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Abstract
In this paper, we deal with the following class of (p1, p2)-Laplacian problems:{−�p1u − �p2u = g(u) in R

N ,

u ∈ W 1,p1(RN ) ∩ W 1,p2(RN ),

where N ≥ 2, 1 < p1 < p2 ≤ N ,�pi is the pi -Laplacian operator, for i = 1, 2, and g : R →
R is a Berestycki-Lions type nonlinearity. Using appropriate variational arguments, we obtain
the existence of a ground state solution. In particular, we provide three different approaches
to deduce this result. Finally, we prove the existence of infinitely many radially symmetric
solutions. Our results improve and complement those that have appeared in the literature
for this class of problems. Furthermore, the arguments performed throughout the paper are
rather flexible and can be also applied to study other p-Laplacian and (p1, p2)-Laplacian
equations with general nonlinearities.

Mathematics Subject Classification 35A15 · 35J92 · 35J60

1 Introduction

In this paper, we consider the following class of (p1, p2)-Laplacian problems:{−�p1u − �p2u = g(u) in R
N ,

u ∈ W 1,p1(RN ) ∩ W 1,p2(RN ),
(1.1)

where N ≥ 2, 1 < p1 < p2 ≤ N , �pi u := div(|∇u|pi−2∇u) is the pi -Laplacian operator,
for i = 1, 2, and g : R → R is an odd continuous function satisfying the following
assumptions:

(g1) −∞ < lim inf t→0+ g(t)
t p1−1 ≤ lim supt→0+ g(t)

t p1−1 < 0 when p2 < N , and limt→0+ g(t)
t p1−1 ∈

(−∞, 0) when p2 = N .
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(g2) −∞ ≤ lim supt→+∞
g(t)

t p
∗
2−1 ≤ 0 when p2 < N , and lim supt→+∞

g(t)

exp

(
αt

N
N−1

) ≤ 0 for

all α > 0 when p2 = N .
(g3) There exists ξ > 0 such that G(ξ) > 0, where G(t) := ∫ t0 g(τ ) dτ .

As pointed out in [16], problem (1.1) comes from the research of stationary solutions for
the general reaction-diffusion system

ut = div(D(u)∇u) + c(x, u) where D(u) := |∇u|p1−2 + |∇u|p2−2,

which finds applications in physics and related sciences such as biophysics, plasma physics,
and chemical reaction design. In such situations, u denotes a concentration, div(D(u)∇u)

represents the diffusion with diffusion coefficient D(u), whereas the reaction term c(x, u)

relates to source and loss processes. Usually, in chemical and biological applications, the
reaction term c(x, u) has a polynomial form with respect to u. Another important example
where Eq. (1.1) emerges is the study of soliton-like solutions of the following nonlinear
Schrödinger equation

ıψt = −�ψ + V (x)ψ − �p2ψ + W ′(x, ψ)

proposed by Derrick as a model for elementary particles. We also observe that the (p1, p2)-
Laplacian operator �p1 + �p2 is a particular case of the well-known double-phase operator
div(|∇u|p1−2∇u+a(x)|∇u|p2−2∇u), with a ≥ 0 and bounded, whose corresponding energy
functional was analyzed in the context of problems of homogenization and elasticity [48,
49], and of the calculus of variations [34, 38]. For some interesting existence and multiplicity
results for (p1, p2)-Laplacian problems in RN and in bounded domains, we refer to [5, 7, 8,
10, 21–23, 26, 31, 41, 42] and the references therein.

When p1 = p2 = 2, problem (1.1) boils down to the following nonlinear elliptic problem:{−�u = g(u) in R
N ,

u ∈ H1(RN ).
(1.2)

In the seminal paper [12, Theorem 1], Berestycki and Lions used a constrained minimiza-
tion argument to prove that, under assumptions (g1)–(g3) with p1 = p2 = 2 and N ≥ 3,
there exists a ground state solution (or least energy solution) which is positive and radially
symmetric. In [13, Theorem 6] the authors obtained infinitely many radially symmetric solu-
tions. In [11, Theorem 1] Berestycki, Gallouët and Kavian extended the result in [12] for
the case N = 2. Subsequently, Jeanjean and Tanaka [29, Theorem 0.2] provided a mountain
pass characterization of ground state solutions to (1.2). In [25, Theorem 1.3] Hirata, Ikoma
and Tanaka developed mountain pass and symmetric mountain pass approaches to general-
ize the results in [11–13]. The authors in [25] employed the auxiliary functional introduced
in [27, Section 2] and constructed a Pohozaev-Palais-Smale sequence in the radial subspace
H1
r (RN ), that is, a Palais-Smale sequence in H1

r (RN ) satisfying asymptotically the Pohozaev
identity (

N − 2

2

)
‖∇u‖2L2(RN )

= N
∫
RN

G(u) dx,

which has the advantage to be bounded in H1
r (RN ) and that, up to a subsequence, strongly

converges to aweak solution to (1.2) (thanks to the compactness of the embedding H1
r (RN ) ⊂

Lq(RN ) for all q ∈ (2, 2∗)). Recently, Mederski [35, Theorem 1.3] gave a new proof of the
existence of a ground state solution to (1.2) by using a variational approach based on a critical
point theory built on the Pohozaev manifold, and combining a concentration-compactness
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approach with profile decompositions. In [35] the author also examined the existence and
multiplicity of nonradial solutions to (1.2). Motivated by [35], Jeanjean and Lu [30] proposed
an alternative and more elementary approach to recover the results in [35]. In particular, in
[30, Theorems 1.1 and 1.2] the authors reestablished the results in [12, 13] by means of the
monotonicity trick [28, 44] and a decomposition result for bounded Palais-Smale sequences
(see also [35,Theorem1.4] and [46,Chapter 8]). This decomposition result is useful to recover
compactness, up to subsequences and translations, of bounded Palais-Smale sequences in
H1(RN ) for C1-functionals with general subcritical nonlinearities.

When p1 = p2 = p ∈ (1,+∞), problem (1.1) becomes the following quasilinear elliptic
problem: {−�pu = g(u) in R

N ,

u ∈ W 1,p(RN ).
(1.3)

In [17, Theorem 1.1] Citti investigated the existence of a positive radially symmetric ground
state solution to (1.3) with p ∈ (1, N ) in the spirit of [12]; see also [20, Theorem 1]. Later, do
Ó andMedeiros [19, Theorems 1.4, 1.6 and 1.8] generalized the results in [17, 29] considering
even the case p = N . Finally, Byeon et al. [15, Section 3] showed that every ground state
solution to (1.3) has a constant sign and, if it tends to zero at infinity, then it is, up to a
translation, radially symmetric and monotone with respect to the radial variable.

For what concerns the (p1, p2)-Laplacian problem (1.1) under general assumptions (g1)–
(g3), only two results appeared in the literature and both supposed 1 < p1 < p2 < N and
N ≥ 3.More precisely, Pomponio andWatanabe [42, Theorem 1.2] obtained the existence of
a positive radially symmetric ground state solution to (1.1) applying the monotonicity trick,
and in [7, Theorem 3.1] the author proved the existence of a positive ground state solution
to (1.1) utilizing Pohozaev-Palais-Smale sequences.

Motivated by the above-mentioned papers for the Laplacian and the p-Laplacian case
with p ∈ (1, N ] \ {2}, the purpose of this work is to improve and complement the results in
[7, 42]. More precisely, the main results of this paper can be stated as follows.

Theorem 1.1 Let N ≥ 2 and 1 < p1 < p2 ≤ N. Assume that (g1)–(g3) hold. Then (1.1)
has a ground state solution.

Theorem 1.2 Let N ≥ 2 and 1 < p1 < p2 ≤ N. Assume that (g1)–(g3) hold. Then (1.1)
has infinitely many radially symmetric solutions.

The proofs of Theorems 1.1 and 1.2 rely on suitable variational arguments. First we show
that every weak solution of (1.1) belongs to L∞(RN ) ∩ C1,σ

loc (RN ), for some σ ∈ (0, 1),
and fulfills a Pohozaev type identity; see Theorem 3.1. We also get an exponential decay
estimate at infinity; see Theorem 3.2. As in [7, Section 3], we introduce the energy functional
associated with (1.1), namely,

L(u) :=
2∑

i=1

1

pi
‖∇u‖pi

L pi (RN )
−
∫
RN

G(u) dx for all u ∈ W := W 1,p1 (RN ) ∩ W 1,p2 (RN ),

and we demonstrate that L has a mountain pass geometry [6]; see Lemma 4.1. Thanks to
an auxiliary functional and the general minimax principle [46, Theorem 2.8], we produce
a Pohozaev-Palais-Smale sequence (un) ⊂ W for L at the mountain pass level cMP; see
Proposition 4.1. In addition, we are able to prove that (un) is bounded inW; see Lemma 4.2.
After that, we establish an almost everywhere convergence of the gradients of Pohozaev-
Palais-Smale sequences; see Lemma 4.3. This result will be also convenient to apply the
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Brezis-Lieb lemma [14, Theorem 1] to the gradients. Then we develop a concentration-
compactness type argument to show that, up to translations and extraction of a subsequence,
(un) strongly converges in W to a weak solution u to (1.1); see Proposition 4.2. To verify
that u is indeed a ground state solution to (1.1), we exploit the fact that every weak solution
to (1.1) satisfies a Pohozaev type identity and we construct an optimal path in the spirit of
[29, Lemma 2.1] (note that the construction when p2 = N is much more elaborate with
respect to p2 < N ); see Proposition 4.4. Hence we conclude that the mountain pass level
cMP coincides with the ground state energy level cLE. Moreover, we derive the compactness,
modulo translations, of the set of ground state solutions to (1.1); see Proposition 4.3. As in
[30], we also establish a new decomposition result for bounded Palais-Smale sequences in
the (p1, p2)-Laplacian framework; see Theorem 5.1. We recall that decomposition results
for Palais-Smale sequences associated with quasilinear problems in bounded and unbounded
domains can be found in [4, Theorem 2], [9, Proposition 1], [36, Theorem 1.1], and [37,
Theorem 1.2]. However, in such papers, no general nonlinearities were considered. Our
decomposition result allows us to exhibit a second proof of Theorem 1.1, whereas a third
proof of Theorem 1.1 will be obtained by combining the monotonicity trick and the aforesaid
decomposition result. Finally, by virtue of a symmetric mountain pass approach, we give the
proof of Theorem 1.2. We stress that our proofs are much more difficult and intriguing with
respect to the Laplacian and p-Laplacian cases. In fact, due to the presence of the (p1, p2)-
Laplacian operator, which is nonlinear and not homogeneous in scaling, our calculations are
muchmore complicated and an accurate analysiswill be carried out to handle the combination
of two different p-Laplacians. Furthermore, we are able to treat in a unified way the cases
p2 < N and p2 = N . We emphasize that our proofs are rather flexible and also work,
with slight modifications, for the p-Laplacian problem (1.3). In this manner, we deduce
alternative proofs of the results in [17, 19] and extend [30, Theorems 1.1 and 1.2] to the
p-Laplacian setting (notice that in [30] the authors studied (1.2) for N ≥ 3 and without
considering general subcritical exponential nonlinearities). Moreover, the multiplicity result
in Theorem 1.2 turns out to be completely new even in the p-Laplacian framework. We
believe that the approaches developed along this paper can be applied to investigate other
various p-Laplacian and (p1, p2)-Laplacian problems with general nonlinearities.

The paper is organized as follows. In Sect. 2, we collect some notations and definitions,
and we establish some useful lemmas. In Sect. 3, we explore the regularity of solutions to
(1.1), we prove a Pohozaev type identity and an exponential decay estimate. In Sect. 4, we
present a first proof of Theorem 1.1. In Sect. 5, we provide a second proof of Theorem 1.1.
The last section is devoted to the third proof of Theorem 1.1 and the proof of Theorem 1.2.

2 Notations and some preliminaries

For any real valued function u : RN → R, we put u+ := max{u, 0} and u− := max{−u, 0}.
Let p ∈ [1,+∞). The Sobolev space W 1,p(RN ) given by

W 1,p(RN ) :=
{
u ∈ L p(RN ) : ∇u ∈ (L p(RN ))N

}

is equipped with the norm

‖u‖W 1,p(RN ) :=
(
‖∇u‖p

L p(RN )
+ ‖u‖p

L p(RN )

) 1
p
,
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or sometimes with the equivalent norm ‖∇u‖L p(RN ) + ‖u‖L p(RN ). It is well-known that
W 1,p(RN ) is a separable reflexive Banach space for all p ∈ (1,+∞) (see [2, Theorems 3.3
and 3.6]), and that C∞

c (RN ) is dense in W 1,p(RN ) (see [2, Corollary 3.23]). Set

p∗ :=
{

Np
N−p if N > p,
+∞ if N = p.

Theorem 2.1 [2, Theorems 4.12, 4.31 and 6.3] Let p ∈ [1,+∞) and N ≥ 2. If p ∈ [1, N ),
then the following Sobolev inequality holds:

‖u‖L p∗ (RN ) ≤ S∗(N , p)‖∇u‖L p(RN ) for all u ∈ D1,p(RN ), (2.1)

where S∗(N , p) > 0 denotes the best Sobolev constant and D1,p(RN ) is the completion of
C∞
c (RN ) with respect to ‖∇ · ‖L p(RN ), or equivalently,

D1,p(RN ) =
{
u ∈ L p∗

(RN ) : ∇u ∈ (L p(RN ))N
}

.

Furthermore, W 1,p(RN ) is continuously embedded in Lq(RN ) for all q ∈ [p, p∗] and com-
pactly embedded in Lq

loc(R
N ) for all q ∈ [1, p∗). If p = N, then W 1,p(RN ) is continuously

embedded in Lq(RN ) for all q ∈ [p, p∗) and compactly embedded in Lq
loc(R

N ) for all

q ∈ [1, p∗). Finally, if p > N, then W 1,p(RN ) is continuously embedded in C0,1− N
p (RN )

and compactly embedded in C0,α
loc (RN ) for all α ∈ (0, 1 − N

p ).

When p = N , we have the following Trudinger-Moser inequality.

Theorem 2.2 [1, Theorem 0.1] Let N ≥ 2 and αN := Nω
1

N−1
N−1, where ωN−1 is the surface

area of the unit sphere in RN . Then for every α ∈ (0, αN ) there exists Cα > 0 such that

∫
RN

	N

⎛
⎝α

(
|u(x)|

‖∇u‖LN (RN )

) N
N−1
⎞
⎠ dx ≤ Cα

‖u‖N
LN (RN )

‖∇u‖N
LN (RN )

for all u ∈ W 1,N (RN ) \ {0},

(2.2)

where

	N (t) := exp(t) −
N−2∑
k=0

tk

k! =
+∞∑

k=N−1

tk

k! .

From Theorem 2.2 we easily derive that, for all fixed α ∈ (0, αN ) and K > 0, it holds

∫
RN

	N

⎛
⎝α

( |u(x)|
K

) N
N−1

⎞
⎠ dx ≤ Cα

‖u‖N
LN (RN )

K N
for all u ∈ W 1,N (RN ) : ‖∇u‖LN (RN )

≤ K .

(2.3)

In fact, if u ∈ W 1,N (RN ) \ {0} is such that ‖∇u‖LN (RN ) ≤ K , then

K N	N

(
α

( |u|
K

) N
N−1
)

= K N
+∞∑

j=N−1

1

j !

[
α

( |u|
K

) N
N−1
] j
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=
+∞∑

j=N−1

α j

j !
|u| N j

N−1

K
N j
N−1−N

≤
+∞∑

j=N−1

α j

j !
|u| N j

N−1

‖∇u‖
N j
N−1−N

LN (RN )

= ‖∇u‖NLN (RN )
	N

⎛
⎝α

(
|u|

‖∇u‖LN (RN )

) N
N−1
⎞
⎠ ,

and using (2.2) we obtain that (2.3) is true.

Remark 2.1 The function 	N possesses the following useful properties (see [47, Lemmas
2.1 and 2.2]):

(	N (t))ρ ≤ 	N (ρt) for all t ≥ 0 and ρ ≥ 1, (2.4)

	N (s + t) ≤ 1

μ1
	N (μ1s) + 1

μ2
	N (μ2t) for all s, t ≥ 0 and μ1, μ2 > 1 : 1

μ1
+ 1

μ2
= 1. (2.5)

The next inequality will be used later.

Lemma 2.1 Let t ∈ [1,+∞), N ≥ 2 and s ∈ [t, t∗). Then there exists C > 0 such that

‖u‖sLs (RN )
≤ C

(
sup

x0∈RN
‖u‖sLs (B1(x0))

)1− t
s

‖u‖tW 1,t (RN )
for all u ∈ W 1,t (RN ).

Proof The assertion is clear when s = t . Let now s ∈ (t, t∗). From [2, Theorem 4.12], we
learn that, for all fixed x0 ∈ R

N ,

‖u‖Ls (B1(x0)) ≤ C̃‖u‖W 1,t (B1(x0)) for all u ∈ W 1,t (B1(x0)), (2.6)

for some C̃ > 0 depending on N , s, and t , but independent of x0. Applying the Hölder
inequality with exponents s

s−t and
s
t , and using (2.6), we obtain

‖u‖sLs (B1(x0))
≤
(∫

B1(x0)
|u|s dx

)1− t
s
(∫

B1(x0)
|u|s dx

) t
s

≤ C̃ t

(
sup

x0∈RN
‖u‖sLs (B1(x0))

)1− t
s

‖u‖tW 1,t (B1(x0))
.

Covering R
N by balls with radius 1 in such a way that each point of RN is contained in at

most N + 1 balls, we deduce

‖u‖sLs (RN )
≤ (N + 1)C̃ t

(
sup

x0∈RN
‖u‖sLs (B1(x0))

)1− t
s

‖u‖tW 1,t (RN )
.

The proof of the lemma is now complete. �
The vanishing Lions lemma below is well-known [33, Lemma I.1].
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Lemma 2.2 [33, Lemma I.1] Let p ∈ (1,+∞) and s ∈ [p, p∗). Let (un) ⊂ W 1,p(RN ) be a
bounded sequence such that

lim
n→+∞ sup

y∈RN

∫
BR(y)

|un |s dx = 0,

for some R > 0. Then un → 0 in Lq(RN ) for all q ∈ (p, p∗).

Let us consider the radial Sobolev space

W 1,p
r (RN ) :=

{
u ∈ W 1,p(RN ) : u(x) = u(|x |)

}
.

We have the following compact embedding.

Theorem 2.3 [32, Theorem II.1] Let N ≥ 2 and p ∈ [1,+∞). Then W 1,p
r (RN ) is compactly

embedded in Lq(RN ) for all q ∈ (p, p∗).

We recall that the proof of Theorem 2.3 in [32] is based on the next useful result.

Lemma 2.3 [32, Lemma II.1] Let N ≥ 2, p ∈ [1,+∞) and u ∈ W 1,p
r (RN ). Then it holds

|u(x)| ≤ C(N , p)|x |− N−1
p ‖u‖

p−1
p

L p(RN )
‖∇u‖

1
p

L p(RN )
for a.e. x ∈ R

N .

Moreover, u(x) can be identified with a function ũ(|x |) such that ũ ∈ C0, p−1
p ((0,+∞)).

Since we aim to deal with (p1, p2)-Laplacian problems, with 1 < p1 < p2 ≤ N , we
introduce the Sobolev space

W := W 1,p1(RN ) ∩ W 1,p2(RN )

equipped with the norm

‖u‖W := ‖u‖W 1,p1 (RN ) + ‖u‖W 1,p2 (RN ).

When p1 = p2 = p ∈ (1, N ], we identify W with W 1,p(RN ), endowed with the standard
norm. Let us observe that W is a separable reflexive Banach space. By W ′ we denote the
dual space of W . We also define the radial subspace of W , namely

Wr := {u ∈ W : u(x) = u(|x |)}.
Next we establish two useful lemmas that extend and improve [35, Lemma 3.1 and equation
(3.12)] (see also [30, Lemmas 3.2 and 3.3]). The first one is a variant of Lemma 2.2.

Lemma 2.4 Let (un) ⊂ W be a bounded sequence such that

lim
n→+∞ sup

y∈RN

∫
BR(y)

|un |s dx = 0, (2.7)

for some R > 0 and s ∈ [p2, p∗
2). Then, as n → +∞,∣∣∣∣

∫
RN

�(un) dx

∣∣∣∣ ≤
∫
RN

|�(un)| dx → 0,
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for every continuous function � : R → R such that

lim|t |→0

�(t)

|t |p1 = lim|t |→+∞
�(t)

|t |p∗
2

= 0 if 1 < p1 ≤ p2 < N ,

lim|t |→0

�(t)

|t |p1 = lim|t |→+∞
�(t)

eα|t |
N

N−1

= 0 for all α > 0 if 1 < p1 < p2 = N ∨ 1 < p1 = p2 = N .

Proof First we suppose that 1 < p1 ≤ p2 < N . Fix ε > 0 and q ∈ (p2, p∗
2). Then there

exist 0 < δε < Mε and cε,q > 0 such that

|�(t)| ≤ ε |t |p1 for all |t | ≤ δε,

|�(t)| ≤ ε |t |p∗
2 for all |t | ≥ Mε,

|�(t)| ≤ cε,q |t |q for all δε ≤ |t | ≤ Mε.

Hence,

|�(t)| ≤ ε(|t |p1 + |t |p∗
2 ) + cε,q |t |q for all t ∈ R. (2.8)

In view of (2.7), it follows from Lemma 2.2 that un → 0 in Lq(RN ). This fact combined
with (2.8) and the boundedness of (un) in L p1(RN ) ∩ L p∗

2 (RN ) yields

lim sup
n→+∞

∫
RN

|�(un)| dx ≤ ε

(
‖un‖p1

L p1 (RN )
+ ‖un‖p∗

2

L p∗2 (RN )

)
≤ C ε .

Since ε > 0 is arbitrary, we obtain the assertion. Now we assume that 1 < p1 < p2 = N or
1 < p1 = p2 = N . Take ε > 0, α > 0, and q ∈ (p2,+∞). Then there exists Cε,α,q > 0
such that

|�(t)| ≤ ε
(
|t |p1 + 	N

(
α|t | N

N−1

))
+ Cε,α,q |t |q for all t ∈ R. (2.9)

Because (un) is bounded inW 1,N (RN ), there exists K > 0 such that ‖un‖W 1,N (RN ) ≤ K for

all n ∈ N. Choosing α > 0 such that αK
N

N−1 < αN , we can see that (2.3) gives

∫
RN

	N

(
α|un | N

N−1

)
dx =

∫
RN

	N

(
αK

N
N−1

( |un |
K

) N
N−1
)

dx ≤ C ′ for all n ∈ N.

(2.10)

Exploiting un → 0 in Lq(RN ), the boundedness of (un) in L p1(RN ), (2.9), and (2.10), we
find

lim sup
n→+∞

∫
RN

|�(un)| dx ≤ C ′′ ε,

and so the assertion follows from the arbitrariness of ε > 0. �
Remark 2.2 Clearly, the conclusion of Lemma 2.4 still holds if we replace (2.7) by un → 0
in Lq(RN ) for all q ∈ (p2, p∗

2).

The second lemma is a Brezis-Lieb type result [14, Theorem 1].

Lemma 2.5 Let � : R → R be a C1 function such that �(0) = 0. When 1 < p1 ≤ p2 < N,
we assume that there exists C > 0 such that

|� ′(t)| ≤ C
(
|t |p1−1 + |t |p∗

2−1
)

for all t ∈ R, (2.11)
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while if 1 < p1 < p2 = N or 1 < p1 = p2 = N then we assume that for every α > 0 and
q ≥ 1 there exists C̄ > 0 such that

|� ′(t)| ≤ C̄
(
|t |p1−1 + |t |q−1	N

(
α|t | N

N−1

))
for all t ∈ R. (2.12)

Let (un) ⊂ W be a bounded sequence such that un → u a.e. in R
N for some u ∈ W . Then

we have

lim sup
n→+∞

∫
RN

�(un) dx =
∫
RN

�(u) dx + lim sup
n→+∞

∫
RN

�(un − u) dx .

Proof We aim to apply the Vitali convergence theorem to show that∫
RN

[�(un) − �(un − u)] dx =
∫
RN

�(u) dx + on(1). (2.13)

In fact, once proved (2.13), we deduce

lim sup
n→+∞

∫
RN

�(un) dx =
∫
RN

�(u) dx + lim sup
n→+∞

∫
RN

�(un − u) dx .

Next we demonstrate (2.13). The mean value theorem ensures that

�(un) − �(un − u) = � ′(un − u + θnu)u,

with θn = θn(x) ∈ [0, 1]. Assume that 1 < p1 ≤ p2 < N . From (2.11), we derive

|� ′(un − u + θnu)u| ≤ C
(
|un − u + θnu|p1−1 + |un − u + θnu|p∗

2−1
)

|u|
≤ C1(|un | + |u|)p1−1|u| + C2(|un | + |u|)p∗

2−1|u|.
Thus, utilizing the Hölder inequality and the boundedness of (un) in L p1(RN ) ∩ L p∗

2 (RN ),
we see that for every � ⊂ R

N measurable set,

∫
�

|� ′(un − u + θnu)u| dx

≤ C3

[
‖un‖p1−1

L p1 (RN )
‖u‖L p1 (�) + ‖u‖p1

L p1 (�)
+ ‖un‖p

∗
2−1

L p∗2 (RN )
‖u‖

L p∗2 (�)
+ ‖u‖p

∗
2

L p∗2 (�)

]

≤ C4

(
‖u‖L p1 (�) + ‖u‖p1

L p1 (�)
+ ‖u‖

L p∗2 (�)
+ ‖u‖p

∗
2

L p∗2 (�)

)
for all n ∈ N.

Now, if |�| → 0, then∫
�

|� ′(un − u + θnu)u| dx → 0 uniformly in n ∈ N.

On the other hand, since u ∈ L p1(RN ) ∩ L p∗
2 (RN ), fixed ε > 0 we can find R > 0 such

that

C4

(
‖u‖L p1 (Bc

R(0)) + ‖u‖p1
L p1 (Bc

R(0)) + ‖u‖
L p∗2 (Bc

R(0))
+ ‖u‖p∗

2

L p∗2 (Bc
R(0))

)
< ε .

Hence, if � = Bc
R(0), then∫

Bc
R(0)

|� ′(un − u + θnu)u| dx < ε for all n ∈ N.
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Therefore, (�(un) − �(un − u)) satisfies the assumptions of the Vitali convergence
theorem. Noting that �(0) = 0, we conclude that (2.13) holds.

Next we consider the case 1 < p1 < p2 = N . Using (2.12) with q > N + 1, the
elementary estimate

α|un − u + θnu| N
N−1 ≤ αc0

(
|un | N

N−1 + |u| N
N−1

)
,

with c0 := 2
1

N−1 , and the fact that 	N is nondecreasing in [0,+∞), we have

|� ′(un − u + θnu)u|
≤ C̄

(
|un − u + θnu|p1−1 + |un − u + θnu|q−1	N

(
α|un − u + θnu| N

N−1

))
|u|

≤ C5(|un | + |u|)p1−1|u| + C6(|un | + |u|)q−1	N

(
αc0

(
|un | N

N−1 + |u| N
N−1

))
|u|.

Let now � ⊂ R
N be any measurable set. Exploiting the Hölder inequality and the

boundedness of (un) in L p1(RN ), we see∫
�

(|un | + |u|)p1−1|u| dx ≤ C7(‖un‖p1−1
L p1 (RN )

‖u‖L p1 (�) + ‖u‖p1
L p1 (�)

)

≤ C8

(
‖u‖L p1 (�) + ‖u‖p1

L p1 (�)

)
.

Fix τ1 > 1, τ2 > 1 and τ3 > N such that
∑3

i=1
1
τi

= 1. Note that τ1(q − 1) > N . Using the
generalized Hölder inequality, (2.4), and (2.5) with μ1 = μ2 = 2, we obtain∫

�

(|un | + |u|)q−1	N

(
αc0

(
|un | N

N−1 + |u| N
N−1

))
|u| dx

≤ ‖|un | + |u|‖q−1
Lτ1(q−1)(RN )

(∫
RN

	N (ατ2c0(|un | N
N−1 + |u| N

N−1 )) dx

) 1
τ2 ‖u‖Lτ3 (�)

≤ ‖|un | + |u|‖q−1
Lτ1(q−1)(RN )

(∫
RN

[
1

2
	N (2ατ2c0|un | N

N−1 ) + 1

2
	N (2ατ2c0|u| N

N−1 )

]
dx

) 1
τ2

‖u‖Lτ3 (�).

Since (un) is bounded in W 1,N (RN ), there exists K > 0 such that ‖un‖W 1,N (RN ) ≤ K for

all n ∈ N. Select α > 0 such that 2ατ2c0K
N

N−1 < αN . Then, invoking (2.3), we get∫
RN

	N (2ατ2c0|un | N
N−1 ) dx

=
∫
RN

	N

(
2ατ2c0K

N
N−1

( |un |
K

) N
N−1
)

dx ≤ C9 for all n ∈ N.

In a similar manner, choosing α > 0 sufficiently small, we infer∫
RN

	N (2ατ2c0|u| N
N−1 ) dx ≤ C10.

Therefore, for α > 0 small enough, we arrive at∫
RN

[
1

2
	N

(
2ατ2c0|un | N

N−1

)
+ 1

2
	N (2ατ2c0|u| N

N−1 )

]
dx ≤ C11 for all n ∈ N.
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Observing that (un) is bounded in Lτ1(q−1)(RN ), we deduce∫
�

(|un | + |u|)q−1	N

(
αc0

(
|un | N

N−1 + |u| N
N−1

))
|u| dx ≤ C12‖u‖Lτ3 (�) for all n ∈ N,

and so, for every � ⊂ R
N measurable set,∫

�

|� ′(un − u + θnu)u| dx ≤ C13(‖u‖L p1 (�) + ‖u‖p1
L p1 (�)

+ ‖u‖Lτ3 (�)) for all n ∈ N.

Arguing as in the case p2 < N , it follows from the above estimate and u ∈ L p1(RN ) ∩
Lτ3(RN ) that (�(un) − �(un − u)) satisfies the assumptions of the Vitali convergence
theorem. Because �(0) = 0, we obtain that (2.13) is still valid. �

Finally, we prove a suitable compactness result in the spirit of the celebrated compactness
lemma due to Strauss (see [12, Theorem A.I]).

Lemma 2.6 Let (un) ⊂ W be a bounded sequence such that un → u a.e. inRN and un → u
in Lq(RN ) for all q ∈ (p2, p∗

2). Let � : R → R be a continuous function such that

lim|t |→0

�(t)

|t |r1 = 0 for some r1 ∈ [p1, p∗
2), (2.14)

lim|t |→+∞
�(t)

|t |p∗
2

= 0 if p2 < N , lim|t |→+∞
�(t)

eα|t | N
N−1

= 0 for all α > 0 if p2 = N . (2.15)

Then,

lim
n→+∞ ‖�(un) − �(u)‖L1(RN ) = 0.

Proof Since (un) is bounded inW , there exists M > 0 such that ‖un‖W ≤ M for all n ∈ N.
Pick q0 ∈ (p2, p∗

2). Define Q(t) := |t |r1 + R(t), where

R(t) :=
{

|t |p∗
2 if p2 < N ,

	N (α|t | N
N−1 ) if p2 = N ,

with α > 0 such that αM
N

N−1 < αN . From (2.14) and (2.15), we derive that for every fixed
ε > 0, there exists Cε > 0 (here Cε depends on ε and q0 when p2 < N , while it depends on
ε, q0, and α when p2 = N ) such that

|�(t)| ≤ ε Q(t) + Cε|t |q0 for all t ∈ R.

Using the boundedness of (un) in W , Theorem 2.1, and (2.3), we see∫
RN

|�(un)| dx ≤ ε

∫
RN

Q(un) dx + Cε

∫
RN

|un |q0 dx ≤ εC1 + CεC2 for all n ∈ N.

Thus, by the continuity of � and Fatou’s lemma, we have∫
RN

|�(u)| dx ≤ lim inf
n→+∞

∫
RN

|�(un)| dx ≤ εC1 + CεC2,

that is, �(u) ∈ L1(RN ). Let us now consider

Sε,n(x) := (|�(un(x)) − �(u(x))| − ε Q(un(x)))
+ for a.e. x ∈ R

N and for all n ∈ N.
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Clearly,

0 ≤ Sε,n(x) ≤ Cε|un(x)|q0 + |�(u(x))| for a.e. x ∈ R
N and for all n ∈ N.

Because un → u in Lq0(RN ), there exists h0 ∈ Lq0(RN ) such that, up to a subsequence,
|un(x)| ≤ h0(x) for a.e. x ∈ R

N and for all n ∈ N. Hence, Sε,n(x) ≤ Cεh
q0
0 (x) + |�(u(x))|

for a.e. x ∈ R
N and for all n ∈ N, with Cεh

q0
0 + |�(u)| ∈ L1(RN ). Moreover, exploiting

the continuity of � and Q, we know that Sε,n → 0 a.e. in RN as n → +∞. Then, applying
the dominated convergence theorem, we deduce

lim
n→+∞

∫
RN

Sε,n dx = 0.

Consequently,

lim sup
n→+∞

∫
RN

|�(un) − �(u)| dx ≤ lim sup
n→+∞

∫
RN

Sε,n dx + ε lim sup
n→+∞

∫
RN

Q(un) dx ≤ εC1.

Since ε > 0 is arbitrary, we obtain the assertion. �
Remark 2.3 In view of Lemma 2.2, the conclusion of Lemma 2.6 is still valid with u = 0 if
we replace un → 0 in Lq(RN ) for all q ∈ (p2, p∗

2) by (2.7).

3 Regularity and Pohozaev identity for solutions to (1.1)

As in [12], we modify the nonlinearity g by considering a new function ĝ : R → R defined
as follows:

(i) If g(t) ≥ 0 for all t ≥ ξ , then we put ĝ(t) := g(t).
(i i) If there exists ξ0 ≥ ξ such that g(ξ0) = 0, then we put

ĝ(t) :=
⎧⎨
⎩
g(t) for t ∈ [0, ξ0],
0 for t ≥ ξ0,

−g(−t) for t < 0.

Note that ĝ satisfies (g1), (g3) and

(g2)′ lim|t |→+∞ |ĝ(t)|
|t |p∗2−1 = 0 when p2 < N , and lim|t |→+∞ |ĝ(t)|

exp

(
α|t | N

N−1

) = 0 for all α > 0

when p2 = N .

Furthermore, if (i i) occurs and u is a solution to (1.1) with ĝ(t) in place of g(t), then we
can see that |u| ≤ ξ0 in R

N , that is, u is a solution to (1.1). Hereafter, we replace g by ĝ
and keep the same notation g(t). With this modification, we will assume that g fulfills (g1),
(g2)′, and (g3). Set

ν := −1

2
lim sup
t→0+

g(t)

t p1−1 ∈ (0,+∞).

Define g1(t) := (g(t) + 2ν(t p1−1 + t p2−1))+ and g2(t) := g1(t) − g(t) for t ≥ 0. Extend
g1(t) and g2(t) as odd functions for t ≤ 0. Thus, g = g1 − g2 with g1, g2 ≥ 0 in [0,+∞),
and we see

g1(t) = o(t p1−1) as t → 0+, (3.1)
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g1(t) = o(t p
∗
2−1) as t → +∞ if p2 < N , g1(t) = o(eαt

N
N−1

)

for all α > 0 as t → +∞ if p2 = N , (3.2)

g2(t) ≥ 2ν
(
t p1−1 + t p2−1) for all t ≥ 0. (3.3)

Put Gi (t) := ∫ t
0 g(τ ) dτ for all i = 1, 2. When p2 < N , thanks to (3.1)–(3.3), we deduce

that for all ε > 0 there exists Cε > 0 such that g1(t) ≤ ε g2(t) + Cεt p
∗
2−1 for all t ≥ 0, and

so

G1(t) ≤ ε G2(t) + C ′
ε|t |p

∗
2 for all t ∈ R. (3.4)

In the result below, we focus on the regularity of solutions to (1.1), and we establish a
Pohozaev type identity.

Theorem 3.1 Assume that (g1), (g2)′, and (g3) hold. Let u ∈ W be a weak solution to
(1.1). Then u ∈ L∞(RN ) ∩C1,σ

loc (RN ) for some σ ∈ (0, 1). Moreover, u obeys the following
Pohozaev type identity:

P(u) :=
2∑

i=1

(
N − pi

pi

)
‖∇u‖pi

L pi (RN )
− N

∫
RN

G(u) dx = 0. (3.5)

Proof We start by observing that u solves

−�p1u − �p2u + g2(u) = g1(u) in R
N .

Let z := |u| and zε := √
u2 + ε2 − ε for ε > 0. Note that zε → z in W as ε → 0+. Let us

now show that z satisfies

∫
RN

|∇z|p1−2∇z∇φ dx + 2ν
∫
RN

z p1−1φ dx +
∫
RN

|∇z|p2−2∇z∇φ dx + 2ν
∫
RN

z p2−1φ dx

≤
∫
RN

g1(z)φ dx
(3.6)

for all φ ∈ W such that φ ≥ 0. Take φ ∈ C∞
c (RN ) such that φ ≥ 0. Then, for all i = 1, 2,

∫
RN

|∇z|pi−2∇zε∇φ dx =
∫
RN

|∇u|pi−2∇u
u√

u2 + ε2
∇φ dx

=
∫
RN

|∇u|pi−2∇u∇
(

u√
u2 + ε2

φ

)
dx −

∫
RN

|∇u|pi ε2

(u2 + ε2)3/2
φ dx

≤
∫
RN

|∇u|pi−2∇u∇
(

u√
u2 + ε2

φ

)
dx .

Consequently,∫
RN

|∇z|p1−2∇zε∇φ dx +
∫
RN

|∇z|p2−2∇zε∇φ dx

≤
∫
RN

|∇u|p1−2∇u∇
(

u√
u2 + ε2

φ

)
dx +

∫
RN

|∇u|p2−2∇u∇
(

u√
u2 + ε2

φ

)
dx

=
∫
RN

g1(u)

(
u√

u2 + ε2
φ

)
dx −

∫
RN

g2(u)

(
u√

u2 + ε2
φ

)
dx,
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which, combined with gi (t)t = gi (|t |)|t | for all t ∈ R and i = 1, 2, φ ≥ 0, and 0 ≤
|t |√
t2+ε2

≤ 1 for all t ∈ R, implies

∫
RN

|∇z|p1−2∇zε∇φ dx +
∫
RN

|∇z|p2−2∇zε∇φ dx +
∫
RN

g2(|u|)
( |u|√

u2 + ε2
φ

)
dx .

≤
∫
RN

|g1(u)|φ dx .

Taking the limit as ε → 0+ in the above relation, and exploiting all (3.3)), the dominated
convergence theorem, and Fatou’s lemma, we conclude that (3.6) is valid for every φ ∈
C∞
c (RN ) such that φ ≥ 0. By density, (3.6) is true for all φ ∈ W such that φ ≥ 0.
In what follows, we prove that u ∈ L∞(RN ). We first assume that p2 < N . Thanks to

(3.1) and (3.2), we have that for all ε > 0 there exists Cε > 0 such that

0 ≤ g1(t) ≤ ε t p1−1 + Cεt
p∗
2−1 for all t ≥ 0.

Therefore,

∫
RN

|∇z|p1−2∇z∇φ dx + 2ν
∫
RN

z p1−1φ dx +
∫
RN

|∇z|p2−2∇z∇φ dx + 2ν
∫
RN

z p2−1φ dx

≤
∫
RN

[ε z p1−1 + Cεz
p∗
2−1]φ dx

for all φ ∈ W such that φ ≥ 0. Taking ε ∈ (0, 2ν), we obtain that, for some C > 0,∫
RN

|∇z|p1−2∇z∇φ dx +
∫
RN

|∇z|p2−2∇z∇φ dx ≤ C
∫
RN

z p
∗
2−1φ dx (3.7)

for all φ ∈ W such that φ ≥ 0. Now we show that z ∈ L∞(RN ) by means of a Moser
iteration scheme [39]. For all L > 0 and β > 1, we define zL := min{z, L}, z̃L := zz p2(β−1)

L

and wL := zzβ−1
L . Suppose that z ∈ L p2β(RN ) and verify that z ∈ L p∗

2β(RN ). Inserting
φ = z̃L ∈ W into (3.7), we find∫

RN
|∇z|p1−2∇z∇ z̃L dx +

∫
RN

|∇z|p2−2∇z∇ z̃L dx ≤ C
∫
RN

z p
∗
2−1 z̃L dx . (3.8)

Let us observe that

∫
RN

|∇z|p1−2∇z∇ z̃L dx =
∫
RN

|∇z|p1 z p2(β−1)
L dx + p2(β − 1)

∫
{z≤L}

|∇z|p1 z p2(β−1) dx ≥ 0,

(3.9)

and∫
RN

|∇z|p2−2∇z∇ z̃L dx =
∫
RN

|∇z|p2 z p2(β−1)
L dx + p2(β − 1)

∫
{z≤L}

|∇z|p2 z p2(β−1) dx

≥
∫
RN

|∇z|p2 z p2(β−1)
L dx . (3.10)

In view of (3.8)–(3.10), we get∫
RN

|∇z|p2 z p2(β−1)
L dx ≤ C

∫
RN

z p
∗
2 z p2(β−1)

L dx .
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Invoking the Sobolev inequality (2.1), and using the fact that
((

β − 1

β

)p2
+ 1

β p2

)
< 2 for all β > 1,

we deduce

‖wL‖p2

L p∗2 (RN )
≤ S p2∗ (N , p2)‖∇wL‖p2

L p2 (RN )

≤ 2p2−1S p2∗ (N , p2)

(
(β − 1)p2

∫
{z≤L}

|∇z|p2 z p2(β−1)
L dx +

∫
RN

|∇z|p2 z p2(β−1)
L dx

)

≤ 2p2−1S p2∗ (N , p2)((β − 1)p2 + 1)
∫
RN

|∇z|p2 z p2(β−1)
L dx

≤ 2p2 S p2∗ (N , p2)β
p2

∫
RN

|∇z|p2 z p2(β−1)
L dx .

(3.11)

Hence (3.11) yields

‖wL‖p2

L p∗2 (RN )
≤ C0β

p2

∫
RN

z p
∗
2 z p2(β−1)

L dx, (3.12)

where C0 := 2p2 S p2∗ (N , p2)C > 0. Since z p
∗
2 z p2(β−1)

L = hw
p2
L with h := z p

∗
2−p2 ∈

L
N
p2 (RN ), (3.12) becomes

‖wL‖p2

L p∗2 (RN )
≤ C0β

p2

∫
RN

hw
p2
L dx . (3.13)

Let M > 0 to be fixed later and put AM := {x ∈ R
N : h(x) ≤ M} and BM := {x ∈ R

N :
h(x) > M}. Then we have∫

RN
hw

p2
L dx =

∫
AM

hw
p2
L dx +

∫
BM

hw
p2
L dx

≤ M‖wL‖p2
L p2 (RN )

+
(∫

BM

h
N
p2 dx

) p2
N ‖wL‖p2

L p∗2 (RN )
. (3.14)

By virtue of h ∈ L
N
p2 (RN ), we can choose M = Mβ > 0 sufficiently large such that

(∫
BM

h
N
p2 dx

) p2
N ≤ 1

2C0β p2
.

Thus, using (3.13), (3.14), and that wL ≤ zβ , we obtain

‖wL‖p2

L p∗2 (RN )
≤ 2C0Mββ p2‖z‖p2β

L p2β (RN )
,

and passing to the limit as L → +∞, Fatou’s lemma ensures that

‖z‖p2β

L p∗2β
(RN )

≤ 2C0Mββ p2‖z‖p2β
L p2β (RN )

. (3.15)

Nowwe start a bootstrap argument. Since z ∈ L p∗
2 (RN ), we can apply (3.15) with β = p∗

2
p2

to deduce that z ∈ L

(
p∗2
p2

)
p∗
2
(RN ). Employing (3.15) once again, after k iterations, we learn
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that z ∈ L

(
p∗2
p2

)k
p∗
2
(RN ), and so z ∈ Lt (RN ) for all t ∈ [p∗

2,+∞). Nowwe return to consider
(3.12). Observing that 0 ≤ zL ≤ z, and sending L → +∞ in (3.12), we see

(∫
RN

z p
∗
2β dx

) p2
p∗2 ≤ C0β

p2

∫
RN

z p
∗
2+p2(β−1) dx,

which implies

(∫
RN

z p
∗
2β dx

) 1
p∗2 (β−1) ≤ (C

1
p2
0 β)

1
β−1

(∫
RN

z p
∗
2+p2(β−1) dx

) 1
p2(β−1)

. (3.16)

Set β1 := p∗
2
p2

> 1 and define βm inductively so that p∗
2 + p2(βm+1 − 1) = p∗

2βm for m ∈ N.
Therefore,

βm = βm−1
1 (β1 − 1) + 1 for m ∈ N, and lim

m→+∞ βm = +∞.

Put

�m :=
(∫

RN
z p

∗
2βm dx

) 1
p∗2 (βm−1)

for all m ∈ N.

Then (3.16) can be written as

�m+1 ≤ C
1

βm+1−1

m+1 �m for all m ∈ N,

where Cm+1 := C
1
p2
0 βm+1. Iterating the above relation, we arrive at

�m+1 ≤
⎛
⎝m+1∏

j=2

C
1

β j−1

j

⎞
⎠�1 for all m ∈ N. (3.17)

Because z ∈ L p∗
2 (RN ), from (3.15) with β = β1 = p∗

2
p2

we derive

�1 ≤
(
2C0M p∗2

p2

(
p∗
2

p2

)p2
) 1

p∗2−p2 ‖z‖
p∗2

p∗2−p2

L p∗2 (RN )
.

On the other hand, for some C ′′ > 0,

m+1∏
j=2

C

1
β j−1

j = (C
1
p2
0 )

∑m+1
j=2

1

β
j−1
1 (β1−1)

m+1∏
j=2

(
β
j−1
1 (β1 − 1) + 1

) 1

β
j−1
1 (β1−1) ≤ C ′′ for all m ∈ N,

where we have used that log(β j−1
1 (β1 − 1) + 1) ≤ log(β j−1

1 (β1 − 1) + β
j−1
1 ) = j logβ1

for all j ∈ N implies

m+1∏
j=2

(
β
j−1
1 (β1 − 1) + 1

) 1

β
j−1
1 (β1−1) = e

∑m+1
j=2

log(β
j−1
1 (β1−1)+1)

β
j−1
1 (β1−1) ≤ e

logβ1
β1−1

∑m+1
j=2

j

β
j−1
1 ,

and that
+∞∑
j=2

1

β
j−1
1

< +∞ and
+∞∑
j=2

j

β
j−1
1

< +∞.
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Combining the above estimates with (3.17) and taking the limit as m → +∞, we discover
that z ∈ L∞(RN ), that is, u ∈ L∞(RN ). From (g1) and (g2)′, we deduce that g(u) ∈
L∞(RN ). Thanks to [24, Theorem 1], we infer that u ∈ L∞(RN ) ∩ C1,σ

loc (RN ) for some
σ ∈ (0, 1). Next, we deal with the case p2 = N . In this context, it suffices to show that
u ∈ L∞(RN ). In fact, once proved this, we can argue as in the case p2 < N to conclude
that u ∈ L∞(RN ) ∩ C1,σ

loc (RN ), for some σ ∈ (0, 1). Even in this situation, we perform a
convenient Moser iteration for z. In light of (3.1) and (3.2), for all ε > 0 and α > 0 there
exists Cε,α > 0 such that

0 ≤ g1(t) ≤ ε t p1−1 + Cεt
N−1	N (αt

N
N−1 ) for all t ≥ 0.

Hence, choosing ε ∈ (0, 2ν), (3.7) changes into∫
RN

|∇z|p1−2∇z∇φ dx +
∫
RN

|∇z|p2−2∇z∇φ dx ≤ C
∫
RN

zN−1	N

(
βz

N
N−1

)
φ dx,

(3.18)

for all φ ∈ W such that φ ≥ 0. As before, for all L > 0 and γ ≥ 1, we consider zL :=
min{z, L}, z̃L := zzN (γ−1)

L and wL := zzγ−1
L . Inserting φ = z̃L into (3.18), and utilizing

(3.9)–(3.10), we obtain∫
RN

|∇z|N zN (γ−1)
L dx ≤ C

∫
RN

wN
L 	N

(
αz

N
N−1

)
dx .

Reasoning as in (3.11), we find∫
RN

|∇wL |N dx ≤ C1γ
N
∫
RN

|∇z|N zN (γ−1)
L dx,

and so ∫
RN

|∇wL |N dx ≤ C2γ
N
∫
RN

wN
L 	N

(
αz

N
N−1

)
dx .

Pick t > N and select α > 0 such that αt
t−N ‖∇z‖

N
N−1

LN (RN )
< αN . Exploiting the Hölder

inequality, (2.4), and (2.3), we see

∫
RN

wN
L 	N (αz

N
N−1 ) dx ≤ ‖wL‖N

Lt (RN )

(∫
RN

|	N (αz
N

N−1 )| t
t−N dx

) t−N
t ≤ ‖wL‖N

Lt (RN )

⎛
⎜⎜⎝
∫
RN

∣∣∣∣∣∣∣
	N

⎛
⎜⎝ αt

t − N
‖∇z‖

N
N−1
LN (RN )

(
z

‖∇z‖LN (RN )

) N
N−1

⎞
⎟⎠
∣∣∣∣∣∣∣

t
t−N

dx

⎞
⎟⎟⎠

t−N
t

≤ C3‖wL‖N
Lt (RN )

,

where C3 = C3(β, t, N , ‖∇z‖LN (RN )) > 0. Accordingly,

‖∇wL‖LN (RN ) ≤ C4γ ‖wL‖Lt (RN ). (3.19)

Invoking the Gagliardo-Nirenberg interpolation inequality [2, Theorem 5.8], there is a
s > t such that

‖u‖Ls (RN ) ≤ C5‖u‖1−θ

Lt (RN )
‖∇u‖θ

LN (RN )
for all u ∈ W 1,N (RN ),
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where θ := s−t
s ∈ (0, 1). Thus, due to (3.19), we obtain

‖wL‖Ls (RN ) ≤ C6γ ‖wL‖Lt (RN ),

and sending L → +∞ we arrive at

‖z‖Lsγ (RN ) ≤ C
1
γ

6 γ
1
γ ‖z‖Ltγ (RN ). (3.20)

Set ς := s
t > 1 and γ := ςm with m ∈ N ∪ {0}. Then (3.20) becomes

‖z‖
Ltςm+1

(RN )
≤ Cς−m

6 ςmς−m‖z‖Ltςm (RN ) for all m ∈ N ∪ {0}. (3.21)

Iterating (3.21), we find

‖z‖
Ltςm+1

(RN )
≤ C

∑m
i=0 ς−i

6 ς
∑m

i=0 iς
−i ‖z‖Lt (RN ) for all m ∈ N ∪ {0}.

Letting m → +∞, we deduce that z ∈ L∞(RN ). Therefore, u ∈ L∞(RN ) even in the case
p2 = N .

Finally, we prove that u fulfills the Pohozaev type identity (3.5) arguing as in [7, Lemma
3.1]. Because u is locally Lipschitz (recall that u ∈ L∞(RN )∩C1,σ

loc (RN )), we can apply [18,
Lemma 1] with L(s, ξ) := 1

p1
|ξ |p1 + 1

p2
|ξ |p2 − G(s), f := 0, h(x) := ϕk(x)x for k ∈ N,

where ϕk(x) := ϕ( xk ) and ϕ ∈ C∞
c (RN ) is such that ϕ(x) = 1 for |x | ≤ 1 and ϕ(x) = 0 for

|x | ≥ 2, to see

N∑
i, j=1

∫
RN

Diϕk x j DξiL(u,∇u)Dju dx +
∫
RN

ϕk DξL(u,∇u)∇u dx

−
∫
RN

∇ϕk x L(u,∇u) dx − N
∫
RN

ϕkL(u,∇u) dx = 0.

(3.22)

In order to pass to the limit as k → +∞ in (3.22), we note that 0 ≤ ϕk(x) ≤ 1 and
|x∇ϕk(x)| ≤ C for all x ∈ R

N and k ∈ N, ϕk → 1 and ∇ϕk → 0 as k → +∞, and
L(u,∇u), DξL(u,∇u)∇u ∈ L1(RN ) (in view of u ∈ W and the growth assumptions on g).
Thus the dominated convergence theorem yields∫

RN
(|∇u|p1 + |∇u|p2) dx − N

∫
RN

(
1

p1
|∇u|p1 + 1

p2
|∇u|p2 − G(u)

)
dx = 0,

that is, (3.5) is valid. The proof of the theorem is now complete. �
Remark 3.1 When p2 < N , the proof of the fact that z ∈ L∞(RN ) can also be obtained
by adopting the strategy in [24, Theorem 3-(i)]. However, here we prefer to give a different
approach which allows us to consider even subcritical exponential nonlinearities.

Finally, we show that every solution to (1.1) has an exponential decay at infinity.

Theorem 3.2 Let u ∈ W be a weak solution to (1.1). Then there exist C, c > 0 such that
|u(x)| ≤ Ce−c|x | for all x ∈ R

N .

Proof By virtue of u ∈ L∞(RN ) and g(u) ∈ L∞(RN ), we derive from [24, Theorem 1-(i)]
that

‖∇u‖L∞(RN ) ≤ C,
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and so u is Lipschitz continuous in R
N . Hence, u is uniformly continuous in R

N , and
because u ∈ L p1(RN ), we can infer that |u(x)| → 0 as |x | → +∞. Let us now focus on the
exponential decay estimate for u. The proof of Theorem 3.1 reveals that |u| satisfies

−�p1 |u| − �p2 |u| + 2ν(|u|p1−1 + |u|p2−1) ≤ g1(|u|) in R
N ,

Since |u(x)| → 0 as |x | → +∞, it follows from (3.1) and p1 < p2 that there exists R > 0
such that

g1(u) ≤ ν(|u|p1−1 + |u|p2−1) in BR(0)
c
.

Consequently,

−�p1 |u| − �p2 |u| + ν(|u|p1−1 + |u|p2−1) ≤ 0 in BR(0)
c
. (3.23)

Define φ(x) := M ′eκRe−κ|x |, where κ, M ′ > 0 are such that

κ < min

{(
ν

(p1 − 1)

) 1
p1

,

(
ν

(p2 − 1)

) 1
p2

}

and ‖u‖L∞(RN ) ≤ M ′. Obviously, |u(x)| ≤ φ(x) for all |x | ≤ R. It is easy to check that

− �p1φ − �p2φ + ν
(
φ p1−1 + φ p2−1)

= φ p1−1
[
ν − κ p1(p1 − 1) + N − 1

|x | κ p1−1
]

+ φ p2−1
[
ν − κ p2(p2 − 1) + N − 1

|x | κ p2−1
]

> 0 in BR(0)
c
. (3.24)

Subtracting (3.24) from (3.23), and taking η := (|u| − φ)+ ∈ W 1,p1
0 (BR(0)

c
) ∩

W 1,p2
0 (BR(0)

c
) as test function, we discover

0 ≥
∫
{|x |>R : |u(x)|>φ(x)}

((
(|∇|u||p1−2∇|u| − |∇φ|p1−2∇φ)∇η + (|∇|u||p2−2∇|u| − |∇φ|p2−2∇φ)∇η

)

+ ν
((

|u|p1−1 − φ p1−1
)

+
(
|u|p2−1 − φ p2−1

))
η

)
dx

≥ ν

∫
{|x |>R : |u(x)|>φ(x)}

(|u|p1−1 − φ p1−1)(|u| − φ) dx ≥ 0,

where we have used the fact that for all r > 1 it holds

(|η1|r−2η1 − |η2|r−2η2)(η1 − η2) > 0 for all η1, η2 ∈ R
N such that η1 �= η2. (3.25)

Hence, (|u|p1−1 − φ p1−1)(|u| − φ) = 0 a.e. in {|x | > R : |u(x)| > φ(x)}. Considering that
|u| and φ are continuous in RN , we conclude that {|x | > R : |u(x)| > φ(x)} is empty. Thus,
|u(x)| ≤ φ(x) for all x ∈ R

N , and so the required estimate is true. �

Remark 3.2 When p2 < N , because z = |u| is a weak subsolution to −�p1 z − �p2 z +
2ν(z p1−1 + z p2−1) = g1(u) in R

N and g1(u) ≤ ε z p1−1 + Cεz p
∗
2−1, we can confirm that

z(x) = |u(x)| → 0 as |x | → +∞ by following the lines of the proof in [24, Theorem 3-(i)].
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4 A first proof of Theorem 1.1

In this section, we provide a first approach to obtain the existence of a ground solution to
(1.1). Since we are interested in weak solutions to (1.1), we seek critical points of the energy
functional L : W → R given by

L(u) :=
2∑

i=1

1

pi
‖∇u‖pi

L pi (RN )
−
∫
RN

G(u) dx .

From (g1)–(g2)′, it is readily seen that L ∈ C1(W,R). Next we prove that L possesses a
mountain-pass structure [6].

Lemma 4.1 Assume that (g1), (g2)′, and (g3) hold. Then, L has a mountain pass geometry,
that is:

(MP1) L(0) = 0.
(MP2) There exist ρ, δ > 0 such that L(u) ≥ δ for all u ∈ W such that ‖u‖W = ρ.
(MP3) There exists w ∈ W such that ‖w‖W > ρ and L(w) < 0.

Proof (MP1) is trivial. Let us verify (MP2). We first assume that p2 < N . Exploiting (g1),
p1 < p2, and that if limn→+∞ an = a > 0 then

lim inf
n→+∞ anbn = lim

n→+∞ an lim inf
n→+∞ bn and lim sup

n→+∞
anbn = lim

n→+∞ an lim sup
n→+∞

bn,

we deduce

−∞ < lim inf
t→0+

g(t)

t p1−1 + t p2−1 ≤ lim sup
t→0+

g(t)

t p1−1 + t p2−1 = −2ν < 0.

In light of this fact, (g2)′, and that g is odd, we see that for all ε > 0 there exists Cε > 0
such that

−G(t) ≥ (2ν − ε)

(
1

p1
|t |p1 + 1

p2
|t |p2

)
− Cε|t |p∗

2 for all t ∈ R. (4.1)

Pick ε ∈ (0, 2ν). Thus (4.1) implies that, for all u ∈ W ,

L(u) ≥ 1

p1
‖∇u‖p1

L p1 (RN )
+ 1

p2
‖∇u‖p2

L p2 (RN )
+ 2ν − ε

p1
‖u‖p1

L p1 (RN )
+ 2ν − ε

p2
‖u‖p2

L p2 (RN )

− Cε‖u‖p∗
2

L p∗2 (RN )
≥ 1

p1
min{1, 2ν − ε}‖u‖p1

W 1,p1 (RN )
+ 1

p2
min{1, 2ν − ε}‖u‖p2

W 1,p2 (RN )

− Cε‖u‖p∗
2

L p∗2 (RN )
.

Let u ∈ W be such that ‖u‖W = ρ ∈ (0, 1). Since 1 < p1 < p2 and ‖u‖W 1,p1 (RN ) < 1, we

know that ‖u‖p1
W 1,p1 (RN )

≥ ‖u‖p2
W 1,p1 (RN )

. Therefore, recalling that

(a + b)r ≤ 2r−1(ar + br ) for all a, b ≥ 0 with r ≥ 1, (4.2)

and utilizing the continuous embedding W ⊂ L p∗
2 (RN ), we get

L(u) ≥ C1(‖u‖p2
W 1,p1 (RN )

+ ‖u‖p2
W 1,p2 (RN )

) − Cε‖u‖p∗
2

L p∗2 (RN )

≥ C2(‖u‖W 1,p1 (RN ) + ‖u‖W 1,p2 (RN ))
p2 − Cε‖u‖p∗

2

L p∗2 (RN )
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≥ C2‖u‖p2
W − C3‖u‖p∗

2
W .

Taking

ρ ∈
(
0,min

{
1,

(
C2

C3

) 1
p∗2−p2

})
,

we obtain

inf‖u‖W=ρ
L(u) ≥ ρ p2(C2 − C3ρ

p∗
2−p2) =: δ > 0.

Now we suppose p2 = N . In view of

lim
t→0+

g(t)

t p1−1 + t N−1 = −2ν,

and (g2)′, we have that fixed ε > 0, q > N , and α ∈ (0, αN ), we can find Cε,q,α > 0 such
that

G(t) ≤ (ε −2ν)

(
1

p1
|t |p1 + 1

N
|t |N

)
+ Cε,q,α|t |q 	N

(
α|t | N

N−1

)
for all t ∈ R. (4.3)

Thanks to (4.3), we deduce that, for all u ∈ W ,

L(u) ≥ 1

p1
‖∇u‖p1

L p1 (RN )
+ 1

N
‖∇u‖NLN (RN )

+ 2ν − ε

p1
‖u‖p1

L p1 (RN )
+ 2ν − ε

N
‖u‖NLN (RN )

− Cε,q,α

∫
RN

|u|q	N

(
α|u| N

N−1

)
dx

≥ C1‖u‖p1
W 1,p1 (RN )

+ C2‖u‖NW 1,N (RN )
− Cε,q,α

∫
RN

|u|q	N

(
α|u| N

N−1

)
dx .

Select σ > 1 such that ασ < αN . Using the Hölder inequality with exponents σ and
σ ′ := σ

σ−1 , and employing (2.4), we see

∫
RN

|u|q	N

(
α|u| N

N−1

)
dx ≤ ‖u‖q

Lσ ′q (RN )

(∫
RN

|	N (α|u| N
N−1 )|σ dx

) 1
σ

≤ ‖u‖q
Lσ ′q (RN )

(∫
RN

	N (ασ |u| N
N−1 ) dx

) 1
σ

.

Then, invoking (2.3) and the continuous embedding W 1,N (RN ) ⊂ Lσ ′q(RN ) (note that
σ ′q > N ), we can infer that for all u ∈ W 1,N (RN ) such that ‖u‖W 1,N (RN ) ≤ 1, it holds

∫
RN

|u|q	N

(
α|u| N

N−1

)
dx ≤ C3‖u‖q

W 1,N (RN )
. (4.4)

Pick u ∈ W such that ‖u‖W = ρ ∈ (0, 1). Thus, ‖u‖W 1,N (RN ) ≤ 1 and ‖u‖p1
W 1,p1 (RN )

≥
‖u‖N

W 1,p1 (RN )
. Hence, (4.2) and (4.4) yield

L(u) ≥ C4(‖u‖N
W 1,p1 (RN )

+ ‖u‖NW 1,N (RN )
) − C5‖u‖q

W 1,N (RN )

≥ C6‖u‖NW − C5‖u‖qW .
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Choosing

ρ ∈
(
0,min

{
1,

(
C6

C5

) 1
q−N
})

,

we find

inf‖u‖W=ρ
L(u) ≥ ρN (C6 − C5ρ

q−N ) =: δ > 0.

Finally, we check (MP3). For all R > 0, we consider

wR(x) :=
⎧⎨
⎩

ξ if |x | ≤ R,

ξ (R + 1 − |x |) if R ≤ |x | ≤ R + 1,
0 if |x | ≥ R + 1.

It is clear that wR ∈ Wr . Using (g3), we can see that, for R > 0 large enough,∫
RN

G(wR) dx ≥ 1.

Fix such an R > 0 and set wR,θ (x) := wR(x/eθ ). Then we have

L(wR,θ ) =
2∑

i=1

1

pi
e(N−pi )θ‖∇wR‖pi

L pi (RN )
− eNθ

∫
RN

G(wR) dx

≤
2∑

i=1

1

pi
e(N−pi )θ‖∇wR‖pi

L pi (RN )
− eNθ → −∞ as θ → +∞.

The proof of the lemma is now complete. �
Remark 4.1 From the proof of Lemma 4.1-(MP2), it follows that

L(u) > 0 for all u ∈ W such that 0 < ‖u‖W ≤ ρ.

Remark 4.2 If u ∈ W\{0} is such that L ′(u) = 0, then we can prove that there exists C > 0,
independent of u, such that

‖u‖W ≥ C . (4.5)

In fact, if ‖u‖W ≥ 1, then (4.5) holds. If 0 < ‖u‖W < 1, then we can argue as in the proof
of (MP2) to see that

0 = 〈L ′(u), u〉 ≥
{
c1‖u‖p2

W − c2‖u‖p∗
2

W if p2 < N ,

c′
1‖u‖p2

W − c′
2‖u‖qW if p2 = N ,

for some c1, c2, c′
1, c

′
2 > 0, where q > N in the case p2 = N . Since p2 < p∗

2 when p2 < N ,
p2 < q when p2 = N , and ‖u‖W > 0, we deduce

‖u‖W ≥
⎧⎨
⎩ (c1/c2)

1
p∗2−p2 if p2 < N ,

(c′
1/c

′
2)

1
q−p2 if p2 = N .

Therefore, (4.5) is valid.
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Taking Lemma 4.1 into account, we can define the mountain pass level

cMP := inf
γ∈�

max
t∈[0,1] L(γ (t)), (4.6)

and the set of paths

� := {γ ∈ C([0, 1],W) : γ (0) = 0, L(γ (1)) < 0}. (4.7)

Motivated by [27], we produce a Palais-Smale sequence of L at the level cMP that satisfies
asymptotically the Pohozaev identity.

Proposition 4.1 There exists a Pohozaev-Palais-Smale sequence (un) ⊂ W for L at the level
cMP , that is,

L(un) → cMP, L ′(un) → 0 in W ′, P(un) → 0. (4.8)

Proof It suffices to argue as in [7, Proposition 3.1]. For reader’s convenience, we provide the
details. Let us introduce the map Φ : R × W → W by setting

Φ(θ, u)(x) := u(e−θ x),

for θ ∈ R, u ∈ W , and x ∈ R
N . Here R × W is equipped with the norm

‖(θ, u)‖R×W := |θ | + ‖u‖W .

For every θ ∈ R and u ∈ W , the functional L ◦ Φ is given by

L(Φ(θ, u)) =
2∑

i=1

e(N−pi )θ

pi
‖∇u‖pi

L pi (RN )
− eNθ

∫
RN

G(u) dx .

Clearly, L ◦ Φ ∈ C1(W,R). Reasoning as in the proof of Lemma 4.1, we can easily check
that L ◦ Φ has a mountain pass geometry, and so it is well-defined the mountain pass level
of L ◦ Φ:

c̃MP := inf
γ̃∈�̃

max
t∈[0,1](L ◦ Φ)(γ̃ (t)),

where

�̃ := {γ̃ ∈ C([0, 1],R × W) : γ̃ (0) = (0, 0), (L ◦ Φ)(γ̃ (1)) < 0}.
It is readily verified that c̃MP = cMP. Invoking the general minimax principle [46, Theorem
2.8], we can select a sequence ((θn, vn)) ⊂ R × W such that, as n → +∞,

(i) (L ◦ Φ)(θn, vn) → cMP,
(i i) (L ◦ Φ)′(θn, vn) → 0 in (R × W)′,

(i i i) θn → 0.

Indeed, due to (4.6) and (4.7),we can find (γn) ⊂ � such thatmaxt∈[0,1] L(γn(t)) ≤ cMP+ 1
n2
.

Put γ̃n(t) := (0, γn(t)) ∈ �̃. Thus,

max
t∈[0,1](L ◦ Φ)(γ̃n(t)) = max

t∈[0,1] L(γn(t)) ≤ cMP + 1

n2
.

According to [46, Theorem 2.8], there exists ((θn, vn)) ⊂ R × W such that (i) and (i i) are
true, and

distR×W ((θn, vn), {0} × γn([0, 1])) → 0,
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which implies (i i i). Here, we have used the notation

distR×W ((θ, u), A) := inf
(τ,v)∈A

(|θ − τ | + ‖u − v‖W ) for all A ⊂ R × W.

For all (h, w) ∈ R × W , it holds

〈(L ◦ Φ)′(θn, vn), (h, w)〉 = 〈L ′(Φ(θn, vn)),Φ(θn, w)〉 + P(Φ(θn, vn))h. (4.9)

Put un := Φ(θn, vn). Thanks to (i), we deduce that L(un) → cMP. Choosing h = 1 and
w = 0 in (4.9), and using (i i), we obtain

P(un) → 0.

Finally, for every fixed ϕ ∈ W , taking w(x) = ϕ(eθn x) and h = 0 in (4.9), it follows from
(i i) and (i i i) that

〈L ′(un), ϕ〉 = on(1)‖ϕ(eθn ·)‖W = on(1)‖ϕ‖W ,

and so L ′(un) → 0 in W ′. Therefore, the sequence (un) fulfills (4.8). �
Next we prove the boundedness of Pohozaev-Palais-Smale sequences of L .

Lemma 4.2 Every sequence (un) ⊂ W satisfying (4.8) is bounded in W .

Proof From (4.8), we know

cMP + on(1) = L(un) − 1

N
P(un) =

2∑
i=1

1

N
‖∇un‖pi

L pi (RN )
,

which implies that (‖∇un‖L pi (RN )) is bounded inR for all i = 1, 2. In particular, when p2 <

N , (‖un‖L p∗i (RN )
) is bounded in R for all i = 1, 2. It remains to verify that (‖un‖p1

L p1 (RN )
+

‖un‖p2
L p2 (RN )

) is bounded in R. Arguing indirectly, suppose that

‖un‖p1
L p1 (RN )

+ ‖un‖p2
L p2 (RN )

→ +∞.

Define

tn :=
(
‖un‖p1

L p1 (RN )
+ ‖un‖p2

L p2 (RN )

)− 1
N → 0,

and

vn(x) := un(x/tn).

For all i = 1, 2, we see

‖vn‖pi
L pi (RN )

= t Nn ‖un‖pi
L pi (RN )

≤ 1,

‖∇vn‖pi
L pi (RN )

= t N−pi
n ‖∇un‖pi

L pi (RN )
.

We claim

sup
y∈RN

∫
B1(y)

|vn |p2 dx → 0 as n → +∞. (4.10)

To this end,we show that ṽn := vn(·+yn)⇀0 inW for every sequence (yn) ⊂ R
N . Since (ṽn)

is bounded inW , up to a subsequence, wemay assume that ṽn⇀ṽ inW , ṽn → ṽ in Lr
loc(R

N )
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for all r ∈ [1, p∗
2), and ṽn → ṽ a.e. in RN . Fix ϕ ∈ C∞

c (RN ) and set ϕn(x) := ϕ(tnx − yn).
Then it holds

t Nn 〈L ′(un), ϕn〉 = t Nn

[
2∑

i=1

∫
RN

|∇un |pi−2∇un∇ϕn dx −
∫
RN

g(un)ϕn dx

]

=
2∑

i=1

[
t pin

∫
RN

|∇ṽn |pi−2∇ṽn∇ϕ dx

]
−
∫
RN

g(ṽn)ϕ dx .

(4.11)

Let us observe that t Nn 〈L ′(un), ϕn〉 = on(1) owing to∣∣∣t Nn 〈L ′(un), ϕn〉
∣∣∣ ≤ t Nn ‖L ′(un)‖W ′ ‖ϕn‖W

= t Nn ‖L ′(un)‖W ′

{
2∑

i=1

[
t
− N−pi

pi
n ‖∇ϕ‖L pi (RN ) + t

− N
pi

n ‖ϕ‖L pi (RN )

]}

= ‖L ′(un)‖W ′

{
2∑

i=1

[
t
1+ (pi−1)N

pi
n ‖∇ϕ‖L pi (RN ) + t

(pi−1)N
pi

n ‖ϕ‖L pi (RN )

]}

→ 0 as n → +∞.

Exploiting this fact, (ṽn) is bounded in W , ṽn → ṽ in Lr
loc(R

N ) for all r ∈ [1, p∗
2), ṽn → ṽ

a.e. in R
N , tn → 0, and the compactness lemma of Strauss [12, Theorem A.I], it follows

from (4.11) that ∫
RN

g(ṽ)ϕ dx = 0 for all ϕ ∈ C∞
c (RN ).

Therefore, g(ṽ) ≡ 0. Since ṽ ∈ W and t = 0 is an isolated solution of g(t) = 0 (by (g1)),
we have that ṽ ≡ 0. Hence, ṽn⇀0 in W and ṽn → 0 in Lr

loc(R
N ) for all r ∈ [1, p∗

2).
As a result, (4.10) is true. Then, by Lemma 2.2, we infer that vn → 0 in Lr (RN ) for all
r ∈ (p2, p∗

2). Now, using 〈L ′(un), t Nn un〉 = on(1) (note that t Nn un → 0 in W because
‖un‖p1

L p1 (RN )
+ ‖un‖p2

L p2 (RN )
→ +∞ and (‖∇un‖L pi (RN )) is bounded in R for all i = 1, 2),

tn → 0, and the boundedness of (‖∇un‖L pi (RN )) in R for all i = 1, 2, we see
∫
RN

g(vn)vn dx = t Nn

∫
RN

g(un)un dx

= t Nn

[
2∑

i=1

‖∇un‖pi
L pi (RN )

]
− 〈L ′(un), t Nn un〉 = on(1).

(4.12)

Let us recall that g = g1 − g2. In light of (3.1) and (3.2), we can apply Lemma 2.4 with
�(t) = g1(t)t (see Remark 2.2) to discover∫

RN
g1(vn)vn dx → 0 as n → +∞. (4.13)

Combining (3.3) with (4.12) and (4.13), we obtain

2ν(‖vn‖p1
L p1 (RN )

+ ‖vn‖p2
L p2 (RN )

) ≤
∫
RN

g2(vn)vn dx

=
∫
RN

g1(vn)vn dx + on(1) = on(1),
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and thus ‖vn‖p1
L p1 (RN )

+ ‖vn‖p2
L p2 (RN )

→ 0, which is a contradiction due to

‖vn‖p1
L p1 (RN )

+ ‖vn‖p2
L p2 (RN )

= t Nn
[
‖un‖p1

L p1 (RN )
+ ‖un‖p2

L p2 (RN )

]
= 1 for all n ∈ N.

Hence, (‖un‖p1
L p1 (RN )

+ ‖un‖p2
L p2 (RN )

) is bounded in R, and so (‖un‖L pi (RN )) is bounded in
R for all i = 1, 2. Therefore, (un) is bounded in W . �

Remark 4.3 When p2 < N , we can show that (‖un‖L pi (RN )) is bounded in R for all i = 1, 2
in a more direct way. Indeed, because P(un) = on(1), we have

2∑
i=1

(
N − pi

pi

)
‖∇un‖pi

L pi (RN )
+ N

∫
RN

G2(un) dx = N
∫
RN

G1(un) dx + on(1).

Using (3.4) with ε = 1
2 , and the boundedness of (‖un‖L p∗2 (RN )

), we see

∫
RN

G2(un) dx =
∫
RN

G1(un) dx −
2∑

i=1

(
N − pi
Npi

)
‖∇un‖pi

L pi (RN )
+ on(1)

≤ 1

2

∫
RN

G2(un) dx + C ′
1
2
‖un‖p∗

2

L p∗2 (RN )
+ on(1)

≤ 1

2

∫
RN

G2(un) dx + C ′′ + on(1),

which implies
∫
RN

G2(un) dx ≤ C ′′′ + on(1).

Since (3.3) guarantees that

G2(t) ≥ 2ν

( |t |p1
p1

+ |t |p2
p2

)
for all t ∈ R,

we deduce that (‖un‖L pi (RN )) is bounded inR for all i = 1, 2. Consequently, (un) is bounded
in W .

The result below will be crucial to ensure the almost everywhere convergence of the
gradients of Pohozaev-Palais-Smale sequences.

Lemma 4.3 Let (un) ⊂ W be a bounded sequence such that L ′(un) → 0 inW ′ as n → +∞.
Up to a subsequence, we assume that for some u ∈ W , as n → +∞,

un⇀u in W, un → u in Ls
loc(R

N ) for all s ∈ [1, p∗
2), un → u a.e. in R

N . (4.14)

Then, up to a subsequence, as n → +∞,

∇un → ∇u a.e. in R
N ,

|∇un |pi−2∇un⇀|∇u|pi−2∇u in

(
L

pi
pi−1 (RN )

)N

for all i = 1, 2.
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Proof We follow [7, formula (58) in Proposition 4.1]. Pick η > 0 and consider the truncation
function Tη : R → R at height η defined as

Tη(t) :=
{
t if |t | ≤ η,

η t
|t | if |t | ≥ η.

Take R > 0 and select ψR ∈ C∞
c (RN ) such that 0 ≤ ψR ≤ 1 in RN , ψR = 1 in BR(0), and

ψR = 0 in Bc
2R(0). We can write

∫
RN

ψR
[|∇un |p1−2∇un − |∇u|p1−2∇u

]∇Tη(un − u) dx

+
∫
RN

ψR
[|∇un |p2−2∇un − |∇u|p2−2∇u

]∇Tη(un − u) dx

= −
∫
RN

Tη(un − u)
[|∇un |p1−2∇un + |∇un |p2−2∇un

]∇ψR dx

−
∫
RN

ψR
[|∇u|p1−2∇u + |∇u|p2−2∇u

]∇Tη(un − u) dx + 〈L ′(un), ψRTη(un − u)〉

+
∫
RN

g(un)ψRTη(un − u) dx =: X1
n,η,R + X2

n,η,R + X3
n,η,R + X4

n,η,R .

(4.15)

Employing (4.15), we obtain that Tη(un − u)⇀0 inW and Tη(un − u) → 0 in Ls
loc(R

N )

for all s ∈ [1, p∗
2). On the other hand, 〈L ′(un), ψRTη(un − u)〉 → 0 due to L ′(un) → 0 in

W ′ and the boundedness of (ψRTη(un − u)) in W . Hence,

X j
n,η,R → 0 as n → +∞ for all j = 1, 2, 3. (4.16)

Utilizing |Tη(t)| ≤ η for all t ∈ R, 0 ≤ ψR ≤ 1, supp(ψR) ⊂ B2R(0), the growth
assumptions on g, the Hölder inequality, and the boundedness of (un) in W , we get

|X4
n,η,R | ≤ CRη for all n ∈ N, (4.17)

where CR > 0 is a constant that depends only on R. Let us observe that to arrive at (4.17),
we exploit |g(t)| ≤ C(|t |p1−1 + |t |p∗

2−1) for all t ∈ R when p2 < N , whereas if p2 = N
then we invoke the Trudinger-Moser inequality. Since the verification in the case p2 < N is
straightforward, we provide the details in the case p2 = N . Because (un) is bounded in W ,
there exists C0 > 0 such that ‖un‖W ≤ C0 for all n ∈ N. Fix q > N and α > 0 such that

αq ′C
N

N−1
0 < αN , where q ′ := q

q−1 . In view of (g1) and (g2)′, there exists C1 > 0 such that

|g(t)| ≤ C1

(
|t |p1−1 + �N

(
α|t | N

N−1

))
for all t ∈ R.

Therefore,

|X4
n,η,R | ≤ C1η

∫
RN

|un |p1−1ψR dx + C1η

∫
RN

�N

(
α|un | N

N−1

)
ψR dx

=: ηC1An,R + ηC1Bn,R .

Thanks to the Hölder inequality, 0 ≤ ψR ≤ 1, supp(ψR) ⊂ B2R(0), and ‖un‖W ≤ C0 for
all n ∈ N, we see that An,R ≤ C2C ′

R for all n ∈ N. Concerning Bn,R , using the Hölder
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inequality, (2.4), 0 ≤ ψR ≤ 1, supp(ψR) ⊂ B2R(0), (2.3), and ‖un‖W ≤ C0 for all n ∈ N,
we learn

Bn,R ≤
(∫

RN
	N

(
αq ′C

N
N−1
0

( |un |
C0

) N
N−1
)

dx

) 1
σ2

‖ψR‖Lq (RN ) ≤ C3C
′′
R for all n ∈ N.

Thus we can deduce that (4.17) is true even if p2 = N .
Let us now note that the integrands on the left-hand side in (4.15) are nonnegative by

virtue of ψR ≥ 0, (3.25), and the definition of Tη. Then, combining (4.15), (4.16), (4.17),
and recalling that ψR = 1 in BR(0), we have

lim sup
n→+∞

∫
BR (0)

[
(|∇un |p1−2∇un − |∇u|p1−2∇u) + (|∇un |p2−2∇un − |∇u|p2−2∇u)

]
∇Tη(un − u) dx

≤ CRη. (4.18)

Define

en(x) := (|∇un(x)|p1−2∇un(x) − |∇u(x)|p1−2∇u(x))(∇un(x) − ∇u(x))

+ (|∇un(x)|p2−2∇un(x) − |∇u(x)|p2−2∇u(x))(∇un(x) − ∇u(x)).

In light of (3.25), we know that en ≥ 0 in R
N . Moreover, (en) is bounded in L1(RN )

because (∇un) is bounded in (L pi (RN ))N and (|∇un|pi−2∇un) is bounded in (L
pi

pi−1 (RN ))N

for all i = 1, 2. Take θ ∈ (0, 1) and split BR(0) by considering the sets

X η
R := {x ∈ BR(0) : |un(x) − u(x)| ≤ η}

and

Yη
R := {x ∈ BR(0) : |un(x) − u(x)| ≥ η}.

From the Hölder inequality, it follows that∫
BR(0)

eθ
n dx =

∫
X η

R

eθ
n dx +

∫
Yη

R

eθ
n dx

≤
(∫

X η
R

en dx

)θ

|X η
R |1−θ +

(∫
Yη

R

en dx

)θ

|Yη
R |1−θ .

(4.19)

We stress that, for η > 0 fixed, |Yη
R | → 0 as n → +∞. Employing this, the boundedness of

(en) in L1(RN ), (4.18), and (4.19), we obtain

lim sup
n→+∞

∫
BR(0)

eθ
n dx ≤ (CRη)θ |BR(0)|1−θ .

Letting η → 0+, we deduce that eθ
n → 0 in L1(BR(0)). Hence, up to a subsequence,

en → 0 a.e. in BR(0). Since R > 0 is arbitrary, up to a subsequence, en → 0 a.e. in
R

N . This fact and (3.25) ensure that ∇un → ∇u a.e. in R
N . Given that (|∇un |pi−2∇un)

is bounded in (L
pi

pi−1 (RN ))N for all i = 1, 2, we can infer that, up to a subsequence,

|∇un |pi−2∇un⇀|∇u|pi−2∇u in (L
pi

pi−1 (RN ))N for all i = 1, 2. �
Wenow focus on the convergence of Pohozaev-Palais-Smale sequences of L . More precisely,
we establish the next result.
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Proposition 4.2 Let (un) ⊂ W be a sequence such that

(i) (L(un)) is bounded,
(ii) L ′(un) → 0 in W ′ and P(un) → 0 as n → +∞.

Then,

(1) either up to a subsequence, un → 0 in W as n → +∞,
(2) or we can find u ∈ W\{0} such that L ′(u) = 0 and (xn) ⊂ R

N such that, up to a
subsequence, un(· − xn)⇀u in W as n → +∞.

Proof We start by observing that Lemma 4.2 implies that (un) is bounded in W . Let us
suppose that (1) does not hold. Without loss of generality, we may assume that

lim inf
n→+∞ ‖un‖W 1,p2 (RN ) > 0. (4.20)

We claim that, for every r ∈ (p2, p∗
2),

lim inf
n→+∞ sup

x0∈RN
‖un‖Lr (B1(x0)) > 0. (4.21)

We first examine the case p2 < N . Suppose by contradiction that, for some r ∈ (p2, p∗
2),

lim inf
n→+∞ sup

x0∈RN
‖un‖Lr (B1(x0)) = 0.

On account of

∫
RN

G1(un) dx = N − p1
Np1

‖∇un‖p1
L p1 (RN )

+ N − p2
Np2

‖∇un‖p2
L p2 (RN )

+
∫
RN

G2(un) dx − 1

N
P(un),

and using (3.3), P(un) → 0, and (4.20), we see

lim inf
n→+∞

∫
RN

G1(un) dx

≥ lim inf
n→+∞

[N − p1
Np1

‖∇un‖p1
L p1 (RN )

+ N − p2
Np2

‖∇un‖p2
L p2 (RN )

+ 2ν

(
1

p1
‖un‖p1

L p1 (RN )
+ 1

p2
‖un‖p2

L p2 (RN )

)
− 1

N
P(un)

]
> 0.

(4.22)

On the other hand, thanks to (3.1), (3.2), and Lemma 2.1 with t = p2 and s = r , we can
argue as in the proof of Lemma 2.4 with �(t) = G1(t) to get

lim inf
n→+∞

∫
RN

G1(un) dx = 0,

which contradicts (4.22). Hence, (4.21) is valid. Now we deal with the case p2 = N . Since
(un) is bounded in W 1,N (RN ), there exists M > 0 such that ‖∇un‖LN (RN ) ≤ M for all

n ∈ N. Pick r ∈ (N ,+∞) and α > 0 such that αM
N

N−1 < αN . From (3.1) and (3.2), we
know that fixed ε > 0 there exists Cε > 0 such that

g1(t)t ≤ ε(|t |p1 + 	N (α|t | N
N−1 )) + Cε|t |r for all t ∈ R. (4.23)

Exploiting 〈L ′(un), un〉 = on(1), (3.3), and (4.23), we obtain

on(1) = 〈L ′(un), un〉 =
2∑

i=1

‖∇un‖pi
L pi (RN )

−
∫
RN

g(un)un dx
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=
2∑

i=1

‖∇un‖pi
L pi (RN )

+
∫
RN

g2(un)un dx −
∫
RN

g1(un)un dx

≥
2∑

i=1

[
‖∇un‖pi

L pi (RN )
+ 2ν‖un‖pi

L pi (RN )

]
− ε ‖un‖p1

L p1 (RN )

− ε

∫
RN

	N (α|un | N
N−1 ) dx − Cε‖un‖rLr (RN )

≥
2∑

i=1

[
‖∇un‖pi

L pi (RN )
+ 2ν‖un‖pi

L pi (RN )

]
− ε ‖un‖p1

L p1 (RN )

− C ′ ε ‖un‖NLN (RN )
− Cε‖un‖rLr (RN )

,

where we have used (2.3) to infer

∫
RN

	N (α|un | N
N−1 ) dx =

∫
RN

	N

⎛
⎝αM

N
N−1

( |un |
M

) N
N−1

⎞
⎠ dx ≤ C

‖u‖N
LN (RN )

MN
= C ′‖un‖N

LN (RN )
.

Therefore, choosing ε ∈ (0,min{2ν, 2ν/C ′}), we can find c1, c2 > 0 such that

on(1) + Cε‖un‖rLr (RN )
≥

2∑
i=1

[
‖∇un‖pi

L pi (RN )
+ ci‖un‖pi

L pi (RN )

]
.

By Lemma 2.1 and the boundedness of (un) in W 1,N (RN ), we see

‖un‖r
Lr (RN )

≤ C

⎛
⎝ sup
x0∈RN

‖un‖rLr (B1(x0))

⎞
⎠
1− N

r

‖un‖N
W1,N (RN )

≤ C ′′
⎛
⎝ sup
x0∈RN

‖un‖rLr (B1(x0))

⎞
⎠
1− N

r

,

and so

on(1) + C ′′′
(

sup
x0∈RN

‖un‖rLr (B1(x0))
)1− N

r

≥
2∑

i=1

[
‖∇un‖pi

L pi (RN )
+ ci‖un‖pi

L pi (RN )

]
.

Combining this fact with (4.20), we deduce that, for all r ∈ (N ,+∞),

lim inf
n→+∞ sup

x0∈RN
‖un‖Lr (B1(x0)) > 0,

that is, (4.21) holds even in the case p1 < p2 = N . Accordingly, up to a translation, we may
assume that, for some r ∈ (p2, p∗

2),

lim inf
n→+∞ ‖un‖Lr (B1(0)) > 0.

As (un) is bounded in W , up to a subsequence, we may suppose that un⇀u in W , un → u
in Lq

loc(R
N ) for all q ∈ [1, p∗

2), and un → u a.e. in R
N , for some u ∈ W \ {0}. Using

L ′(un) → 0 in W ′ and Lemma 4.3, we see

∇un → ∇u a.e. in R
N ,

|∇un |pi−2∇un⇀|∇u|pi−2∇u in (L
pi

pi−1 (RN ))N for all i = 1, 2.
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Utilizing L ′(un) → 0 in W ′, the above weak convergence for (|∇un |pi−2∇un) with
i = 1, 2, and the compactness lemma due to Strauss [12, Theorem A.I], it is straightforward
to verify that 〈L ′(u), ϕ〉 = 0 for every ϕ ∈ C∞

c (RN ). Because C∞
c (RN ) is dense in W , we

conclude that u is a weak solution to (1.1). �
In the next result we prove the existence of an optimal path in the spirit of [29, Lemma 2.1].

Lemma 4.4 Let w ∈ W \ {0} be a weak solution to (1.1). Then there exists γ ∈ � such that
w ∈ γ ([0, 1]) and

max
t∈[0,1] L(γ (t)) = L(w).

Proof Put wt (x) := w( xt ) for x ∈ R
N and t > 0. First we assume that p2 < N . Define

γ̃ : [0,+∞) → W by setting

γ̃ (t)(x) :=
{

wt (x) for t > 0,
0 for t = 0.

Clearly, γ̃ ∈ C([0,+∞),W). Since P(w) = 0, for all t > 0 we have

L(γ̃ (t)) = L(γ̃ (t)) − t N

N
P(w) =

2∑
i=1

1

pi
‖∇w‖pi

L pi (RN )

[
t N−pi − t N

(
N − pi

N

)]
.

Differentiating with respect to t , we find

d

dt
L(γ̃ (t)) = 0 for t = 1,

d

dt
L(γ̃ (t)) > 0 for all t ∈ (0, 1),

d

dt
L(γ̃ (t)) < 0 for all t ∈ (1, +∞),

which implies

max
t≥0

L(γ̃ (t)) = L(γ̃ (1)) = L(w).

Because L(γ̃ (t)) → −∞ as t → +∞, we can infer that L(γ̃ (T )) < 0 for some T > 1.
Letting γ (t)(x) := γ̃ (tT )(x) for t ∈ [0, 1] and x ∈ R

N , we reach the assertion.
Now we assume that p2 = N . In this situation, the construction of the required path is

more complicated with respect to the previous case. Our purpose is to select t0 ∈ (0, 1),
t1 ∈ (1,+∞) and θ1 ∈ (1,+∞) so that the curve γ , constituted of the three pieces defined
below, gives the desired path:

[0, 1] → W; θ �→ θwt0 , (4.24)

[t0, t1] → W; t �→ wt , (4.25)

[1, θ1] → W; θ �→ θwt1 . (4.26)

Let us observe that in this context the Pohozaev identity is

(
N − p1

p1

)
‖∇w‖p1

L p1 (RN )
− N

∫
RN

G(w) dx = 0. (4.27)

As L ′(w) = 0 and w ∈ W\{0}, we obtain∫
RN

g(w)w dx = ‖∇w‖p1
L p1 (RN )

+ ‖∇w‖NLN (RN )
> 0.
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Then we can choose θ1 ∈ (1,+∞) such that∫
RN

g(θw)w dx > 0 for all θ ∈ [1, θ1]. (4.28)

Define

ϕ(t) :=
{

g(t)t
|t |p1 for t �= 0,

limt→0
g(t)t
|t |p1 for t = 0.

In view of (g1), we learn that ϕ ∈ C(R). With this notation, (4.28) becomes∫
RN

ϕ(θw)|w|p1 dx > 0 for all θ ∈ [1, θ1]. (4.29)

Let us now observe that

d

dθ
L(θwt ) = 〈L ′(θwt ), wt 〉

= θ p1−1‖∇wt‖p1L p1 (RN )
+ θN−1‖∇wt‖NLN (RN )

− θ p1−1
∫
RN

ϕ(θwt )|wt |p1 dx

= θ p1−1t N−p1‖∇w‖p1
L p1 (RN )

+ θN−1‖∇w‖N
LN (RN )

− θ p1−1t N
∫
RN

ϕ(θw)|w|p1 dx

= θN−1‖∇w‖N
LN (RN )

+ θ p1−1t N−p1

[
‖∇w‖p1

L p1 (RN )
− t p1

∫
RN

ϕ(θw)|w|p1 dx
]

.

(4.30)

Take t0 ∈ (0, 1) small enough such that

‖∇w‖p1
L p1 (RN )

− t p10

∫
RN

ϕ(θw)|w|p1 dx > 0 for all θ ∈ [0, 1]. (4.31)

By virtue of (4.29), we can select t1 ∈ (1,+∞) such that

‖∇w‖p1
L p1 (RN )

− t p11

∫
RN

ϕ(θw)|w|p1 dx

≤ − 1

θ
p1
1 − 1

‖∇w‖p1
L p1 (RN )

− p1
N

(
θN
1

θ
p1
1 − 1

)
‖∇w‖NLN (RN )

for all θ ∈ [1, θ1]. (4.32)

From (4.31), we deduce that L(θwt0) increases along (4.24) and achieves its maximum at
θ = 1. By (4.27), we know

L(wt ) = 1

N
‖∇w‖NLN (RN )

+
[
t N−p1

p1
− t N

(
1

p1
− 1

N

)]
‖∇w‖p1

L p1 (RN )
. (4.33)

Thus, using (4.30), (4.32), (4.33), p1 < N , t1, θ1 ∈ (1,+∞), we see

L(θ1wt1 ) = L(wt1 ) +
∫ θ1

1

d

dθ
L(θwt1 ) dθ

= 1

N
‖∇w‖N

LN (RN )
+
[
t
N−p1
1
p1

− t N1

(
1

p1
− 1

N

)]
‖∇w‖p1

L p1 (RN )

+
∫ θ1

1

{
θN−1‖∇w‖N

LN (RN )
+ θ p1−1t

N−p1
1

[
‖∇w‖p1

L p1 (RN )
− t

p1
1

∫
RN

ϕ(θw)|w|p1 dx
]}

dθ

≤ 1

N
‖∇w‖N

LN (RN )
+
[
t
N−p1
1
p1

− t N1

(
1

p1
− 1

N

)]
‖∇w‖p1

L p1 (RN )
+ θN1 − 1

N
‖∇w‖N

LN (RN )
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−
∫ θ1

1
θ p1−1t

N−p1
1

[
1

θ
p1
1 − 1

‖∇w‖p1
L p1 (RN )

+ p1
N

(
θN1

θ
p1
1 − 1

)
‖∇w‖N

LN (RN )

]
dθ

= 1

N
‖∇w‖N

LN (RN )
+
[
t
N−p1
1
p1

− t N1

(
1

p1
− 1

N

)]
‖∇w‖p1

L p1 (RN )
+ θN1 − 1

N
‖∇w‖N

LN (RN )

− t
N−p1
1
p1

‖∇w‖p1
L p1 (RN )

− θN1
N

t
N−p1
1 ‖∇w‖N

LN (RN )

= −t N1

(
1

p1
− 1

N

)
‖∇w‖p1

L p1 (RN )
+ θN1

N
(1 − t

N−p1
1 )‖∇w‖N

LN (RN )
< 0.

Consequently, γ ∈ �. This completes the proof of the lemma. �
Let us define

T := {u ∈ W \ {0} : L ′(u) = 0}, cLE := inf
u∈T L(u),

P := {u ∈ W \ {0} : P(u) = 0}, cPO := inf
u∈P L(u).

Now we are ready to give our first proof of Theorem 1.1.

First proof of Theorem 1.1 On account of Propositions 4.1 and 4.2, we can find a Pohozaev-
Palais-Smale sequence (un) ⊂ W for L at the level cMP > 0 such that un⇀u inW , for some
u ∈ W \ {0} which satisfies (1.1). Exploiting P(u) = 0, ∇un → ∇u a.e. in R

N , Fatou’s
lemma, L(un) → cMP, and P(un) → 0, we see

L(u) = L(u) − 1

N
P(u) ≤ lim inf

n→+∞

[
L(un) − 1

N
P(un)

]
= cMP. (4.34)

Since u is a nontrivial weak solution to (1.1), we derive from the definition of cLE and (4.34)
that

cLE ≤ L(u) ≤ cMP. (4.35)

Let now v ∈ W\{0} be anyweak solution of (1.1)with L(v) ≤ L(u). If we lift v to a path as in
Lemma 4.4, then it follows from the definition of cMP and (4.35) that L(v) ≥ cMP ≥ L(u).
As a result, L(v) = L(u) = cMP = cLE. Finally, we note that u ∈ T ⊂ P , and so
cMP = L(u) ≥ cLE ≥ cPO. On the other hand, an inspection of the proof of Lemma 4.4
reveals that for all w ∈ P there exists a path γ ∈ C([0, 1],W) such that γ ∈ � and
maxt∈[0,1] L(γ (t)) = L(w). Therefore, cMP = L(u) = cLE = cPO. �
Next we show the strong convergence of the translated subsequence of Proposition 4.2.

Corollary 4.1 Under the assumptions of Proposition 4.2, if we assume that

lim inf
n→+∞ ‖un‖W > 0,

and

lim sup
n→+∞

L(un) ≤ cLE,

then there exists u ∈ W\{0} such that L ′(u) = 0, and a sequence (xn) ⊂ R
N such that, up

to a subsequence, un(· − xn) → u in W as n → +∞.
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Proof By Proposition 4.2, up to a subsequence and translations, we may assume that for
some u ∈ W \ {0}, un⇀u in W , un → u in Lq

loc(R
N ) for all q ∈ [1, p∗

2), un → u a.e. in
R

N , and that

∇un → ∇u a.e. in R
N ,

|∇un |pi−2∇un⇀|∇u|pi−2∇u in (L
pi

pi−1 (RN ))N for all i = 1, 2.
(4.36)

Hence, u ∈ W solves (1.1). Thus we have

cLE ≤ L(u) = L(u) − 1

N
P(u)

= 1

N

(
2∑

i=1

‖∇u‖pi
L pi (RN )

)

≤ lim inf
n→+∞

1

N

(
2∑

i=1

‖∇un‖pi
L pi (RN )

)

≤ lim sup
n→+∞

1

N

(
2∑

i=1

‖∇un‖pi
L pi (RN )

)

= lim sup
n→+∞

(
L(un) − 1

N
P(un)

)

= lim sup
n→+∞

L(un) ≤ cLE,

from which L(u) = cLE and

2∑
i=1

‖∇u‖pi
L pi (RN )

= lim
n→+∞

(
2∑

i=1

‖∇un‖pi
L pi (RN )

)
. (4.37)

Recalling that (un) is bounded in W and ∇un → ∇u a.e. in R
N (by (4.36)), we can use the

Brezis-Lieb lemma [14, Theorem 1] and (4.37) to arrive at ∇un → ∇u in (L pi (RN ))N for
all i = 1, 2.

Assume that p2 < N . By the Sobolev inequality (2.1), we see that un → u in L p∗
1 (RN )∩

L p∗
2 (RN ). Using the boundedness of (un) inW and the interpolation of L p spaces, we obtain

that un → u in Ls(RN ) for all s ∈ (p1, p∗
2]. When p2 = N , we exploit ∇un → ∇u in

L p2(RN ), the boundedness of (un) in L p2(RN ), and the Gagliardo-Nirenberg interpolation
inequality [2, Theorem 5.8], to deduce that un → u in Lτ (RN ) for all τ ∈ (N ,+∞). In any
case, un → u in Lq(RN ) for all q ∈ (p2, p∗

2). Let us now introduce

h(t) := g(t) + ν(|t |p1−2t + |t |p2−2t) for all t ∈ R. (4.38)

Then h is an odd continuous function on R having the following properties:

(h1) −∞ < lim inf t→0+ h(t)
t p1−1 ≤ lim supt→0+ h(t)

t p1−1 = −ν < 0 if p2 < N , and

limt→0+ h(t)
t p1−1 = −ν if p2 = N ,

(h2) limt→+∞ h(t)

t p
∗
2−1 = 0 if p2 < N , and limt→+∞ h(t)

eαt
N

N−1
= 0 for all α > 0 when p2 = N .

From (h1), there exists t0 > 0 such that (h(t)t)+ = 0 for all |t | ≤ t0. In light of this fact
and (h2), we see that (h(t)t)+ satisfies (2.14) and (2.15). Thus, applying Lemma 2.6 with
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�(t) = (h(t)t)+, we have

lim
n→+∞

∫
RN

(h(un)un)
+ dx =

∫
RN

(h(u)u)+ dx . (4.39)

Utilizing 〈L ′(un), un〉 = on(1), 〈L ′(u), u〉 = 0, (4.39), and Fatou’s lemma, we discover

lim sup
n→+∞

2∑
i=1

(
‖∇un‖pi

L pi (RN )
+ ν‖un‖pi

L pi (RN )

)

= lim sup
n→+∞

∫
RN

h(un)un dx

= lim sup
n→+∞

∫
RN

[(h(un)un)
+ − (h(un)un)

−] dx

=
∫
RN

(h(u)u)+ − lim inf
n→+∞

∫
RN

(h(un)un)
− dx

≤
∫
RN

[(h(u)u)+ − (h(u)u)−] dx

=
∫
RN

h(u)u dx

=
2∑

i=1

(
‖∇u‖pi

L pi (RN )
+ ν‖u‖pi

L pi (RN )

)
.

(4.40)

Combining (4.40) with ‖∇un‖pi
L pi (RN )

→ ‖∇u‖pi
L pi (RN )

for i = 1, 2, we infer that un → u

in L p1(RN ) ∩ L p2(RN ). Therefore, un → u in W . �
Remark 4.4 With suitable modifications, we can prove the existence of a positive ground
state solution to (1.1). In fact, due to L(|u|) = L(u) for all u ∈ W , we may assume in
the proof of Proposition 4.1 that (γn) ⊂ � fulfills γn(t)(x) ≥ 0 for all n ∈ N, t ∈ [0, 1]
and x ∈ R

N . According to [46, Theorem 2.8], there exists ((θn, vn)) ⊂ R × W such that
(L ◦ Φ)(θn, vn) → cMP, (L ◦ Φ)′(θn, vn) → 0 in (R × W)′, and

distR×W ((θn, vn), {0} × γn([0, 1])) → 0 as n → +∞.

The above relation yields ‖v−
n ‖W → 0 and θn → 0 as n → +∞. Setting un(x) :=

vn(e−θn x), we deduce that (un) ⊂ W is a Pohozaev-Palais-Smale sequence of L at the level
cMP such that ‖u−

n ‖W → 0 as n → +∞. Reasoning as in the proof of Corollary 4.1, we
obtain that, up to subsequences and translations, un → u in W as n → +∞, for some
u ∈ W\{0} such that u ≥ 0 in R

N and u satisfies (1.1). Employing the Harnack inequality
[45, Theorem 1.2], we conclude that u > 0 in R

N .

Remark 4.5 Define

cMP,r := inf
γ∈�r

max
t∈[0,1] L(γ (t)),

with

�r := {γ ∈ C([0, 1],Wr) : γ (0) = 0, L(γ (1)) < 0}.
Let us demonstrate that

cMP = cMP,r. (4.41)
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By the definitions of cMP and cMP,r , we know that cMP ≤ cMP,r . To establish the opposite
inequality, fix γ ∈ � and put γε(t) := ρε ∗ γ (t), with ε > 0, where (ρε) ⊂ C∞

c (RN ) is a
sequence of mollifiers. Then, γε ∈ C([0, 1],W), γε(0) = 0, and γε(t) ∈ C∞(RN ) ∩ W for
all t ∈ [0, 1]. Moreover, γ (t) and γε(t) are uniformly equicontinuous. From

sup
t∈[0,1]

‖γε(t) − γ (t)‖W → 0 as ε → 0+,

it follows that

max
t∈[0,1] L(γε(t)) → max

t∈[0,1] L(γ (t)) as ε → 0+.

Denote by γ ∗
ε (t) the symmetric decreasing rearrangement of γε(t). Using the Polya-Szegö

inequality (see [3, Theorem 2.7]), we have

‖∇γ ∗
ε (t)‖L pi (RN ) ≤ ‖∇γε(t)‖L pi (RN ) for all i = 1, 2.

On the other hand, it holds∫
RN

G(γ ∗
ε (t)) dx =

∫
RN

G(γε(t)) dx .

Therefore, L(γ ∗
ε (t)) ≤ L(γε(t)) for all t ∈ [0, 1]. Since γε(t) ∈ C∞(RN ), the convolution

γε(t) is co-area regular (see [3, definition 1.2.6]), and so [3, Theorem 1.4] implies that
γ ∗
ε ∈ C([0, 1],Wr). Hence, γ ∗

ε ∈ �r and (4.41) is true. In view of this fact, we can study
L on Wr and, modifying slightly our arguments, we can establish the existence of a radially
symmetric ground state solution to (1.1). Note that in this case we can take advantage of
the compactness of the embedding in Theorem 2.3 to arrive at un → u in Lq(RN ) for all
q ∈ (p2, p∗

2).

As byproduct of Corollary 4.1, we obtain that the set of ground state solutions to (1.1) is
compact, up to translations.

Proposition 4.3 The set

SLE := {u ∈ W : L(u) = cLE, L ′(u) = 0
}

is compact in W endowed with the strong topology up to translations in R
N . Furthermore,

there exist two constants C, c > 0 independent of u ∈ SLE such that

|u(x)| ≤ Ce−c|x | for all x ∈ R
N .

Proof Let (un) ⊂ SLE . Then L(un) = cLE and L ′(un) = 0 for all n ∈ N. By Theorem 3.1,
P(un) = 0 for all n ∈ N. Proceeding as in the proof of Corollary 4.1, we can see that, up to a
subsequence and translations, un → u inW for some u ∈ W \ {0} such that L(u) = cLE and
L ′(u) = 0. Thus, SLE is compact up to translations in R

N . It remains to prove the uniform
exponential decay estimate. This will be done by following the strategy in Theorem 3.2.
Since each un solves (1.1), we derive from the proof of Theorem 3.1 that |un | fulfills

−�p1 |un | − �p2 |un | + 2ν(|un |p1−1 + |un |p2−1) ≤ g1(un) in R
N .

Exploiting the growth conditions of g1 and the boundedness of (un) in W , we can adapt
the Moser iteration argument performed in Theorem 3.1 to infer that, for some ϒ > 0,
‖un‖L∞(RN ) ≤ ϒ for all n ∈ N, that is, SLE is bounded in L∞(RN ). Because ‖un‖L∞(RN ) ≤
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ϒ and ‖g(un)‖L∞(RN ) ≤ Cϒ for all n ∈ N, it follows from [24, Theorem 1] that un ∈
C1,σ
loc (RN ) for some σ ∈ (0, 1), and that there exists C = C(N , p1, p2, ϒ) > 0 such that

‖∇un‖L∞(RN ) ≤ C for all n ∈ N.

The above estimate implies that (un) is uniformly equicontinuous in R
N , that is, for all

ε > 0 there exists δ = δε > 0 such that, if x, y ∈ R
N are such that |x − y| < δ, then

|un(x) − un(y)| < ε for all n ∈ N. This fact combined with un → u in L p1(RN ) ensures
that

lim|x |→+∞ sup
n∈N

|un(x)| = 0.

Hence, with the help of (3.1) and p1 < p2, we can find R > 0 such that

g1(un) ≤ ν(|un |p1−1 + |un |p2−1) in BR(0)
c
.

Consequently,

−�p1 |un | − �p2 |un | + ν(|un |p1−1 + |un |p2−1) ≤ 0 in BR(0)
c
.

Put φ(x) := ϒeκRe−κ|x | where

0 < κ < min

{(
ν

(p1 − 1)

) 1
p1

,

(
ν

(p2 − 1)

) 1
p2

}
.

Clearly, |un(x)| ≤ φ(x) for all |x | ≤ R and n ∈ N. On the other hand, we can see that φ sat-
isfies (3.24). Then it suffices to develop the same comparison argument given in Theorem 3.2
to achieve the desired exponential estimate. �

5 Decomposition result of bounded Palais-Smale sequences

This section is devoted to a second proof of Theorem 1.1.Motivated by [30, Theorem 3.1], we
prove a new decomposition result for bounded Palais-Smale sequences of L in the (p1, p2)-
Laplacian setting.

Theorem 5.1 Let β ∈ R and (un) ⊂ W be a bounded Palais-Smale sequence for L at the
level β. Then, up to a subsequence of (un), there exist l ∈ N, (y1n ), . . . , (y

l
n) ⊂ R

N and
w1, . . . , wl ∈ W such that the following statements hold:

(i) y1n = 0 for all n ∈ N and |y j
n − y j ′

n | → +∞ as n → +∞ for all 1 ≤ j < j ′ ≤ l.
(ii) un(· + ykn )⇀wk in W with L ′(wk) = 0 for all 1 ≤ k ≤ l, and wk �= 0 if 2 ≤ k ≤ l.
(iii) β = limn→+∞ L(un) =∑l

k=1 L(wk).
(iv) Let vln := un −∑l

k=1 wk(· − ykn ) for all n ∈ N. Then ‖vln‖W → 0 as n → +∞.

Proof We divide the proof into three main steps.
Step 1. Let y1n = 0 for all n ∈ N. Since (un) is bounded in W , we may assume that, up

to a subsequence, un(· + y1n )⇀w1 inW , un(· + y1n ) → w1 in Lq
loc(R

N ) for all q ∈ [1, p∗
2),

and un(· + y1n ) → w1 a.e. in RN , for some w1 ∈ W . Arguing as in the proof of Lemma 4.3,
we obtain

∇un(· + y1n) → ∇w1 a.e. in R
N ,

|∇un(· + y1n )|pi−2∇un(· + y1n)⇀|∇w1|pi−2∇w1 in (L
pi

pi−1 (RN ))N for all i = 1, 2.
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Using these facts, L ′(un) → 0 in W ′, and the compactness lemma of Strauss [12, The-
orem A.I], we deduce that L ′(w1) = 0. Without loss of generality, we may suppose that
limn→+∞

∫
RN G(un) dx exists. Set v1n := un − w1(· − y1n ) = un − w1 for every n ∈ N.

Thanks to (g1)–(g2), we know that G obeys (2.11). By Lemma 2.5, we have

lim
n→+∞

∫
RN

G(un) dx =
∫
RN

G(w1) dx + lim
n→+∞

∫
RN

G(v1n) dx .

This combined with the Brezis-Lieb lemma [14, Theorem 1] (applied to (un) and (∇un))
shows that

β = lim
n→+∞ L(un) = L(w1) + lim

n→+∞ L(v1n).

Step 2. Assume that m ≥ 1 and that for each 1 ≤ k ≤ m there are (ykn ) ⊂ R
N and wk ∈ W

such that the following statements hold:

(S1) y1n = 0 for all n ∈ N and |y j
n − y j ′

n | → ∞ as n → +∞ for all 1 ≤ j < j ′ ≤ m.
(S2) un(· + ykn )⇀wk in W with L ′(wk) = 0 for all 1 ≤ k ≤ m, and wk �= 0 if 2 ≤ k ≤ m.
(S3) Let vmn := un −∑m

k=1 wk(· − ykn ) for all n ∈ N. We have that (vmn ) is bounded in W ,

lim
n→+∞

∫
RN

G(vmn ) dx exists, (5.1)

and

β =
m∑

k=1

L(wk) + lim
n→+∞ L(vmn ). (5.2)

Define

σm := lim sup
n→+∞

(
sup
y∈RN

∫
B1(y)

|vmn |p2 dx
)

.

We distinguish two cases: non vanishing and vanishing.
Non vanishing occurs, that is, σm > 0. Then, up to a subsequence of (un), (S1)–(S3)

hold for m + 1.
Up to a subsequence, there exists (ym+1

n ) ⊂ R
N such that

lim
n→+∞

∫
B1(y

m+1
n )

|vmn |p2 dx > 0.

Thus, |ym+1
n − ykn | → +∞ as n → +∞ for all 1 ≤ k ≤ m (because vmn (· + ykn ) → 0 in

L p2
loc(R

N )), and, up to a subsequence, vmn (·+ ym+1
n )⇀wm+1 inW for somewm+1 ∈ W \{0}.

By the definition of vmn ,w
k(·+ ykn − ym+1

n ) → 0 in Lr
loc(R

N ) and∇wk(·+ ykn − ym+1
n ) → 0

in (Lr
loc(R

N ))N for all r ∈ [1, p∗
2) and for all 1 ≤ k ≤ m, we also have

un(· + ym+1
n ) = vmn (· + ym+1

n ) +
m∑

k=1

wk(· − ykn + ym+1
n )⇀wm+1 in W.

Since (un(· + ym+1
n )) ⊂ W is a bounded Palais-Smale sequence of L , we can argue as in the

proof of Lemma 4.3 to infer

∇un(· + ym+1
n ) → ∇wm+1 a.e. in RN ,

|∇un(· + ym+1
n )|pi−2∇un(· + ym+1

n )⇀|∇wm+1|pi−2∇wm+1 in (L
pi

pi−1 (RN ))N for all i = 1, 2.
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In particular, ∇vmn (· + ym+1
n ) → ∇wm+1 a.e. in R

N . Reasoning as in Step 1, we can prove
that L ′(wm+1) = 0. Set vm+1

n := vmn − wm+1(· − ym+1
n ) for every n ∈ N. From (5.1) and

Lemma 2.5, we deduce

lim
n→+∞

∫
RN

G(vmn (· + ym+1
n )) dx =

∫
RN

G(wm+1) dx + lim
n→+∞

∫
RN

G(vm+1
n (· + ym+1

n )) dx,

which combined with (5.2) and the Brezis-Lieb lemma [14, Theorem 1] yields

β =
m∑

k=1

L(wk) + lim
n→+∞ L(vmn )

=
m∑

k=1

L(wk) + lim
n→+∞ L(vmn (· + ym+1

n ))

=
m∑

k=1

L(wk) +
[
L(wm+1) + lim

n→+∞ L(vm+1
n (· + ym+1

n ))

]

=
m+1∑
k=1

L(wk) + lim
n→+∞ L(vm+1

n ).

Hence, up to a subsequence of (un), (S1)–(S3) hold for m + 1.
Vanishing occurs, that is, σm = 0. Then Theorem 5.1 holds with l = m.
Since (S1)–(S2) and (5.2) hold, it suffices to prove that ‖vmn ‖W → 0 as n → +∞. Let

us note that if (vn) ⊂ W and (wn) ⊂ W are two bounded sequences such that, as n → +∞,

2∑
i=1

{∫
RN

(|∇vn |pi−2∇vn − |∇wn |pi−2∇wn
)
(∇vn − ∇wn) dx

+
∫
RN

(|vn |pi−2vn − |wn |pi−2wn)(vn − wn) dx
}

→ 0,

then ‖vn − wn‖W → 0 as n → +∞. Indeed, invoking the well-known Simon’s inequalities
[43, formula (2.2)] :

(|η1|r−2η1 − |η2|r−2η2)(η1 − η2) ≥ c1|η1 − η2|r if r ≥ 2, (5.3)

(|η1| + |η2|)2−r [(|η1|r−2η1 − |η2|r−2η2)(η1 − η2)] ≥ c2|η1 − η2|2 if 1 < r < 2, (5.4)

for all η1, η2 ∈ R
N , where c1, c2 > 0 are constants depending on r , we can see that, if pi ≥ 2

then (5.3) gives∫
RN

(|∇vn |pi−2∇vn − |∇wn |pi−2∇wn
)
(∇vn − ∇wn) dx

+
∫
RN

(|vn |pi−2vn − |wn |pi−2wn)(vn − wn) dx ≥ c1‖vn − wn‖pi
W 1,pi (RN )

,

while if 1 < pi < 2 then (5.4), the Hölder inequality with exponents 2
pi

and 2
2−pi

, and the
boundedness of (vn) and (wn) yield

c
pi
2
2 ‖vn − wn‖pi

W1,pi (RN )
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≤
(∫

RN

(
|∇vn |pi−2∇vn − |∇wn |pi−2∇wn

)
(∇vn − ∇wn) dx

) pi
2
(∫

RN
(|∇vn | + |∇wn |)pi dx

) 2−pi
2

+
(∫

RN

(
|vn |pi−2vn − |wn |pi−2wn

)
(vn − wn) dx

) pi
2
(∫

RN
(|vn | + |wn |)pi dx

) 2−pi
2

≤ C
[(∫

RN

(
|∇vn |pi−2∇vn − |∇wn |pi−2∇wn

)
(∇vn − ∇wn) dx

) pi
2

+
(∫

RN

(
|vn |pi−2vn − |wn |pi−2wn

)
(vn − wn) dx

) pi
2 ]

.

Therefore, if we show that, as n → +∞,

2∑
i=1

{∫
RN

[
|∇un |pi−2∇un −

∣∣∣∇(
m∑

k=1

wk
(

· −ykn
))∣∣∣pi−2∇

( m∑
k=1

wk
(

· −ykn
))]

∇vmn dx

+ ν

∫
RN

[
|un |pi−2un−

∣∣∣
m∑

k=1

wk
(

· −ykn
)∣∣∣pi−2( m∑

k=1

wk
(

· −ykn
))]

vmn dx
}

→ 0,

(5.5)

then we can conclude that ‖vmn ‖W → 0 as n → +∞, as desired. Henceforth, we focus on
(5.5). Since (vmn ) is bounded in W and σm = 0, it follows from Lemma 2.2 that vmn → 0 in
Lq(RN ) for all q ∈ (p2, p∗

2). Now, recalling the definition of h in (4.38), we observe that

0 ≤
2∑

i=1

{∫
RN

[
|∇un |pi−2∇un −

∣∣∣∇(
m∑

k=1

wk
(

· −ykn
))∣∣∣pi−2∇

( m∑
k=1

wk
(

· −ykn
))]

∇vmn dx

+ ν

∫
RN

[
|un |pi−2un−

∣∣∣
m∑

k=1

wk
(

· −ykn
)∣∣∣pi−2( m∑

k=1

wk
(

· −ykn
))]

vmn dx
}

=
2∑

i=1

{∫
RN

|∇un |pi−2∇un∇vmn dx + ν

∫
RN

|un |pi−2unv
m
n dx

}

−
2∑

i=1

{∫
RN

∣∣∣∇(
m∑

k=1

wk
(

· −ykn
))∣∣∣pi−2∇

( m∑
k=1

wk
(

· −ykn
))

∇vmn dx

+ ν

∫
RN

∣∣∣
m∑

k=1

wk
(

· −ykn
)∣∣∣pi−2( m∑

k=1

wk
(

· −ykn
))

vmn dx
}

=
∫
RN

h(un)v
m
n dx + 〈L ′(un), vmn 〉

−
2∑

i=1

{∫
RN

∣∣∣∇(
m∑

k=1

wk
(

· −ykn
))∣∣∣pi−2∇

( m∑
k=1

wk
(

· −ykn
))

∇vmn dx

+ ν

∫
RN

∣∣∣
m∑

k=1

wk
(

· −ykn
)∣∣∣pi−2( m∑

k=1

wk
(

· −ykn
))

vmn dx
}

=
∫
RN

h(un)v
m
n dx + on(1)
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−
2∑

i=1

{∫
RN

∣∣∣∇(
m∑

k=1

wk
(

· −ykn
))∣∣∣pi−2∇

( m∑
k=1

wk
(

· −ykn
))

∇vmn dx

+ ν

∫
RN

∣∣∣
m∑

k=1

wk
(

· −ykn
)∣∣∣pi−2( m∑

k=1

wk
(

· −ykn
))

vmn dx
}
,

where we have used the fact that 〈L ′(un), vmn 〉 = on(1) because L ′(un) → 0 inW ′ and (vmn )

is bounded in W . In view of 〈L ′(wk), vmn (· + ykn )〉 = 0 for all k = 1, . . . ,m, we see

∫
RN

h(un)v
m
n dx =

∫
RN

[
h(un) −

m∑
k=1

h
(
wk
(

· −ykn
))]

vmn dx +
m∑

k=1

∫
RN

h(wk
(

· −ykn
)
)vmn dx

=
∫
RN

[
h(un) −

m∑
k=1

h
(
wk
(

· −ykn
))]

vmn dx +
m∑

k=1

∫
RN

h
(
wk
)
vmn

(
· +ykn

)
dx

=
∫
RN

[
h(un) −

m∑
k=1

h
(
wk
(

· −ykn
))]

vmn dx −
m∑

k=1

〈L ′(wk), vmn

(
· +ykn

)
〉

+
m∑

k=1

2∑
i=1

∫
RN

[
|∇wk |pi−2∇wk∇vmn

(
· +ykn

)
+ ν|wk |pi−2wkvmn

(
· +ykn

)]
dx

=
∫
RN

[
h(un) −

m∑
k=1

h
(
wk
(

· −ykn
))]

vmn dx

+
m∑

k=1

2∑
i=1

∫
RN

[
|∇wk

(
· −ykn

)
|pi−2∇wk

(
· −ykn

)
∇vmn + ν|wk

(
· −ykn

)
|pi−2wi

(
· −ykn

)
vmn

]
dx .

Therefore,

0 ≤
2∑

i=1

{∫
RN

[
|∇un |pi−2∇un −

∣∣∣∇(
m∑

k=1

wk
(

· −ykn
))∣∣∣pi−2∇

( m∑
k=1

wk
(

· −ykn
))]

∇vmn dx

+ ν

∫
RN

[
|un |pi−2un−

∣∣∣
m∑

k=1

wk
(

· −ykn
)∣∣∣pi−2( m∑

k=1

wk
(

· −ykn
))]

vmn dx
}

=
∫
RN

⎡
⎣h(un) −

m∑
k=1

h(wk
(

· −ykn
)
)

⎤
⎦ vmn dx + on(1)

+
m∑

k=1

2∑
i=1

∫
RN

[
|∇wk

(
· −ykn

)
|pi−2∇wk

(
· −ykn

)
∇vmn + ν|wk

(
· −ykn

)
|pi−2wk

(
· −ykn

)
vmn

]
dx

−
2∑

i=1

{∫
RN

∣∣∣∇(
m∑

k=1

wk
(

· −ykn
))∣∣∣pi−2∇

( m∑
k=1

wk
(

· −ykn
))

∇vmn dx

+ ν

∫
RN

∣∣∣
m∑

k=1

wk
(

· −ykn
)∣∣∣pi−2( m∑

k=1

wk
(

· −ykn
))

vmn dx
}

=: An + on(1) +
m∑

k=1

Bn,k − Cn . (5.6)

We claim that

lim sup
n→+∞

An ≤ 0, (5.7)
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lim
n→+∞

m∑
k=1

Bn,k = 0, (5.8)

and

lim
n→+∞Cn = 0. (5.9)

Once verified (5.7), (5.8), and (5.9), it follows from (5.6) that (5.5) is true. We start by
proving (5.7). For all n ∈ N and M > 0, put �n,M := {x ∈ R

N : |vmn (x)| ≥ M}. We begin
by showing that

lim sup
M→+∞

(
sup
n∈N

∫
�n,M

∣∣∣∣∣h(un) −
m∑

k=1

h(wk(· − ykn ))

∣∣∣∣∣ |vmn | dx
)

= 0. (5.10)

Pick s > N and set

ω1 :=
{

p∗
2

p∗
2−1 if p2 < N ,
s

s−1 if p2 = N ,

and

ω2 :=
{
p∗
2 if p2 < N ,

s if p2 = N .

Note thatω1 ∈ (1, p2
p2−1 ) and

∑2
i=1

1
ωi

= 1.Using theHölder inequality and the boundedness

of (vmn ) in Lω2(RN ), we obtain

∫
�n,M

∣∣∣∣∣h(un) −
m∑

k=1

h(wk(· − ykn ))

∣∣∣∣∣ |vmn | dx

≤
(

‖h(un)‖Lω1 (�n,M ) +
m∑

k=1

‖h(wk(· − ykn ))‖Lω1 (�n,M )

)
‖vmn ‖Lω2 (RN )

≤ C0

(
‖h(un)‖Lω1 (�n,M ) +

m∑
k=1

‖h(wk(· − ykn ))‖Lω1 (�n,M )

)
,

(5.11)

for someC0 > 0 independent of ε, n, andM . Exploiting the boundedness of (vmn ) in Lω2(RN )

once again, we have

C1 ≥ ‖vmn ‖ω2
Lω2 (RN )

≥ ‖vmn ‖ω2
Lω2 (�n,M )

≥ Mω2 |�n,M | for all n ∈ N and M > 0,

and so

sup
n∈N

|�n,M | → 0 as M → +∞. (5.12)

Now, we observe that, for all v ∈ W , it holds

‖v‖ω1(p2−1)
Lω1(p2−1)(�n,M )

≤ |�n,M |1−
ω1(p2−1)

p2 ‖v‖ω1(p2−1)
L p2 (RN )

. (5.13)

Let us recall that (h1) and (h2) imply that for all ε > 0 and α > 0 there exist Cε,Cε,α > 0
such that, for all t ∈ R,

|h(t)| ≤

⎧⎪⎨
⎪⎩
2

1−ω1
ω1 C

1
ω1
ε |t |p1−1 + 2

1−ω1
ω1 ε

1
ω1 |t |p∗

2−1 if p2 < N ,

2
1−ω1
ω1 C

1
ω1
ε,α|t |p1−1 + 2

1−ω1
ω1 ε

1
ω1 	N

(
α|t | N

N−1

)
if p2 = N .

(5.14)
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Using (5.14), (4.2), (2.4), and that |t |p1−1 ≤ |t |p2−1Mp1−p2 for all |t | ≥ M , we see that, for
all |t | ≥ M ,

|h(t)|ω1 ≤
{
Cε|t |ω1(p2−1)Mω1(p1−p2) + ε |t |p∗

2 if p2 < N ,

Cε,α|t |ω1(p2−1)Mω1(p1−p2) + ε 	N

(
αω1|t | N

N−1

)
if p2 = N ,

(5.15)

where α > 0 is such that αω1K
N

N−1 < αN , and K > 0 is such that ‖un‖W 1,p2 (RN ) ≤ K for
all n ∈ N. Then, taking into account (5.13), (5.15), and the boundedness of (un) in W , we
have, when p2 < N ,

sup
n∈N

(
‖h(un)‖ω1

Lω1 (�n,M )
+

m∑
k=1

‖h(wk(· − ykn ))‖ω1
Lω1 (�n,M )

)

≤ sup
n∈N

{[
Cε‖un‖ω1(p2−1)

Lω1(p2−1)(�n,M )
Mω1(p1−p2) + ε ‖un‖p∗

2

L p∗2 (�n,M )

]

+
m∑

k=1

[
Cε‖wk(· − ykn )‖ω1(p2−1)

Lω1(p2−1)(�n,M )
Mω1(p1−p2) + ε ‖wk(· − ykn )‖p∗

2

L p∗2 (�n,M )

]}

≤ sup
n∈N

{[
Cε‖un‖ω1(p2−1)

Lω1(p2−1)(�n,M )
Mω1(p1−p2) + ε ‖un‖p∗

2

L p∗2 (RN )

]

+
m∑

k=1

[
Cε‖wk(· − ykn )‖ω1(p2−1)

Lω1(p2−1)(�n,M )
Mω1(p1−p2) + ε ‖wk‖p∗

2

L p∗2 (RN )

]}

≤ C2

{
CεM

ω1(p1−p2) sup
n∈N

|�n,M |1−
ω1(p2−1)

p2 + ε

}
,

and when p2 = N , utilizing (2.3), we find

sup
n∈N

⎛
⎝‖h(un)‖ω1

Lω1 (�n,M )
+

m∑
k=1

‖h(wk (· − ykn ))‖ω1
Lω1 (�n,M )

⎞
⎠

≤ sup
n∈N

{[
Cε,α‖un‖ω1(p2−1)

Lω1(p2−1)(�n,M )
Mω1(p1−p2) + ε

∥∥∥∥	N

(
αω1|un | N

N−1

)∥∥∥∥
L1(�n,M )

]

+
m∑

k=1

[
Cε,α‖wk (· − ykn )‖ω1(p2−1)

Lω1(p2−1)(�n,M )
Mω1(p1−p2) + ε

∥∥∥∥	N

(
αω1|wk (· − ykn )| N

N−1

)∥∥∥∥
L1(�n,M )

]}

≤ sup
n∈N

{[
Cε,α‖un‖ω1(p2−1)

Lω1(p2−1)(�n,M )
Mω1(p1−p2) + ε

∥∥∥∥	N

(
αω1|un | N

N−1

)∥∥∥∥
L1(RN )

]

+
m∑

k=1

[
Cε,α‖wk (· − ykn )‖ω1(p2−1)

Lω1(p2−1)(�n,M )
Mω1(p1−p2) + ε

∥∥∥∥	N

(
αω1|wk | N

N−1

)∥∥∥∥
L1(RN )

]}

≤ C2

{
Cε,αM

ω1(p1−p2) sup
n∈N

|�n,M |1−
ω1(p2−1)

p2 + ε

}
,

for some C2 > 0 independent of ε, n, and M . Exploiting the above estimates, (5.11), and
(5.12), we arrive at

lim sup
M→+∞

(
sup
n∈N

∫
�n,M

∣∣∣∣∣h(un) −
m∑

k=1

h(wk(· − ykn ))

∣∣∣∣∣ |vmn | dx
)

≤ C3 ε .
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Because ε > 0 is arbitrary, we obtain

lim sup
M→+∞

(
sup
n∈N

∫
�n,M

∣∣∣∣∣h(un) −
m∑

k=1

h(wk(· − ykn ))

∣∣∣∣∣ |vmn | dx
)

= 0. (5.16)

Now, we denote by χn,M the characteristic function of the set {x ∈ R
N : |vmn (x)| ≤ M}.

Clearly, for all j = 1, . . . ,m and R > 0, it holds

∫
BR (y jn )

χn,M

∣∣∣∣∣∣h(un) −
m∑

k=1

h(wk (· − ykn ))

∣∣∣∣∣∣ |v
m
n | dx

=
∫
BR (0)

χn,M (· + y jn )

∣∣∣∣∣∣h(un(· + y jn )) − h(w j ) −
∑
k �= j

h(wk (· + y jn − ykn ))

∣∣∣∣∣∣ |v
m
n (· + y jn )| dx

≤ M
∫
BR (0)

⎛
⎝|h(un(· + y jn )) − h(w j )| +

∑
k �= j

|h(wk (· + y jn − ykn ))|
⎞
⎠ dx .

Since un(· + y j
n ) → w j in Lr

loc(R
N ) for all r ∈ [1, p∗

2), |y j
n − ykn | → +∞ for each j �= k

(and sowk(·+y j
n −ykn ) → 0 in Lr

loc(R
N ) for all r ∈ [1, p∗

2) and j �= k), and h is a continuous
function satisfying (h1) and (h2), it follows from the compactness lemma of Strauss [12,
Theorem A.I] that

lim
n→+∞

∫
BR (y jn )

χn,M

∣∣∣∣∣∣h(un) −
m∑

k=1

h(wk (· − ykn ))

∣∣∣∣∣∣ |v
m
n | dx = 0 for all j = 1, . . . ,m and R > 0.

(5.17)

Define

VR := R
N \

m⋃
k=1

BR(ykn ).

Because h fulfills (h1) and (h2), we can find C3 > 0 such that, for all t ∈ R,

|h(t)| ≤
{
C3(|t |p1−1 + |t |p∗

2−1) if p2 < N ,

C3

(
|t |p1−1 + 	N

(
α|t | N

N−1

))
if p2 = N .

(5.18)

Then, due to (5.18), for all k = 1, . . . ,m, we have, when p2 < N ,∫
VR

χn,M |h(wk(· − ykn ))v
m
n | dx

≤ C3

∫
VR

(|wk(· − ykn )|p1−1 + |wk(· − ykn )|p
∗
2−1)|vmn | dx

≤ C3

[
‖wk(· − ykn )‖p1−1

L p1 (VR)
‖vmn ‖L p1 (RN ) + ‖wk(· − ykn )‖p∗

2−1

L p∗2 (VR)
‖vmn ‖

L p∗2 (RN )

]

≤ C3

[
‖wk‖p1−1

L p1 (Bc
R(0))‖vmn ‖L p1 (RN ) + ‖wk‖p∗

2−1

L p∗2 (Bc
R(0))

‖vmn ‖
L p∗2 (RN )

]
= oR(1),

(5.19)
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and when p2 = N , fixed s > N such that α s
s−1 < αN , we obtain

∫
VR

χn,M |h(wk (· − ykn ))vmn | dx

≤ C3

∫
VR

(
|wk (· − ykn )|p1−1 + 	N

(
α|wk (· − ykn )| N

N−1

))
|vmn | dx

≤ C3

⎡
⎣‖wk (· − ykn )‖p1−1

L p1 (VR )
‖vmn ‖L p1 (RN )

+
∥∥∥∥	N

(
α

s

s − 1
|wk (· − ykn )| N

N−1

)∥∥∥∥
s−1
s

L1(VR )

‖vmn ‖Ls (RN )

⎤
⎦

≤ C3

⎡
⎣‖wk‖p1−1

L p1 (BcR (0))
‖vmn ‖L p1 (RN )

+
∥∥∥∥	N

(
α

s

s − 1
|wk | N

N−1

)∥∥∥∥
s−1
s

L1(BcR (0))
‖vmn ‖Ls (RN )

⎤
⎦ = oR(1),

(5.20)

where oR(1) → 0+ uniformly in n and M as R → +∞. In a similar fashion, we can prove
∫
VR

χn,M |h(un)|
(

m∑
k=1

|wk(· − ykn )|
)

dx = oR(1). (5.21)

Finally, we estimate ∫
VR

h(un)χn,Mun dx .

Since h is odd and satisfies (h1), there exists τ > 0 such that h(t)t/|t |p1 ≤ 0 for all
0 < |t | ≤ τ , and so

h(t)t ≤ 0 for all |t | ≤ τ. (5.22)

Take q ∈ (p2, p∗
2). From (h2), we deduce that fixed ε > 0 there exists Cε > 0 such that, for

all |t | ≥ τ ,

|h(t)t | ≤
{
Cε|t |q + ε |t |p∗

2 if p2 < N ,

Cε|t |q + ε 	N

(
α|t | N

N−1

)
if p2 = N ,

(5.23)

where α > 0 is such that αK
N

N−1 < αN . Note that Cε depends on ε and q when p2 < N ,
while it depends on ε, q , and α when p2 = N . Therefore, thanks to (5.22), (5.23), and
0 ≤ χn,M ≤ 1, we get, when p2 < N ,∫

VR

h(un)χn,Mun dx =
∫
VR

h(χn,Mun)χn,Mun dx

≤
∫
VR∩{|χn,Mun |≥τ }

h(χn,Mun)χn,Mun dx

≤ ε ‖un‖p∗
2

L p∗2 (RN )
+ Cε‖un‖qLq (VR)

≤ C4 ε +Cε‖un‖qLq (VR),

and when p2 = N , using (2.3), we find∫
VR

h(un)χn,Mun dx =
∫
VR

h(χn,Mun)χn,Mun dx

≤
∫
VR∩{|χn,Mun |≥τ }

h(χn,Mun)χn,Mun dx
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≤ ε ‖	N (α|un | N
N−1 )‖L1(RN ) + Cε‖un‖qLq (VR)

≤ εC4 + Cε‖un‖qLq (VR),

for someC4 > 0 independent of ε, n, M , and R. Now, because un = vmn +∑m
k=1 wk(·− ykn ),

vmn → 0 in Lq(RN ), and recalling the definition of VR , we see

lim sup
n→+∞

‖un‖Lq (VR) ≤ lim sup
n→+∞

(
‖vmn ‖Lq (RN ) +

m∑
k=1

‖wk(· − ykn )‖Lq (VR)

)

≤ lim sup
n→+∞

(
m∑

k=1

‖wk‖Lq (Bc
R(0))

)
= oR(1),

which yields

lim sup
n→+∞

∫
VR

h(un)χn,Mun dx ≤ C4 ε +CεoR(1).

Accordingly,

lim sup
R→+∞

(
lim sup
n→+∞

∫
VR

h(un)χn,Mun dx

)
≤ C4 ε . (5.24)

In view of vmn = un −∑m
k=1 wk(· − ykn ), (5.19), (5.20), (5.21), and (5.24), we obtain

lim sup
R→+∞

[
lim sup
n→+∞

∫
VR

(
h(un) −

m∑
k=1

h(wk(· − ykn ))

)
χn,Mvmn dx

]
≤ C4 ε .

Since ε > 0 is arbitrary and taking (5.17) into account, we have

lim sup
n→+∞

∫
RN

(
h(un) −

m∑
k=1

h(wk(· − ykn ))

)
χn,Mvmn dx ≤ 0. (5.25)

Combining (5.25) with (5.16), we conclude that (5.7) holds. Next we deal with (5.8) and
(5.9). We only prove (5.9) because the proof of (5.8) follows the same pattern. We first show
that, for all i = 1, 2,

∫
RN

∣∣∣∣∣
m∑

k=1

∇wk(· − ykn )

∣∣∣∣∣
pi−2 ( m∑

k=1

∇wk(· − ykn )

)
vmn dx → 0 as n → +∞. (5.26)

Fix i ∈ {1, 2} and take R > 0 such that

‖∇wk‖L pi (Bc
R(0)) ≤ ε for all k = 1, . . . ,m. (5.27)

Thus,∣∣∣∣∣∣
∫
RN

∣∣∣∣∣
m∑

k=1

∇wk(· − ykn )

∣∣∣∣∣
pi−2 ( m∑

k=1

∇wk(· − ykn )

)
∇vmn dx

∣∣∣∣∣∣
≤
∫
RN

∣∣∣∣∣
m∑

k=1

∇wk(· − ykn )

∣∣∣∣∣
pi−1

|∇vmn | dx
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≤
m∑
j=1

∫
BR(y j

n )

∣∣∣∣∣
m∑

k=1

∇wk(· − ykn )

∣∣∣∣∣
pi−1

|∇vmn | dx +
∫
VR

∣∣∣∣∣
m∑

k=1

∇wk(· − ykn )

∣∣∣∣∣
pi−1

|∇vmn | dx

=: Dn + En .

Since |y j
n − ykn | → +∞ as n → +∞ for all j �= k, we see that ∇wk(· + y j

n − ykn ) →
0 in (L pi

loc(R
N ))N as n → +∞ for all j �= k. We also know that ∇vmn (· + ykn ) → 0

in (L pi
loc(R

N ,RN ))N as n → +∞ for all k = 1, . . . ,m. Then, applying the Hölder and
Minkowski inequalities, we get

Dn ≤
m∑
j=1

∫
BR (0)

∣∣∣∣∣∣
m∑

k=1

∇wk (· + y jn − ykn )

∣∣∣∣∣∣
pi−1

|∇vmn (· + y jn )| dx

≤
m∑
j=1

∥∥∥∥∥∥
m∑

k=1

∇wk (· + y jn − ykn )

∥∥∥∥∥∥
pi−1

L pi (BR (0))

‖∇vmn (· + y jn )‖L pi (BR (0))

=
m∑
j=1

∥∥∥∥∥∥∇w j +
∑
k �= j

∇wk (· + y jn − ykn )

∥∥∥∥∥∥
pi−1

L pi (BR (0))

‖∇vmn (· + y jn )‖L pi (BR (0))

≤
m∑
j=1

⎛
⎝‖∇w j‖L pi (BR (0)) +

∑
k �= j

∥∥∥∇wk (· + y jn − ykn )

∥∥∥
L pi (BR (0))

⎞
⎠

pi−1

‖∇vmn (· + y jn )‖L pi (BR (0)) = on(1).

On the other hand, using the boundedness of (vmn ) inW , the definition of VR , and (5.27), we
obtain

En ≤
∥∥∥∥∥

m∑
k=1

∇wk(· − ykn )

∥∥∥∥∥
pi−1

L pi (VR)

‖∇vmn ‖L pi (RN )

≤
(

m∑
k=1

‖∇wk(· − ykn )‖L pi (VR)

)pi−1

‖∇vmn ‖L pi (RN )

≤
(

m∑
k=1

‖∇wk‖L pi (Bc
R(0))

)pi−1

‖∇vmn ‖L pi (RN )

≤ C5

(
m∑

k=1

‖∇wk‖L pi (Bc
R(0))

)pi−1

≤ C6 ε pi−1 .

Consequently,

0 ≤ lim sup
n→+∞

(Dn + En) ≤ C6 ε pi−1 .

Because ε > 0 is arbitrary, we infer that Dn + En → 0 as n → +∞, and so (5.26) is true.
Analogously, we can verify that, for all i = 1, 2,

∫
RN

∣∣∣∣∣
m∑

k=1

wk(· − ykn )

∣∣∣∣∣
pi−2 ( m∑

k=1

wk(· − ykn )

)
vmn dx → 0 as n → +∞. (5.28)
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Combining (5.26) and (5.28), we deduce that (5.9) is valid. As a result, ‖vmn ‖W → 0 as
n → +∞. This completes the proof of the vanishing case.

Step 3. We proceed by iteration as in Step 2. Indeed, if σm > 0, then the Brezis-Lieb
lemma [14, Theorem 1] ensures that, for all i = 1, 2,

0 ≤ ∥∥vmn ∥∥piW 1,pi (RN )
= ‖un‖pi

W 1,pi (RN )
−

m∑
k=1

‖wk‖pi
W 1,pi (RN )

+ on(1),

from which
m∑

k=1

2∑
i=1

‖wk‖pi
W 1,pi (RN )

≤
2∑

i=1

‖un‖pi
W 1,pi (RN )

+ on(1). (5.29)

Since (un) is bounded in W , we know that there exists M > 0 such that

‖un‖W ≤ M for all n ∈ N. (5.30)

On the other hand, we can prove that there exists C > 0 such that

2∑
i=1

‖wk‖pi
W 1,pi (RN )

≥ C for all k = 1, . . . ,m. (5.31)

In fact, using Remark 4.2, we can find C ′ > 0 such that

‖wk‖W ≥ C ′ for all k = 1, . . . ,m. (5.32)

Now, let z ∈ W \ {0} be such that ‖z‖W ≥ K for some K > 0. We aim to confirm that, for
some K ′ > 0,

‖z‖p1
W 1,p1 (RN )

+ ‖z‖p2
W 1,p2 (RN )

≥ K ′.

For simplicity, we assume that ‖z‖W 1,p1 (RN ) ≤ ‖z‖W 1,p2 (RN ). Let us consider the following
cases:

• if ‖z‖W 1,p1 (RN ) ≤ K
2 ≤ ‖z‖W 1,p2 (RN ), then

‖z‖p1
W 1,p1 (RN )

+ ‖z‖p2
W 1,p2 (RN )

≥ ‖z‖p2
W 1,p2 (RN )

≥ (K/2)p2 ,

• if K
2 ≤ ‖z‖W 1,p1 (RN ) ≤ ‖z‖W 1,p2 (RN ), then

‖z‖p1
W 1,p1 (RN )

+ ‖z‖p2
W 1,p2 (RN )

≥ (K/2)p1 + (K/2)p2 ,

• if ‖z‖W 1,p1 (RN ) ≤ ‖z‖W 1,p2 (RN ) ≤ K
2 , then

K ≤ ‖z‖W = ‖z‖W 1,p1 (RN ) + ‖z‖W 1,p2 (RN ) ≤ ‖z‖W 1,p1 (RN ) + K

2

from which ‖z‖W 1,p1 (RN ) ≥ K
2 . Hence, ‖z‖p1

W 1,p1 (RN )
+ ‖z‖p2

W 1,p2 (RN )
≥ ‖z‖p1

W 1,p1 (RN )
≥

( K2 )p1 .

Therefore, (5.32) and the above argument show that (5.31) is true. Combining (5.29),
(5.30), and (5.31), we see

mC =
m∑

k=1

C ≤
2∑

i=1

Mpi + 1,
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and thus the vanishing casemust occur for somem0 ∈ N and Theorem 5.1 holds with l = m0.
The proof of Theorem 5.1 is now complete. �
Now we are ready to give a second proof of Theorem 1.1.

Second proof of Theorem 1.1 By Proposition 4.1, we know that there exists a Pohozaev-
Palais-Smale sequence (un) ⊂ W of L at the level cMP > 0. By virtue of Lemma 4.2,
(un) is a bounded Palais-Smale sequence in W . Now we note that if w ∈ W\{0} is any
critical point of L then L(w) ≥ cMP > 0. In fact, due to P(w) = 0, we can use Lemma 4.4
to construct a path γ ∈ � such that maxt∈[0,1] L(γ (t)) = L(w). Hence, L(w) ≥ cMP, as
claimed. Applying Theorem 5.1 with β = cMP > 0, we see that, up to a subsequence of (un),
there exist l ∈ N, (y1n ), . . . , (y

l
n) ⊂ R

N and w1, . . . , wl ∈ W such that properties (i)–(iv)

in Theorem 5.1 hold. If l ≥ 3, or l = 2 but w1 �= 0, then items (i i) and (i i i) of Theorem 5.1
yield

cMP ≥
l∑

k=1

L(wk) ≥ 2cMP > cMP,

that is a contradiction. Thus, l = 1, or l = 2 with w1 = 0. Utilizing items (i) and (iv) of
Theorem 5.1, we deduce that un − w1 → 0 in W , or un − w2(· − y2n ) → 0 in W with
|y2n | → +∞. Therefore, up to a subsequence and translations, un → u in W for some
u ∈ W \ {0} such that L(u) = cMP and L ′(u) = 0. Arguing as in the last part of the first
proof of Theorem 1.1, we conclude that u is a ground state solution to (1.1). �

6 Monotonicity trick: third proof of Theorem 1.1 and proof of
Theorem 1.2

The third proof of Theorem 1.1 and the proof of Theorem 1.2 will be obtained by employing
two abstract results based on the monotonicity trick. First we introduce some notations and
definitions.

Let (X , ‖ · ‖) be a real Banach space with dual X ′, I ⊂ (0,+∞) be a nonempty compact
interval. Let (Lλ) be a family of C1 functionals on X with parameter λ ∈ I of the form

Lλ(u) := A(u) − λB(u) for λ ∈ I ,

where A, B ∈ C1(X ,R) are such that A(0) = 0 = B(0), B ≥ 0 on X , and either A(u) →
+∞ or B(u) → +∞ as ‖u‖ → +∞.

We say that (Lλ) has a uniform mountain pass geometry if, for every λ ∈ I , the set

�λ := {γ ∈ C([0, 1], X) : γ (0) = 0, Lλ(γ (1)) < 0}
is nonempty and

cMP,λ := inf
γ∈�λ

max
t∈[0,1] Lλ(γ (t)) > 0.

The next result is an alternative version of [28, Theorem 1.1] (see also [30, Theorem 2.1]).

Theorem 6.1 [28, Theorem 1.1] If (Lλ) has a uniform mountain pass geometry, then

(i) for almost every λ ∈ I , Lλ admits a bounded Palais-Smale sequence (uλ
n) ⊂ X at the

mountain pass level cMP,λ, that is,

sup
n∈N

‖uλ
n‖ < +∞, Lλ(u

λ
n) → cMP,λ and L ′

λ(u
λ
n) → 0 in X ′,
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(ii) the mapping λ �→ cMP,λ is left continuous.

When A and B are even, we can extend the previous result by considering a suitable
geometric condition.

For every k ∈ N, let Dk := {x ∈ R
k : |x | ≤ 1} and Sk−1 := {x ∈ R

k : |x | = 1}.
A family of even functionals (Lλ)with parameterλ ∈ I is said to have a uniformsymmetric

mountain pass geometry if, for every k ∈ N, there exists an odd continuous mapping γ0k :
S
k−1 → X \ {0} such that

max
l∈Sk−1

Lλ(γ0k(l)) < 0 uniformly in λ ∈ I ,

the class of mappings

�k := {γ ∈ C(Dk, X) : γ is odd and γ = γ0k on S
k−1}

is nonempty, and

ck,λ := inf
γ∈�k

max
l∈Dk

Lλ(γ (l)) > 0.

It holds the following result.

Theorem 6.2 [30, Theorem 2.2] Assume in addition that A and B are even. If (Lλ) has a
uniform symmetric mountain pass geometry, then

(i) for almost every λ ∈ I , Lλ admits a bounded Palais-Smale sequence (uλ
k,n) ⊂ X at each

level ck,λ (k ∈ N), that is,

sup
n∈N

‖uλ
k,n‖ < +∞, Lλ(u

λ
k,n) → ck,λ and L ′

λ(u
λ
k,n) → 0 in X ′,

(ii) for every k ∈ N, the mapping λ �→ ck,λ is left continuous.

From (g3) we know that G1(ξ) − G2(ξ) > 0. Then there exists λ0 ∈ (0, 1) such that
λ0G1(ξ) − G2(ξ) > 0. For t ∈ R and λ ∈ [λ0, 1], define

gλ(t) := λg1(t) − g2(t) and Gλ(t) :=
∫ t

0
gλ(s) ds.

Let us introduce a family of even functionals of class C1 as follows:

Lλ(u) :=
2∑

i=1

1

pi
‖∇u‖pi

L pi (RN )
+
∫
RN

G2(u) dx − λ

∫
RN

G1(u) dx =: A(u) − λB(u),

for all u ∈ W and λ ∈ [λ0, 1]. Clearly, A, B ∈ C1(W,R), A and B are even, A(0) = 0 =
B(0), B ≥ 0, and A(u) → +∞ as ‖u‖W → +∞ (due to (3.3)). Moreover,

L(u) = L1(u) ≤ Lλ(u) ≤ Lλ0(u) for all u ∈ W and λ ∈ [λ0, 1]. (6.1)

Next we prove some uniform geometric properties for the functionals Lλ.

Lemma 6.1 The functional Lλ fulfills the following properties:

(i) There exist r0 > 0 and ρ0 > 0 (independent of λ ∈ [λ0, 1]) such that

Lλ(u) ≥ L(u) > 0 for all u ∈ W such that 0 < ‖u‖W ≤ r0,

Lλ(u) ≥ L(u) ≥ ρ0 for all u ∈ W such that ‖u‖W = r0.
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(ii) For every k ∈ N there exists an odd continuous map γ0k : Sk−1 → Wr independent of
λ ∈ [λ0, 1] such that

L(γ0k(l)) ≤ Lλ(γ0k(l)) ≤ Lλ0(γ0k(l)) < 0 for all l ∈ S
k−1.

Proof The proof of (i) follows from (6.1), arguing as in the proof of Lemma 4.1, and using
Remark 4.1. For what concerns (i i), recalling that Gλ0(ξ) > 0, we can argue as in the
proof of [13, Theorem 10] to see that for every k ∈ N there exists an odd continuous map
πk : Sk−1 → Wr such that

0 /∈ πk(S
k−1) and

∫
RN

Gλ0(πk(l)) dx ≥ 1 for all l ∈ S
k−1.

Define γ0k(l)(x) := πk(l)(x/t) : Sk−1 → Wr , with t ≥ 1 undetermined. Then,

Lλ0(γ0k(l)) =
2∑

i=1

t N−pi

pi
‖∇πk(l)‖pi

L pi (RN )
− t N

∫
RN

Gλ0(πk(l)) dx

≤
2∑

i=1

t N−pi

pi
‖∇πk(l)‖pi

L pi (RN )
− t N → −∞ as t → +∞.

Choosing t = tk ≥ 1 sufficiently large, we complete the proof of the lemma. �
Set

Pλ(u) :=
2∑

i=1

(
N − pi

pi

)
‖∇u‖pi

L pi (RN )
− N

∫
RN

Gλ(u) dx .

Note that if λ = 1 then P1 = P . Proceeding as in the proof of Lemma 4.4, we obtain the
result below.

Lemma 6.2 Assume that λ ∈ [λ0, 1] is fixed and that w ∈ W\{0} satisfies Pλ(w) = 0. Then
there exists γ ∈ �λ such that w ∈ γ ([0, 1]) and maxt≥0 Lλ(γ (t)) = Lλ(w).

Lemma 6.3 Assume that λ ∈ [λ0, 1] is fixed and that (un) ⊂ W is a bounded Palais-Smale
sequence for Lλ at the level cMP,λ. Then, up to a subsequence, there exists (yn) ⊂ R

N such
that the translated sequence (un(· + yn)) is a convergent Palais-Smale sequence for Lλ at
the level cMP,λ.

Proof The proof is similar to the second proof of Theorem 1.1. However, we give the details
for completeness. We aim to determine a suitable sequence (yn) ⊂ R

N such that (un(·+ yn))
is strongly convergent in W . Note that if w ∈ W \ {0} is any critical point of Lλ then
Lλ(w) ≥ cMP,λ > 0. In fact, Pλ(w) = 0, and thanks to Lemma 6.2 we can select γ ∈ �λ

such that maxt∈[0,1] Lλ(γ (t)) = Lλ(w), whence, Lλ(w) ≥ cMP,λ, as required.
Now we apply Theorem 5.1 with L = Lλ and β = cMP,λ > 0. Thus, up to a subsequence

of (un), we can find l ∈ N, (y1n ), . . . , (y
l
n) ⊂ R

N and w1, . . . , wl ∈ W such that properties
(i)–(iv) in Theorem 5.1 hold. If l ≥ 3, or l = 2 but w1 �= 0, then it follows from (i i) and
(i i i) of Theorem 5.1 that

cMP,λ ≥
l∑

k=1

Lλ(w
k) ≥ 2cMP,λ > cMP,λ,

that is a contradiction. Therefore, l = 1, or l = 2 with w1 = 0. Using items (i) and (iv) of
Theorem 5.1, we reach the desired conclusion. �
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In order to prove Theorems 1.1 and 1.2, we establish the next useful results.

Lemma 6.4 Assume that (λn) ⊂ [λ0, 1] and (un) ⊂ W . If

sup
n∈N

Lλ(un) ≤ C and inf
n∈N Pλ(un) ≥ −C,

for some C > 0, then (un) is bounded in W .

Proof Since

1

N

2∑
i=1

‖∇un‖pi
L pi (RN )

= Lλn (un) − 1

N
Pλn (un) ≤ 2C for all n ∈ N,

we infer that (‖∇un‖pi
L pi (RN )

) is bounded in R for all i = 1, 2. At this point, we can argue as
in the proof of Lemma 4.2 to obtain the assertion. �

Lemma 6.5 Assume that (λn) ⊂ [λ0, 1), X is any subspace of W , and un ∈ X is a critical
point of the restricted functional Lλ|X for every n ∈ N. If λn → 1 as n → +∞, (un) is
bounded in W and Lλn (un) → c as n → +∞ for some c ∈ R, then (un) is a bounded
Palais-Smale sequence of Lλ|X at the level c.

Proof Due to the boundedness of (un) in W , we deduce from (3.1)–(3.2) that
(
∫
RN G1(un) dx) is bounded in R and (g1(un)) is bounded in X ′. Thanks to λn → 1 and

Jλn (un) → c as n → +∞, we see

L(un) = Lλn (un) + (λn − 1)
∫
RN

G1(un) dx = Jλn (un) + on(1) = c + on(1),

(L|X )′(un) = (Lλn |X )′(un) + (λn − 1)g1(un) = (λn − 1)g1(un) = on(1) in X ′.

Consequently, (un) is a bounded Palais-Smale sequence of Lλ|X at the level c. �

Third proof of Theorem 1.1 Let X = W . In view of Theorem 6.1, there exists a sequence
(λn) ⊂ [λ0, 1) such that
(i) λn → 1 as n → +∞,
(ii) cMP,λn → cMP,1 = cMP as n → +∞,
(iii) Lλn has a bounded Palais-Smale sequence at the level cMP,λn for every n ∈ N.

Utilizing Lemma 6.3, we obtain a critical point un of Lλn with Lλn (un) = cMP,λn . Hence
Pλn (un) = 0 for all n ∈ N, and because supn∈N Lλn (un) = supn∈N cMP,λn ≤ cMP,λ0 , we
can employ Lemma 6.4 to infer that (un) is bounded inW . From Lemma 6.5, we derive that
(un) is a bounded Palais-Smale sequence of L at the mountain pass level cMP. Exploiting
Lemma 6.5 once again, we find a nontrivial critical point u ∈ W of (1.1) with L(u) = cMP.
Arguing as in the first proof of Theorem 1.1, we arrive at L(u) = cMP = cLE = cPO. �

From now on, we focus on the proof of Theorem 1.2. Let us begin by proving the following
compactness result.

Lemma 6.6 Every bounded Palais-Smale sequence (un) of the restricted functional L|Wr

has a strongly convergent subsequence in Wr .
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Proof Since (un) is bounded in Wr , according to Theorem 2.3 we may assume that, up to
a subsequence, un⇀u in Wr , un → u in Lq(RN ) for all q ∈ (p2, p∗

2), and un → u a.e.
in R

N . Reasoning as in the proof of Lemma 4.3, we discover that, up to a subsequence, as
n → +∞,

∇un → ∇u a.e. in R
N ,

|∇un |pi−2∇un⇀|∇u|pi−2∇u in (L
pi

pi−1 (RN ))N for all i = 1, 2.

From the proof of the vanishing case in Step 2 of Theorem 5.1, we conclud.e that v1n =
un − u → 0 in Wr . �

For each λ ∈ [λ0, 1], by Lemma 6.6, we know that Lλ|Wr satisfies the bounded Palais-
Smale condition, that is, any bounded Palais-Smale sequence for Lλ|Wr converges, up to a
subsequence.

For every k ∈ N, we consider the family of maps

�k := {γ ∈ C(Dk,Wr) : γ is odd and γ = γ0k on S
k−1},

where γ0k is defined in Lemma 6.1-(i i). Note that �k is nonempty because it contains the
mapping

γk(σ ) :=
{

|σ | γ0k
(

σ
|σ |
)

for σ ∈ Dk \ {0},
0 for σ = 0.

From Lemma 6.1-(i), we see that, for all γ ∈ �k ,

γ (Dk) ∩ {u ∈ Wr : ‖u‖W = r0} �= ∅.

Then the symmetric mountain pass value ck,λ of Lλ|Wr given by

ck,λ := inf
γ∈�k

max
σ∈Dk

Lλ(γ (σ ))

is well-defined and ck,λ ≥ ck,1 ≥ ρ0 > 0. Our aim is to prove that ck,1 → +∞ as k → +∞.
We will use a comparison argument as in [25, Sections 2 and 3]. Fix p0 ∈ (p2 − 1, p∗

2 − 1)
and define the continuous functions f , f̄ : R → R by setting

f (t) :=
{

(g(t) + ν(t p1−1 + t p2−1))+ for t ≥ 0,
− f (−t) for t < 0,

f̄ (t) :=
⎧⎨
⎩
t p0 supτ∈(0,t]

f (τ )
τ p0 for t > 0,

0 for t = 0,
− f̄ (−t) for t < 0.

Let F(t) := ∫ t0 f (τ ) dτ and F̄(t) := ∫ t0 f̄ (τ ) dτ . Inspired by [25, Lemma 2.1 and Corollary
2.2], we establish the next result.

Lemma 6.7 The following properties hold:

(i) There exists δ0 > 0 such that f̄ (t) = 0 = F̄(t) for all t ∈ [−δ0, δ0].
(ii) We have F̄(t) ≥ G(t) + ν

( |t |p1
p1

+ |t |p2
p2

)
for all t ∈ R.

(iii) It holds 0 ≤ (p0 + 1)F̄(t) ≤ f̄ (t)t for all t ∈ R.
(iv) The map t �→ f̄ (t) − ν(|t |p1−1t + |t |p2−1t) satisfies (g1), (g2)′ and (g3).
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(v) f̄ (un) → f̄ (u) in L pN (RN ) for every sequence (un) ⊂ Wr such that un⇀u in Wr and
un → u a.e. in R

N , where

pN :=
{

p∗
2

p∗
2−1 if p2 < N ,

N
N−1 if p2 = N .

Proof The item (i) is evident from the definition of ν. The item (i i) is a consequence of

f̄ (t) ≥ f (t) ≥ g(t) + ν(t p1−1 + t p2−1) for all t ≥ 0.

Concerning (i i i), we first observe that the map t ∈ (0,+∞) �→ f̄ (t)/t p0 is nondecreasing.
Thus, for all t > 0,

t f̄ (t) − (p0 + 1)F̄(t) =
∫ t

0
[ f̄ (t) − (p0 + 1) f̄ (τ )] dτ

=
∫ t

0

[
t p0

f̄ (t)

t p0
− (p0 + 1)τ p0 f̄ (τ )

τ p0

]
dτ

≥
∫ t

0

[
t p0

f̄ (t)

t p0
− (p0 + 1)τ p0 f̄ (t)

t p0

]
dτ = 0.

In order to check (iv), we clearly have that t �→ f̄ (t) − ν(|t |p1−1t + |t |p2−1t) fulfills
(g1) and (g3). To verify (g2)′, it is enough to demonstrate that f̄ satisfies (g2′). Suppose
1 < p1 < p2 < N . Note that, for all t > 0,

f̄ (t)

t p
∗
2−1

= t−(p∗
2−p0) sup

τ∈(0,t]
f (τ )

τ p0
= sup

τ∈(0,t]
f (τ )

τ p∗
2−1

τ p∗
2−1

t p
∗
2−p0

.

Since f obeys (g2′), for all ε > 0 there exists τε > 0 such that∣∣∣∣ f (τ )

τ p∗
2−1

∣∣∣∣ ≤ ε for all τ ≥ τε.

Put

Cε := sup
0<τ≤τε

∣∣∣∣ f (τ )

τ p∗
2−1

∣∣∣∣ .
Then we see

f̄ (t)

t p
∗
2−1

≤ max

{
sup

τ∈(0,τε]

∣∣∣∣ f (τ )

τ p∗
2−1

∣∣∣∣ τ
p∗
2−p0

ε

τ p∗
2−p0

, sup
τ∈[τε,t]

∣∣∣∣ f (τ )

τ p∗
2−1

∣∣∣∣
}

≤ max

{
Cε

τ
p∗
2−p0

ε

τ p∗
2−p0

, ε

}
,

from which

lim sup
t→+∞

f̄ (t)

t p
∗
2−1

≤ ε .

Because ε > 0 is arbitrary, we get the desired assertion. When p2 = N , it suffices to show
that

lim
t→+∞

f̄ (t)

t p0eα|t | N
N−1

= 0 for all α > 0. (6.2)
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Considering that

f̄ (t)

t p0eα|t | N
N−1

= 1

eα|t | N
N−1

sup
τ∈(0,t]

f (τ )

τ p0
= sup

τ∈(0,t]
f (τ )

τ p0eα|τ | N
N−1

eα|τ | N
N−1

eα|t | N
N−1

,

and f satisfies

lim
t→+∞

f (t)

t p0eα|t | N
N−1

= 0,

we can argue as in the case p2 < N to achieve (6.2). Finally, we prove (v). Let un⇀u inWr

and un → u a.e. in R
N . Invoking Lemma 2.3, we know that if N ≥ 2, p ∈ [1,+∞) and

v ∈ W 1,p
r (RN ), then

|v(x)| ≤ C(N , p) |x |− N−1
p ‖v‖W 1,p(RN ) for all x ∈ R

N \ {0}.
Hence we can find R = Rδ0 > 0 such that |un(x)|, |u(x)| ≤ δ0 for all |x | ≥ R and n ∈ N.
Therefore, in light of (i), we only need to ascertain that f̄ (un) → f̄ (u) in L pN (BR(0)).
As (un) is bounded in W 1,p2(RN ), we may assume that there exists M > 0 such that
‖un‖W 1,p2 (RN ) ≤ M for all n ∈ N. Set

R(t) :=
{

|t |p∗
2−1 if p2 < N ,

	N (α|t | N
N−1 ) if p2 = N ,

where α > 0 is such that α pN M
N

N−1 < αN . From (i i), we deduce that for every ε > 0 there
exists tε > δ0 such that | f̄ (t)| ≤ εR(t) for all |t | ≥ tε . Define

f̂ (t) :=
⎧⎨
⎩

f̄ (t) for |t | ≤ tε,
f̄ (tε) for t > tε,
f̄ (−tε) for t < −tε.

Let us observe that | f̂ (t) − f̄ (t)| ≤ 2 εR(t) for all t ∈ R. On the other hand, since f̂ is
bounded and continuous in R, and un → u a.e. in R

N , we know that f̂ (un) → f̂ (u) in
L pN (BR(0)). Now we note that

‖ f̄ (un) − f̄ (u)‖L pN (BR (0))

≤ ‖ f̄ (un) − f̂ (un)‖L pN (BR (0)) + ‖ f̂ (un) − f̂ (u)‖L pN (BR (0)) + ‖ f̂ (u) − f̄ (u)‖L pN (BR (0))

≤ 2 ε ‖R(un)‖L pN (RN )
+ ‖ f̂ (un) − f̂ (u)‖L pN (BR (0)) + 2 ε ‖R(u)‖L pN (RN )

≤ C ε +‖ f̂ (un) − f̂ (u)‖L pN (BR (0)),

where we have used the fact that the boundedness of (un) in W 1,p2(RN ), our choice of α,
(2.4), and (2.3) yield

sup
n∈N

‖R(un)‖L pN (RN )
= sup

n∈N
‖un‖p

∗
2−1

L p∗2 (RN )
≤ C ′ if p2 < N ,

sup
n∈N

‖R(un)‖L pN (RN ) ≤ sup
n∈N

⎛
⎝∫

RN
	N

⎛
⎝α pN M

N
N−1

( |un |
M

) N
N−1

⎞
⎠ dx

⎞
⎠

1
pN

≤ C ′′ if p2 = N .
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Thus,

lim sup
n→+∞

‖ f̄ (un) − f̄ (u)‖L pN (BR(0)) ≤ C ε,

and because ε > 0 is arbitrary we get the assertion. �
Lemma 6.8 The sequence of symmetric mountain pass values (ck,1) is such that ck,1 → +∞
as k → +∞.

Proof Let us introduce the comparison functional J : Wr → R by setting

J (u) :=
2∑

i=1

1

pi

(
‖∇u‖pi

L pi (RN )
+ ν‖u‖pi

L pi (RN )

)
−
∫
RN

F̄(u) dx .

It is not difficult to check that J has a symmetric mountain pass geometry and that it satisfies
the Palais-Smale compactness condition. In fact, Lemma 6.7-(iv) ensures that 0 is a strict
local minimum point of J . The odd continuous mapping γ0k given by Lemma 6.1 is still
valid here since Lemma 6.7-(i i) guarantees that

L(u) ≥ J (u) for all u ∈ Wr. (6.3)

Let us define the symmetric mountain pass values of J as follows:

dk := inf
γ∈�k

max
σ∈Dk

J (γ (σ )) for all k ∈ N.

Using Lemma 6.7-(i i i) and p1 < p2 < p0 + 1, we can verify that every Palais-Smale
sequence of J is bounded in Wr . Indeed, if (un) ⊂ Wr is any Palais-Smale sequence for J ,
that is, (J (un)) is bounded in R and J ′(un) → 0 in W ′

r , then we see that, for all n ∈ N,

C(1 + ‖un‖W ) ≥ J (un) − 1

p0 + 1
〈J ′(un), un〉

=
2∑

i=1

(
1

pi
− 1

p0 + 1

)[
‖∇un‖pi

L pi (RN )
+ ν‖un‖pi

L pi (RN )

]

−
∫
RN

[
F̄(un) − 1

p0 + 1
f̄ (un)un

]
dx

≥
(

1

p2
− 1

p0 + 1

) 2∑
i=1

[
‖∇un‖pi

L pi (RN )
+ ν‖un‖pi

L pi (RN )

]
,

which implies that (un) is bounded inWr . Up to a subsequence, we may assume that un⇀u
in Wr , un → u in Lq(RN ) for all q ∈ (p2, p∗

2), and un → u a.e. in R
N . Arguing as in the

proof of Lemma 4.3, we find that, up to a subsequence,

∇un → ∇u a.e. in R
N ,

|∇un |pi−2∇un⇀|∇u|pi−2∇u in (L
pi

pi−1 (RN ))N for all i = 1, 2.

To confirm that J satisfies the Palais-Smale compactness condition, we demonstrate that (un)
has a strongly convergent subsequence in Wr . Utilizing J ′(un) → 0 in W ′

r and the above
convergences, we deduce that 〈J ′(u), ϕ〉 = 0 for all ϕ ∈ Wr . In particular, 〈J ′(u), u〉 = 0,
that is,

2∑
i=1

(
‖∇u‖pi

L pi (RN )
+ ν‖u‖pi

L pi (RN )

)
=
∫
RN

f̄ (u)u dx .
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This fact, combined with

2∑
i=1

(
‖∇un‖pi

L pi (RN )
+ ν‖un‖pi

L pi (RN )

)
=
∫
RN

f̄ (un)un dx + on(1),

theBrezis-Lieb lemma [14, Theorem1], andLemma6.7-(v), shows that, up to a subsequence,
un → u inWr . Reasoning as in the proof of [25, Lemma 3.2], we can see that dk is a critical
value of J for all k ∈ N and that dk → +∞ as k → +∞. In view of (6.3), we obtain that
ck,1 ≥ dk for all k ∈ N. Consequently, ck,1 → +∞ as k → +∞. �
Now we are ready to provide the proof of the second main result of this paper.

Proof of Theorem 1.2 Let X = Wr . By Theorem 6.2, there exists a sequence (λn) ⊂ [λ0, 1)
such that

(i) λn → 1 as n → +∞,
(ii) ck,λn → ck,1 as n → +∞ for every k ∈ N,
(iii) Lλn |Wr has a bounded Palais-Smale sequence at the level ck,λn for every k, n ∈ N.

Then, for every k, n ∈ N, the restricted functional Lλn |Wr has a critical point uk,n with
Lλn (uk,n) = ck,λn . The Palais principle of symmetric criticality [40] and the Pohozaev
identity yield Pλn (uk,n) = 0 for all k, n ∈ N. Since supn∈N Lλn (uk,n) = supn∈N ck,λn ≤
ck,λ0 , we can apply Lemma 6.4 to infer that (un) is bounded in Wr . From Lemma 6.5, we
derive that (uk,n) is a bounded Palais-Smale sequence of L|Wr at the level ck,1. This implies
that the restricted functional L|Wr has a critical point vk ∈ Wr at each level ck,1 (k ∈ N).
By Lemma 6.8, we know that L(vk) = ck,1 → +∞ as k → +∞. By the Palais principle of
symmetric criticality [40], we have that (vk) is indeed a sequence of nontrivial solutions to
(1.1). �
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