1 Baseline predictor performance

The considered baseline predictor maintains constant the mea-
sured torque value at instant k to predict the value to the instants
k + 1, … , k + p, where p is the prediction horizon. Figure 2
shows the indexes BFR, adjusted RMSE, and adjusted MAE
of the baseline, in which the driver torque demand is consid-
ered constant from k to k + p. Figure 2a–c shows that the
WLTP1 in terms of BFR and the US06 according to the adjusted
RMSE and adjusted MAE represent the worst cases. The 1-step
ahead prediction performs reasonably well, whereas the perfor-
mance worsens as prediction step increases for some type of
driving cycles.

4.1.2 Exponential predictor performance

The exponential predictor gives results highly close to the base-
line, as shown in Figure 3. Figure 3a–c shows the BFR, adjusted
RMSE and adjusted MAE of the exponential predictor. The
parameter 𝜖 belongs to the set of values [−0.1, −0.09, … , 0.1].
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540 CAVANINI ET AL.

FIGURE 3 Exponential predictor: (a) BFR, (b) adjusted RMSE and (c)
adjusted MAE

The average BFR, RMSE and MAE reach their minimum for
each driving cycle when 𝜖 ∈ {−0.03, −0.02, −0.01, 0}.

Exponential predictor performances are similar to the base-
line and the tuning of the parameter 𝜖 is relevant to obtain
successful results.

4.1.3 MLR-based predictor performance

Concerning multivariate linear regression, first-order, second-
order and third-order polynomial models are trained. Figure 4
shows the indexes BFR, adjusted RMSE, and adjusted MAE for
the case MLR. In particular, Figure 4a,d,g depicts the indices for
the linear model, Figure 4b,e,h shows the indices for the second-
order polynomial model and, finally, Figure 4c,f,i presents the
indices for the third order polynomial model.

The best BFR value is reported by the third-order model (i.e.
64 predictors), but the improvement with respect to the second-
order (i.e. 43 predictors) is slight in spite of a greater increase in
the computational burden for model training. Thus, a second-
order polynomial model is preferable.

4.1.4 Cascade neural network-based predictor
performance

Concerning cascade neural network, Figure 5 depicts the
indexes BFR, adjusted RMSE, and adjusted MAE. In particular,
Figure 5a,c,e shows the indices for the cascade neural network
trained with scaled conjugate gradient (SCG) training algorithm
and Figure 5b,d,f evidences the indices for the cascade neural
network trained with Levenberg–Marquardt (LM) training algo-
rithm. After hyperparameter tuning, the optimal neural network
is composed of three hidden layers with 20, 10, and 20 neu-
rons, respectively. A regularisation term of 0.01 is added to the
training algorithm.

The results show as LM training algorithm gives better per-
formance indexes than SCG training algorithm at the expense
of higher computation time for offline modelling.

4.1.5 Seq2seq-based predictor performance

Concerning deep neural network, a structure composed of six
layers has been included comprising an input layer, an LSTM
layer of 500 neurons, a fully connected layer of 100 neurons,
a dropout layer with probability 0.5, a fully connected layer
of 20 neurons and a regression layer. Figure 6a–c depicts the
performance indices for the sequence-to-sequence regression
model using LTSM model.

The results show, as sequence-to-sequence regression model
gives worse performance indexes, in particular, lower aver-
age and higher variance than cascade neural network-based
predictor.

4.1.6 Fixed-size LS-SVM-based predictor
performance

Figure 7a,d,g depicts the performance indices for the fixed-size
LS-SVM model with m = 500 samples, Figure 7b,e,h shows the
indices for the fixed-size model with m = 200 samples and as
last Figure 7c,f,i shows the indices for the standard LS-SVM
model.

In this study, fixed-size LS-SVM returns the best results with
respect to the other predictors and it shows to be able to handle
large datasets with a low computational burden with respect to
neural network-based predictors.

4.1.7 Predictors comparison

Table 1 reports mean and standard deviation among all the driv-
ing cycles and prediction horizons from 1 to 20 steps ahead.
Only the performances of the CNN trained with Levenberg–
Marquardt are reported because the scaled conjugate gradient
training algorithm returns worse results. Outcomes reported in
Table 1 highlight as the exponential predictor performs really
close to the baseline. The maximum average BFR and mini-
mum average RMSE and MAE are reached by the fixed-size
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CAVANINI ET AL. 541

FIGURE 4 Multivariate linear regression based predictor: (a,d,g) first order polynomial model, (b,e,h) second order polynomial model and (c,f,i) third order
polynomial model

FIGURE 5 Cascade neural network based predictor: (a,c,e) cascade NN trained with SCG training algorithm and (b,d,f) cascade NN trained with LM training
algorithm
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542 CAVANINI ET AL.

TABLE 1 Predictors Results

BFR adjRMSE adjMAE

Tcomputation

(microseconds)

Baseline 32.2 ± 20.42 0.0680 ± 0.0330 0.0313 ± 0.0200

Eponential predictor 35.9 ± 18.24 0.0641 ± 0.0299 0.0308 ± 0.0194 0.0027

Fixed-size LS-SVM m=500 69.4 ± 0.29 0.0519 ± 0.0006 0.0240 ± 0.0002 1.1516

Fixed-size LS-SVM m=200 67.0 ± 0.47 0.0555 ± 0.0008 0.0263 ± 0.0003 0.3423

Cascade neural network
(Levenberg–Marquardt)

67.7 ± 1.03 0.0556 ± 0.0013 0.0268 ± 0.0005 0.2853

MVN (first order) 53.6 ± 0.26 0.0778 ± 0.0004 0.0405 ± 0.0003 0.0019

MVN (second order) 59.5 ± 0.39 0.0679 ± 0.0006 0.0343 ± 0.0002 0.0148

MVN (third order) 60.2 ± 0.56 0.0668 ± 0.0010 0.0345 ± 0.0003 0.0734

Sequence-to-sequence (LSTM) 49.2 ± 1.57 0.0929 ± 0.0026 0.0440 ± 0.0004 3.4254

FIGURE 6 Sequence-to-sequence regression based predictor: (a) BFR,
(b) adjusted RMSE and (c) adjusted MAE

LS-SVM (m = 500 samples). CNN shows similar average results
to fixed-size LS-SVM but with a higher standard deviation.
MLR presents the worst results compared to fixed-size LS-
SVM and cascade neural network, but it is characterised with

smaller standard deviation. Finally, the sequence-to-sequence
model based on LSTM shows the worst outcomes among the
machine learning based predictors.

Simulation has been performed on a personal computer with
an Intel Core i7-7700HQ CPU at 2.8 GHz CPU. Computational
time required by each prediction algorithm is reported in Table 1
showing how sequence-to-sequence regression-based predictor
is computationally heavier than CNN, MVN, and exponen-
tial based predictors, whereas fixed-size LS-SVM requires a
computational burden proportional to the sample number m.

4.1.8 Online updating procedure

To test the proposed online updating procedure, the fixed-size
LS-SVM model is trained with the driving cycle FTP75, and
the driving cycle US06 is concatenated with FTP75 for test-
ing. Figure 8 depicts the results in terms of normalized real
torque and normalized torque prediction at 0.5 s horizon (5
steps ahead). Figure 8 shows the cases with and without online
updating procedure, and the coefficient of determination R2

is reported as well. The online updating procedure permits to
improve the results, reducing the adjusted RMSE from 0.183
for the case without the online updating procedure to 0.0943
for the opposite case.

Figure 9 presents the US06 driving cycle and the prediction
at 0.5 s horizon with and without the online updating proce-
dure, showing how the proposed method permits improving the
model performance in the case of driving style changes.

4.2 Real driving cycles

In this section, the torque prediction results obtained with two
real datasets are reported. Only fixed-size LS-SVM algorithm is
considered for torque prediction modelling since it achieved the
best performances in synthetic data and offers the advantage
of dealing easily with prediction problem size up to millions
of samples. Concerning the dataset related to BMW i3, we
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CAVANINI ET AL. 543

FIGURE 7 LS-SVM based predictor: (a,d,g) fixed-size model, m = 500, (b,e,h) fixed-size model, m = 200, and (c,f,i) full model

FIGURE 8 Fixed-size LS-SVM versus fixed-size LS-SVM with on-line
updating: R2 plot

FIGURE 9 Fixed-size LS-SVM versus fixed-size LS-SVM with on-line
updating: performances over US06 driving cycle

FIGURE 10 BFR of driving cycle prediction of BMW i3 through
fixed-size LS-SVM

considered the first five trips for training and validation and
the last 65 trips for testing in order to predict the driving
cycle behaviour in a real-world scenario and test the fixed-size
LS-SVM prediction model with driver dynamic/stochastic
behaviours. Figure 10 shows the average of BFR over the
testing trips and the shaded area refers to the ± standard
deviation. The prediction model is built considering m = 500
samples.

The results show as the prediction accuracy is similar to the
results obtained with the synthetic data for short-term predic-
tion whereas the results are worse over five steps of prediction
horizon. Concerning the dataset related to OPENXC, we con-
sidered the first two trips for training and validation and six trips
for testing. Figure 11 shows the average of BFR over the testing
trips and the shaded area refers to the ± standard deviation.
The prediction model is built considering m = 500 samples.
The results show as the prediction accuracy is worse than the
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544 CAVANINI ET AL.

FIGURE 11 BFR of driving cycle prediction of OPENXC data through
fixed-size LS-SVM

FIGURE 12 Fixed-size LS-SVM versus fixed-size LS-SVM with on-line
updating: OPENXC driving cycle

results obtained with the synthetic data and the BMW i3 dataset
and the shape of the curve shows how the long-term predic-
tion is difficult to model in real scenarios. The ninth route is
related to aggressive driving with hard acceleration and brak-
ing and it is used to test the updating procedure since it shows
a different driving cycle with respect to trips 1 and 2 used for
prediction modelling. Figure 12 presents the OPENXC driving
cycle and the prediction at 0.2 s horizon with and without the
online updating procedure, showing how this method permits
improving the model performance in the case of driving style
changes. The updating procedure permits improving BFR from
67.2% to 73.1%.

In conclusion, fixed-size LS-SVM-based torque predictor has
been investigated to evaluate its capability, using the proposed
on-line updating policy, to adapt the trained model to driving
style changes. The results highlight improved performances in
case of model update, evidencing the capability to efficiently
follow the driving style characterizing a single driver or different
driving environment, related to route type, for example, high-
way or urban routes, or traffic conditions. One drawback of this
solution is related to the learning stage that is computationally
demanding and it could be performed by using edge computing

or cloud solutions and whereas it is challenging to implement in
embedded solutions.

5 CONCLUSION

This work presents two main contributions: a comparative study
of different data-driven torque prediction algorithms and the
implementation of an online model updating technique that
aims to adapt to driving style changes. For the comparative
analysis, the considered techniques are: exponentially varying
model, linear regression, shallow and deep neural networks,
and least squares support vector machine-based torque demand
predictors. Prediction performances and computational bur-
den are evaluated and their real-world application is discussed.
Reported results showed that fixed-size LS-SVM-based predic-
tor is able to provide the best performances while testing over
a range of well-known and synthetic driving cycles. Moreover,
this approach is able to handle large datasets, representing an
optimal and alternative solution to other methodologies hav-
ing higher computational costs. Thus, it is finally tested on two
datasets consisting of real driving cycles. Then, the fixed-size
LS-SVM-based torque predictor has been investigated to evalu-
ate capabilities, using the proposed on-line updating policy, to
adapt the trained model to driving style changes. The results
highlight improved performances in case of model update, evi-
dencing the capability to efficiently follow the driving style
characterizing a single driver or different driving environment,
related to route type, for example, highway or urban routes, or
traffic conditions. The proposed methodology, moreover, could
be integrated into a V2X context in order to improve forecasting
performance and model adaption to several driving styles.

LIST OF ABBREVIATIONS

aMAE adjusted mean absolute error
BFR best fit rate

BPNN Backpropagation neural network
CNN convolutional neural network

CTBCDC China transit bus city driving cycle
CV cross-validation

ECM expectation conditional maximisation
ECMS equivalent consumption minimisation strategy

EMS energy management systems
EV electric vehicle

FIFO first in first out
FTP Federal Test Procedure
GIS geographic information system
GPS geographic positioning system

KKT Karush–Kuhn–Tucker
LM Levenberg–Marquardt

LRNN layer recurrent neural network
LS-SVM least squares support vector machine

LSTM long short-term memory
LVQNN learning vector quantisation neural network

MIMO multi input multi output
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CAVANINI ET AL. 545

MLR multivariate linear regressor
MPC model predictive control

NEDC new European driving cycle
NN neural network

PMP Pontryagin’s minimum principle
RBFNN radial basis function neural network

RMSE root mean square error
RNN recurrent neural network
SCG scaled conjugate gradient

Seq2seq sequence-to-sequence
SLFN single-hidden layer feedforward neural network
SVM support vector machine
V2V vehicle-to-vehicle

WLTP Worldwide harmonized Light-Duty vehicles Test
Procedure
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