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A B S T R A C T

With the recent introduction of NarrowBand Internet of Things (NB-IoT) technology in the 4th and 5th genera-
tions of mobile radio networks, the mobile communications context opens up significantly to the world of sensors.
By means of NB-IoT, the mobile systems within 3GPP standardization introduce the peculiar functions of sensor
networks, thus making it possible to satisfy very specific requirements with respect to those which characterize
traditional mobile telecommunications. Among the functions of interest for sensor networks, the possibility of
locating the positions of the sensors without an increase in costs and energy consumption of the sensor nodes is of
utmost interest. The present work describes a procedure for locating the NB-IoT nodes based on the quality of
radio signals received by the mobile terminals, which therefore does not require further hardware implementa-
tions on board the nodes. This procedure, based on the RF fingerprinting technique and on machine learning
processing, has been tested experimentally and has achieved interesting performances.
1. Introduction

Nowadays the Internet of Things (IoT), which consists in using the
Internet to collect data from a multiplicity of sensors scattered over a
territory, is gaining more and more attention. Wireless sensor networks
for smart metering have been implemented [1], together with solutions
which are able to bring the content closer to the end users in wireless
networks, such as caching files in densely deployed small-cell Base Sta-
tions (BSs) with a large storage capacity [2]. The NarrowBand IoT
(NB-IoT) is a radio technology introduced within the 4G Long Term
Evolution (LTE) and 5G mobile networks, specifically designed to allow
sensors to transmit data to a server in the cloud over the Internet by
relying on the extensive coverage offered by those networks. The NB-IoT
technology (aka LTE Cat-NB) has recently been made operational by
various mobile network operators across the world and, thanks to its
specifications, it allows the radio signal to be received even in environ-
ments where other currently widespread wireless technologies would not
be able to provide any data connection service.

The development of geolocation techniques alternative to the use of
the Global Navigation Satellite System (GNSS) systems is a very inter-
esting and practical research area in the IoT context. In fact, the GNSS
chipset is not often present in the IoT modules commercially available on
the market, primarily because these modules must have both an
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extremely low cost and the lowest possible energy consumption. A
further reason is that the location of devices makes using GNSS systems
not possible in all conditions due to the attenuation of satellite signals
(e.g., in typical indoor environments).

The main objective of our work is to assess the level of accuracy that
can be achieved by an NB-IoT network in operation as far as a geolocation
algorithm based on the RF fingerprinting technique is concerned. The
considered location method is based on the K-Nearest Neighbor (KNN)
algorithm and the outdoor measurement environment consists of a
portion of the commercial NB-IoT network of Telecom Italia in the 800
MHz band.

At the moment, there are only few studies in the literature regarding
the level of accuracy of methods for geolocating NB-IoT devices in real
scenarios, as NB-IoT is a relatively recent technology. Nevertheless, there
are several papers concerning this topic for the LTE technology. This
leads to the opportunity to perform a comparative analysis on the results
achievable by the RF fingerprinting methods specifically within the IoT
context.

The rest of the paper is organized as follows. In Section 2 the state-of-
the-art studies are analyzed. Section 3 describes the NB-IoT technology
and its parameters of interest for the present research. Section 4 in-
troduces the different approaches of geolocating a sensor device. Section
5 explains the experimental setup that was implemented to obtain the
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position data and the RF levels processed by the location algorithm are
described in Section 6. Section 7 shows the results of the measurement
campaign and the localization performance of the considered algorithm.
Finally, conclusions are drawn in Section 8.

2. Related works

NB-IoT is a relatively recent technology, and advances in the field of
sensor location is a new research branch in which little has been written
so far. The LTE location is well consolidated and the literature in this field
can be used as a reference for our present work. In Ref. [3], the authors
proposed a study for the geolocation of LTE devices based on the
fingerprinting method, which exploits the Channel State Information
(CSI) and considers only simulations done in an indoor scenario. In
Ref. [4], an RF fingerprinting method for LTE is described, using the
Minimization of Drive Testing (MDT) technique and the simulation on 3
artificial scenarios: rural, urban and hetnet. Mahalanobis Distance (MaD)
method and the Kullback-Leibler Divergence (KLD) method are used. In
the urban case, the best accuracy is obtained by using the KLD algorithm
with an error of up to 38 m in 68% of the cases.

A precise radio map and application of indoor positioning with the
dual-frequency Wi-Fi fingerprinting method is proposed in Ref. [5]. In
Ref. [6], an RF fingerprinting algorithm is evaluated on a commercial
LTE network in Finland, using the MDT method. Similar to the scenario
considered in this paper, measurements related to an outdoor environ-
ment are considered, the range is divided into smaller areas, and a
commercial LTE network is used. In particular, outdoor measurements
are made on the 800 MHz LTE band using a mobile phone. The results
obtained show that, by dividing the entire measurement area into 20 m
� 20 m smaller areas, the accuracy is within 182 m for 68% of the cases.
A development of the work of [6] is considered in Ref. [7], where the
knowledge of Timing Advancing (TA) information is used together with
the radio fingerprinting to improve the position estimation, and a set of
measures in a real scenario are made.

A different approach for the localization of an LTE mobile station has
been recently presented in Ref. [8]. It is based on the fusion of one Round
Trip Time (RTT) observation associated with a serving BS with the
Time-Difference Of Arrival (TDOA) observations associated to the
serving and neighboring BSs. The proposed approach achieves good
performance in terms of Root Mean Square Error (RMSE) for both
simulated networks and real-field experiments.

An NB-IoT development platform and indoor deployment coverage is
analyzed in Ref. [9]. An indoor location method for NB-IoT based on CSI
is proposed in Ref. [10], where a method based on the KNN algorithm is
used to estimate the target position of the sensor. Different from our
proposal, the authors consider an indoor environment where the CSI,
which usually is not immediately available for the IoT devices, is
exploited for location. Moreover, the transmitting stations are in known
positions and the use of a commercial network is not considered.

In [11], a general overview of location methods is proposed by 3GPP
for LTE-M and NB-IoT technologies. In particular, the location method
based on the Observed Time Difference of Arrival (OTDOA) is described.
Results concerning the NB-IoT technology show that, when the outdoor
scenario is addressed, an error of up to 77 m is obtained in about 70% of
cases.

[12] proposes a method for improving Received Signal Strength
Indication (RSSI) ranging accuracy in Long Range (LoRa) systems by
using a Wiener-based method, aiming at minimizing the distance loga-
rithm error derived from the Friis path loss model equation. In Ref. [13],
a RSSI-based fingerprinting localization of sensors nodes is shown for the
ultra narrow band Sigfox IoT networks.

In summary, from the analysis of the state-of-the-art studies we can
conclude that few references address the accuracy of localization of NB-
IoT sensors by means of on-field measurements in a real scenario. Most of
the proposed localization methods are evaluated through simulations
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with respect to ideal scenarios. Moreover, in most cases, the emphasis is
given to the peculiarity of the proposed algorithms with respect to the
performance obtainable in a real scenario by an algorithm belonging to a
general class of localization methods, just as the one considered in the
present work. A further consideration regards the fact that, in some cases,
the considered algorithms make use of radio parameters that are not
easily accessible from the NB-IoT chipsets used on the sensors, such as the
timing advance and the channel state information. Conversely, in this
paper, only the Reference Signal Received Power (RSRP) levels and the
Physical Cell IDentifiers (PCI) are used, which can be easily obtained
from the RF chipset.

3. Narrowband IoT

NB-IoT is a cellular technology introduced in 3GPP Release 13 to
provide wide area coverage for the IoTs [14]. The normative phase of the
NB-IoT work item within 3GPP started in September 2015 and the core
specification ended in June 2016 [14]. A single NB-IoT carrier consists of
a 180 kHz band for both the downlink and the uplink. This is equivalent
to the bandwidth of one Physical Resource Block (PRB) in the LTE [15].
This band can also be taken within the GSM band, occupying a 200 kHz
GSM channel [16].

The NB-IoT reuses the design of the LTE, including the downlink
Orthogonal Frequency-Division Multiple-Access (OFDMA), the uplink
Single-Carrier Frequency-Division Multiple-Access (SC-FDMA), channel
coding, interleaving and so on [14]. The NB-IoT technology opens the
way to 5G massive Machine Type Communications (mMTC) and through
a standard developed specifically for using the features of the Internet of
Things and savings in consumption, allows a long life of the batteries of
the connected objects.

Thanks to a greater coverage capacity and a low energy consumption
required from the connected devices, NB-IoT allows objects that previ-
ously could not be connected to communicate with each other. The up-
link transmission uses single-tone and multi-tone transmissions. For the
single-tone transmission, 3.75 kHz and 15 kHz channels are supported.
For the multi-tone transmission, the SC-FDMA scheme with 15 kHz
subcarriers spacing is used [16]. The spectrum usage can be triggered in
three different modes: stand-alone, guard-band and in-band [17], the
latter being the one used in this article and adopted by Telecom Italia -
TIM in its network. It uses one or more resource blocks of 180 kHz wide,
which are allocated in the same band of LTE [17].

NB-IoT uses some radio parameters to trigger actions and to give a
mean to study the available coverage. RSRP is defined as the average
power of Resource Elements (RE) which transport the cell-specific
Reference Signals (RS) [18]. The metric chosen by 3GPP to evaluate
the coverage is the Maximum Coupling Loss (MCL). It represents the
maximum attenuation that the system can support on the transmission
channel (Eq. (1)) and can be written as

MCLdB ¼ Ptx � ðNoisefigure þ SINRþNoisefloorÞ (1)

One of the key features of NB-IoT lies in its ability to deliver the
service coverage even toward the sensors installed behind the metallic
sheets or underground. This represents a great improvement over the
GSM technology: more than 20 dB increase in MCL, with a target value of
164 dB [17]. The great coverage value is obtained without the need for a
highpower transmitter. The sensors’ output power is 23 dBm or 20 dBm,
thus allowing for the power amplifier to be integrated in a System on a
Chip (SoC) [19]. To reach such a good coverage performance, it is
possible to use a narrow-band channel for the uplink transmission of
3.75 kHz or 15 kHz instead of the default bandwidth of 180 kHz [19].

Moreover, the Transport Block (TB) can be retransmitted up to 2048
times in the downlink and 128 times in the uplink [19], thus allowing for
the Coverage Enhancement (CE) implementation. The NB-IoT technology
allows for a very high number of sensors (more than 50000) to be
handled by a single sector of each eNodeB on a 180 kHz channel, with a
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minimum throughput of 160 bit/s for each sensor [17]. NB-IoT is energy
efficient and should allow a very long battery life, which is estimated to
be 6þ years [19]. Other specific NB-IoT features, such as Extended
Discontinuous Reception (eDRX) and Power Saving Mode (PSM), help to
extend the battery life even more [20].

4. The proposed geolocation approach

Geolocation is the process by which the geographic position of an
object is determined by exploiting satellite positioning systems or mobile
networks radio signals (radiolocation). This article focuses on a posi-
tioning method in the seoncd context. The User Equipment (UE) sensor
location can be carried out in two different modalities, namely,
“network-based” or “handset mode”. The first requires to process the
radio measurements and signaling data received by the BSs, which can be
accessed only by the network operator and allows a great precision in
urban areas. The handset mode approach requires to install a minimal
software component on the UE to track the level of signals received either
from the serving cell (i.e., the cell used by the UE to transmit data to the
network) or from the neighboring cells (i.e., the other cells measured by
the UE in order to perform a serving cell reselection, when needed). The
fingerprinting-based method, which belongs to the “handset mode”
approach, is the one chosen in the current work. It relies on the creation
of “RF power fingerprints” of the radio signals transmitted by the BSs,
which can be received by the UE. The reason for this choice is because the
fingerprinting-based approach does not rely on network-based data
which are typically available only to the network operator, nor on other
privileged information, so this approach is considered more preferable
than other ones.

The RF fingerprinting method is a database correlation method that
can be used to estimate the UE position [4]. It requires a radio envi-
ronment map, which is created by measuring the UE's received power
levels of the signals transmitted by different BSs and by varying the UE
position. In order to take into consideration the non-stationary and
time-variant environment in which the UE lies or moves, this approach
requires a set of measures that must be repeated periodically. Following
the approach presented in Ref. [21], the fingerprinting location method
requires a “training phase” and a “positioning phase”. On the basis of this
approach, a database is populated in the first phase of our work, which
contains all the radio powermeasures taken on a set of known geographic
locations. In the positioning phase, the current power measures received
by the UE located in an unknown position are transmitted to a server,
then an algorithm is applied to select the position in the database which
best matches the measured data. In order to compare the measurements
transmitted by the UE with the ones saved in the central database, the
KNN or the maximum likelihood algorithms are often used. As a result of
this approach, it is not mandatory to know the exact geographic position
of the BSs involved in the location process (which in most cases cannot be
considered as public available).

5. Experimental setup

Our experimental tests involve the use of a couple of development
boards. The SODAQ Sara Arduino Form Factor (AFF) N211 [22] is an
Arduino compatible board which supports the NB-IoT Radio Access
Technology (RAT) communication thanks to the uBLOX N211 module
installed, which allows the access to NB-IoT bands 8 and 20. The SODAQ
board is also equipped with a variety of sensors like an accelerometer, a
magnetometer and a Global Positioning System (GPS) receiver. The core
MCU is Atmel SAMD21. The uBLOX module supports standard AT
commands as well as manufacturer-specific extended AT commands, by
which the user can also have access to several internal radio parameters
of the module.

The Wislink Cellular BG96 from RAK Wireless is an Arduino shield
built around the Quectel BG96 module. It supports multi-RAT 2G, 4G/
LTE, LTE Cat M1 and NB-IoT operations and has a GPS receiver onboard.
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Also the BG96 module supports extended AT commands in addition to
the standard ones, by which it is possible to have access to several in-
ternal parameters. The Wislink shield can be used either in conjunction
with an Arduino UNO board or in a stand-alone configuration.

On the network side, the “All Things Talk” cloud platform, which acts
as a data collector for IoT devices, is adopted. For the aims of the
experimental tests, measurement data from the SODAQ board are stored
on this platform.

The first developed firmware for the SODAQ board has been a plain
“pass through”which enables the AT commands written on the serial line
to be conveyed directly to the uBLOX module. In this way, the module
has been initially configured and tested to check which kind of data can
be retrieved from it. To this aim, by issuing the ‘ATþNEUSTATS¼ “ALL”’
command, the radio parameters monitored by the RF chipset for all the
received cells are shown as follows:

● NUESTATS: “APPSMEM”, “Num Allocs”:88;
● NUESTATS: “APPSMEM”, “Num Frees”:21;
● NUESTATS: “CELL”, 6290,234,1,-1093,-120,-1004,51;
● NUESTATS: “CELL”, 6290,156,0,-1099,-108,-1464,31;
● NUESTATS: “CELL”, 6290,472,0,-942,-128,-1351,40;
● OK.

Parameters identified by the “CELL” keyword in the string formatted
as “CELL”,p1,p2,p3,p4,p5,p6,p7 are very important within the scope of
this work, which have the following meanings:

● p1: EARFCN (E-UTRA Absolute Radio Frequency Channel Number);
● p2: Physical Cell ID (Cell IDentifier);
● p3: serving cell (1) or neighbor cell (0) indication;
● p4: RSRP (Reference Signals Received Power) expressed in tenth of

dBm (�1093 is equivalent to �109.3 dBm);
● p5: RSRQ (Reference Signals Received Quality) expressed in tenth of

dB (�120 is equivalent to �12 dB);
● p6: RSSI (Received Signal Strength Indication) expressed in tenth of

dBm (�1004 is equivalent to �100.4 dBm);
● p7: SNR (Signal-to-Noise Ratio) expressed in tenth of dB (51 is

equivalent to 5.1 dB).

Also in the case of the Wislink cellular shield, radio parameters
monitored by the RF chipset can be accessed by issuing the “Engineering
Mode” via the ATþQENG command: RSRP, RSRQ, RSSI and SINR mea-
surements related to the serving cell (ATþQENG ¼ “servingcell”) as well
as the ones related to the neighbor cells (ATþQENG¼ “neighbor”) can be
retrieved in this way. The format of the output produced by these com-
mand is described in Ref. [23].

According to the technical specifications of the two modules, uBLOX
N211 is based on Huawei HiSilicon Neul Hi2110 RF chipset whereas
Quectel BG96 is based on the MDM9206 RF chipset made by Qualcomm.
Within the scope of the present work, this means that the achieved results
in terms of practical feasibility to obtain the radio measurements of in-
terest for the location algorithm via the AT commands reported above
can be considered valid also for many other NB-IoT modules which are
based on these chipsets.

The final version of the firmware running on the SODAQ board has
been used in the measurement campaign to store data on the basis of the
equipment's current position. When the board is powered on, both the
position from the GPS chipset and the radio parameters from the NB-IoT
RF chipset are acquired and sent to the cloud platform. Until the board
position does not change, radio parameters are aggregated by PCI and
their average values are calculated. As soon as the board moves and the
distance from the previous recorded position becomes greater than 20 m,
new data are acquired and sent to the cloud. For each position, all the
received PCIs and the related radio parameters are recorded.

A measurement campaign has been carried out, in which the SODAQ
board with the developed firmware is used to collect the RF
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measurements in a real scenario. Tests show that collecting data through
an IoT platform is a good choice when a great number of stationary
sensors are present in the area of interest and when real-time processing
of data is not mandatory.

Once the practical feasibility to populate the RF fingerprint database
by collecting the measurements performed by the UE via the
manufacturer-specific AT commands and by transmitting the data to the
cloud platform using the NB-IoT network is validated, the second board is
used. In fact, the Quectel BG96 module let the user access and monitor
radio-parameters in real time by using a dedicated proprietary debugging
interface called Qualcomm Diagnostic Interface (DIAG). This interface
allows for a direct connection to the NB-IoT Qualcomm chipset using a
USB interface: the diagnostic data can be configured and retrieved in
real-time using Qualcomm's Qxdm proprietary software as well as open
source tools like diag-parser [24], which is able to parse the 2G, 3G and
4G radio messages in DIAG format and to covert them to Osmocom
GSMTAP [25] for analysis in wireshark and other utilities.

This way of accessing the internal data of the Qualcomm RF chipset
can be considered as an alternative (much more complete and powerful)
to the use of manufacturer specific AT commands via the serial interface.
For this practical reason, within the scope of this work, the Diag interface
has been exploited to collect the radio measurements while moving to the
area of interest and to save the data directly to a personal computer.

The Wislink board has an external GPS input too, which allows for
georeferencing of measurements samples taken during the first training
phase. Tests were taken on a 4.5 km2 wide area, as shown in Fig. 1.

The data are organized by using a spreadsheet in which the columns
represent the following data (see Fig. 2):

● N – index of the i-th measurement point;
● Latitude and Longitude coordinates – the position where the mea-

surement sample is taken;
● LTE-NB Physical Cell ID - PCI;
● LTE-NB RSRP RSRQ RSSI - Radio parameters.

The data are converted into the CSV format to be easily imported and
processed in Matlab. Latitude and longitude data from the first row (first
sampled data) are extracted and taken as a reference point. Then the next
row is analyzed: if the distance from the former point is less than 20 m,
the PCI value is checked. If a measure for the same PCI is already present,
the average of the radio-parameter data is calculated. Once all the rows in
the CSV file have been processed, the data are organized in a matrix
which contains only values taken at 20 m distance. The parameter
Counter takes into account the recorded number of samples with the same
PCI. Table 1 reports the average values of RSRP calculated over different
measurements which have the same coordinates and the same PCI within
a distance of 20 m. As an example, for the coordinates in the first row of
Table 1, measurements (see column Count1) with PCI 234 are collected,
10 (Count2) with PCI 156, 8 (Count3) with PCI 472, etc. The same
Fig. 1. Mapped area.
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operation is performed for the other radio parameters, such as the
Reference Signal Received Quality (RSRQ) and the Received Signal
Strength Indication (RSSI). Fig. 3 shows the plot of the processed data on
the Google Earth platform, using “20 m” clusters. Fig. 4 shows a detailed
image of the points in which data are gathered.

By sampling the cell radio-parameters on a 20 m basis, there is a great
probability to gather data for multiple PCIs in a single measurement.
Different BSs have unique power parameters in a given position. There-
fore, the more PCI data are gathered, the more accurate the position
estimation can be. Results achieved by our experimental setup demon-
strate the practical feasibility of accessing RSRP, RSRQ, RSSI measure-
ments of the two NB-IoT chipsets under investigation, to populate the RF
fingerprinting database needed by the location algorithm. It is worth to
note that, according to 3GPP specifications [26], it is mandatory for the
UE to continuously perform the measurements of these radio parameters
to correctly manage the mobility procedures of cell selection in the idle
mode and cell reselection in the connected mode.

6. NB-IoT location algorithm

In this article, some novelties are introduced, using the RSRP pa-
rameters and PCI as a basis of using the Weighted K-Nearest Neighbor
(WKNN) algorithm. KNN turns out to be the most often used algorithm
for RF fingerprinting in literature [27–29], despite its simplicity and
limitations that make it necessary to adjust it to increase its performance.
The good performance of KNN is highly dependent on the metric used for
computing the pair ware distances between data points [30]. Algorithms
more complex than the KNN have been used for WiFi fingerprinting, such
as the principal component analysis and the support vector machines.
However, the estimation accuracy of such algorithms is comparable to
that of KNN [31]. The radio parameters are acquired in a real outdoor
scenario, thus giving results that are immediately useable for the
deployment and provisioning of sensors.

Once the dataset containing RF-fingerprints is created, it is processed
with the WKNN algorithm to estimate the current sensor position. The
WKNN algorithm evaluates the Euclidean Distance (ED) between a
reference value and all the other entries in a dataset. In the present work,
an RF-fingerprint is a set of RSRP values measured by the sensor on the
main BS and neighbor BSs in a given position. In order to geolocate a
sensor, the measured RF-fingerprint needs to be classified. Each entry in
the dataset is considered as a separate class, so no classes are with mul-
tiple RF-fingerprints. This requires a different approach in using KNN:
once K closest points are calculated, the weighted average of their po-
sitions is determined and used to geolocate the unknown point. Weights
are determined based on themetric defined according to the criterion: the
closer the distance, the bigger the associated weight.

The localization method proposed here requires a pre-processing of
the measurements values before classification, as is described in Section
5 (as shown in Table 1 and related comments). The position is deter-
mined by applying a KNN algorithm which, on the basis of the defined
distance (which can be, for example, the ED), finds the K clusters with the
shortest distance from the identified PCIs. Latitude and longitude values
are then weighed according to the distance values. A more detailed
description of the algorithm is provided in the following subsection. Thus
the proposed approach is not based on a classification in the strict sense,
but rather on the application of a WKNN algorithm for the comparison of
the distance values.

Algorithm details

The sensor's position is extracted from a collection of radio-
parameters measured at an unknown geographical point. KNN requires
to evaluate the ED between the sensor data and each entry in the dataset.
Hence, three cases are possible:



Fig. 2. Excerpt of data organized in a spreadsheet.

Table 1
Excerpt of data processing results.

Latitude Longitude Count1 PCI1 RSRP1 Count2 PCI2 RSRP2 Count3 PCI3 RSRP3 …

43.5672 13.5134 14 234 �90.4643 10 156 �82.5400 8 472 �91.3375 …

43.5670 13.5135 4 156 �85.1250 1 33 �93.9000 3 254 �90.4667 …

43.5666 13.5138 3 156 �77.0333 2 33 �90.8000 2 234 �84.8000 …

43.5664 13.5139 3 156 �82.7000 1 33 �85.5000 1 252 �90.2000 …

43.5662 13.5140 4 472 �92.0750 2 156 �76.2500 1 33 �75.3000 …

43.5661 13.5141 4 156 �80.8750 2 234 �88.3500 1 33 �79.8000 …

43.5659 13.5143 4 234 �86.4000 2 156 �84.4500 1 33 �91.9000 …

43.5658 13.5145 3 156 �79.3333 3 33 �91.4333 3 234 �80.8000 …

Fig. 3. 20 m clusters.

Fig. 4. Detailed image of some 20 m clusters.
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● Sensor and dataset RF-fingerprints contain parameters from the same
PCIs;

● Sensor RF-fingerprints data contains PCIs that are not present in the
dataset;

● Dataset RF-fingerprints contain PCI that are not present in sensor
data.

In the first case, the ED is easily obtained with the following equation:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRSRP1;r � RSRP1;uÞ2 þ ðRSRP2;r � RSRP2;uÞ2

q
(2)

where subscript u marks the RSRP value at the sensor and subscript r
denotes the RSRP at the reference entry.

In the other two cases, the missing PCI has a power level below a
sensitivity threshold (THR). As an example, with reference to Table 2, let
us assume a case in which the reference entry and the sensor entry do not
share any PCI:

Ddirect ¼ ðRSRP1;r � THRÞ2 þ ðRSRP2;r � THRÞ2 (3)

Dreverse ¼ ðRSRP3;u � THRÞ2 þ ðRSRP4;u � THRÞ2 (4)

The total ED is calculated from Eq. (3) and Eq. (4) as

Dtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ddirect þ Dreverse

p
(5)

Once the ED is calculated, we choose the K nearest point in the dataset
and calculate a weighted average of their geographic positions. Weights
are evaluated based on the ED
Table 2
Euclidean Distance for different PCIs.

Data RSRP PCI RSRP PCI

Dataset value RSRP1,r PCI1,r RSRP2,r PCI2,r
Sensor value RSRP3,u PCI3,u RSRP4,u PCI4,u
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p ¼
1� DiPK

j¼1
Dj

(6)
Fig. 6. CDF of error by varying K.

Fig. 7. Average error by varying K, with THR ¼ �130 dBm and THR ¼ �140
dBm and cluster 20 m � 20 m.
i K � 1

Latitude and longitude estimates are obtained as

Latitudees ¼
XK

i¼1
pi � latitudei (7)

Longitudees ¼
XK

i¼1
pi � longitudei (8)

Once the sensor position is determined, the estimated position error is
calculated. Let “minlat” and “maxlat”, “minlon” and “maxlon” respec-
tively be the smallest and the greatest latitude and longitude values of the
sensor's closest points in the dataset. By using the “spherical law cosine”
formula, we can determine the estimate error as

Derror ¼ arccosðsinðminlatÞ � sinðmaxlatÞþ
þcosðminlatÞ � cosðmaxlatÞ�
�cosðminlat � minlonÞÞ � 6371

(9)

7. Experimental results and performance evaluation

In order to process a large number of measurements, a Matlab script is
developed, which allows for many parameters to be changed in order to
evaluate their effect on the accuracy of the algorithm.

The dataset which collects the measurements made during the ex-
periments has a dimension of 2374. Almost all such measurements refer
to different positions, as already shown in Fig. 2. The data is pre-
processed before classification according to the procedure described in
Section 5. In such a way, the number of “20 m” clusters is 353 (while, for
example, the dataset dimension is 483 when the measurements within a
distance of 10 m are grouped, and becomes 215 for 40 m).

First, tests are performed by varying the K values from 1 to 4. Let us
recall that varying K influences the number of dataset measurements the
algorithm takes to estimate the sensors' positions. By comparing the re-
sults for different values of K, we can see that the best choice is K ¼ 2 as
shown in Fig. 5, which leads to an average error of 91 m. Taking into
account the Cumulative Distribution Function (CDF) in Fig. 6, the error
for the best case (K ¼ 2) is below 109 m for 70% of the total cases.
Increasing the K value leads to worst performances as the algorithm has
to cope with data that has a bigger ED from the reference point. Being an
NB-IoT narrowband signal, it is greatly affected by frequency fading,
which may cause variations of the reference signal's amplitude even for
short displacement of the sensor. The LTE nodes are less affected by this
problem for this technology is based on wideband signals. Nevertheless,
the accuracy values obtained in our analysis are overall comparable with
results that can be found in literature (e.g. Ref. [6]). In order to have a fair
comparison with the results obtained in our work, we consider only rows
Fig. 5. Average error by varying K, with THR ¼ �130 dBm and cluster 20 m �
20 m.
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with LTE 800 MHz in Table 1 of [6]. It is evident that the Positioning
Error (PE), even with the best %-ile (PE of 182 m in the 68%-ile), is larger
than the one obtained by the NB-IoT approach based on the WKNN al-
gorithm, which achieves a PE of 109 m for 70% of the cases.

A further test-set involves a different choice of the threshold value, by
setting it at �140 dBm and varying the K values. Results are shown in
Fig. 7. The algorithm performances are slightly better, with a 1% increase
in performances for the average error in the cases of K ¼ 2 and K ¼ 4.

One more test-set is made by varying the cluster size for averaging the
measurement data. The cluster size is varied from 10 m � 10 m–40 m �
40 m, and the cumulative results are shown in Fig. 8.

The effect of the weight values is assessed by executing the algorithm
and setting the weight value to 1. By this setup, the sensor's position is
estimated using the KNN algorithm. The RF fingerprints in the dataset
Fig. 8. Average error by varying K, with THR ¼ �140 dBm. Cluster
size variation.



Fig. 9. Average error by varying K, with THR ¼ �130 dBm, cluster 20 m � 20
m. KNN vs WKNN.

Fig. 11. Google Earth plot.
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that are closer to the sensor's reported values are not given a big weight
during the position estimation. Results show that the KNN approach is
more error prone than WKNN, as is shown in Fig. 9.

The last test set focuses on the analysis of sensor measures that
contain only one PCI versus other PCIs. The idea behind the test is to
verify that the more PCIs are present in the sensor RF-fingerprint, the
bigger is the accuracy. The tests do not confirm this assumption, as is
shown in Fig. 10. An explanation for this is that, in the 3GPP standard
[26], it is stated that when a BS signal is strong and exceeds a certain
threshold, the UE can stop looking for neighbor BSs. While the signal
being so strong, the interference and noise levels are low, thus leading to
a great accuracy in position estimate.

Test results are also analyzed using Google Earth, by plotting the
position of the reference row in the dataset, the nearest points and the
sensor position estimate. An example is given in Fig. 11.

8. Conclusions and future work

This article focuses on the possibility to use a RF-fingerprinting
approach in the estimation of NB-IoT sensor position. A dataset is built
by using an NB-IoT board equipped with a GPS receiver. Gathered data
are used to implement a location algorithm based on the RSRP values
measured in a real-world scenario. Data are processed with a WKNN
algorithm which shows an average error of 91 m with K ¼ 2. Taking into
account the CDF, the error for the best case (K ¼ 2) is below 109 m for
70% of the total cases. The accuracy values obtained in our analysis are
overall comparable with results that can be found in literature for the LTE
technology which, under similar conditions, produces a positioning error
of 182m in 68% of the cases (as reported in Ref. [6]). This work realizes a
Fig. 10. Average error by varying K, with THR ¼ �130 dBm, cluster 20 m � 20
m. Single vs multiple PCIs.
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Proof of Concept (PoC) of a location technique that can be used on the
NB-IoT sensor networks, without using GPS receivers, thus extending the
life of battery and sensors.

Future work may extend the preliminary outcomes to evaluate the
algorithm performance with different NB-IoT SoCs, which may provide
different radio-parameter values. Field tests have been performed in
dense urban scenarios, and the same could be done in an indoor or rural
environment.
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