Expert Systems With Applications 249 (2024) 123530

Contents lists available at ScienceDirect Eipert

Systems
wi
Applications %

An International
Journal

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Check for

DeepReality: An open source framework to develop Al-based augmented e
reality applications

Roberto Pierdicca ®, Flavio Tonetto ”, Marina Paolanti ¢, Marco Mameli ¢, Riccardo Rosati 9,
Primo Zingaretti ¢

a Dipartimento di Ingegneria Civile, Edile e dell’Architettura (DICEA), Universita Politecnica delle Marche, Via Brecce Bianche, 12, 60131 Ancona, Italy

b Sinergia, Viale Goffredo Mameli, 44, Pesaro, 61121, Italy

¢ Department of Political Sciences, Communication and International Relations, University of Macerata, Via Don Minzoni 22A, Macerata, 62100, Italy

d VRAI - Vision Robotics and Artificial Intelligence Lab, Dipartimento di Ingegneria dell’Informazione, Universita Politecnica delle Marche, via Brecce Bianche
12, Ancona, 60131, Italy

ARTICLE INFO ABSTRACT

Keywords: Augmented reality (AR) and Artificial Intelligence (AI) are technologies pioneers in innovation and alteration in

Deep learning several domains. AR allows the creation of an entirely new and interactive experience for users. However, there

Au_gmemed reality are several drawbacks in developing AR applications, such as the marker identification process and the creation

X;l;Zundation of content itself. These are very time-consuming procedures and require ad-hoc development. The advantages

Barracuda of using Al to solve AR limitations have recently been explored in literature. Motivated by these findings, in
this paper it is proposed DeepReality, a software toolkit plug-in for Unity 3D. It is conceived for allowing
developers to integrate any Deep Learning (DL) models into Unity, through AR Foundation and Barracuda
inference engine. DeepReality is aimed at simplifying and streamlining the usage of DL models in conjunction
with AR. As such, users skilled in Unity and DL can easily create mobile applications (iOS and Android)
to: extract visual features of real-world objects (framed with the device camera) via DL; Show on-screen
content on top of those real-world objects, via AR. DeepReality performs object semantic processing within the
scene, and extended semantic effects for incongruent objects, overcoming the environmental tracking, which
is feature-based. In order to test DeepReality usability, experiments have been performed on the execution
time and memory usage data, demonstrating the feasibility and possibility of integrating and using DNNs
models in mobile applications for AR. The complexity analysis confirms that DeepReality can be completely
executed on mobile devices. DeepReality is also open-source and it is freely available in the Unity asset store.
By fostering accessible AI-AR integration, DeepReality addresses key shortcomings in existing approaches,
encapsulating contributions such as versatile DL integration, open-source accessibility, operational validation,
and comprehensive metrics analysis. DeepReality empowers developers to transcend boundaries, enriching AR
applications with AI’s transformative potential. Our proposed framework fosters benchmarking, comparison,
and a future harmonised by AR-AI synergy.

1. Introduction virtual, mixed, and augmented reality (VR/MR/AR) solutions, and in
particular the coalescing of all three in eXtended Reality (XR), as
The increasing number of emerging immersive technologies are consolidated ways to convey contents in different scenarios (Banfi,
being considered to improve and enhance procedural execution of Brumana, & Stanga, 2019; Vaswani et al., 2017).
applications in many domains (e.g., manufacturing, education, retail, AR is a notable example of such technologies, which has grown up
tourism, etc.) (Stanney et al., 2022). Thanks to technological advances,
companies and research centres are investing and acting to spread these
applications, whilst the end users are growing their interest given the
irrefutable usefulness to facilitate daily tasks (Sereno, Wang, Besancon,
McGuffin, & Isenberg, 2020). The literature assesses the adoption of

as one of the most prominent in the present era. AR can be described as
an extended variant of the physical world overlaid with digital contents
bridging the real and virtual environments (Ghasemi, Jeong, Choi,
Park, & Lee, 2022). Up to few years ago, the exploitation of AR had the

* Correspondence to: Via Brecce Bianche 12, Ancona, 60131, Italy.
E-mail addresses: r.pierdicca@staff.univpm.it (R. Pierdicca), ftonetto@sinergia.it (F. Tonetto), marina.paolanti@unimec.it (M. Paolanti),
m.mameli@pm.univpm.it.it (M. Mameli), r.rosati@pm.univpm.it.it (R. Rosati), p.zingaretti@univpm.it (P. Zingaretti).

https://doi.org/10.1016/j.eswa.2024.123530

Received 6 July 2023; Received in revised form 13 February 2024; Accepted 16 February 2024

Available online 28 February 2024

0957-4174/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
mailto:r.pierdicca@staff.univpm.it
mailto:ftonetto@sinergia.it
mailto:marina.paolanti@unimc.it
mailto:m.mameli@pm.univpm.it.it
mailto:r.rosati@pm.univpm.it.it
mailto:p.zingaretti@univpm.it
https://doi.org/10.1016/j.eswa.2024.123530
https://doi.org/10.1016/j.eswa.2024.123530
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2024.123530&domain=pdf
http://creativecommons.org/licenses/by/4.0/

R. Pierdicca et al.

main aim of providing the so-called “wow effect” to the public. Nev-
ertheless, the more the technology becomes widespread, the more the
expectation increases. Broadly speaking, the technological limitations
hampering the diffusion of AR applications are going to be overcome,
thanks to the growing computational capabilities of smartphones and
tablets. However, there are still many challenging issues that are wait-
ing to be discovered and improved in AR-related fields. One of the
major difficulties is that there are several AR markers on the market,
each with its own unique encoded information algorithm (Nguyen,
Tran, Le, & Yan, 2017). They usually require the users to modify their
original material contents in some way, either partially or completely.
Another problem is the marker identification process, which utilises
the standard computer vision-based feature extraction approaches, such
as scale-invariant feature transformations or histograms of oriented
gradients (Lowe, 1999), for classification tasks. These mathematical
methods are vulnerable to unanticipated real-world lighting, marker
orientation, and unexpected noises (Gammeter, Gassmann, Bossard,
Quack, & Van Gool, 2010).

Another great bottleneck, identified in the literature (see Section 2)
is the creation of contents itself. In fact, it is a very time-consuming
process and requires ad-hoc development. In other words, to create
an AR experience, it is necessary to choose the points of interest,
create digital content, and then develop the mobile application. If
this is affordable for very specific requirements or tasks, it would be
impracticable for a real generalisation of the process. Many studies
have shown that virtual contents, which are displayed as additional
layers, must be conveyed according to both the choices of the domain
experts and according to the preferences of the users (Naspetti et al.,
2016; Pierdicca et al., 2018), ad-hoc generating suggestions (Moreno-
Armendariz et al., 2022), and supporting the navigation (Lin, Chung,
Chou, Chen, & Tsai, 2018). This aspect represents a great limitation:
it requires that the contents displayed in the application are created
a priori by using software external to the application. The request
for working outside of the application context by inexperienced users
in content creation for AR applications has hampered its horizontal
exploitation in the broader market.

Artificial Intelligence (AI) algorithms, particularly Deep learning
(DL) approaches, demonstrate outstanding performance in several ap-
plications, especially image recognition through Convolutional Neural
Networks (CNNs). Recently, research papers propose the use of CNNs
as useful tools to overcome the standard computer vision difficulties in
the AR marker identification process (Lalonde, 2018; Park, Kim, Choi,
& Lee, 2020; Rao, Qiao, Ren, Wang, & Du, 2017). By the availability
of large-scale datasets and computational power, DL approaches have
been used in visual recognition tasks (Lampropoulos, Keramopoulos,
& Diamantaras, 2020; Zhao, Zheng, Xu, & Wu, 2019). Therefore, to
facilitate the development of AR experiences by overwhelming the
above-mentioned limitations, the following assumption has been con-
ceived: albeit being two distinct technologies, AR and Al are disruptive
technologies that can be combined to obtain unique and immersive
experiences. Starting from these premises, this work focuses on inte-
grating DL models into the pipeline of AR development. Our approach
resulted in the integration of pre-trained neural networks to increase
the performances of both object detection and classification in AR envi-
ronment. DeepReality, a proof-of-concept system that allows developers
to integrate DL models into Unity3D, is developed to demonstrate the
feasibility of our methodology. At a glance, DeepReality is aimed at
simplifying and streamlining the usage of DL models in conjunction
with AR. As such, users skilled in Unity and DL can easily create mobile
applications (i0S and Android) to:

 Extract visual feature of real-world objects (framed with the
device camera) via DL;

» Show on screen content on top of those real-world objects, via
AR.

Expert Systems With Applications 249 (2024) 123530

Due to its data-driven nature, DeepReality can be generalised to
any DL model that the user might integrate within the AR application,
overcoming the current limitation given by the software development
kit (SDK) providers. The developed software toolkit plugin for Unity 3D
is distributed in open-source mode and documented with the sequences
and classes necessary for its implementation. Tests were conducted
with several off-the-shelves devices to prove that the framework can be
adopted in operational environments. Besides, important metrics and
statistics have been collected, in order to highlight pros and cons of
the proposed approach. The main concept is schematically depicted in
Fig. 1, which highlights the important contributions of this research. In
summary, this paper, aside from extending the system and the analysis
presented in Pierdicca, Tonetto, Mameli, Rosati, and Zingaretti (2022),
aims to fulfil the gap in AR applications development by (i) the devel-
oping and deploying of a Unity plug-in to enable the combination of AI
in AR mobile Apps, ii) the integration of pre-trained Deep Neural Net-
works (DNNs) models within Unity, which will serve as a benchmark
for future comparison and implementation, iii) a real-environment test
to demonstrate the effectiveness of our approach and iv) the definition
of a lower bound computational capacity of a mobile device to support
the execution of the neural network. The source code and demos can
be found at https://github.com/SinergiaGit/DeepReality and https://
assetstore.unity.com/packages/tools/integration/deepreality-201076.

DeepReality stands as a technological achievement, powered by
its robust data-driven architecture. Its defining strength lies in the
seamless integration of a diverse range of deep learning models into
augmented reality (AR) applications. This innovative approach allows
developers to overcome the constraints of conventional software devel-
opment kits (SDKs), enabling them to craft AR experiences enriched
with a versatile palette of deep learning capabilities. A pivotal stride
in DeepReality’s journey is the creation of an open-source Unity 3D
plugin, meticulously designed to amplify accessibility for developers.
This plugin serves as the foundational building blocks for effortless
framework implementation, empowering developers to seamlessly in-
corporate the DeepReality framework into their projects. Rooted in
openness, this approach fosters collaboration and spurs continuous re-
finement, nurturing a dynamic community-driven culture that ensures
sustained accessibility and adaptability. Moreover, the tangible value of
DeepReality is substantiated through rigorous validation. Rigorous test-
ing across a diverse range of commonly available devices underscores
its practicality in real-world scenarios. This validation underscores
its adaptability across various hardware configurations and everyday
contexts, establishing it as a robust solution poised for widespread
adoption. Deep at its core, DeepReality embraces a metrics-driven phi-
losophy. By meticulously collecting and analysing performance metrics,
the framework uncovers insightful revelations about its strengths and
potential areas for enhancement. This data-centric approach empow-
ers developers with informed decision-making capabilities, enhancing
the tangible benefits of integrating DeepReality into their projects.
In essence, DeepReality serves as a bridge that seamlessly connects
the realms of AR and Al Its contributions span a wide spectrum,
encompassing adaptable data-driven integration, open accessibility,
real-world validation, and meticulous metrics analysis. This framework
empowers developers to transcend conventional boundaries, infusing
AR applications with the transformative potential of Al As it achieves
this, DeepReality sets the stage for benchmarking, comparison, and a
future where AR and AI harmoniously converge.

The paper is structured as follows: after the state of art presenting
different papers that use DL in the development of AR applications
(Section 2), the methodology is described in Section 3, which is the
core of DeepReality. Section 4 presents the experiments conducted
followed by the Complexity Analysis (Section 5). Finally, in Section 7,
conclusions and discussion about future directions for this field of
research are drawn.

https://github.com/SinergiaGit/DeepReality
https://assetstore.unity.com/packages/tools/integration/deepreality-201076
https://assetstore.unity.com/packages/tools/integration/deepreality-201076
https://assetstore.unity.com/packages/tools/integration/deepreality-201076

R. Pierdicca et al.

Expert Systems With Applications 249 (2024) 123530

1= \
s r
(& | @ ©
== C
Camera Model e . . AR
Stream [Mancceman AR projection Anchoring 3D Object Al4AR e herencs
2y
Traninig
Dataset @
« []
e tf2
3 > Tﬂ‘i’:::lg e > | Interoperability
2|
Model@ ’
Architecture _ @ ONNX
en: ;'ﬁ'(‘;'
\) L,

Fig. 1. General workflow. In red, the main contribution of DeepReality in the well-established AR pipeline.

2. Related work

After briefly going through AR, this section presents and analyses
related applications and systems which combine AI with these AR
technologies. In the context of AR and its synergy with Al it is evi-
dent that current approaches are not without their limitations. Marker
identification, a crucial facet of AR, often involves cumbersome and
time-consuming processes, hampering real-time interaction. Content
creation for AR applications remains intricate, requiring specialised
skills and resources that limit accessibility. Additionally, environmen-
tal tracking, a cornerstone of successful AR experiences, faces chal-
lenges with incongruent objects and complex backgrounds. Further-
more, achieving optimal performance on mobile devices for resource-
intensive tasks like deep learning inference poses a persistent obstacle.
These limitations underscore the need for innovative solutions that can
bridge these gaps and unlock the full potential of AR-AI integration.
Companies, enterprises, governments, and academies have invested in
AR research to the value and the potential that its applications promise
to offer. As AR diffusion becomes more widespread, several software
development platforms, such as Vuforia,! ARCore,” ARKit,®> WikiTude*
have been designed to expedite the development of AR applications.
The comparison between the aforementioned SDKs have been analysed,
since the platform-specific APIs have de facto revolutionised the process
of developing AR applications (Amin & Govilkar, 2015; Nowacki &
Woda, 2020).

According to Tanskanen, Martinez, Blasco, and Sipid (2019), AR is
a technology that has the ability to close the gap between physical and
virtual worlds; while AI can influence machines in understanding the
world. In literature, several works have been proposed especially in
medicine with the main goal to assist clinicians in surgical operations
or to facilitate dynamic clinical decision (Shen et al., 2023).

The integration of DL into AR can indeed provide a lot of interactive,
real-time, user-friendly, and user-centred applications which focus on
enhancing the quality of experience. It can be assumed that applications
and systems that adopt these technologies are progressively being
developed. Object recognition using DL-based techniques guarantees
excellent performance from the point of view of accuracy and pro-
cessing of data in real-time, facilitating the combination of AR and
DL (Cheng, Zhang, Bo, Chen, & Zhang, 2020; Le, Nguyen, Yan, &
Nguyen, 2021; Tan, Pang, & Le, 2020).

https://developer.vuforia.com/
https://developers.google.com/ar
https://developer.apple.com/augmented-reality/
https://www.wikitude.com/

In industry, there are different examples of AR applications that
integrate DL algorithms (Devagiri, Paheding, Niyaz, Yang, & Smith,
2022). The work proposed in Subakti and Jiang (2018) aimed to design,
develop and implement a fast mobile increased reality system without
marker to provide recording, display, and interaction with machines
in indoor intelligent factories with industry vision 4.0. They used a DL
algorithm (MobileNet (Howard et al., 2017)) to process images and AR
by superimposing additional information on the image of the portion of
the machine shown on the display. In the same context, it is settled the
work of Kim, Choi, Park, and Lee (2021) where the authors proposed a
hybrid approach that included a segmentation algorithm based on DL
by considering RGB images acquired by AR camera. Simultaneously, a
depth prediction method was applied to the AR image to estimate the
depth map as a 3D point cloud for the detected object. Based on the
segmented data of the 3D point cloud, 3D spatial relationships between
physical objects were determined to solve problems of occlusion and
visual mismatch. In another work (Kistner, Frasineanu, & Lambrecht,
2020), the authors considered mobile robots used in the industry. The
authors presented an approach that performed calibration based on DL
of AR devices using data from 3D depth sensors. They considered an
approach markerless that used a modified version of VoteNet (Ding,
Han, & Niethammer, 2019) architecture that directly processed the raw
point cloud input.

Wang et al. exploited a two-step knowledge-based DL algorithm that
automatically detected damages in real time using AR smart glasses.
The first phase of the algorithm involved the recognition of the areas
prone to damage in the region of interest. During the second phase,
automatic damage detection was performed independently within each
of the identified areas beginning with the one most subject to damage.
This approach significantly improves the likelihood of detection when
dealing with structures with complex geometric characteristics (Wang,
Zargar, & Yuan, 2021).

Another interesting paper was presented in Svensson and Atles
(2018), where AI is used to perform the object detection task. The
authors develop an iOS application, which combines AR with object
detection and recognition tasks. The purpose was to verify if the
combination of these fields is possible with the modern tools available.
The application must be an alternative option to traditional furniture
assembly manuals.

In urban environment domain, noteworthy is the work proposed
by Alhaija, Mustikovela, Mescheder, Geiger, and Rother (2017). They
proposed a method that combines real and synthetic data for learning
segmentation models of semantic instances. They augmented the real-
world images with virtual objects of the target category represented by
cars. During the experimental phase, to demonstrate the effectiveness of

https://developer.vuforia.com/
https://developers.google.com/ar
https://developer.apple.com/augmented-reality/
https://www.wikitude.com/

R. Pierdicca et al.

the proposed approach, they used a DL algorithm for the segmentation
of the semantic instance.

In the same domain, the work of Polap, Kesik, Ksiazek, and Wozniak
(2017) developed a real-time reality-based inspection of the environ-
ment, to inform the user of any impending obstacles. The proposed
solution employed a CNN architecture to provide as much input infor-
mation as possible. AR was applied to give in a real-time safety alerts.
A broadly similar approach was proposed in Abdi and Meddeb (2018).
They presented a real-time object detection method based on DL to
define and recognise the types of road obstacles, and also to analyse
and predict complex traffic situations. They introduced an AR approach
to creating interactive real-time traffic animations considering different
types of obstacles, positioning, and visibility rules, and projecting these
in a vehicle display device.

Considering workplace safety, the work of Bhattarai, Jensen-Curtis,
and Martinez-Ramoén (2020) aimed to assist firefighters during their
rescue operations. They proposed an integrated system prototype that
used data transmitted by cameras integrated into firefighters’ personal
protective equipment to acquire thermal, RGB colour, and depth images
and then use DL models to analyse in real time the input data. The
system processed images via wireless streaming and relayed to the
firefighters through an AR platform which allowed to display the results
and focused attention on the objects of interest, otherwise invisible
from smoke and flames. Another important point of interest when
dealing with AR is the use of Adversarial Networks (Lim, Kim, & Ra,
2018), which are able to generate content in real-time forecasting the
users’ behaviours (Kim, Lim, & Ro, 2019).

With respect to the above-mentioned state-of-the-art works, Deep-
Reality allows the integration within Unity AR module of any DL
model, through AR Foundation and Barracuda inference engine. Thusly,
the tracking is not marker-based, but network-inference based, ensu-
ing paramount to support more accurate and robust environmental
tracking-based in AR. The proficiency of DeepReality is to perform
object semantic processing within the scene, and extended semantic ef-
fects for incongruent objects, surmounting the environmental tracking,
which is feature-based.

3. Methodology

This section outlines the components of the plug-in development
by highlighting the technical issues that are nowadays hampering the
exploitation of Al within AR applications. As stated in Introduction
and schematically depicted in Fig. 1, DeepReality pipeline relies on
Unity and AR Foundation, a package that acts as an interface between
Unity and platform-specific AR libraries (ARCore and ARKit), giving a
unified way to access their common functionality. The AR Foundation
components particularly demand AR Session, AR session origin, AR
Raycast Manager (Unity, 0000a). Firstly, data are acquired and passed
to a training module, where a new neural network model is created. The
next step is deploying this model to a smartphone with an application
able of running neural networks on its camera input. The object detec-
tion is executed on Unity Barracuda with pre-trained models such as
tiny YOLOv2 and MobileNetV2, as in Pierdicca et al. (2022). However,
the user can develop its own models and can also customise standard
CNN architectures using nodes and activation functions supported by
Barracuda (Unity, 0000b). Barracuda is a neural network inference
library, it uses platform-specific API (Vulkan for Android and Metal
for i0OS) to make the computation required by model (Unity, 0000b).
In order to work with Barracuda, DL models must be converted in
ONNX standard, which allows easy interoperability between different
frameworks. Tensorflow (Abadi et al., 2016) does not present the
possibility to export models in ONNX; it requires the use of tf2onnx, a
package that converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite
models to ONNX via command line or python api. PyTorch (Paszke
et al., 2019), instead, does not require additional tools to extract the
ONNX representation of a model, allowing a direct export.

Expert Systems With Applications 249 (2024) 123530

The system is designed to integrate state-of-the-art DNNs within
the components to allow the generation of dynamic AR content. It
was also necessary to draw up guidelines for the integration of these
networks, which serve as a guide for the integration or implementation
of forthcoming DNNs.

The overall sequence diagram, including the main class developed,
is depicted in Fig. 2. The general functionality of DeepReality classes is
described by the following steps:

1. When the Unity scene is loaded, the Start method is called
by Unity itself. This method starts the initialisation procedure,
mainly calling the initialisation method of the ModelExecutor.

2. When a specific amount of time has passed, a frame from the
device’s camera is captured.

3. This frame becomes the input of the IPreProcessor class that
generates the input for the DL model based on the data captured
from the camera;

4. The Output Tensor of the IPreProcessor moves on the Mod-
elExecutor, which returns a Dictionary that contains Tensors
representing elements found with the DL model.

5. The Output of the model is given to the IPostProcessor to obtain
an output that can be visualised.

6. The Model Outputs are gone to the ARProjector, which tries to
convert them in world space.

7. The outputs of the previous step are mixed with the ones already
presented from previous iterations.

8. If a new Output is obtained, an anchor (an empty GameObject) is
generated at the centre of its area. A copy of a prefab specified
by the user is also generated as a child of that anchor. This
prefab should have a component that implements the IARObject
interface. This prefab is generally what the end user will see in
AR on top of every detected element.

9. If output is too old (i.e., the corresponding element has not been
detected for time) it is deleted together with its corresponding
anchor (and subsequently its ARObject).

10. Repeat from step 2.

The filtering functionality described in steps 5 and 7 is extremely
important for AR experience: duplicate or former elements viewed
in AR could be extremely confusing for the end user. To filter out
duplicate elements the world space area of a newly detected element is
compared to the ones from currently detected elements. If an area that
has similar characteristics is found, it is assumed that it represents the
same object, and thus it is discarded in support of the newly acquired
one. If an already present area is updated, its anchor and ARObject is
also updated to represent the new information. Every output considered
valid is stored in a SessionOutput instance, accompanied by its anchor,
its ARObject, and its age (the time that has passed from its last detec-
tion). The age is used to determine if it should be discarded (as stated
in step 7).

On a functional level, DeepReality is divided into three main areas
which are detailed in the following SubSections: Session manager (Sub
Section 3.1), Model Handling (Sub Section 3.2), AR Projection (Sub
Section 3.3).

3.1. Session manager

The Session Manager class is responsible for managing the whole
process, and in particular, fulfils the following tasks:

« It initialises the execution of the application.

« it periodically acquires an image from the camera.

« It sends the image to the Model Handling and gets back the objects
found by the model.

« It sends those elements to the AR Projection and receives back the
3D space coordinates.

R. Pierdicca et al.

Expert Systems With Applications 249 (2024) 123530

sd DeepRealitySequence J

DeepRealitySession

‘ ModelLoader

IPreProcessor

1: Start Session

2: Search ModelLoader :
3: LoadModel

5 : Search IPreProcessor | 4 : Worker

6 Search IPostProcessor:

7 : Cameta Input

""7"8" Model Input Format

9 : Schedule

11 : ModelOutput

122D Object -

13: 2D Object

Tt Projectedoupur T U

Fig. 2. Sequence Diagram on the execution of the standard phases of a DeepReality application.

« It places the objects on those coordinates.

This class communicates with the other classes of DeepReality,
as well as the underlying Unity Engine. It also performs important
filtering functionality on the detected elements, trying to avoid du-
plicate representations of the same element. In fact, before placing
new 3D objects on top of newly identified elements, some filtering
actions are necessary. When DL model is executed and screen areas
are identified as elements of interest, there is no intrinsic notion of
previous executions. This will cause any element to be identified (and
then projected) multiple times, but the pertinent 3D object must be
placed only once, otherwise, the scene will get extremely cluttered with
duplicate objects. To solve this problem, we pursue to understand if any
newly identified element is “really” new or if it has been identified
before. This is done by comparing the newly found coordinates with
those of the objects already identified, assuming that those that are too
close together should actually be corresponding to the same object.

The general schema of the session manager class is reported in
Fig. 3.

Session Manager has also several attributes, such as:

« The time interval between the executions of the DL model;

+ A list of the currently detected and tracked elements;

+ The prefab that is generated when a new element is detected;

+ The time that must elapse before an element is considered expired
and removed.

Besides, it has several events and the other classes can subscribe to
perform actions when elements are detected, changed, or removed.

DeepReality has also the goal of instantiating user specified GameOb-
jects where something was recognised by an object detection DL model.
This is all handled by the DeepReality session. To specify the GameOb-
ject to be instantiated, one should set the ARObjectPrefab attribute of
the Session Manager. Whatever is specified there will be instantiated in
the world position where something was recognised. The basic position
and rotation are handled automatically. To obtain the GameObject
response on the recognised object, it should be created some compo-
nents (MonoBehaviours) that implement the IJARObject interface. When
the ARObjectPrefab is instantiated, the UpdateData method is called
on every component that implements the IARObject interface. In the
ProjectedOutput instance that is passed to the method all the data can
be found as:

+ pose: World space pose. The object is automatically positioned ac-
cording to this value, but it can be used to perform any additional
actions required.

+ description: Description string of what was recognised. It should
generally be the class label of the recognised object.

« confidence: Reported confidence of the recognition.

+ data: Additional data relevant to the recognition. Its value strongly
depends on the DL model (it can also simply be null if not
needed).

3.2. Model handling

The Model Handling class is responsible of loading and using the
DL model. The model to be loaded must comply with the Barracuda
specifications that can be found in the Unity documentation (Unity,
0000D). At the core of the processing of a frame by the DL Model there
are 3 different interfaces (see Fig. 4):

« IModelLoader;
» IPreProcessor;
« [PostProcessor.

In a scene where a DeepReality session should be in execution,
there must be a component that implements each interface (obviously
a component can implement more than one at a time). The implemen-
tation strictly depends on the architecture of the DL Models that are
chosen and tailored to their own needs. Once a model is loaded, it
is used to process the images acquired from the system camera, with
the aim to detect the objects of interest. When the object is detected,
a data structure is created that contains the screen coordinates where
the object is located and other information (e.g., description). Different
models require different inputs and have different outputs. To perfectly
integrate them with the system is necessary a pre-processing and post-
processing phases. For proprietary models, there is a cloud platform
that provides pre-processing and post-processing functions; while for
custom models, the user must write these functions.

3.2.1. Model executor

This is the main class of the Model Handling functionality. It holds
references to instances of classes that implement IModelLoader, IPrePro-
cessor and IPostProcessor. It has an initialisation method that mainly
uses the IModelLoader instance to load and initialise a Barracuda-
compatible DL model, getting an IWorker instance (interface from the
Barracuda package) that will be used to execute the model. It also has
a method that, given an image as input, returns a list ModelOutput in-
stances, each one holding the screen coordinates and data of an element
recognised by the model. The recognition is done by executing the
loaded model with Barracuda. To adapt the input image to the required
input of the model the IPreProcess instance is used. To convert the
output of the model to the required list of ModelOutput, the IPostProcess
instance is used.

R. Pierdicca et al.

Expert Systems With Applications 249 (2024) 123530

Fig. 3. Session Manager Class Diagram.

Fig. 4. Model Handling Class Diagram.

3.2.2. Imodel loader

The IModel Loader interface defines the basic structure that must
be respected in order to read the model from the ONNX file and
load it into memory. The basic requirements of this interface are the
implementation of the LoadModel and GetWorker methods. LoadModel
is the method that accesses the model inside the application, whether
downloaded from the cloud or manually inserted during the design
phase from external sources and loads it into the memory of the device,
representing it in a special Barracuda data structure called Model.
Being an interface, each instance may correspond to different ways
of loading the model into the memory. This phase is fundamental for
understanding whether or not the model can be used by Barracuda
and the hardware on which the application is being tested. GetWorker
is the method that, once the model has been opened, creates a class
that executes the model using the hardware available. The IWorker
structure resulting from the call is the representation in an object of the
hardware dedicated to the model, ready to carry out the computation
necessary for the call to obtain the result from it. This method gives
the representation of the model and the hardware on which it will
be executed during use. The IModel Loader is an interface that must
be implemented by the classes responsible of loading and initialising
the DL model. Different implementations can of course load models in
different ways, for example by referencing a model in the unity project’s
assets. This interface contains two methods, one for loading the model
and one that returns an IWorker ready to be used. The loading method
must be called before generating a worker.

3.2.3. IModelPreProcessor

The IModelPreprocessor is an interface that must be implemented by
the classes responsible of converting the image that is passed to the
ModelExecutor in a list of Tensor instances (class from the Barracuda
package) that will be used as input for the model. This conversion
must be implemented knowing exactly what the used model expects

as input. Different models will most likely require different imple-
mentations of the IPreProcessor instance. This interface contains only
one method that performs the conversion. This information, available
outside the representation through the implementation of the methods
“RequiredFrameWidth” and “RequiredFrameHeight” will be used by
DeepRealitySession to generate a frame of the expected size to lighten,
therefore, the workload of a developer who will only have to add, if
present, other phases of pre-processing before generating the Tensor
that represents the input image. To obtain the input tensor for the Deep-
RealitySession model it will call the PreProcess method. This method
will use the current frame, apply the pre-processing required by the
network and insert the result inside a Barracuda Tensor of the same
size of the image. Finally, it will assign this tensor to the key of the
dictionary that represents the name of the input layer of the model
inside the IWorker.

3.2.4. IModelPostProcessor

The IModelPostProcessor is the interface that represents the opera-
tions necessary to obtain, from the output of the DL model, a correct
representation that is comprehensible, and therefore visible, for the
user. In fact, there are two methods necessary to achieve this result:

* RequiredOutput that will contain a list of strings useful to identify
the layers from which to extract the result of computation of the
model contained in the IWorker;

PostProcess which is the main method that takes as input the Dic-
tionary containing the Tensor output of the model and the string
that identifies the layer from which it was obtained. Based on the
key the developer can then perform different tensor processing
to describe the output within the ModelOutput representation
(explained later). Since several outputs can be obtained simulta-
neously from an DL model, the implementation of this method
requires that it returns a list of ModelOutputs.

R. Pierdicca et al.

The IModelPostProcessor is an interface that must be implemented
by the classes responsible of converting the output Tensor of the model
in a List of ModelOutput instances. Each ModelOutput represents a
single recognised element, with its screen coordinates and any eventual
additional data. If nothing is recognised an empty List will be returned.
This conversion must be implemented knowing exactly what the used
model outputs. Different models will most likely require different im-
plementations of the IPreProcessor instance. This interface contains only
one method that performs the conversion.

3.2.5. ModelOutput

The ModelOutput class describes the data structure to be used to
represent the output of the processing of a DL model. It contains the
following data structure:

+ ScreenRect, which represents a rectangle on the screen, i.e., the
bounding box in which to insert the result of the neural network
execution,

+ Description, which will contain a string describing what the
model has recognised,

» Data that is an additional data structure that may contain ad-
ditional information or data structures obtained from different
models,

+ Confidence that is a measure of the goodness of the result achieved
by the network.

This class is useful for representing data with a defined structure
using ARProjector integrated within DeepReality. It is possible to use
the output of the model in a different way, by implementing classes
to manage the representation and projection in the real world. This is
an interface that must be implemented by the classes responsible of
converting the output Tensor of the model in a List of ModelOutput
instances. Each ModelOutput represents a single recognised element,
with its screen coordinates and any eventual additional data. If nothing
is recognised an empty List is returned. This conversion must be imple-
mented knowing exactly what the used model outputs. Different models
likely require different implementations of the IPreProcessor instance.
This interface contains only one method that performs the conversion.

3.3. AR projection

The AR projection module (Fig. 5) is responsible of taking areas of
the screen and projecting them in the 3D world using AR Foundation.
The purpose is to convert the screen-space coordinates identified by
the model in 3D coordinates for 3D objects. It used advanced AR frame-
works such as ARKit (for i0S) and ARCore (for Android) since they offer
great functionality and are well-integrated with their respective system.
By using those frameworks, we can raycast a point on the screen which
is projected from a 2D space to a 3D space (the real world). The result
of the projection is a ranking list, ordered by decreasing robustness,
of possible anchor points in the real world. The first four points and
the average between them are then used to make the pin more robust
in reality, allowing one to place objects in a more precise position.
Furthermore, they can track the movement of the device in the real
world, allowing the execution of the DL model more sporadically while
still tracking identified areas in real-time: once an object is placed in
the 3D world (as a result of something being identified through DL), it
remains in the same physical position even as the device moves around.

4. Experiments and analysis

In this section, two different DL tasks are presented to test DeepRe-
ality plug-in functionality. The DNNs architectures and related datasets
on which the models were trained are described. Moreover, a general
framework is provided to develop proper models to be integrated into
the proposed solution.

Expert Systems With Applications 249 (2024) 123530

Table 1
Number of parameters and weight storage of state-of-the-art DNNs for DL classification
task.

Classification models Parameter (Million) Weight storage (MB)

DenseNet 8.1 33
VGG-16 138.3 528
AlexNet 60 220
InceptionV3 23.8 92
ResNet-101 44 171
MobileNetV2 3.5 14
Table 2

Frame per second (FPS) performed on a Pascal Titan X and weight storage of principal
state-of-the-art object detection models.

Object detection models FPS Weight storage (MB)
Faster R-CNN 4 168
Retinanet-101 11 228
SSD500 19 77
YOLOv1 45 190
Tiny YOLOv1 155 58
YOLOV2 40 202
Tiny YOLOv2 244 43
YOLOvV3 35 237
Tiny YOLOV3 220 34

4.1. Classification task

The model used for classification task is MobileNetV2 (Sandler,
Howard, Zhu, Zhmoginov, & Chen, 2018), which presents a lightweight
CNN architecture. Thanks to its small size, MobileNetV2 is widely
used due to the low computing power needs for real-time inferences.
Therefore, it has become a benchmark model for mobile devices and
embedded systems. The architecture is characterised by depthwise
separable convolutions, which significantly reduce the number of pa-
rameters compared to CNNs with regular convolutions with the same
depth. Also included in MobileNetV2 are two additional basic struc-
tures, namely the linear bottle-neck layer and the reverse residual
structure. Both of these features contribute to accelerating model con-
vergence and preventing gradient vanishing. The number of parameters
and weight storage consumption of the MobilenetV2 model compared
to other state-of-the-art classification methods are reported in Table 1.

The employed MobileNetV2 model is trained on the ImageNet
benchmark dataset (Deng et al., 2009), which spans 1000 object
classes. The network takes as input a tensor with shape [224,224,3]
(corresponding to height and width of the image and RGB chan-
nels, respectively), while the output is a tensor with shape [1, 1, 1000]
containing the probability values for each of the 1000 classes.

4.2. Object detection task

The state-of-the-art object detection approaches include objectness
detection (OD), salient object detection (SOD) and category-specific
object detection (COD) (Han, Zhang, Cheng, Liu, & Xu, 2018). In
DeepReality, COD is performed, where multiple objects can be detected
in the same image based on predefined categories. The process consists
of identifying both the image regions that may contain the object of
interest as well as the specific object category for each region. The
model chosen for object detection task is the Tiny YOLOv2 (Redmon
& Farhadi, 2017), which belongs to the family of regression-based
one stage detectors. For embedded real-time applications, one-stage
detectors are the most promising COD direction since they are highly ef-
ficient: the entire detection process runs in real-time with little memory
and storage demand (Liu et al., 2020; Zhao et al., 2019). The compar-
isons of speed, in frames per second [FPS], and storage consumption
on COCO (Lin et al., 2014) test set for state-of-the-art COD models are
shown in Table 2.

R. Pierdicca et al.

<<use>>

-

Expert Systems With Applications 249 (2024) 123530

Fig. 5. AR Projection Class Diagram.

The Tiny YOLOV2 architecture is constituted by convolutional layers
with a 3 x 3 kernel and max-pooling layers with a 2 x 2 kernel.
Respect to the traditional YOLOvV2 architecture, the number of layers is
reduced in the Tiny version, presenting only 9 convolutional layers and
6 pooling layers. We use Tiny YOLOv2 trained on COCO benchmark
dataset (Matsuda, Hoashi, & Yanai, 2012), which contains 80 general
classes. The input layer expects a tensor with shape [3,416,416], while
the output layer generates a [525, 13, 13] tensor. The output divides the
image into a 13 x 13 grid, with each cell in the grid containing 525
values. A cell includes 5 potential bounding boxes, and each one is
represented by the following 105 elements:

+ x: the x position of the bounding box centre relative to the grid
cell it is associated with;

+ y: the y position of the bounding box centre relative to the grid
cell it is associated with;

+ w: the width of the bounding box;

+ h: the height of the bounding box;

+ o: the confidence value that an object exists within the bounding
box, also known as “objectness score”;

+ pl-pl00: class probabilities for each of the 100 classes predicted
by the model for the considered dataset.

Besides the performance tests, a mobile execution test was con-
ducted. Inference examples are shown in Fig. 6. For the Tiny YOLOv2
model, the result displays the class of the recognised object and the
bounding box projected in reality through the use of Unity’s ARFoun-
dation. Moreover, an example of MobileNetV2 execution is shown. The
model correctly recognises the object, i.e. a mouse, and it projects in
reality the related name in the centre of the object.

5. Complexity analysis

The complexity analysis allows to evaluate efficiency and compu-
tational problems according to their inherent difficulty. In this case,
the complexity analysis is performed to evaluate whether DeepReality
can be completely executed on mobile devices. Before analysing the
computational complexity, a definition of the key values involved is
required. In particular, here following are listed as the key values:

» N is the computational complexity of the input image, it is also
indicated with the values: W for Width and H for Height;
+ C is the number of analysed classes;

+ ¢ is the number of characters in a string

» B is the number of bounding boxes analysed in output to the
detection model;

* R is the number of rows for the cell division of the image for the
application of detection;

+ P is the number of columns for splitting the image for the appli-
cation of detection;

« f is the counting features for detection;

« F is the number of filters;

* D is the filter size

+ I is the number of neurons in the connected dense layer;

« L number of network blocks;

+ K number of key-points extracted from the image;

« E is the number of bits for the BRIEF descriptor.

In particular, it is analysed each component of DeepReality (Sec-
tion 3): Session manager, model handling, AR projection. The complex-
ity analysis deepens four development phase:

* Model Loader: which takes care of loading the model in memory
and its execution. This component has a complexity that depends
on the model loaded;

* Pre-Processor: responsible for obtaining the input structure suit-
able for the model in use;

* Post-Processor: which processes the output of the model and
makes it suitable to be projected into reality;

* AR Projection: which projects virtual objects onto reality.

5.1. Model executor

As mentioned above, the model is loaded and executed in this phase.
In this case, the time complexity of the DL model depends on the
configuration adopted. For this component, the complexity analysis
is based on the definition in Vaswani et al. (2017). First of all, the
networks considered, i.e. MobileNet and Yolo, have two types of layers:

+ Convolutional: characterised by a series of filters of different sizes
and depths that are applied by means of a series of dot products.

« Fully-Connected: characterised by a series of neurons following
each other to determine a result given by the sum of all activation
preceding the output neuron(s).

Within the MobileNet architecture, there is a block, called Bottle-
Neck. The complexity of this block can be defined as follows:

R. Pierdicca et al.

Expert Systems With Applications 249 (2024) 123530

Fig. 6. Real-time execution examples of Tiny YOLOv2 model.

+ 1 x 1 CONV2D: this operation considers the convolution applied
with filters of size 1 so the complexity of this layer is given by
the input image and the number of filters applied, thus the total
complexity is O(N F).

3 x 3 DEPTHWISECONV: it applies the convolution operation by
considering 3-dimensional filters that are applied to the image by
considering all its channels at once, thus the total complexity is
O(NFD?).

CONV2D: convolutional layer that applies F convolutional filters
of dimension D to the input image, so its total complexity is
O(N FD).

For the fully connected layer, it is applied in the final phase of
the network. In particular, it has as input the output of the last
convolutional layer that is represented by a single array with I neu-
rons. Therefore, the computational complexity is O(NI). The total
complexity is:

(L * OINFD*)+O(NI)=O(LNFD? +O(NI) (6]

YOLO, instead, is a Fully Convolutional model, thus by applying F
filters of dimension D on the input of dimension N and repeating them
L times, we obtain that the convolutional complexity of the network is
O(LN FD?). To this we must add the complexity of the pooling layers,
applied during the execution of the model to reduce the dimension of
the input image and to individuate features at different depths. We can
consider such operation as a matrix operation applied on the image,
with a complexity O(N D?). The total complexity of the model is:

O(LN FD?)+ O(LN D?) (2)

Table 3 reports the complexity of this phase considering the com-
ponents involved.

5.2. Pre-processor

Considering that the models implement computer vision algorithms
and that the expected inputs are images, the procedures here analysed
consist of matrix operations on the images. The following steps are
implemented:

1. acquiring the image from the camera;

2. resizing the image to fit the expected input from the model;
3. transforming the image into a byte-array;

4. creating the input tensor.

The acquisition step relies on resolution camera, i.e. it is atomic,
thus it is considered the worst case notation, assuming that is exe-
cutable in O(W H)[O(N)]. The transformation step, instead, can be
divided into memory space created for the new image (respecting the
final size of the transformation) and an anti-aliasing algorithm for
resizing applications.

Considering the time, the execution complexity is O(1) because its
complexity resides in memory, in fact, it will require O(N)[O(W H)]
memory (the size refers to the expected input from the model). The
anti-aliasing algorithm is applied to avoid undesirable visualisation
effects. It is based exactly on the use of convolutional filters to calculate
the value of the colours at the position of the new image considering
the neighbours of the image. In such a manner, a filter is applied and
K = 1, with dimension D?, for which the computational complexity

R. Pierdicca et al.

Table 3
Summary of Time complexity analysis for Model Executor.

Components Time complexity

1 x 1 CONV2D O(N f)

3 x 3 DEPTHWISECONV O(NFD?)

CONV2D O(NFD)

Pooling layer (ND?)

Fully connected layers O(NI)

Total Model Executor for YOLO O(LN FD?) + O(LN D?)

Total Model Executor for MobileNetV2 O(LNFD?) + O(NT)

Table 4
Summary of Time complexity analysis for Pre-Processor.

Components Time complexity
Memory creation o(l)
Anti-aliasing algorithm O(N D?)

Tensor creation o(1)

Memory insertion O(N)

Total Pre-Processor O(N D?)

is O(N D?). The result of the processing is inserted into the memory
location created in the first step of the procedure. In this case, the
insertion is done by the positions knowledge where the data is to be
inserted for the complexity of the single insertion operation is O(1)
which repeated for the size of the image reaches the complexity O(N).

In the Pre-Processor, the transformation in a byte array of the input
image is performed as an atomic operation because this modification
both in memory and in execution does not require any intermediate
operation or use of new memory. This operation requires a time equal
to O(1).

Two alternatives could be considered for the creation of the input
tensor:

+ Creation of a new memory location that has the following charac-
teristics: size greater than the size of the input image, since both
its insertion in this location and the string containing the name
of the input layer of the network to which the image must be as-
signed as input must be considered. In this case, we can examine:
time complexity of O(1) for the creation of new memory locations,
O(N) for transferring the image within the new location; O(1) for
inserting the string into the memory location; Memory complexity
equals to O(N) for the image and O(c) for the string.

Creation of a memory location for the string containing the name
of the input layer and link to the location where the image
is. In this case, the memory complexity becomes O(c) for the
string only. While the time complexity becomes O(1) since the
string insertion occurs in O(1) and the addressing of the memory
location where the image resides is an O(1) operation since the
address of the first memory location must be entered.

Summing up, the total time complexity is: O(N) + O(N) + O(1) +
O(N) = O(N) and the total memory complexity is: O(N) + O(c) =
O(N +c). Table 4 summarises the time complexity for each component
of Pre-Processor phase analysed.

5.3. Post-processing

The post-processing phase is relevant to evaluate the two DL models
under consideration. For MobileNet DL model, the output processing
selects the maximum probability of the one-dimensional tensor that is
obtained as output from the model. It can be considered as an array
search and when the worst case occurs the maximum is in the last
position of the one-dimensional tensor. For example, if C is the number
of classes expected from the model as output and if we consider the
execution complexity as an ordered array since each index represents
a class, for the search of the maximum we obtain O(C). In this way,

Expert Systems With Applications 249 (2024) 123530

obtaining the index of the maximum of the array containing the prob-
abilities of the classes in output from the MobileNet model, we know
the index of the memory location in which resides, within an array of
strings, the name of the class for which the access to this location can
be carried out with time O(1). In this process, the memory complexity
for the post-processing requires O(cC) to store the strings, where c is
the maximum number of characters that are used to describe a class
and C the number of classes, to which we add O(C) for the memory
location of the one-dimensional tensor that contains the probabilities
of each class and is obtained as output from the MobileNet model. In
total the time complexity will be: O(1) + O(C) = O(C). The memory
complexity is: O(cC) + O(C) = O(cC)

For YOLO DL model, the output processing has two main compo-
nents: Parsing Output (Algorithm 1) and Filtering Output.
forall Column do
forall Row do

forall Feature do
Extract Box Dimension

Get Box Confidence
Extract Classes
Get Top result for class
Map box to cell
end
end

end
Algorithm 1: Parsing output Pseudocode

The iterations listed in Algorithm 1 can be detailed as follows:

« Extract Box Dimension: it is a procedure which extracts the tensor
information based on the knowledge of the locations where and
therefore the time required is O(1).

Get Box Confidence: it extracts, once again, the information from
the tensor based on the knowledge of the memory locations in
which they are contained and for each extraction it applies the
SIGMOID function, this function consists of a series of mathemat-
ical functions for which it can be considered applicable in O(1)
time and once again the access to the memory location, knowing
the address, occurs in O(1).

Extract Classes: it returns the class that can be assigned to the
BBOX. This procedure applies SOFTMAX on the output of the
DNN and the complexity of SOFTMAX depends on classes num-
ber, hence the time complexity is O(C). This operation is repeated
for the number of bounding boxes that have been obtained in
output. The total is O(C) = B = O(BC).

Get Top result for class: for each class, it reorders the BBOXes
obtained by the DNN by decreasing and selecting only the first
element of the array obtained for each bounding box. The com-
plexity of the single operation is based on the number of classes
C, applying the MergeSort algorithm to reorder an array, the
complexity of the single operation of reordering is O(ClogC), to
which is added complexity equal to O(1) that is the access to the
position of memory in which is contained the best bounding box
(that being ordered in a decreasing way) is in position 1 resulting
O(1). This operation is performed for each bounding box for a
total of: B(O(ClogC) + O(1)) = O(BClogC).

Map box to cell: it applies the mapping procedure of the bounding
boxes found by YOLO to the cell of the image considered. This
operation involves the use of mathematical operations of mapping
from the relative reference of the bounding box to the reference
with respect to the cell, i.e. centring it in the cell and representing
its size with respect to it, resulting equal to O(1).

The total execution time of this step is given by repeating the
previous steps for the number of features, the number of cells, and the
number of rows:

f # P x R % (O(1) + O(BC) + O(BClogC)+
+0(1)) = O(f PRBClogC)

3

R. Pierdicca et al.

The filtering phase is necessary to reconstruct the global boxes on
the image, i.e. to bring together the individual bounding boxes found
in each cell considered and make them into a single bounding box. The
algorithm 2 shows the Box filtering operations.

Order Box-Array
for ba in Box-Array do
for bb in Box-Array do

if IOU(ba,bb) > threshold then
| Exclude bb

end
end
end
Algorithm 2: Box filtering pseudocode

In this case, an array of size equal to the number of bounding boxes
is used so that the sorting is equal, again considering the MergeSort
algorithm, to O(BlogB). Intersection Over Union (IoU) evaluation can
be considered as a constant operation since it is always applied to
the same amount of information and therefore, we can identify it
as computational complexity O(1), to which we can add the boolean
operation, which is still O(1), and the IF check equal to O(1) and finally
the bounding box exclusion equal to O(1). Therefore, within the double
FOR loop, we have a total complexity equal to O(1), which must then be
multiplied by the number of bounding boxes squared (for completeness,
it should be multiplied by B * (B—1), but using an asymptotic notation
and considering the worst case we can directly use 0(B2), so, in the end,
the total complexity is O(B?).

Table 5 briefly reports the time complexity for each Post-Processor
component evaluated.

5.4. AR-projector

This component has an important role since it projects the results of
network processing into reality. The analysis of its complexity results
thus fundamental and it is based on the work described in Macario
Barros, Michel, Moline, Corre, and Carrel (2022). In the tools used for
the development of DeepReality, i.e. Unity with AR foundation, Unity
itself uses the native algorithms of the platform (iOS or Android), hence
it is not possible to know the real implemented algorithms and how
they are optimised within the available API.

In particular, the monocular SLAMs, i.e., ORB-SLAM algorithm (Mur-
Artal, Montiel, & Tardos, 2015) is suitable within mobile platforms
since it uses ORB extractors, that allow real-time extraction, and SLAMs
for mapping and tracking. These extractors deserve an appropriate and
detailed analysis.

5.4.1. ORB

ORB is a classical computer vision algorithm that uses FAST to
extract keypoints and apply the BRIEF descriptors, thus its complexity
must be defined based on both component.

» Complexity of FAST: it is applied to the entire image, with full res-
olution, i.e. at the resolution captured by the smartphone sensor.
FAST involves FOR cycles that perform operations on the entire
image. The operations that are carried out are the calculation of
two thresholds starting from the pixels selected by the two cycles,
which are therefore considered as operations carried out in O(1)
and subsequently, these thresholds are used for a series of IFs that
are carried out once again on the whole image in the worst case,
so the total computational complexity for the execution of FAST
is O(N).

Complexity of BRIEF: in this case, it is considered the whole image
as input, with the K key points extracted through FAST, and it
must be considered that the descriptors are calculated considering
patches of the image. Moreover, BRIEF descriptors are in binary
bases and are represented using the symbol E. BRIEF is based
on the steps described in Algorithms 3. In particular, the first

11

Expert Systems With Applications 249 (2024) 123530

Table 5
Summary of Time complexity analysis for Post-Processor.

Components Time complexity
Memory creation o)

Class string insertion in memory o(C)

Extract Box dimension o(1)

Extract Box confidence o(l)

SOFTMAX O(BC)

Top result selection O(BClogC)
Mapping to cell o(1)

Filtering Oo(B?)

Total Post-Processor for MobileNetV2 o(C)

Total Post-Processor for YOLO O(f PRBClogC) + O(B?)

operation of the greyscale conversion takes time complexity of
O(N). Gaussian smoothing is a convolution operation applied on
the image. One filter is applied and F = 1 of square dimension and
is used D? and its time complexity is O(N D?). Finally, the FOR
cycle is executed on the number of keypoints used, within which
we find the TAU function which, from a computational point of
view, is an IF and therefore has an execution time equal to O(1)
which, added to the number of bits, will have complexity O(FE)
and multiplied by the number of keypoints, will be O(K E).

Conversion to grayscale
Application of Gaussian Smoothing on the image
for i in Range(l,...,K) do
| ¥F_, @ «TAUP, X,.Y))
end
Algorithm 3: BRIEF pseudocode

The computational complexity of ORB is:
O(N) + O(N) + O(ND?) + O(KE) =

) @
= O(NDY + O(KE)
5.4.2. SLAM

This is used for keypoint tracking and mapping. Based on the
paper Burgard, Brock, and Stachniss (2008), this algorithm is executed
in O(K) with K that represents the number of keypoints. This is proved
by the realtime execution of the devices used for the tests, these
considerations are useful to give an upper asymptote for the temporal
execution but the real implementations of the producers use hardware
and software devices that we cannot know and therefore they cannot
be taken into account in this analysis.

It is not possible to know the algorithms embedded within the
proprietary APIs of Google and Apple. The analysis carried out in
this section considers computations in the worst case and without
optimisation, but given the performance, it can be deduced that the
producers have optimised both the algorithms and also the hardware to
guarantee stability and efficiency as well as effective operation. Table 6
recap the time complexity for this phase.

5.5. Time complexity analysis

The time complexity for each block is summarised in Table 7. In
particular, apart from the dimension of the input image (N), the other
parameters can be considered constant (e.g., filters or neurons of the
DL models). For this reason, the time complexity of the execution can
be assumed equal to O(N).

As shown in Fig. 7, it is possible to define an upper limit for the
execution time beyond which the device does not have the appropriate
capabilities to perform these types of algorithms. This limit, when
considered from the perspective of computational capacity, becomes
the lower limit of computational capacity required for devices to use
deep learning algorithms within their applications. In particular, Fig. 7

R. Pierdicca et al.

Number of operations

200M
150M
w0
.4
O
=
S 100M
w
[« %
S
=
50M
L
L] =
0
0 50M 100M
CAMERA_MP

Expert Systems With Applications 249 (2024) 123530

DEVICE_MODEL
* Xiaomi M2007)22G
e Xiaomi M200713SY
e Xiaomi Redmi Note 9 Pro

e Padl3,1
iPhonel2,1

e iPhonel2,5
iPhonel2,8
iPhone9,3

motorola motorola one fusion+
samsung SM-N981B
® samsung SM-N986B

150M 200M

Fig. 7. Time execution on different smartphones compared to the time limit obtained by the Time complexity analysis.

Table 6
Summary of Time complexity analysis for AR-Projection.

Components Time complexity
FAST O(N)

Grayscale conversion O(N)

Gaussian smooth O(N D?)
Application to all Key-point O(KE)

Total AR-Projection O(ND?) + O(KE)

Table 7

Time complexity.
Components Time complexity Simplified
Pre-Processing O(N D?) O(N)
Post-Processing (MobileNet) O(cC) o(l)
Post-Processing (YOLO) O(f PRBClogC) + O(B?) o(l)
Model Executor (MobileNet) O(LNFD* +O(NI) O(N)
Model Executor (YOLO) O(LN FD?) + O(LN D?) O(N)
AR-Projector O(N D?) + O(KE) + O(K) O(N)

shows the time required for execution (in seconds) when varying the
input size. Considering the simplified complexity O(N), it is possible to
assume a linear dependence of the execution time with respect to the
size of the input, i.e., the size of the image. For this reason, we define a
linear function representing the bisector of the first quadrant of a graph
and considering that the minimum resolution of the cameras available
on devices is 12 Mpx, we can represent the time limit on the graph
and verify that the times measured on the terminals are less than it.
From Fig. 7, it is possible to figure out that the different coloured dots
represent the time spent by the different smartphones for running the
model, considering the camera pixels and the number of iterations.
While the a priori analysis provides valuable insights into expected
performance levels, it represents an idealised scenario that does not
account for real-world variations and device-specific attributes. It is
precisely for this reason that we conducted the a posteriori analysis,
which involved the practical implementation of the DeepReality on a
range of smartphones. Fig. 7 represents the empirical results of our a
posteriori analysis, depicting the actual execution times achieved on
different devices. By comparing these results to the time limits obtained
from the a priori analysis, we gain a comprehensive understanding
of the extent to which theoretical estimates align with real-world
execution. This empirical validation not only validates our theoreti-
cal framework but also provides essential insights into the deviations

between predicted and observed execution times. Furthermore, the
connection between the a priori and a posteriori analyses highlights the
iterative nature of our approach. The insights gained from the empirical
results guide us in refining the accuracy of our theoretical predictions.
We view the a posteriori analysis not as a deviation from our theoret-
ical framework but as a mechanism for continuous improvement and
optimisation.

6. Usability evaluation

In this section, we provide an in-depth account of the usability
evaluation conducted to gauge the practical viability of DeepReal-
ity. The evaluation was designed to encompass various dimensions
of usability, offering a comprehensive understanding of DeepReality’s
effectiveness within real-world scenarios. The usability assessment was
framed around a selection of usability dimensions, chosen strategically
to provide a well-rounded perspective on the DeepReality’s practicality.
These dimensions were selected based on the DeepReality’s intended
objectives and tested with expert developers. The analysis of the us-
ability evaluation results provided comprehensive insights into the
DeepReality’s performance across distinct usability dimensions:

Ease of Use: Developers found the integration process intuitive
and straightforward, contributing to elevated user satisfaction.
Learnability: Developers familiar with Unity and deep learning
concepts adapted quickly to the toolkit’s functionalities, while
novices required a slight learning curve.

Efficiency: Task completion times consistently fell within ac-
ceptable limits, affirming the toolkit’s efficiency in executing its
features.

Effectiveness: The toolkit effectively demonstrated object recog-
nition capabilities and facilitated seamless integration of AR con-
tent, aligning closely with its intended purposes.

User Satisfaction: Overall user satisfaction scores demonstrated
positivity, signifying the toolkit’s potential value in practical ap-
plications.

7. Conclusions and future works
AR is a mobile technology that allows to visualise, with the same
point of view of the user, virtual contents superimposed on a monitor

of a device (hand-held or head-mounted) that is framing a scene with

12

R. Pierdicca et al.

the camera. AR applications have proven to be particularly effective
in several domains. To facilitate the development of AR experiences
by overcoming its limitations, AR and AI can be combined to obtain
unique and immersive experiences. In this work, it is presented a
framework for the integration of DNNs in AR applications integrated
in a development environment that allows the realisation of multi-
platform applications such as Unity. DeepReality integrate within Unity
AR module any DL model, through ARFoundation and Barracuda infer-
ence engine. It performs object semantic processing within the scene,
and extended semantic effects for incongruent objects, overcoming the
environmental tracking, which is feature-based. To test the usability
of the framework, two test have been performed and the execution
time and memory usage data have been analysed, demonstrating the
feasibility and possibility of integrating and using DNNs models in
mobile applications for AR. The framework is also open-source and
it is freely available in the Unity asset store, which allows to easily
integrate and use in the development platform itself. The reasons that
led us to choose Unity as a platform for releasing the plug-in can be
found in the current trend of mobile platforms, where there are mainly
two platforms, iOS and Android, but in this evolving market, it is
important to allow developers the fastest possible time-to-market. Unity
as a development platform for the release of the plug-in enables the
rapid development of AR/VR applications, which thanks to the plug-in
also speed up the use of DL. Using Unity, the native AR APIs are used, as
the ARFoundation used in the plug-in activates the specific APIs for the
selected platform during compilation. Furthermore, Barracuda allows
the use of a standard format for exchanging models, ONNX, thanks to
which models created not only with Tensorflow but also with other
frameworks used for modelling neural networks can be extracted. In
addition, the plug-in integrates templates into the application, so the
terminal runs the template and no connection is required.

In the future, DeepReality can be improved not only by using Unity
components for the integration itself but also by taking advantage of
the native frameworks available today for the creation of models, such
as Tensorflow and PyTorch, which today allow integration using native
code and models natively developed using them and therefore have
no genericity. Limits of Barracuda package will be also overwhelming,
since it does not support all types of layers and operators, limiting the
range of architectures that can be imported.

It will be also evaluated the possibility to develop an integration
platform that allows even app developers who have no knowledge of
DL to integrate models into their applications using ready-to-use models
optimised for the software platforms for which they are developing.
In addition to this, Unity will also be able to integrate and use these
models for applications developed for new software platforms such as
HarmonyOS, which is currently not supported by generic languages
such as C#, as soon as they are compatible with the development
platform.

CRediT authorship contribution statement

Roberto Pierdicca: Conceptualization, Methodology, Software,
Writing — review & editing. Flavio Tonetto: Validation. Marina
Paolanti: Investigation, Writing - original draft. Marco Mameli:
Visualization. Riccardo Rosati: Data curation. Primo Zingaretti:
Supervision.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: Roberto Pierdicca reports was provided by Universita
Politecnica delle Marche. Roberto Pierdicca reports a relationship
with Universita Politecnica delle Marche that includes: employment.
Roberto Pierdicca has patent licensed to No patent. Nothing to
declare

13

Expert Systems With Applications 249 (2024) 123530
Data availability
No data was used for the research described in the article.
Acknowledgements

This project is funded from the European Union’s Horizon 2020
research and innovation programme through the XR4ALL project with
grant agreement No 825545.

References

Abadi, Martin, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng,
Citro, Craig, et al. (2016). Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Abdi, Lotfi, & Meddeb, Aref (2018). Driver information system: A combination of
augmented reality, deep learning and vehicular ad-hoc networks. Multimedia Tools
and Applications, 77(12), 14673-14703.

Alhaija, Hassan Abu, Mustikovela, Siva Karthik, Mescheder, Lars, Geiger, Andreas, &
Rother, Carsten (2017). Augmented reality meets deep learning for car instance
segmentation in urban scenes. In British machine vision conference: vol. 1, (p. 2).

Amin, Dhiraj, & Govilkar, Sharvari (2015). Comparative study of augmented reality
SDKs. International Journal on Computational Science & Applications, 5(1), 11-26.

Banfi, Fabrizio, Brumana, Raffaella, & Stanga, Chiara (2019). Extended reality and
informative models for the architectural heritage: from scan-to-BIM process to
virtual and augmented reality.

Bhattarai, Manish, Jensen-Curtis, Aura Rose, & Martinez-Ramén, Manel (2020). An
embedded deep learning system for augmented reality in firefighting applications.
In 2020 19th IEEE international conference on machine learning and applications (pp.
1224-1230). IEEE.

Burgard, Wolfram, Brock, Oliver, & Stachniss, Cyrill (2008). Data association in o(n)
for divide and conquer SLAM. In Robotics: science and systems III (pp. 281-288).

Cheng, Qiuyun, Zhang, Sen, Bo, Shukui, Chen, Dengxi, & Zhang, Haijun (2020).
Augmented reality dynamic image recognition technology based on deep learning
algorithm. IEEE Access, 8, 137370-137384.

Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai, & Fei-Fei, Li (2009). Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition (pp. 248-255). Ieee.

Devagiri, Jeevan S, Paheding, Sidike, Niyaz, Quamar, Yang, Xiaoli, & Smith, Samantha
(2022). Augmented reality and artificial intelligence in industry: Trends, tools, and
future challenges. Expert Systems with Applications, Article 118002.

Ding, Zhipeng, Han, Xu, & Niethammer, Marc (2019). VoteNet: A deep learning label
fusion method for multi-atlas segmentation. In International conference on medical
image computing and computer-assisted intervention (pp. 202-210). Springer.

Gammeter, Stephan, Gassmann, Alexander, Bossard, Lukas, Quack, Till, & Van Gool, Luc
(2010). Server-side object recognition and client-side object tracking for mobile
augmented reality. In 2010 IEEE computer society conference on computer vision and
pattern recognition-workshops (pp. 1-8). IEEE.

Ghasemi, Yalda, Jeong, Heejin, Choi, Sung Ho, Park, Kyeong-Beom, & Lee, Jae Yeol
(2022). Deep learning-based object detection in augmented reality: A systematic
review. Computers in Industry, 139, Article 103661.

Han, Junwei, Zhang, Dingwen, Cheng, Gong, Liu, Nian, & Xu, Dong (2018). Advanced
deep-learning techniques for salient and category-specific object detection: A
survey. IEEE Signal Processing Magazine, 35(1), 84-100.

Howard, Andrew G, Zhu, Menglong, Chen, Bo, Kalenichenko, Dmitry, Wang, Weijun,
Weyand, Tobias, et al. (2017). Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861.

Késtner, Linh, Frasineanu, Vlad Catalin, & Lambrecht, Jens (2020). A 3d-deep-learning-
based augmented reality calibration method for robotic environments using depth
sensor data. In 2020 IEEE international conference on robotics and automation (pp.
1135-1141). IEEE.

Kim, Minseok, Choi, Sung Ho, Park, Kyeong-Beom, & Lee, Jae Yeol (2021). A
hybrid approach to industrial augmented reality using deep learning-based facility
segmentation and depth prediction. Sensors, 21(1), 307.

Kim, Hak Gu, Lim, Heoun-taek, & Ro, Yong Man (2019). Deep virtual reality image
quality assessment with human perception guider for omnidirectional image. IEEE
Transactions on Circuits and Systems for Video Technology.

Lalonde, Jean-Frangois (2018). Deep learning for augmented reality. In 2018 17th
workshop on information optics (pp. 1-3). IEEE.

Lampropoulos, Georgios, Keramopoulos, Euclid, & Diamantaras, Konstantinos (2020).
Enhancing the functionality of augmented reality using deep learning, semantic
web and knowledge graphs: A review. Visual Informatics, 4(1), 32-42.

Le, Huy, Nguyen, Minh, Yan, Wei Qi, & Nguyen, Hoa (2021). Augmented reality and
machine learning incorporation using YOLOv3 and arkit. Applied Sciences, 11(13),
6006.

Lim, Heaun-Taek, Kim, Hak Gu, & Ra, Yang Man (2018). VR IQA net: Deep virtual re-
ality image quality assessment using adversarial learning. In 2018 IEEE international
conference on acoustics, speech and signal processing (pp. 6737-6741). IEEE.

http://arxiv.org/abs/1603.04467
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb2
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb2
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb2
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb2
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb2
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb3
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb3
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb3
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb3
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb3
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb4
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb4
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb4
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb5
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb5
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb5
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb5
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb5
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb6
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb6
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb6
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb6
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb6
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb6
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb6
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb7
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb7
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb7
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb8
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb8
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb8
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb8
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb8
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb9
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb9
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb9
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb9
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb9
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb10
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb10
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb10
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb10
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb10
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb11
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb11
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb11
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb11
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb11
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb12
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb12
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb12
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb12
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb12
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb12
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb12
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb13
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb13
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb13
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb13
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb13
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb14
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb14
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb14
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb14
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb14
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb16
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb16
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb16
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb16
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb16
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb16
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb16
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb17
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb17
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb17
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb17
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb17
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb18
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb18
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb18
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb18
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb18
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb19
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb19
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb19
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb20
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb20
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb20
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb20
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb20
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb21
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb21
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb21
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb21
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb21
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb22
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb22
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb22
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb22
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb22

R. Pierdicca et al.

Lin, Cheng-Hung, Chung, Yang, Chou, Bo-Yung, Chen, Hsin-Yi, & Tsai, Chen-Yang
(2018). A novel campus navigation APP with augmented reality and deep learning.
In 2018 IEEE international conference on applied system invention (pp. 1075-1077).
IEEE.

Lin, Tsung-Yi, Maire, Michael, Belongie, Serge, Hays, James, Perona, Pietro, Ra-
manan, Deva, et al. (2014). Microsoft coco: Common objects in context. In European
conference on computer vision (pp. 740-755). Springer.

Liu, Li, Ouyang, Wanli, Wang, Xiaogang, Fieguth, Paul, Chen, Jie, Liu, Xinwang, et al.
(2020). Deep learning for generic object detection: A survey. International Journal
of Computer Vision, 128(2), 261-318.

Lowe, David G. (1999). Object recognition from local scale-invariant features. In
Proceedings of the seventh IEEE international conference on computer vision: vol. 2,
(pp. 1150-1157). Ieee.

Macario Barros, Andréa, Michel, Maugan, Moline, Yoann, Corre, Gwenolé, & Car-
rel, Frédérick (2022). A comprehensive survey of visual SLAM algorithms. Robotics,
[ISSN: 2218-6581] 11(1), http://dx.doi.org/10.3390/robotics11010024, URL https:
//www.mdpi.com/2218-6581/11/1/24.

Matsuda, Yuji, Hoashi, Hajime, & Yanai, Keiji (2012). Recognition of multiple-food
images by detecting candidate regions. In 2012 IEEE international conference on
multimedia and expo (pp. 25-30). IEEE.

Moreno-Armendariz, Marco A, Calvo, Hiram, Duchanoy, Carlos A, Lara-Cézares, Ar-
turo, Ramos-Diaz, Enrique, & Morales-Flores, Victor L (2022). Deep-learning-based
adaptive advertising with augmented reality. Sensors, 22(1), 63.

Mur-Artal, Raul, Montiel, Jose Maria Martinez, & Tardos, Juan D. (2015). ORB-SLAM:
A versatile and accurate monocular SLAM system. IEEE Transactions on Robotics,
31(5), 1147-1163.

Naspetti, Simona, Pierdicca, Roberto, Mandolesi, Serena, Paolanti, Marina, Fron-
toni, Emanuele, & Zanoli, Raffaele (2016). Automatic analysis of eye-tracking data
for augmented reality applications: A prospective outlook. In International conference
on augmented reality, virtual reality and computer graphics (pp. 217-230). Springer.

Nguyen, Minh, Tran, Huy, Le, Huy, & Yan, Wei Qi (2017). A tile based colour picture
with hidden qr code for augmented reality and beyond. In Proceedings of the 23rd
ACM symposium on virtual reality software and technology (pp. 1-4).

Nowacki, Pawel, & Woda, Marek (2020). Capabilities of arcore and arkit platforms for
ar/vr applications. In International conference on dependability and complex systems
(pp. 358-370). Springer.

Park, Kyeong-Beom, Kim, Minseok, Choi, Sung Ho, & Lee, Jae Yeol (2020). Deep
learning-based smart task assistance in wearable augmented reality. Robotics and
Computer-Integrated Manufacturing, 63, Article 101887.

Paszke, Adam, Gross, Sam, Massa, Francisco, Lerer, Adam, Bradbury, James,
Chanan, Gregory, et al. (2019). Pytorch: An imperative style, high-performance
deep learning library. In Advances in neural information processing systems: In
Advances in neural information processing systems.vol. 32,

Pierdicca, Roberto, Paolanti, Marina, Naspetti, Simona, Mandolesi, Serena, Zanoli, Raf-
faele, & Frontoni, Emanuele (2018). User-centered predictive model for improving
cultural heritage augmented reality applications: An HMM-based approach for
eye-tracking data. Journal of Imaging, 4(8), 101.

Pierdicca, Roberto, Tonetto, Flavio, Mameli, Marco, Rosati, Riccardo, & Zin-
garetti, Primo (2022). Can AI replace conventional markerless tracking? A
comparative performance study for mobile augmented reality based on artificial
intelligence. In Extended reality: first international conference, XR salento 2022, lecce,
Italy, July 6-8, 2022, proceedings, Part II (pp. 161-177). Springer.

14

Expert Systems With Applications 249 (2024) 123530

Polap, Dawid, Kesik, Karolina, Ksiazek, Kamil, & Wozniak, Marcin (2017). Obstacle
detection as a safety alert in augmented reality models by the use of deep learning
techniques. Sensors, 17(12), 2803.

Rao, Jinmeng, Qiao, Yanjun, Ren, Fu, Wang, Junxing, & Du, Qingyun (2017). A mobile
outdoor augmented reality method combining deep learning object detection and
spatial relationships for geovisualization. Sensors, 17(9), 1951.

Redmon, Joseph, & Farhadi, Ali (2017). YOLO9000: better, faster, stronger. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition (pp.
7263-7271).

Sandler, Mark, Howard, Andrew, Zhu, Menglong, Zhmoginov, Andrey, & Chen, Liang-
Chieh (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520).

Sereno, Mickael, Wang, Xiyao, Besancon, Lonni, McGuffin, Michael J, & Isenberg, To-
bias (2020). Collaborative work in augmented reality: A survey. IEEE Transactions
on Visualization and Computer Graphics.

Shen, Lujun, Mo, Jinqging, Yang, Changsheng, Jiang, Yiquan, Ke, Liangru, Hou, Dan, et
al. (2023). SurvivalPath: AR package for conducting personalized survival path
mapping based on time-series survival data. PLoS Computational Biology, 19(1),
Article e1010830.

Stanney, Kay M, Archer, JoAnn, Skinner, Anna, Horner, Charis, Hughes, Claire,
Brawand, Nicholas P, et al. (2022). Performance gains from adaptive extended
reality training fueled by artificial intelligence. The Journal of Defense Modeling and
Simulation, 19(2), 195-218.

Subakti, Hanas, & Jiang, Jehn-Ruey (2018). Indoor augmented reality using deep
learning for industry 4.0 smart factories. vol. 2, In 2018 IEEE 42nd annual computer
software and applications conference (pp. 63-68). IEEE.

Svensson, Jan, & Atles, Jonatan (2018). Object detection in augmented reality. Master’s
Theses in Mathematical Sciences.

Tan, Mingxing, Pang, Ruoming, & Le, Quoc V. (2020). Efficientdet: Scalable and
efficient object detection. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 10781-10790).

Tanskanen, Aapo, Martinez, Asier Alcaide, Blasco, Deborah Kuperstein, & Sipid, Laura
(2019). Artificial intelligence, augmented reality and mixed reality in cultural
venues. Consolidated Assignments from Spring 2019, 80.

Unity 0000a. About AR Foundation, Available Online, URL https://docs.unity3d.com/
Packages/com.unity.xr.arfoundation@5.0/manual/index.html.

Unity 0000b. Introduction to barracuda, Available Online, URL https://docs.unity3d.
com/Packages/com.unity.barracuda@1.0/manual/index.html.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion,
Gomez, Aidan N, et al. (2017). Attention is all you need. In Advances in neural
information processing systems.

Wang, Shaohan, Zargar, Sakib Ashraf, & Yuan, Fuh-Gwo (2021). Augmented reality
for enhanced visual inspection through knowledge-based deep learning. Structural
Health Monitoring, 20(1), 426-442.

Zhao, Zhong-Qiu, Zheng, Peng, Xu, Shou-tao, & Wu, Xindong (2019). Object detection
with deep learning: A review. IEEE Transactions on Neural Networks and Learning
Systems, 30(11), 3212-3232.

http://refhub.elsevier.com/S0957-4174(24)00395-6/sb23
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb23
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb23
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb23
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb23
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb23
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb23
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb24
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb24
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb24
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb24
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb24
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb25
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb25
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb25
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb25
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb25
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb26
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb26
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb26
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb26
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb26
http://dx.doi.org/10.3390/robotics11010024
https://www.mdpi.com/2218-6581/11/1/24
https://www.mdpi.com/2218-6581/11/1/24
https://www.mdpi.com/2218-6581/11/1/24
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb28
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb28
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb28
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb28
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb28
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb29
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb29
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb29
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb29
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb29
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb30
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb30
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb30
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb30
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb30
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb31
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb31
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb31
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb31
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb31
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb31
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb31
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb32
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb32
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb32
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb32
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb32
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb33
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb33
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb33
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb33
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb33
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb34
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb34
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb34
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb34
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb34
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb35
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb35
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb35
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb35
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb35
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb35
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb35
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb36
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb36
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb36
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb36
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb36
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb36
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb36
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb37
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb37
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb37
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb37
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb37
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb37
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb37
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb37
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb37
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb38
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb38
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb38
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb38
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb38
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb39
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb39
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb39
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb39
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb39
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb40
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb40
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb40
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb40
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb40
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb41
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb41
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb41
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb41
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb41
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb42
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb42
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb42
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb42
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb42
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb43
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb43
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb43
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb43
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb43
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb43
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb43
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb44
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb44
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb44
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb44
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb44
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb44
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb44
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb45
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb45
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb45
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb45
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb45
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb46
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb46
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb46
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb47
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb47
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb47
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb47
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb47
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb48
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb48
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb48
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb48
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb48
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/manual/index.html
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb51
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb51
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb51
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb51
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb51
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb52
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb52
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb52
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb52
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb52
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb53
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb53
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb53
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb53
http://refhub.elsevier.com/S0957-4174(24)00395-6/sb53

	DeepReality: An open source framework to develop AI-based augmented reality applications
	Introduction
	Related Work
	Methodology
	Session Manager
	Model Handling
	Model Executor
	IModel Loader
	IModelPreProcessor
	IModelPostProcessor
	ModelOutput

	AR Projection

	Experiments and Analysis
	Classification task
	Object Detection task

	Complexity analysis
	Model Executor
	Pre-Processor
	Post-Processing
	AR-Projector
	ORB
	SLAM

	Time Complexity Analysis

	Usability Evaluation
	Conclusions and Future Works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

