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Abstract: Graphene waste has had enormous growth due to many industrial applications. Agriculture
exploits waste through the circular economy, and graphene waste is thereby investigated in this
study as a soil conditioner for improving the physical–hydraulic properties of soil. Experiments were
performed on three differently textured soils amended with traditional soil conditioners (compost,
biochar, and zeolites) and graphene. The conditioners were applied at two different doses of 10%
and 5% dry weight (d.w.) for compost, biochar, and zeolites, and 1.0% and 0.5% d.w. for graphene.
We compared (i) the major porosity classes related to water-retention characteristics (drainage,
storage, and residual porosity), (ii) bulk density, and (iii) van Genuchten water-retention curve (WRC)
characteristics. Graphene application caused the largest decrease in dry bulk density (ρb), lowering
the soil bulk density by about 25%. In fact, graphene had ρb of 0.01 g/cm3. The effects of graphene
were more intense in the finer soil. Compost and biochar showed similar effects, but of lower
magnitude compared to those of graphene, with ρb of 0.7 and 0.28 g/cm3, respectively. Although
zeolites had ρb of 0.62 g/cm3, they showed quite different behavior in increasing the mixtures’ ρb.
Graphene and biochar showed the most pronounced effects in the clayey soil, where storage porosity
showed a reduction of >30% compared to the control. For storage porosity, the graphene treatments
did not show statistically significant differences compared to the control. The results show that, when
the conditioner increased drainage porosity, there was a high probability of a concomitant reduction
in storage porosity. This finding indicates that graphene use for improving soil aeration and drainage
conditions is viable, especially in fine soils.

Keywords: engineering carbonaceous material; physical–hydraulic soil properties; soil porosity;
Dexter’s S index; soil bulk density; innovative soil improver; soil amendment; WRC modeling

1. Introduction

Soil degradation is one of the world’s major problems [1]. Climate change in combina-
tion with the intensive use of agricultural soils may lead to the degradation of important
physical soil characteristics [2–4]. Many studies showed that soil degradation leads to a
significant decrease in agricultural yields, and considering the increase in the global popu-
lation, this could become a serious food-supply problem [5,6]. Soil degradation can lead
to the destruction of the soil structure, compaction, a decrease in water retention, and an
increase in erosion [7], thereby decreasing soil quality. Soil quality affects fundamental soil
processes such as filtration, buffering, immobilization, and the detoxification of organic and
inorganic substances. It also promotes root growth, stores and recycles nutrients, regulates
the movement of water and solutes, and redistributes and supplies them to plants [8].
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Changes in physical soil properties are primarily studied by examining variations in
soil dry bulk density (ρb), specific classes of pore size distribution (PSD), and changes in
the water retention curve (WRC) by analyzing the parameters of the van Genuchten WRC
model [9–11]. Indeed, ρb, pore size distribution, and the water-retention curve are some
of the main indicators used to assess soil quality [12,13]. An increase in soil ρb could lead
to aeration stress [14] and negatively influence biological processes [15]. In addition, pore
size distribution is directly connected to the mobility of liquid and gas in soils, so changes
in this indicator could lead to dramatic changes in soil processes [16]. Moreover, WRC
characteristics such as its maximal slope were proposed by Dexter (2004) [17] and are used
as an index of physical soil quality (also called the S index).

To limit soil degradation and to improve the soil physical characteristics, different
soil conditioners, both organic and inorganic, may be used as soil amendments [18]. Soil
conditioners can improve soil’s hydrophysical characteristics, quality, and fertility [19–25]

Biochar, compost, and zeolites are the most common soil conditioners used for altering
physical, chemical, and biochemical soil properties [26–35]. Biochar presents various
positive functions in agricultural applications and has gained much attention in recent
years [36–38]. The use of biochar can modify the soil aeration and infiltration rates [39–41],
and improve soil quality and crop performance [41]. Compost application can improve
physical soil properties, especially for soils with poor structure and low levels of organic
matter [42]. Indeed, the application of compost can improve soil’s hydrological and physical
characteristics, especially when soil organic matter (SOM) is poor or nonlabile [28,43,44].
Zeolites are mineral soil conditioners that are largely used in improving hydrophysical
soil properties such as infiltration rate, saturated hydraulic conductivity, water holding
capacity, and nutrient retention [45].

Graphene is a type of engineered carbon-based material (ECM) that exhibits excellent
electrical and thermal conductivity, resistance, elasticity, and adsorption capacity [46].
Although graphene production is still very challenging, and we are still far from a large-
scale process, it has boomed exponentially since 2004, so it is very likely that graphene
production scraps and graphene-based waste will increase in the coming years [47]. On
this basis, and given that recent studies showed that the application of graphene to soils
did not lead to an increase in nutrients or heavy-metal leaching [23,24,30,31], it is important
to properly investigate its effects on various soil types to understand if graphene-based
scraps could be eventually employed in agricultural systems, including graphene in an
appropriate circular-economy scheme [48].

The aim of this study is to investigate the changes in physical–hydraulic soil properties
in three different soils amended with traditional soil conditioners (compost, biochar, and
natural zeolites) versus graphene. The analysis focused on comparing the performance
of the four conditioners on the basis of changes in the major porosity classes related to
water-retention characteristics (drainage, storage, and residual porosity), changes in ρb,
and changes in the parameters of the van Genuchten WRC model. Moreover, our results on
the different porosity classes and ρb changes give the opportunity to evaluate and discuss
the capacity of Dexter’s S index as a generalized physical soil quality index.

2. Materials and Methods
2.1. Soils and Soil Conditioners’ Characteristics

Three different soils (A, B, and C) with different textures (Table 1) collected from
three different farmlands located in the Thessaloniki region (Greece) were used in this
study. The soils were collected from 0–10 cm depth with a hand core drill, sieved at
6 mm, and analyzed for soil texture [49], electrical conductivity (EC), pH on soil saturated
paste [50], calcium carbonate (CaCO3) with an acid neutralization method [51], SOM via a
wet oxidation method [52], and bulk density (ρb) after drying at 105 ◦C for 48 h.



Water 2023, 15, 1297 3 of 18

Table 1. Characteristics of the three soils used in this study.

Parameter Soil A Soil B Soil C

USDA Class Loamy Sand (LS) Loam (L) Clay (C)
Sand % 78 48 32
Silt % 16 38 18

Clay % 6 14 50
ρb g/cm3 1.53 1.26 0.95

pH - 7.8 7.77 7.72
EC ms/cm 1.138 0.991 1.334

CaCO3 % 8 5.8 9.5
SOM % 3.22 1.51 2.34

Four different soil conditioners were purchased from commercial manufacturers and
used in this study (Table 2). Biochar (<5 mm) was produced by BioDea, Civitella in Valdichi-
ana Italy, through gasification from wood. The compost (<3 mm) was vermicompost from
cow manure produced by La Terra Di Gaia, Magliano de’ Marsi Italy. The zeolites (<70 µm)
were a mixture of 67.5% clinoptilolite and 32.5% mordenite produced by SBM Life Science,
Milano Italy. Graphene particles were scraps of graphene production of the Directa Plus
company. Their particle size was analyzed via dry sieving methods [53]. The pH was
assessed at a liquid-to-solid ratio (L/S) of 2.5:1. Soil organic matter (SOM) was analyzed
using the titration-based wet combustion method [54]. Total nitrogen was determined
using a Kjeldahl apparatus [55], while the cation exchange capacity (CEC) was measured
spectrophotometrically using the cobaltihexamine chloride method [56].

Table 2. Characteristics of the four soil conditioners used in this study.

Parameter Compost Biochar Zeolites Graphene

>63 µm % 90 81 3 0
2–63 µm % 9 5 8 0
<2 µm % 1 14 89 100

C % 36.7 68.7 <0.1 >99.0
N % 2.44 0.44 <0.1 <0.1

pH - 7.42 11.33 9.42 8.61
ρb g/cm3 0.7 0.28 0.62 0.01

CEC cmol/kg 170 38 221 18.3
η % 73 89 77 99
k m/s 2.53 × 10−5 4.13 × 10−4 3.23 × 10−8 4.58 × 10−10

2.2. Experimental Setup

Soils were mixed with one of each improver used in this study and placed in 10 cm
high pots with a rectangular base (40 × 10 cm). Apart from the control soils (0%), the
percentages of the conditioners applied to the soils were 5% and 10% in dry weight for
compost, biochar, and zeolites, and 0.5% and 1% in dry weight for graphene due to its
extremely low ρb (~0.01 g cm−3). In fact, using 5% or 10% of graphene meant that there was
volumetrically more graphene than soil in the pot. To ensure mixing uniformity, pots were
then buried in the field, left undisturbed for 6 months, and subjected to natural alternating
wetting–drying cycles under free atmospheric conditions from October 2021 to March 2022
(Figure 1). After this procedure, soil samples were collected by inserting metal cores (height,
4.8 cm; diameter, 5.1 cm) in the pots. For each treatment, three replicate samples were
obtained. WRCs were determined on the soil samples using the ceramic pressure plate
method [57–59] at 0.1, 0.33, 0.6, 1, 2, 3, 5, 10, and 15 bar; at the end of the measurements, ρb
was also measured.
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Figure 1. Experimental setup. (1) Soils were collected from three farmlands; (2) soil and improver
were mixed in pots, buried in a field, left undisturbed for 6 months, and subjected to natural wet–dry
cycles; (3) cylinder soil cores were collected from the pots; (4) cylinder soil cores were saturated;
(5) cylinder soil cores were charged in the pressure-plate apparatus; (6) cylinder soil cores where
weighed after each pressure level was applied.

2.3. Methods of Data Analysis

One of the most popular procedures for soil porosity analysis is the quantification
of porosity attributes based on the hydraulic concept, which divides pores into three ma-
jor classes: (i) drainage or air-filled porosity with an equivalent diameter greater than
30 µm that drains at matric potentials below 100 cm H2O; (ii) storage porosity with equiv-
alent diameter between 30 and 0.2 µm that drains at matric potentials between 100 and
15,000 cm H2O (also called available moisture); (iii) residual porosity with equivalent
diameter < 0.2 µm [10,60,61]. The three porosity classes were directly measured from
the measured water-retention data considering the aforementioned thresholds of matric
potentials.

The conversion between matric potential and pore equivalent diameter assumed that
pores were cylindrical according to the formula used in a similar study by Aschonitis et al.
(2012) [11]:

D =
4σ cos(γ)

ρwg|h| (1)

where σ is the surface tension (N m−1), γ is the contact angle of the water curvature in soil
pores, ρw is the density of water (kg m−3), g is the acceleration of gravity (m s−2), and h is
the water pressure head (m). The simplified form of Equation (1) is D(µm) = 2980/h(cm).
Considering the above, the comparison of the porosity classes between the control, and the
mixtures of soils and conditioners can provide significant information about changes in
drainage/aeration quality and the availability of soil moisture (i.e., storage porosity) due
to the application of soil conditioners.

An additional way for analyzing porosity attributes is through the specific water
capacity C(h) (cm−1), which is equal to the slope of the WRC at any given pressure head.
Dexter (2004) [17] proposed the use of the maximal slope at the inflection point of the WRC
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estimated via gravimetric soil moisture W (WRC free from bulk density) at the ln–h axis as
an index of physical soil quality (also called the S index). When the water-retention data
are modelled using a WRC model, C(h) can also be modelled, providing continuous values
along the range of water pressure head level. Aschonitis et al. (2015) [62] analyzed various
expressions of the S index using dθ/dh, dW/dh, dθ/d(lnh), and dW/d(lnh) on the basis of
the van Genuchten (1980) [63] WRC equation. From the comparison of the four expressions,
dθ/dh and dW/dh showed better correlation performance with soil physical properties,
where the former was recommended as the safest method for analyzing nondeformable
soils because its theoretical basis is more relevant to porosity attributes, which are always
expressed in terms of volume rather than mass, and the latter was suggested for analyzing
deformable soils. In this study, water-retention data, denoted as θ(h), were modeled using
the following equation [63]:

θ = θr +
θs − θr[

1 + (a|h|)n]m (2)

where θ is the water content (cm3 cm−3) at a given pressure head h (cm), θs is the saturated
water content (cm3 cm−3), and θr is the residual water content (cm3 cm−3), a (cm−1). Pa-
rameters n and m are dimensionless and represent the shape of the curve. The relationship
between n and m is expressed as m + 1/n = i (i = 1, 2, ...; in this study, I = 1 was used. Thus,
m = 1 − 1/n). θs was not considered a fitting parameter and was set to be equal to the
measured soil moisture at saturation (equivalent to total porosity). Thus, only a, n, and
θr were fitted using the RETC code [64]. The specific water capacity based on the van
Genuchten model parameters based on dθ/dh for nondeformable soils was estimated as
follows [11,62]:

dθ

dh
= C(h) = −mn(θs − θr)

[
1 + (ah)n]−m−1anhn−1 (3)

At a specific pressure head where the curvature of Equation (2) is zero {d2θi/d(hi)2 = 0},
the θ(h) function presents an inflection point (θi,hi). At that point, slope Si = dθi/d(hi)
corresponds to its maximal absolute value. Slope Si at the inflection point is given by the
following equation [11,62]:

Si = C(hi) = −m1+mna(θs − θr)[1 + m]−m−1 (4)

where “−” indicates a descending slope, which is why the magnitude change of S index
was based on the absolute value |Si|.

2.4. Statistical Analysis

The effects of soil conditioners on the parameters of drainage, storage, residual, and
total (measured θs) porosities, and the fitted van Genuchten parameters (a, n, θr), |Si| and
ρb for the three soils were analyzed using two-way ANOVA followed by least-significant-
difference (LSD) multiple-range tests for detecting statistically significant differences at the
0.05 level among the treatments on the basis of all soils and among soils on the basis of all
treatments. One-way ANOVA was conducted, followed by LSD multiple-range tests to
separately identify statistically significant differences among treatments for each soil. The
significance level was set to 0.05. To discuss specific observations related to soil quality
index |Si|, regression analysis and Spearman correlations were performed between |Si|
and the three porosity classes (drainage, storage, residual) and ρb using all individual pairs
of measurements from all soils and treatments. Statistical analyses were conducted using
STATGRAPHICS Centurion 18 software developed by Statgraphics Technologies Inc.

3. Results
3.1. Water-Retention Curves

Figure 2 shows the measured values of (θ, h) pairs with the fitted van Genuchten curves
for each soil amended by different treatments of compost, biochar, zeolite, and graphene.
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All the soil conditioners increased the WRC at near-saturation conditions in all the soils in
comparison to the controls, but zeolites had the opposite effect. Graphene exerted a visible
change in WRC in all soils compared to the other soil conditioners, especially keeping in
mind that it was employed with one fewer orders of magnitude in weight with respect to
the other soil conditioners.
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Figure 2. WRCs of all the treatments for (upper panel) Soil A, (middle panel) Soil B, and (lower
panel) Soil C. Symbols refer to the observed median values (obs.), while lines refer to the fitted van
Genuchten model (fit.). The min amount was 5% dry weight for compost, biochar, and zeolites, and
0.5% dry weight for graphene. The max amount was 10% dry weight for compost, biochar, and
zeolites, and 1% dry weight for graphene.

3.2. Statistical Analysis

The statistics of two-way ANOVA (soil type, treatment, soil type × treatment) for the
aforementioned parameters are given in Table 3, while the LSD comparisons between treat-
ments based on all soils and between soils based on all treatments for each parameter are
given in Figures 3 and 4, respectively. The separate mean values of the studied parameters
for Soils A, B and C, and the results of the LSD multiple-range tests are given in Figures 5–7,
respectively (the mean values and their standard deviations are provided in Supplementary
Table S1). The results of the two-way ANOVA (Table 3) highlight that the individual soils
and treatment effects, and their combinations were significant at the 0.05 level for all the
studied parameters except the fitted n and θr van Genuchten parameters, where only the
soil effect was statistically significant. For this reason, further discussion regarding the
treatments’ effects on these two parameters is not provided.
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Table 3. Two-way ANOVA of soil types and treatment effects on different porosity attributes, van
Genuchten parameters, and ρb.

Source Sum of Squares Df Mean Square F-Ratio p-Value

Drainage porosity

Factor A: soil 0.164 2 0.082 119.71 <0.0001
Factor B: treatment 0.132 8 0.016 23.97 <0.0001
Factor A × Factor B 0.117 16 0.007 10.67 <0.0001

Residual 0.037 54 0.001
Total (corrected) 0.450 80

Storage porosity

Factor A: soil 0.062 2 0.031 32.87 <0.0001
Factor B: treatment 0.028 8 0.004 3.75 0.0015
Factor A × Factor B 0.086 16 0.005 5.68 <0.0001

Residual 0.051 54 0.001
Total (corrected) 0.227 80

Residual porosity

Factor A: soil 0.204 2 0.102 211.49 <0.0001
Factor B: treatment 0.019 8 0.002 5.04 <0.0001
Factor A × Factor B 0.022 16 0.001 2.88 0.0019

Residual 0.026 54 0.000
Total (corrected) 0.272 80

Total porosity (measured θs)

Factor A: soil 0.343 2 0.172 492 <0.0001
Factor B: treatment 0.110 8 0.014 39.31 <0.0001
Factor A × Factor B 0.018 16 0.001 3.14 0.0008

Residual 0.019 54 0.000
Total (corrected) 0.490 80

a

Factor A: soil 0.239 2 0.119 37.43 <0.0001
Factor B: treatment 0.212 8 0.026 8.29 <0.0001
Factor A × Factor B 0.397 16 0.025 7.78 <0.0001

Residual 0.172 54 0.003
Total (corrected) 1.020 80

n

Factor A: soil 1.444 2 0.722 12.4 <0.0001
Factor B: treatment 0.230 8 0.029 0.49 0.8549
Factor A × Factor B 0.552 16 0.035 0.59 0.8758

Residual 3.146 54 0.058
Total (corrected) 5.373 80

θr

Factor A: soil 0.074 2 0.037 8.74 0.0005
Factor B: treatment 0.025 8 0.003 0.75 0.6498
Factor A × Factor B 0.114 16 0.007 1.7 0.0761

Residual 0.228 54 0.004
Total (corrected) 0.441 80

|Si|

Factor A: soil 1.10 × 10−3 2 5.50 × 10−4 31.15 <0.0001
Factor B: treatment 1.18 × 10−3 8 1.47 × 10−4 8.33 <0.0001
Factor A × Factor B 2.02 × 10−3 16 1.26 × 10−4 7.16 <0.0001

Residual 9.53 × 10−4 54 1.76 × 10−5

Total (corrected) 5.25 × 10−3 80

ρb

Factor A: soil 4.288 2 2.144 964.12 <0.0001
Factor B: treatment 1.162 8 0.145 65.33 <0.0001
Factor A × Factor B 0.111 16 0.007 3.11 <0.0001

Residual 0.120 54 0.002
Total (corrected) 5.681 80
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3.3. Drainage Porosity

For drainage porosity (pores > 30 µm), on the basis of the values of all soils (Figure 3a),
graphene treatments showed the largest increase compared to all the other treatments and
control. Zeolites was the only soil conditioner that did not show an increase in drainage
porosity in both treatments of 5% and 10%, with a slight indication that its use may reduce
drainage porosity. The ranking of the remaining soil conditioners based on the drainage
porosity enhancement showed the following order for all the soils: graphene > biochar >
compost (Figure 3a). The individual effects of the 0.5% and 1% graphene treatments for
each soil were more intense in the clayey soil (Soil C), where drainage porosity was more
than double than that of the control (Figure 7a). In Soil A, both graphene treatments showed
a significant increase in drainage porosity in comparison with the control (Figure 5a), but
with lower intensity than that of Soil C. In Soil B, the increase in drainage porosity for
both graphene treatments in comparison with the control (Figure 6a) was not statistically
significant.

3.4. Storage Porosity

For storage porosity (pores between 30 and 0.2 µm), on the basis of the values of all
soils (Figure 3b), graphene treatments did not show statistically significant differences
compared to the control. The only treatment that showed a statistically significant increase
in storage porosity compared to the control was 5% compost, but this finding was not
repeated in the case of 10% compost (Figure 3b). The pair comparisons between the minimal
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and maximal conditioner doses shown in Figure 3b indicate that the maximal dose of the
specific conditioners may lead to a reduction in storage porosity. Regarding their individual
effects for each soil, both the zeolite treatments and 10% compost showed a larger decrease
in storage porosity in comparison with the control (Figure 5b). The 1% graphene and
10% biochar treatments showed the most pronounced effects in clayey soil (Soil C), where
storage porosity showed a reduction of >30% compared to the control (Figure 7b).
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3.5. Residual Porosity

For the case of residual porosity (pores < 0.2 µm) on the basis of the values of all soils
(Figure 3c), graphene treatments only showed significantly higher values than those of
the control for the maximal dose of 1%. Pair comparisons between the small and the large
doses of the conditioners shown in Figure 3c indicate that the larger % doses of organic
amendments in the soil may lead to an increase in residual porosity. The individual effects
of treatments on residual porosity for each soil (Figures 5c, 6c and 7c) tended to be similar
to the general mean trends observed in Figure 4c in all soils.
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3.6. Saturated Water Content

On the basis of the values of all soils (Figure 3d), graphene treatments showed the
largest increase in θs values compared to all the other treatments and control. The 10%
zeolite treatment was the only one that did not show an increase in θs, while 5% showed an
increase. The ranking of the conditioners based on θs enhancement is as follows: graphene
> biochar ~ compost > zeolites (Figure 3d). The individual effects of treatments on θr for
each soil (Figures 5d, 6d and 7d) tended to be similar to the general mean trends observed
in Figure 3d in all soils.

3.7. Parameter a

For the case of the fitted a parameter of van Genuchten, on the basis of the values of all
soils (Figure 3e), graphene treatments showed the largest increase compared to all the other
treatments and control. Zeolites were the only soil conditioner that did not show an increase
in drainage porosity in either treatment, with a slight indication that its use may reduce the
a parameter. The ranking of the conditioners based on the drainage porosity enhancement is
as follows: graphene > biochar > compost (Figure 3e). The individual effects of graphene on
the a parameter for each soil were intense in all soils (Figures 5e, 6e and 7e), but extremely
intense in the clayey soil (Soil C), where the a parameter was more than 20 times larger
than that of the control in the case of 1% graphene (Figure 7e). The a parameter is related
to the air entry pressure, and its trends due to treatments effects were thereby similar to
the changes in drainage porosity in all soils. However, in Soil A, 10% compost showed the
largest increase in the a parameter in comparison with the control and the other treatments
(Figure 5e), while none of the used treatments showed a significant effect on this parameter
in Soil B (Figure 6e).
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3.8. WRC Slope at Inflection Point

Graphene treatments showed the largest increase in |Si| compared to the other
treatments and control on the basis of the values of all soils (Figure 3h). Zeolites were
the only conditioner that did not show an increase in |Si| in either treatment, with a
slight indication that its use may reduce Si. The ranking of the conditioners based on |Si|
enhancement is as follows: graphene > biochar > compost (Figure 3h). The individual
effects of graphene on |Si| were intense for each soil (Figures 5h, 6h and 7h), but extremely
intense in the clayey soil (Soil C), where |Si| was more than 15 times larger compared to
that of the control in the case of 1% graphene (Figure 7h). The effects of the treatments
on |Si| followed similar trends to those of the a parameter and drainage porosity in all
soils. Furthermore, in Soil A, 10% biochar and 10% compost showed the largest increase in
|Si|, while there were not significant changes in Soil B compared to the control and other
treatments.

3.9. Soil Bulk Density

Graphene treatments showed the largest decrease in ρb compared to all the other
treatments and control in all soils (Figure 3i). Zeolites were the only soil conditioner that
showed a statistically significant increase in ρb in the treatments of 5 and 10%. The ranking
of the soil conditioners based on ρb decrease was as follows: graphene > biochar≈ compost
(Figure 3i). The ρb decrease induced by graphene compared to the control was always
statistically relevant for all the tested soils (Figures 5i, 6i and 7i). This was clearly due to
the extremely low ρb of graphene (Table 2).
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4. Discussion

Although graphene was compared to traditional soil improvers in previous stud-
ies [23–25,31], in this study, for the first time, changes on soil physical characteristics were
evaluated after graphene had been applied to the soil. The previous studies were more
focused on nutrient leaching and solute transportation without considering the effects on
soil porosity, water-retention curve, and soil bulk density.

4.1. WRCs Modeling Issues

One of the key issues raised during result analysis was the modelling of WRCs using
the van Genuchten model. During preliminary modelling trials, fitting was performed
using all parameters of the van Genuchten equation (θs, a, n, θr) as fitting parameters. This
procedure led to a very high R2, and θs values that did not follow the trends of the measured
θs due to treatment effects. For this reason, it is strongly recommended to perform the
fitting of WRCs only on a, n, and θr when the process includes changes in total porosity.

4.2. Drainage Porosity Changes

The results of this study on graphene as soil improver show its capacity to significantly
increase drainage porosity (Figure 3a), which also resulted in a significant increase in the
total porosity in all the studied soils (Figure 3d), with the greatest changes found in the
drainage porosity of clayey soil (Figure 7a). Graphene affected drainage porosity more
than classical soil conditioners do, suggesting its potential use in improving soil aeration
and drainage conditions. The latter is important to avoid the formation of dead pores [65],
and to mitigate the effects of intensive tillage and wheel traffic that usually lead to the
destruction of aggragates and soil compaction [66]. On the other hand, special attention
should be paid to loamy agricultural soils since a further increase in their drainage porosity
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due to graphene incorporation may not be a desirable change because it may lead to
greater losses of water and nutrients or even the transport of graphene particles towards
groundwater bodies with unknown implications to human health. For this reason, its use
for improving soil aeration and drainage conditions could be eventually appropriate only
in fine soils when they face drainage problems. Compost and biochar could also be applied
on the same type of soils since they showed similar effects on drainage porosity as those of
graphene, but of lower magnitude, keeping in mind that the applied graphene dose was
one order of magnitude less than those of the other soil conditioners.

4.3. Storage Porosity Changes

Storage porosity, which is also equivalent to the available moisture for plants, showed
a general trend where the maximal dose of all conditioners had lower values of storage
porosity compared to their respective minimal doses and to the control (Figure 3b; mainly
in the clayey soil, Figure 7b). Graphene and biochar maximum doses treatments also
showed the highest decrease in storage porosity (Figure 3b), and this may lead to unde-
sirable reduction in storage porosity, consequently reducing the available water for plant
growth. Their use could be valuable only in fine textured soils with inherently high storage
porosity, which are poorly drained or compacted, where the reduction in storage porosity
is counterbalanced with better drainage and aeration conditions. Their employment could
be valuable in sandy soils, ordinarily dominated by much larger pores than those of the soil
conditioner [67]. This could be the probable reason why graphene did not increase leaching
of nutrients and heavy metals in recent studies where it was used as soil amendment in a
sandy Calcisol [24,25,31].

4.4. Residual Porosity Changes

A general trend was observed in residual porosity where the maximal dose of all
conditioners showed higher values compared to their respective minimal doses and to
the control (Figure 3c). It may be desirable to increase the residual porosity in dry envi-
ronments because the soil may be less susceptible to cracking [68], while it may be useful
to microorganisms that have access to microporous water. Specific results about residual
porosity may not correspond to a real increase in pores < 0.2 µm because the retention
characteristics of organic materials do not follow general capillary theory (except in the
case of zeolites, which are not an organic or carbon-based material), given that a significant
amount of water is retained in organic constituents [61].

4.5. WRC Slope at Inflection-Point Changes

Figure 8 shows that, using the pooled individual pairs of measurements from all soils
and treatments, |Si| had a statistically significant positive correlation with drainage poros-
ity (Figure 8a), a statistically significant negative correlation with storage porosity and ρb
(Figure 8b,d) and a nonstatistically significant correlation with residual porosity (Figure 8c).
The results of Figure 8a–d show that the |Si| increase was mainly associated with the
increase in drainage porosity at the expense of storage porosity, with a parallel reduction in
ρb, which is a desirable change for fine soils with drainage or compaction problems, but not
for other soils where storage porosity is more important since it is equivalent to the plants’
available soil moisture [69,70]. Moreover, such a change may lead to higher nutrient losses
in medium-textured and coarse soils. This finding suggests that |Si| cannot be used as
a generalized soil quality index for all soil types, while its high correlation with drainage
porosity suggests its use as a drainage and storage capacity index.
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4.6. Soil Bulk Density Changes

Graphene showed superior performance in reducing soil ρb. Combining its effect
on reducing ρb with the increase in drainage porosity, it could significantly reduce the
weight of moist soil, especially in fine soils. The latter is often referred to as a cause of
root penetration resistance reduction [71], and used to reduce the energy consumption and
efficacy increase in tillage operations [72,73]. The above-mentioned claims are significantly
important and should be further assessed in future studies. A reduction in ρb could also be
accomplished via compost and biochar incorporation, but with lower magnitude compared
to that of graphene.

5. Conclusions

In this study, the effects of graphene incorporation on physical–hydraulic soil prop-
erties were evaluated in parallel with traditional soil conditioners (compost, biochar, and
zeolites) under controlled laboratory experiments on three differently textured soils. The
results showed the following:

• Graphene promoted the largest increase in drainage porosity, total porosity, and
the van Genuchten parameter, and the largest decrease in ρb compared to the other
conditioners. The effects of graphene were the highest in the finer soil. Compost and
biochar showed similar but lower-magnitude effects compared to those of graphene.
Zeolites showed quite different behavior by increasing soil ρb with nonevidential
effects on improving the physical–hydraulic soil properties of the specific soils.

• When the conditioner increased drainage porosity, there was a high probability of a
parallel reduction in storage porosity.

• The S index had a high positive correlation with drainage porosity, and a high negative
correlation with storage porosity and ρb.
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• Compost is more suited for soils with low fertility compared to graphene or biochar
because the improvement in soil’s hydraulic properties is less significant without the
parallel enhancement of soil nutritional status.

• The overall performance of zeolites on improving hydraulic soil properties was ques-
tionable, and they should be used for improving hydraulic soil properties only after
testing with the studied soil.

In general, the changes in physical–hydraulic soil properties due to the use of soil
conditioners were strongly associated to the particle size and pore size distribution of the
initial soil; due to this, prior testing before application is strongly recommended for all
soil conditioners. The results of the study are promising for the application of graphene to
agricultural soils, suggesting the need for further investigations at the field scale to mitigate
drainage and compaction problems of fine soils.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15071297/s1. Table S1: mean ± st. dev. values of different
porosity attributes, van Genuchten parameters, and studied Soils A–C under the effects of different
doses of the four soil conditioners (compost, biochar, zeolites, and graphene) with multiple-range
LSD tests at the 0.05 level and one-way ANOVA results (F-ratio, p-value).
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