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Abstract
In this paper, we deal with the following class of (p;, p2)-Laplacian problems:

—Apu—Apu=gu)inRY,
ue WHP@®N) nwhr RN,

where N > 2,1 < p; < po < N, A, isthe p;-Laplacian operator, fori = 1,2,andg : R —
Ris a Berestycki-Lions type nonlinearity. Using appropriate variational arguments, we obtain
the existence of a ground state solution. In particular, we provide three different approaches
to deduce this result. Finally, we prove the existence of infinitely many radially symmetric
solutions. Our results improve and complement those that have appeared in the literature
for this class of problems. Furthermore, the arguments performed throughout the paper are
rather flexible and can be also applied to study other p-Laplacian and (p1, p»)-Laplacian
equations with general nonlinearities.

Mathematics Subject Classification 35A15 - 35J92 - 35J60

1 Introduction

In this paper, we consider the following class of (p1, pz)-Laplacian problems:

{—Aplu—Apzu:g(u)inRN, (.

u e Whrn RNy n wlr2RN),

where N > 2,1 < p; < p2 <N, Apu = div(qulpi_ZVu) is the p;-Laplacian operator,

fori = 1,2, and g : R — R is an odd continuous function satisfying the following
assumptions:
(g1) —oo < liminf,_, g+ [ﬁl(t*)l < limsup,_, o+ tﬂ—& < Owhen p; < N,and lim,_, o+ tﬁl(t,)l €

(—00,0) when pp = N.
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(g2) —oo < limsup,_, | % < 0 when po < N, and limsup,_, , o, L)N < 0 for
172 exp(alm>
all« > 0 when p = N.
(g3) There exists & > 0 such that G(§) > 0, where G(¢) := fot g(r)dr.

As pointed out in [16], problem (1.1) comes from the research of stationary solutions for
the general reaction-diffusion system

u; = div(D(u)Vu) + c(x, u) where D(u) := |Vu|P' "2 + |Vu|P> 72,

which finds applications in physics and related sciences such as biophysics, plasma physics,
and chemical reaction design. In such situations, u# denotes a concentration, div(D (u)Vu)
represents the diffusion with diffusion coefficient D(u), whereas the reaction term c(x, u)
relates to source and loss processes. Usually, in chemical and biological applications, the
reaction term c(x, ) has a polynomial form with respect to u. Another important example
where Eq.(1.1) emerges is the study of soliton-like solutions of the following nonlinear
Schrodinger equation

Wi = =AY + V)Y — Ap ¥ + Wix, ¥)

proposed by Derrick as a model for elementary particles. We also observe that the (p1, p2)-
Laplacian operator A, + A, is a particular case of the well-known double-phase operator
div(|Vu|P1=>Vu+a(x)|Vu|P2~2Vu), witha > 0 and bounded, whose corresponding energy
functional was analyzed in the context of problems of homogenization and elasticity [48,
49], and of the calculus of variations [34, 38]. For some interesting existence and multiplicity
results for (p1, pa2)-Laplacian problems in R and in bounded domains, we refer to [5, 7, 8,
10, 21-23, 26, 31, 41, 42] and the references therein.
When p; = pa = 2, problem (1.1) boils down to the following nonlinear elliptic problem:
- i N
el
In the seminal paper [12, Theorem 1], Berestycki and Lions used a constrained minimiza-
tion argument to prove that, under assumptions (g1)—(g3) with py = pp =2 and N > 3,
there exists a ground state solution (or least energy solution) which is positive and radially
symmetric. In [13, Theorem 6] the authors obtained infinitely many radially symmetric solu-
tions. In [11, Theorem 1] Berestycki, Gallouét and Kavian extended the result in [12] for
the case N = 2. Subsequently, Jeanjean and Tanaka [29, Theorem 0.2] provided a mountain
pass characterization of ground state solutions to (1.2). In [25, Theorem 1.3] Hirata, Ikoma
and Tanaka developed mountain pass and symmetric mountain pass approaches to general-
ize the results in [11-13]. The authors in [25] employed the auxiliary functional introduced
in [27, Section 2] and constructed a Pohozaev-Palais-Smale sequence in the radial subspace
Hr1 (RN), that is, a Palais-Smale sequence in Hrl (RN) satisfying asymptotically the Pohozaev
identity

N-2 5
—5 ) IVl = N [ G,

which has the advantage to be bounded in H!(R") and that, up to a subsequence, strongly
converges to a weak solution to (1.2) (thanks to the compactness of the embedding Hr] @®RY) c
L7(RV) for all ¢ € (2,2*%)). Recently, Mederski [35, Theorem 1.3] gave a new proof of the
existence of a ground state solution to (1.2) by using a variational approach based on a critical
point theory built on the Pohozaev manifold, and combining a concentration-compactness
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approach with profile decompositions. In [35] the author also examined the existence and
multiplicity of nonradial solutions to (1.2). Motivated by [35], Jeanjean and Lu [30] proposed
an alternative and more elementary approach to recover the results in [35]. In particular, in
[30, Theorems 1.1 and 1.2] the authors reestablished the results in [12, 13] by means of the
monotonicity trick [28, 44] and a decomposition result for bounded Palais-Smale sequences
(seealso [35, Theorem 1.4] and [46, Chapter 8]). This decomposition result is useful to recover
compactness, up to subsequences and translations, of bounded Palais-Smale sequences in
H'(RY) for C!-functionals with general subcritical nonlinearities.
When p; = p2» = p € (1, 400), problem (1.1) becomes the following quasilinear elliptic
problem:
—Apu = g(u)inRY,
|7 ew), 0

In [17, Theorem 1.1] Citti investigated the existence of a positive radially symmetric ground
state solution to (1.3) with p € (1, N) in the spirit of [12]; see also [20, Theorem 1]. Later, do
O and Medeiros [19, Theorems 1.4, 1.6 and 1.8] generalized the results in [17, 29] considering
even the case p = N. Finally, Byeon et al. [15, Section 3] showed that every ground state
solution to (1.3) has a constant sign and, if it tends to zero at infinity, then it is, up to a
translation, radially symmetric and monotone with respect to the radial variable.

For what concerns the (p1, py)-Laplacian problem (1.1) under general assumptions (g1)—
(g3), only two results appeared in the literature and both supposed 1 < p; < p» < N and
N > 3. More precisely, Pomponio and Watanabe [42, Theorem 1.2] obtained the existence of
a positive radially symmetric ground state solution to (1.1) applying the monotonicity trick,
and in [7, Theorem 3.1] the author proved the existence of a positive ground state solution
to (1.1) utilizing Pohozaev-Palais-Smale sequences.

Motivated by the above-mentioned papers for the Laplacian and the p-Laplacian case
with p € (1, N1\ {2}, the purpose of this work is to improve and complement the results in
[7, 42]. More precisely, the main results of this paper can be stated as follows.

Theorem 1.1 Let N > 2 and 1 < p; < p» < N. Assume that (g1)—(g3) hold. Then (1.1)
has a ground state solution.

Theorem 1.2 Let N > 2 and 1 < p; < p» < N. Assume that (g1)—(g3) hold. Then (1.1)
has infinitely many radially symmetric solutions.

The proofs of Theorems 1.1 and 1.2 rely on suitable variational arguments. First we show
that every weak solution of (1.1) belongs to L®RM N Cllo'f (RM), for some o € (0, 1),
and fulfills a Pohozaev type identity; see Theorem 3.1. We also get an exponential decay
estimate at infinity; see Theorem 3.2. As in [7, Section 3], we introduce the energy functional

associated with (1.1), namely,

2
L(u) = ; %nvnniipi @)~ fRN Gu)dx forallu e W:=whPI@®Y)ynwhrz@®V),
and we demonstrate that L has a mountain pass geometry [6]; see Lemma 4.1. Thanks to
an auxiliary functional and the general minimax principle [46, Theorem 2.8], we produce
a Pohozaev-Palais-Smale sequence (u#,) C W for L at the mountain pass level cyp; see
Proposition 4.1. In addition, we are able to prove that (u,) is bounded in W; see Lemma 4.2.
After that, we establish an almost everywhere convergence of the gradients of Pohozaev-
Palais-Smale sequences; see Lemma 4.3. This result will be also convenient to apply the
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Brezis-Lieb lemma [14, Theorem 1] to the gradients. Then we develop a concentration-
compactness type argument to show that, up to translations and extraction of a subsequence,
(un) strongly converges in W to a weak solution u to (1.1); see Proposition 4.2. To verify
that u is indeed a ground state solution to (1.1), we exploit the fact that every weak solution
to (1.1) satisfies a Pohozaev type identity and we construct an optimal path in the spirit of
[29, Lemma 2.1] (note that the construction when pp = N is much more elaborate with
respect to p» < N); see Proposition 4.4. Hence we conclude that the mountain pass level
cmp coincides with the ground state energy level ¢ g. Moreover, we derive the compactness,
modulo translations, of the set of ground state solutions to (1.1); see Proposition 4.3. As in
[30], we also establish a new decomposition result for bounded Palais-Smale sequences in
the (p1, p2)-Laplacian framework; see Theorem 5.1. We recall that decomposition results
for Palais-Smale sequences associated with quasilinear problems in bounded and unbounded
domains can be found in [4, Theorem 2], [9, Proposition 1], [36, Theorem 1.1], and [37,
Theorem 1.2]. However, in such papers, no general nonlinearities were considered. Our
decomposition result allows us to exhibit a second proof of Theorem 1.1, whereas a third
proof of Theorem 1.1 will be obtained by combining the monotonicity trick and the aforesaid
decomposition result. Finally, by virtue of a symmetric mountain pass approach, we give the
proof of Theorem 1.2. We stress that our proofs are much more difficult and intriguing with
respect to the Laplacian and p-Laplacian cases. In fact, due to the presence of the (p1, p2)-
Laplacian operator, which is nonlinear and not homogeneous in scaling, our calculations are
much more complicated and an accurate analysis will be carried out to handle the combination
of two different p-Laplacians. Furthermore, we are able to treat in a unified way the cases
p2 < N and pp = N. We emphasize that our proofs are rather flexible and also work,
with slight modifications, for the p-Laplacian problem (1.3). In this manner, we deduce
alternative proofs of the results in [17, 19] and extend [30, Theorems 1.1 and 1.2] to the
p-Laplacian setting (notice that in [30] the authors studied (1.2) for N > 3 and without
considering general subcritical exponential nonlinearities). Moreover, the multiplicity result
in Theorem 1.2 turns out to be completely new even in the p-Laplacian framework. We
believe that the approaches developed along this paper can be applied to investigate other
various p-Laplacian and (p1, p»)-Laplacian problems with general nonlinearities.

The paper is organized as follows. In Sect.2, we collect some notations and definitions,
and we establish some useful lemmas. In Sect.3, we explore the regularity of solutions to
(1.1), we prove a Pohozaev type identity and an exponential decay estimate. In Sect.4, we
present a first proof of Theorem 1.1. In Sect.5, we provide a second proof of Theorem 1.1.
The last section is devoted to the third proof of Theorem 1.1 and the proof of Theorem 1.2.

2 Notations and some preliminaries

For any real valued function u : RN — R, we put u := max{u, 0} and u~ := max{—u, 0}.
Let p € [1, +00). The Sobolev space W7 (RN) given by

whr@Y) = fu e LP@®Y): Vu e (LP®Y))"
is equipped with the norm

1
oy = (V05 v,y + 102 )
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or sometimes with the equivalent norm [|Vull,pgny + llullLp@ny. It is well-known that

wLPRN)isa separable reflexive Banach space for all p € (1, +00) (see [2, Theorems 3.3
and 3.6]), and that C2°(R") is dense in W!»(R") (see [2, Corollary 3.23]). Set

p*. TplfN>p,
400 if N =p.

Theorem 2.1 [2, Theorems 4.12,4.31 and 6.3] Let p € [1,4+0o0) and N > 2. If p € [1, N),
then the following Sobolev inequality holds:

el vy < SN, PIVull oy forallu € DVP®RY), @.1)

where Sy(N, p) > 0 denotes the best Sobolev constant and DVP (RN) is the completion of
cx (RN) with respect to ||V - I r(r¥), OF equivalently,

DLPRNY = {u e LV"®RN):Vu e (L”(RN))N}-

Furthermore, WP (RN is continuously embedded in L4(R") for all g € [p, p*] and com-

pactly embedded in L;’ac @R forall g € [1, p*). If p = N, then WHP (RN) is continuously

embedded in LY(RN) for all g € [p, p*) and compactly embedded in L;’OC(RN) for all
N

g € [1, p*). Finally, if p > N, then WP (RV) is continuously embedded in CO’I_F(RN)

and compactly embedded in Cl(z;f (RM) foralla € (0,1 — %).

When p = N, we have the following Trudinger-Moser inequality.

1
Theorem 2.2 [1, Theorem 0.1] Let N > 2 and ay = Nwy, |, where wn_1 is the surface

area of the unit sphere in RN . Then for every o € (0, ay) there exists Cq > 0 such that

wwol \" Il e, LN N
/ Oy || ——F—— dx < Cy——>2— forallu e W-N(RY)\ {0},
RN ”VM”LN(RN) ||VM||

LN(RN)
(2.2)
where
N-2 £k +00 £k
PN () = exp(t) = ) 4 = > o
k=0 k=N-—1

From Theorem 2.2 we easily derive that, for all fixed @ € (0, @) and K > 0, it holds

N N
o)\ ¥ el e
fRN oy (a( < ) ) dx = Co—gp = forallue WIN@EY) 2 IVul v e, < K.

2.3)

In fact, if u € WIN(RN) \ {0} is such that | Vi v gyy < K, then

cro o3 or 5 ()]
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“+00

. Nj
al ||
= 2 : N

N
J=N-1 J' gwv1—N

. Nj
oo i |u|r;/1
4 J! 1N
=N-1
J ||VM||LN(RN)

|14| N—1
= IVl Yy gy @ | @ | g :
LN(RN) IVull v gy

and using (2.2) we obtain that (2.3) is true.

Remark 2.1 The function @y possesses the following useful properties (see [47, Lemmas
2.1 and 2.2]):

(ON ()P < dpy(pt) forallt >0andp > 1, 2.4)

1 1 1 1
Oy(s+1) < —Dy(uys) + —Dy(upt) foralls,t>0andpy, up >1: —+—=1. (2.5)
M1 “2 “1 n2

The next inequality will be used later.

Lemma2.1 Lett € [1,4+00), N >2ands € [t, t*). Then there exists C > 0 such that
1-L
lully o, < € ( sup. ||u||‘zs(31(xo))> el oy forall u € W @RY).
X0€

Proof The assertion is clear when s = r. Let now s € (¢, t*). From [2, Theorem 4.12], we
learn that, for all fixed xg € RV,

Nl s 81 xoy < Cllullwris,r)y forallu € W (By(xo)), (2.6)

for some C > 0 depending on N, s, and ¢, but independent of xg. Applying the Holder
inequality with exponents ;> and 7, and using (2.6), we obtain

17% s
lullys g < </ |M|de> (/ |u|3dx)
(BrGon Bi(x0) B1(x0)

-
< ( sup ||’4||2-v(31(xg))> ”u”tW“(Bl(xo))'

xoeRN

Covering R" by balls with radius 1 in such a way that each point of R is contained in at
most N + 1 balls, we deduce

-
”u”;‘x(RN) <N+ l)él ( sup ||u||i:(Bl(X0))> ||u||tW1,;(RN)~

onRN

The proof of the lemma is now complete. O

The vanishing Lions lemma below is well-known [33, Lemma I.1].
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Lemma2.2 [33, Lemmal.1] Let p € (1, +00) and s € [p, p*). Let (u,) C WHP(RN) be a
bounded sequence such that

lim sup/ lun|*dx =0,
Br(y)

n=>+00 RN
for some R > 0. Then u, — 0in LY(RY) for all q € (p, p*).
Let us consider the radial Sobolev space
WP RY) = [u e WIP@RY) 1 u(x) = u(lxl)} .
We have the following compact embedding.

Theorem 2.3 [32, Theorem IL.1] Let N > 2 and p € [1, +00). Then WP (RN is compactly
embedded in LYI@RN) for all g € (p, p*).

We recall that the proof of Theorem 2.3 in [32] is based on the next useful result.

Lemma2.3 [32, Lemmall.1]Let N > 2, p € [1, +00) and u € W, P (RN). Then it holds

-1

lu(x)| < C(N, p)lxl ||Vu|| fora.e.x € RN,

||u||Lp(RN) LV(RN)

—1
Moreover, u(x) can be identified with a function u(|x|) such that i € Co‘pT (0, +00)).

Since we aim to deal with (p1, p2)-Laplacian problems, with 1 < p; < p» < N, we
introduce the Sobolev space

w = whrr@®RN)y nwhr2(®rV)
equipped with the norm
lullyy = ||M||W11p1 (RN) + ||”||W1,92(RN)-

When p; = pp = p € (1, N], we identify W with wLr(RN), endowed with the standard
norm. Let us observe that W is a separable reflexive Banach space. By W we denote the
dual space of W. We also define the radial subspace of VW, namely

={ueW:ulx)=u(lx}.

Next we establish two useful lemmas that extend and improve [35, Lemma 3.1 and equation
(3.12)] (see also [30, Lemmas 3.2 and 3.3]). The first one is a variant of Lemma 2.2.

Lemma 2.4 Let (u,) C W be a bounded sequence such that

lim sup / luy|* dx =0, 2.7
Br(y)

n—+00 yeRN

for some R > 0 and s € [p2, p}). Then, as n — 400,

‘/ W (uy,)dx

5/ W (un)ldx — 0,
RN
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for every continuous function ¥ : R — R such that

YO _ Y0

im —— = lim =0 ifl< < <N,
(=0 |11 Jt]>+00 473 fl<p=p
v() . V@) ' .
im —— = lim v~ =0 foralla >0 ifl<py<py=NV l<p=py=N.
[t]=0 [t]P1 |t|>+o0 ool F=T

Proof First we suppose that 1 < p; < p» < N.Fixe > 0 and g € (p2, p3). Then there
exist 0 < §; < M, and ¢, 4 > O such that

(W) <elt|Pt forall |¢| <&,
()| < et forall t] > M,
[W(1)] < ceqlt]? forall 6 < |t] < M,.
Hence,
(W (@) <e(|t|Pt + |t|p§) +cg,q|t|’4 forall t € R. 2.8)

In view of (2.7), it follows from Lemma 2.2 that u,, — 0 in L4 (R"). This fact combined
with (2.8) and the boundedness of (i) in LP1(RV) N L3 (RY) yields

lim S“P/RN W ()l dx < & (nunn;"m an + el ) <Ce.

"
n—4o00 LP2(RN)

Since ¢ > 0 is arbitrary, we obtain the assertion. Now we assume that 1 < p; < p» = N or
1l < py=pr=N.Takee > 0,a > 0,and g € (p2, +00). Then there exists C¢ o,y > 0
such that

W) <e (|t|"1 + oy (mnﬁ)) 4 Congltl? forallf €R. (2.9)

Because (i,) is bounded in W1 (RN), there exists K > 0 such that lunllwrv@myy < K for

all n € N. Choosing « > 0 such that aK ¥ < an, we can see that (2.3) gives

N N fup] 7o /
Dy (a|un|N—1) dx = | oy [axw (22 dx <C' foralln e N.
RN RN K

(2.10)

Exploiting u, — 0in L4 (RY), the boundedness of (u,) in L' (RY), (2.9), and (2.10), we
find

limsup/ | (u,)|dx < C"¢,
RN

n——+00

and so the assertion follows from the arbitrariness of ¢ > 0. O

Remark 2.2 Clearly, the conclusion of Lemma 2.4 still holds if we replace (2.7) by u, — 0
in LY(RY) forall ¢ € (p2, p3).

The second lemma is a Brezis-Lieb type result [14, Theorem 1].

Lemma2.5 Let W : R — Rbea C! function such that W(0) = 0. When 1 < p; < p» < N,
we assume that there exists C > 0 such that

W' (1) < C (|z|1’"1 T |r|P§‘—1) forallt €R, @.11)
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while if 1 < pi < po = N orl < p; = py = N then we assume that for every o > 0 and
g > 1 there exists C > 0 such that

W' (1) < C (|r|1’1*l e oy (mn%)) forallt € R. (2.12)

Let (uy) C W be a bounded sequence such that u, — u a.e. in RN for some u € W. Then
we have

limsupf W (uy,)dx :f \IJ(u)dx—f—hmsupf W(u, —u)dx.
RN RN RN

n——+4oo n—-+o0o

Proof We aim to apply the Vitali convergence theorem to show that
/ [W(u,) — V(u, —u)]dx:/ V(u)dx + o0,(1). (2.13)
RN RV
In fact, once proved (2.13), we deduce

limsup/ W (uy,)dx :/ \IJ(u)dx—f—hmsupf V(u, —u)dx.
RN RN RN

n—-+4oo n—-+o0o

Next we demonstrate (2.13). The mean value theorem ensures that
W(uy) — Wy, —u) =V, —u+6,u)u,
with 8, = 0, (x) € [0, 1]. Assume that 1 < p; < p» < N. From (2.11), we derive
WGty =+ B0yl = € (Itn = 1+ 6,01 ™+l — -+ 6l ~")
< Ci(unl + )~ el + Collun] + luD)P2 " ul.

Thus, utilizing the Holder inequality and the boundedness of (u,) in L?! @®RM) N LP: (RM),
we see that for every Q2 C RY measurable set,

f I (up — u + Oqu)u| dx
Q
=C3 [Hunlle ®Myllzr @) + Hulle. @t ||un|| 2 H IIL,,;(Q) + lu || @ J
=Cy (Ilulle @ + lull} by @t IIMIILPE(Q) + IIMIIZ,;(Q)) foralln € N.
Now, if |2] — 0, then
/Q V' (u, —u + Gu)u|dx — 0 uniformly inn € N.

On the other hand, since u € LP'(RV) N LP (RM), fixed ¢ > 0 we can find R > 0 such
that

P1 )2
Cy <||”||L”1 (BR(0)) + ”u”LI'l (B%(0)) + ”””Lp; (B(0)) “ ”szz (B (0))) <é&

Hence, if Q2 = B (0), then

/ W' (u, —u +6u)uldx <& foralln € N.
Bg(0)
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Therefore, (W (u,) — V(u, — u)) satisfies the assumptions of the Vitali convergence
theorem. Noting that ¥ (0) = 0, we conclude that (2.13) holds.

Next we consider the case 1 < p; < p» = N. Using (2.12) with ¢ > N + 1, the
elementary estimate

N N N
ity =+ 0,ul ¥ < aco (a4 [ul BT
with ¢o := Zﬁ, and the fact that @y is nondecreasing in [0, +00), we have
|\y/(un — U+ Guu)u|
= C (lun =+ 60”4ty =+ 6,1~ @y (@lutn =+ 6,177 ) ) u
N N
< Cs(lunl + )"~ ful + Co(lun| + 1)~ @y (ceeq (Ia|FT + 1 7)) .

Let now © C RY be any measurable set. Exploiting the Holder inequality and the
boundedness of (u,) in LP' (RY), we see

f<|un| + uD)? ul dx < ColunllVh o el @y + 1l )

<Cg <||“||LV1(Q) + ”u”LI’I(Q)) .

Fix t; > 1, 70 > 1 and 73 > N such that Zl | 7 = L. Note that 7; (¢ — 1) > N. Using the
generalized Holder inequality, (2.4), and (2.5) w1th U1 = u2 = 2, we obtain

N N
/(|un| + LT D (e (jual T + 4l ¥ ) ) ] dx
Q

1

N N 2
< w16 l)(RN)</ <1>N<ar2co<|un|w—1+|u|~—1)>dx> el o

1 N N B
=< lunl + |M|||L,1(q @M <f [Eq)N(ZOthCqunlN*') + 5 @n Qarmacolul VT )} dx)

llll 73 () -

Since (u,) is bounded in W1 (RY), there exists K > 0 such that lunllwrngyy < K for

all n € N. Select @ > 0 such that 20[T2C(]K% < ay. Then, invoking (2.3), we get

/ @y (20ac0lun| 1) dx
]RN

L
:f <2cxr2c0KN T (lb;(”) ) dx < Cy foralln € N.
]RN

In a similar manner, choosing & > 0 sufficiently small, we infer
N
/ DN atacolul¥-T)dx < Cyo.
RN

Therefore, for o > 0 small enough, we arrive at

1 1
/ [ECDN <2ar2c0|un|%) + 5cb,v(zonzco|u|%)] dx < Cy; foralln e N.
]RN
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Observing that (u,) is bounded in L™ @-D(RN), we deduce
1 N N
(lta] + 1~ @y (cco (Ial ¥7 + a7 ) ) ful dx < Cizllullzn@y foralln e N,
Q
and so, for every Q C RN measurable set,
/ W'y — u + Ol dx < Cra(llullLen gy + lull?h, @ T llullLs@) foralln € N.
Q
Arguing as in the case p» < N, it follows from the above estimate and u € LP'(RV) N
LB (RN) that (¥ (u,) — W(u, — u)) satisfies the assumptions of the Vitali convergence
theorem. Because W (0) = 0, we obtain that (2.13) is still valid. ]

Finally, we prove a suitable compactness result in the spirit of the celebrated compactness
lemma due to Strauss (see [12, Theorem A.I]).

Lemma 2.6 Let (u,) C W be a bounded sequence such that u,, — u a.e. in RN andu, — u
in L1RN) for all g € (pa, p3)- Let W : R — R be a continuous function such that

V() X
im =0 for somery € [p1, p5), (2.14)
[t]—0 |z
V() . . V() .
im - =0 ifpp <N, lim ~— =0 foralla >0 ifpp=N. (2.15)
[t]—>+o0 |£]P2 |t|—+o00 ealt| V=T

Then,

lim W (un) — W) @wyy =0.
n—-+4o0o

Proof Since (u,) is bounded in W, there exists M > 0 such that ||u,|yy < M foralln € N.
Pick go € (p2, p3). Define Q(t) := [t|"" 4 R(t), where

|t|P2 if p» < N,
R(t) .= N
Oy (a|t[¥-T) if pp =N,

with « > 0 such that a M N < ay. From (2.14) and (2.15), we derive that for every fixed
& > 0, there exists C, > 0 (here C, depends on ¢ and go when py < N, while it depends on
&, qo0, and o when py = N) such that

V(@) <eQ(t)+ Celt|? forallt € R.

Using the boundedness of (u,) in W, Theorem 2.1, and (2.3), we see
/ W (uy,)|dx < 8/ O(uy)dx + CS/ luy|?®dx <eCy+C,Cy foralln € N.
RN RN RN
Thus, by the continuity of ¥ and Fatou’s lemma, we have
/ |W(u)|dx <lim inf/ W (up)|dx <eCi+ C:Co,
RN n—>+00 JpN

thatis, W(u) € L'(RY). Let us now consider

Sen(x) i= (W, (x)) — V(ux))| —e Quy, (x))T forae. x e RY and for all n € N.
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Clearly,
0 < Sen(x) < Celuy(x)|%° + |W(u(x))| forae.x € R andforalln e N.

Because u, — u in L9 (RY), there exists hg € L% (RY) such that, up to a subsequence,
[, (X)| < ho(x) fora.e. x € RN and for all n € N. Hence, Sen(x) < Cghgo(x) + ¥ (u(x))|
for a.e. x € RY and for all n € N, with Cghgo + |W(u)| € L'(RN). Moreover, exploiting
the continuity of ¥ and Q, we know that S; , — O a.e.in RN as n — +oo. Then, applying
the dominated convergence theorem, we deduce

lim Sendx =0.
n—+00 RN

Consequently,

lim sup/ [W(u,) — V)| dx <lim sup/ Se.ndx + elim sup/ O(uy)dx <eCy.

n——+oo JRN n—+oo JRN n—+oo JRN

Since ¢ > 0 is arbitrary, we obtain the assertion. O

Remark 2.3 In view of Lemma 2.2, the conclusion of Lemma 2.6 is still valid with u = 0 if
we replace u,, — 0in L4 (RM) for all q € (p2, p3) by 2.7).

3 Regularity and Pohozaev identity for solutions to (1.1)

As in [12], we modify the nonlinearity g by considering a new function ¢ : R — R defined
as follows:

(i) If g(t) > Oforallr > &, then we put g(t) := g(1).
(ii) If there exists &y > & such that g(§y) = 0, then we put

g() for 7 € [0, &,
gt):=4{0 fort > &,
—g(—t) fort <O.

Note that g satisfies (g1), (g3) and

(82) limy s oo LU = 0 when py < N, and limy;| 0o —A22L—— = 0 forall @ > 0

4 AV
7172 exp( a|t| N-T

when p, = N.

Furthermore, if (i{) occurs and u is a solution to (1.1) with g(¢) in place of g(¢), then we
can see that |u| < &y in RN that is, u is a solution to (1.1). Hereafter, we replace g by g
and keep the same notation g(¢). With this modification, we will assume that g fulfills (g1),
(g2)’, and (g3). Set

Define g((¢) := (g(t) + 20l 4 tP2=1y)*+ and g2(t) := g1(t) — g(¢) for t > 0. Extend
g1(t) and g>(¢) as odd functions for ¢+ < 0. Thus, g = g1 — g2 with g1, go > 0in [0, 400),
and we see

g1() =o(@” Hasr — 0T, (3.1)
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N-1

g1(t) =o(tP VYast — +oo if pp < N, g1(t) = 0" ")
foralle > 0 ast — +oo if pp =N, 3.2)
g(t) = 2v ("1 47271 forallt > 0. (3.3)

Put G;(t) := f(; g(r)dr foralli = 1,2. When pp < N, thanks to (3.1)—(3.3), we deduce
that for all ¢ > 0 there exists C. > 0 such that g1(¢) < e g2(¢) + Csﬂ’;’l for all # > 0, and
S0

Gi(1) < &Ga(t) + CL|t|P> forallt € R. (3.4)

In the result below, we focus on the regularity of solutions to (1.1), and we establish a
Pohozaev type identity.

Theorem 3.1 Assume that (gl), (g2), and (g3) hold. Let u € W be a weak solution to
(1.1). Thenu € L*@®RN) N Cll(;f (RN) for some o € (0, 1). Moreover, u obeys the following
Pohozaev type identity:

2
N — pi _
Pu) = Z( p"’ ) IVl gy = N/RN G@u)dx = 0. (3.5)

i=1 !

Proof We start by observing that u solves
—Apu—Ap,u+gr(u) =g (u) in RN
Let z := |u| and z, := ~/u? 4 &2 — ¢ for ¢ > 0. Note that 7, — zin W as ¢ — 0F. Let us

now show that z satisfies

[ |Vz|p1_2VzV¢dx+2v/ zPI—‘¢dx+/ |VZ|p2_2VZV¢dx+2v/ P21 dx
RN RN RN RN

< /RN 812 dx

for all ¢ € W such that ¢ > 0. Take ¢ € C° (RN) such that ¢ > 0. Then, foralli =1, 2,

(3.6)

u

Vu? + &2
2

= Vu|Pi—2 _* - &
/]RN‘ ul VLN( u2+82¢ dx RN Vul (u2+32)3/2¢dx

u
< IVu|Pi 2V | ——¢ | dx.
/RN [u2 + 2

/N IVz|Pi =2V 7,V dx :/N [Vu|”i ~2Vu Vo dx
R R

Consequently,

/N [Vz|P' 2V 7,V dx +/N |Vz|P2 2V 7,V dx
R R

u u
< |Vu|P' 2Vuv (747) dx + / |Vu|P>2Vuv (7?5) dx
/I:RN Vu? + g2 RN Vu? 42

u u
= [ (Zame) 2= [ ()
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which, combined with g; (1)t = g;(|t])|¢t|] forallt € Randi = 1,2, ¢ > 0, and 0 <

S < lforallt € R, implies

u
[ e vavoars [ 1varvavedss [ oo (o) ax
RN RN RV us+e

5/ 11 G)lb dx.
RN

Taking the limit as ¢ — 0 in the above relation, and exploiting all (3.3)), the dominated
convergence theorem, and Fatou’s lemma, we conclude that (3.6) is valid for every ¢ €
cx (RV) such that ¢ > 0. By density, (3.6) is true for all ¢ € W such that ¢ > 0.

In what follows, we prove that u € L®@®RN). We first assume that p» < N. Thanks to
(3.1) and (3.2), we have that for all £ > 0 there exists C, > 0 such that

0<gi(t)<et '+ CaP2 " forallt > 0.

Therefore,

/ IVZI”'_ZVZVMXHVf z”“‘¢dx+/ \Vzlpz_QVzV¢>dx+2v/ P2 g dx
RN RN RN RN
S/ [e 2”171 4 Cez”2 Mg dx

RN

for all ¢ € W such that ¢ > 0. Taking ¢ € (0, 2v), we obtain that, for some C > 0,

/N [Vz|P'2VV¢ dx +/N |Vz|22VVgdx < c/
R R

. P ledx (3.7)

for all ¢ € W such that ¢ > 0. Now we show that z € L®(R") by means of a Moser
iteration scheme [39]. Forall L > O and 8 > 1, we define z; := min{z, L}, 7y := ZZILJZ('S_U

and wy := zz/ . Suppose that z € LP?A(RY) and verify that z € LP3#(RY). Inserting
¢ =71 € Winto (3.7), we find

/ |Vz|”‘_2VzVZde+/ IVzlpz_ZVzVZde§C/ 73713, dx. (3.8)
RN RN R

N

Let us observe that

/ |VZ|P]—2VZVZL dx :/ |VZ|p] ZIPJZ(/S*I) dx + [72(13 _ 1)/ |VZ|p] sz(ﬁ—l)dx >0,
RN RN {z=L}

3.9)
and
/ V272 V2V, dx = / Va2 P Vx4 = 1) | VPP D dx
RN RV (z<L)
> /N |Vz|P2P2 P gy (3.10)
R

In view of (3.8)—(3.10), we get

f VP22 D gy < c/ 3D gy
RN RN
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Invoking the Sobolev inequality (2.1), and using the fact that

((E) +L><2 forall B > 1
p BP? ’

P2 P2
L1 ) < ST IV o,

<2P27LSPA(N, p2) ((ﬂ - P f

fz=L}

we deduce

\Vz\pzzfﬂﬁ_l)dx +/ \Vz\”%fzw—n dx)
RN

(3.11)
< 277N, po)((B— D7 + 1)[ [Vz[P2 202 P70 gy
RN
fzpzsf2(1v,pz)ﬁf’2/ [Vz|P2 2027 g,
RN
Hence (3.11) yields
P2 < CoB™ p; ,p2(B=1) 4 312
el ., = Cob /RNZ D gy 3.12)
where Co := 272SP*(N, p»)C > 0. Since z%32*P 70 = hw!? with h .= /377 €
N
L72 (RN), (3.12) becomes
P2 < P2 P2
lwr IIL,,Z(RN) Cop /RN hwj? dx. (3.13)

Let M > 0 to be fixed later and put Ay := {x € RN : h(x) < M}and By := {x e RV :
h(x) > M}. Then we have
I’2

/ hwfzdx:/ hwfzdx—f—/ hwfzdx
RN Ay By

N
< M”wL”LPZ(RN) + </B hr2 dx) ||wL||pi) )’ (3.14)
M

N
By virtue of & € L72 (RV), we can choose M = M s > O sufficiently large such that

P2
N N 1
<f hr2 dx) < .
B 2Cypr2

Thus, using (3.13), (3.14), and that w; < 7P, we obtain

lwrl? < 2CoMpB™ 2113,

RN LP2P(RNY’

and passing to the limit as L — 400, Fatou’s lemma ensures that

Iz 724 < 2CoMpp" |27

T (3.15)

LP2B([RNY"
Now we start a bootstrap argument. Since z € LP3(RN), we can apply (3.15) with 8 = %

Py )
to deduce that z € L( (]RN ). Employing (3.15) once again, after k iterations, we learn
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%\ K
thatz € L(p2 & (RN),andsoz € L' (RN) forall € [p5, +00). Now we return to consider
(3.12). Observing that 0 < z;, < z, and sending L — 400 in (3.12), we see

P2

(/ ZPé‘ﬁ dx) i < Coﬂm/ Zp§‘+pz(ﬁ—1) dx,
RN RN
which implies

% 1 %
(/ (P3P dx> B gy (/ zp;+pz<ﬁ—l>dx> Py (3.16)
RN RN

Set B1 = Z—% > 1 and define B,, inductively so that p} + p2(Bu+1 — 1) = p3Bm form € N.
Therefore,

Bn=B""'Br—1)+1 formeN, and lim B, = +oo.
m——+00

Put

1
. ¥ Bm—D
v, = </ ZP2Pm dx) ! forall m € N.
RN

Then (3.16) can be written as

Wi < 7w, forallm e N,

€
where Cp,41 := Cop 2 Bu+1. lterating the above relation, we arrive at

m+1 1
U< [ [T/ |wi forallmeN. (3.17)
j=2
Because z € L2 (RM), from (3.15) with 8 = B = 22 we derive

S
*\ P2\ p5—p2 -
p 2
v < (2¢0M 5 <f2> ER.
7 \P2 L2 (RN

On the other hand, for some C” > 0,

mil gl LY et YA 1
1_[ C Bj (COI’Z) - By (B1=D l_[ (,Bj Br—-D+ 1) B1—=D < C” forallm e N,
Jj=2

where we have used that log(ﬂ{_l(ﬁl —D+1) < log(ﬁl._l(ﬂl -1+ ﬂ{_]) = jlog B
for all j € N implies

m+1 1 Zm+l log(p{~ 031 b+D l;gﬂi Zm+1 _.i
[T(8 B -n+1)i o =e CRCEI P i,
j=2
and that
+o00

Z and Jf L < 400
j-1 )

j=2 Pi j=2 Pi
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Combining the above estimates with (3.17) and taking the limit as m — +o00, we discover
that z € L®(RVN), that is, u € L®@RN). From (g1) and (g2)’, we deduce that g(u) €
L% (@RN). Thanks to [24, Theorem 1], we infer that u € L*RN) N C llo’f (RN) for some
o € (0,1). Next, we deal with the case p» = N. In this context, it suffices to show that
u € L®@RN). In fact, once proved this, we can argue as in the case p, < N to conclude
that u € L*(RY) N ch loc 7 (RN), for some o € (0, 1). Even in this situation, we perform a
convenient Moser iteration for z. In light of (3.1) and (3.2), for all ¢ > 0 and o > O there
exists Cg ¢ > 0 such that

0<g1(t) <et” ' 4 CotV Oy (at¥T) forall 7 > 0.

Hence, choosing ¢ € (0, 2v), (3.7) changes into

/ |Vz|P1*2va¢dx+/ V2|22V dx < c/ Moy (ﬁz%)wx,
RN RN RN
(3.18)

for all € W such that ¢ > 0. As before, for all L > 0 and y > 1, we consider z; :=

y—b b4

min{z, L}, 71 = zzg and wy = zzL_l. Inserting ¢ = Zzy into (3.18), and utilizing

(3.9)-(3.10), we obtain

/ IVlezg(y_])dx < C/ wILV Dy (az%) dx.
RN RN

Reasoning as in (3.11), we find
[ wwetax < e [ vae s,
RN RN

and so

N
/ IVwLINdx < CzyN/ w]LV Dy (azm) dx.
RN RN

_N

Pick > N and select & > 0 such that % IIVzllLN(RN)

inequality, (2.4), and (2.3), we see

< ay. Exploiting the Holder

t—N

N N t [
R N
/RN wy dy(azN-T)dx < ||wLHL,(RN) (/ | @y (@z N-T)|=N dx> < HwLIIL,(RN)

_t =
N _\ |=N
. N .
[} \Y% _
/RN o Z”LN(]R{N) V2l N g g
< Callwr 1, g,
where C3 = C3(B, 1, N, [[Vz||Lngn)) > 0. Accordingly,
IVwrll v gyy < Cayllwell gy (3.19)

Invoking the Gagliardo-Nirenberg interpolation inequality [2, Theorem 5.8], there is a
s > t such that

el sy < Csllull iy IVl vy forallu € WHN@Y),
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where 6 := =t € (0, 1). Thus, due to (3.19), we obtain

lwellps@vy < Coyllwell Lo wnys

and sending L — +o00 we arrive at

L
zll sy mrvy < Clv 1zl Loy vy (3.20)

Set ¢ := f > 1l and y := ¢ with m € N U {0}. Then (3.20) becomes

Izl remtr gy < Cs 6" "zl yem gy, forallm e NU{O}. (3.21)

Iterating (3.21), we find
el omst gy < Co=0¢ 201 2l ay, forallm € NU (O},

Letting m — +o00, we deduce that z € L®(RN). Therefore, u € L®(RY) even in the case
p2=N.

Finally, we prove that u fulfills the Pohozaev type identity (3.5) arguing as in [7, Lemma
3.1]. Because u is locally Lipschitz (recall that u € L® RN Cllo’f (RM)Y), we can apply [18,
Lemma 1] with £(s, §) := ﬁl’g‘l"1 + ilélpz —G(s), f:=0,h(x) ;== g (x)x fork € N,
where ¢y (x) := w(%) and ¢ € CL‘.X’(RN) is such that p(x) = 1 for |x| < 1 and ¢(x) = O for
|x| = 2, to see

N
Z/ Digy x; Dgiﬁ(u,Vu)Djudx-i—/ @k D L(u, Vi)V dx
N N
ij=1"% R (3.22)
— / Vorx Lu, Vu)dx — N/ ok L(u, Vu)dx = 0.
RN RN

In order to pass to the limit as k — o0 in (3.22), we note that 0 < ¢ (x) < 1 and
[xVer(x)] < C forall x € RN and k € N, o — 1 and Vg — 0 as k — 400, and
L, Vu), D¢ L(u, Vu)Vu € LY(RY) (in view of u € W and the growth assumptions on g).
Thus the dominated convergence theorem yields

1 1
/ (IVulP' + |Vu|P?)dx — N/ <—|Vu|p' + —|VulP?* — G(u)) dx =0,
RN RN \ P1 p2
that is, (3.5) is valid. The proof of the theorem is now complete. O

Remark 3.1 When p> < N, the proof of the fact that z € L®(R") can also be obtained
by adopting the strategy in [24, Theorem 3-(i)]. However, here we prefer to give a different
approach which allows us to consider even subcritical exponential nonlinearities.

Finally, we show that every solution to (1.1) has an exponential decay at infinity.

Theorem 3.2 Let u € W be a weak solution to (1.1). Then there exist C,c > 0 such that
lu(x)| < Ce=M forall x € RV,

Proof By virtue of u € L®°(RY) and g(u) € L®(R"), we derive from [24, Theorem 1-(i)]
that

Vil ooy < C,
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and so u is Lipschitz continuous in R¥. Hence, u is uniformly continuous in R¥, and
because u € LP'(RN), we can infer that [u(x)| — 0 as |x| — 4o0. Let us now focus on the
exponential decay estimate for u. The proof of Theorem 3.1 reveals that |u| satisfies

—Apylul = Apy lul + 20 (a1 + [u|”7Y) < g1(Ju]) in RY,

Since |u(x)| — 0 as |x| — 400, it follows from (3.1) and p; < p; that there exists R > 0
such that

g1(w) < v([ul” " + [u”>7") in Bg(0)'.
Consequently,
—Ap lul = Apy lu| + v(|julP 7! 4 JuP2~1) < 0in BR(0)". (3.23)

Define ¢ (x) := M'e*Re=*IXI where x, M’ > 0 are such that

, < v )»ﬂ ( v )1’12
Kk <min{ | — | —
(p1—1 (p2—1

and [|lu|l poomny < M’. Obviously, |u(x)| < ¢ (x) for all |x| < R. It is easy to check that
—Apd = Apd v (@ + o)

N-1
= ¢l 1|:v—Kp1(p1—1)+ o Y b 1i|
X
N -1
+ 2! [ — P2 (py— 1) + |x| —— kP~ 1] >0 in Bg(0)". (3.24)

Subtracting (3 24) from (3.23), and taking n = (lu] — ¢)+ € Wol’pl(BR(O)c) N
W1 P2 (Br(0) (0) ) as test function, we discover

0= / (((\V\uum‘zvm — V91" =2V )V + (IV|ul| P22V Ju] — V1P ~2V ) Vi)
{IX]>R: Ju(x)[> (x)}

+v <<|M|PI—1 _ ¢P1—]) + (|M|P2—1 _¢P2—1>) ,7) dx

ZU/ (Pt~ — P11y (ju| — ¢) dx > 0,
{lx|>R : [u(x)|>¢ (x)}

where we have used the fact that for all » > 1 it holds
(Uml" 21 = In2l "2n2)(m — m2) > O forall 1, n, € RY such that ny # 2. (3.25)

Hence, (Ju|”'~! — ¢P' =D (ju| — ¢) =0ae.in {|x| > R : [u(x)| > ¢(x)}. Considering that
|u| and ¢ are continuous in RY, we conclude that {|x| > R : [u(x)| > ¢(x)} is empty. Thus,
lu(x)| < ¢ (x) for all x € RV, and so the required estimate is true. ]

Remark 3.2 When p, < N, because z = |u| is a weak subsolution to —A, z — Ap,z +

20z~ 4 2y = g1(u) in RY and g1(w) < gz 4 ngp;’l, we can confirm that
z(x) = |u(x)| = 0 as |x| — +oo by following the lines of the proof in [24, Theorem 3-(i)].
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4 A first proof of Theorem 1.1

In this section, we provide a first approach to obtain the existence of a ground solution to
(1.1). Since we are interested in weak solutions to (1.1), we seek critical points of the energy
functional L : W — R given by

2

1
L) =Y ;”V“”Lm @ /RN G(u)dx.

i=1

From (g1)—(g2)/, it is readily seen that L € C'(W, R). Next we prove that L possesses a
mountain-pass structure [6].

Lemma 4.1 Assume that (g1), (g2)', and (g3) hold. Then, L has a mountain pass geometry,
that is:

(MP1) L) =0.
(M P2) There exist p, § > 0 such that L(u) > § for all u € W such that |ul|lyy = p.
(M P3) There exists w € W such that |w|yy > p and L(w) < 0.

Proof (M P1) is trivial. Let us verify (M P2). We first assume that p < N. Exploiting (g1),
P1 < p2, and that if lim,—, {5 @, = a > 0 then

liminf a,b, = lim a,lim mf b, and lim sup a,b, = hm ay limsup b,
n—-+o00 n——+00 n—-+o00 n—+00 —+00 n— 400
we deduce
.. t t
—00 < liminf L < llm sup L =-2v <0.
(—0t+ tP1—1 42—l ot tpi—1 42—l

In light of this fact, (g2)’, and that g is odd, we see that for all ¢ > 0 there exists C; > 0

such that
1 1 "
—G(@) > Qv —e¢) <—|t|“’l + —Itl”z) — C¢|t|P2 forallt € R. “4.1)
P1 p2
Pick ¢ € (0, 2v). Thus (4.1) implies that, forall u € W,
2v — 2v —
L(u) > 7||Vu||Lp1 (RN) ”Vu”LI’Z(RN) + T”u”Lm (RN) + THMHLPZ(RN)
1 1
= Cellu ”Z’uRN) > ;mm{l 2v — e}llully),. vy T pz min{1, 2v — e} llull}; &N
— P2
Cellull s v

Let u € W be such that |ullyy = p € (0, 1). Since 1 < p; < p and ||u||W1,p1(RN) <1, we

know that [|u||”! > ||lu|lP? Therefore, recalling that

WIFI(RN) W]PI(RN)

(a+b)" <2"Ya" +b") foralla,b>0withr > 1, 4.2)
and utilizing the continuous embedding W C LP3(RN), we get

129
Cellull’?

L) = Ci(ull?? ) = Cellal s

2 o, + Il

2
> C2(||M||lep1(RN) + ||’/l||le1'2(]RN))p2 Cellu ”L2”2(RN)
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D 129
> Callullyy, — Csllullyy

1
pE <O,min [1, <C2>p2 " }),
Cs

inf  L(u) > pP(Cy — C3pPi7P2) =: § > 0.
lullyw=p

Taking

we obtain

Now we suppose pp = N. In view of

g()

o = Dy,
T e A

and (g2)’, we have that fixed ¢ > 0, ¢ > N, and @ € (0, ), we can find Ce g0 > 0such
that

| 1
G(t) < (e —2v) <7|,|m + N'”IV) + Cegaltl! Oy (mu%) forallt € R. (4.3)
P1
Thanks to (4.3), we deduce that, for all u € W,

1 N v — 2v —
L(l/l) > 7||Vu”Lp1(RN) N”VM”LN(]RN) + T”u”LPI(RN) + 7”u||LN(RN)

N
N
= Cogur [ ity (cul ) d
@ Jos
N N
= Cillullfy, meny T C2llullyy gy = Cega /RN lulddy (Ol|M|N—l) dx.

Select o > 1 such that «o < apy. Using the Holder inequality with exponents o and

o' := 2%, and employing (2.4), we see

1

& N o
/RN oy (olul 3T dx <l o, (f |<I>N<a|u|N—1)|“dx)

1
N v
< lu ||L”(RN) </ @N(Ol(T|M|N—I)dX>

Then, invoking (2.3) and the continuous embedding WEN@RNY ¢ Lo (RM) (note that
o'q > N), we can infer that for all u € WLN(RN) such that llullwrngyy < 1, it holds

N
[ttty (olulPT) dr < Callyn g 44)

Pick u € W such that |lullyy = p € (0, 1). Thus, lullyrv@gyy < 1 and flae ||
Hence, (4.2) and (4.4) yield

wl.pr1 (]RN) —

[TEAw—

L) = Calllul 1, oy + 11 v o)) = Csllly oy g,

q
> Cellullfy — Csllullfy.
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Choosing

we find

inf L) > pV(Ce—Cs5p9™ V) =:8>0.
lellyw=p

Finally, we check (M P3). For all R > 0, we consider

& if x| < R,
wr(x) = ER+1—|x]) if R<|x| <R+1,
0 if [x] > R+ 1.

It is clear that wg € W;. Using (g3), we can see that, for R > 0 large enough,
/ G(wg)dx > 1.
RN

Fix such an R > 0 and set wg g (x) := wg (x/€”). Then we have

2
1 o .
Lwpa) = Y P [ Tug|h, o — M /R Glug)dx

i=1

2

1 .

N—p;)o i N6

< ZEE( pi) ||VwR||[ZPi(RN) —e" - —00 asf — +oo.
i=1

The proof of the lemma is now complete. O

Remark 4.1 From the proof of Lemma 4.1-(M P2), it follows that

L(u) >0 forallu € W suchthatO < |ully < p.

Remark 4.2 1f u € W\{0} is such that L’(u) = 0, then we can prove that there exists C > 0,
independent of u, such that

lullyw = C. 4.5)

In fact, if ||ullyy > 1, then (4.5) holds. If 0 < |lu]lyy < 1, then we can argue as in the proof
of (M P2) to see that

P
0= (L'(u),u) > Cl”“”% - 62”1/‘”1/\2; if pp <N,
llullyy = esllullyy if p2 = N,

for some ¢y, ¢z, ¢, ¢4 > 0, where ¢ > N inthe case p» = N. Since p» < p5 when ps < N,
p2 < g when p, = N, and |lullyy > 0, we deduce

1
(c1/e)™™" if py <N,

(cy/ch)er if pp = N.

Therefore, (4.5) is valid.
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Taking Lemma 4.1 into account, we can define the mountain pass level

CMP 1= ;léfr trerﬁ]L(y(t)), (4.6)
and the set of paths
={y € C(0, 11, W) : y(0) =0, L(y(1)) < 0}. CX))

Motivated by [27], we produce a Palais-Smale sequence of L at the level cpp that satisfies
asymptotically the Pohozaev identity.

Proposition 4.1 There exists a Pohozaev-Palais-Smale sequence (u,) C W for L at the level
cymp, that is,
L(u,) — cmp, L'(wp) = 0in W, P(u,) — 0. 4.8)

Proof Tt suffices to argue as in [7, Proposition 3.1]. For reader’s convenience, we provide the
details. Let us introduce the map @ : R x W — W by setting

PO, u)(x) = u(e "),
for@ e R,u € W, and x € RV. Here R x W is equipped with the norm

10, wllrxw = 10] + llullyy.
For every & € R and u € W, the functional L o @ is given by

eN—pi)o

2
L(®®, ) = Z 196l g, — € /R Gy,

Clearly, L o @ € C'(W, R). Reasoning as in the proof of Lemma 4.1, we can easily check
that L o @ has a mountain pass geometry, and so it is well-defined the mountain pass level
of Lo @:

cmp = inf max (L 0 ®)(Y (1)),
yeT r€l0,1

where
T = (¥ € C(0, 11,R x W) : §(0) = (0, 0), (L o )(F(1)) < O}

It is readily verified that cpp = cvmp. Invoking the general minimax principle [46, Theorem
2.8], we can select a sequence ((6,, v,)) C R x W such that, as n — 400,

(@) (L o ®)(0n, vn) = cmp,

(ii) (Lo ®)(6,,vy) — 0in (R x W)/,
@iii) 6, — 0.

Indeed, due to (4.6) and (4.7), we can find (y,,) C I' suchthat max;cpo, 1] L(y,(¢)) < ch—i-nl—z.

Put 7, (1) := (0, (1)) € T. Thus,

1
max (Lo @)(yn(1) = max, L(yn (1)) < cmp ta

According to [46, Theorem 2.8], there exists ((6,, v,)) C R x W such that (i) and (ii) are
true, and

distrxw ((Bn, vy), {0} X Vn([os 1)) — 0,
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which implies (iii). Here, we have used the notation

distr. o (0, u), A) = ( in)fA(IQ — 7|+ |ju—vl|yw) forall ACR x W.
T,V)€

For all (h, w) € R x W, it holds
((L o ®) (6n, vp), (h, w)) = (L"(@ (B, V), P (O, w)) + P(P (B, vp))h. 4.9)

Put u,, := @(6,, v,). Thanks to (i), we deduce that L(u,) — cmp. Choosing # = 1 and
w = 01in (4.9), and using (ii), we obtain

P(u,) — 0.

Finally, for every fixed ¢ € W, taking w(x) = go(eeﬂx) and 2 = 0 in (4.9), it follows from
(ii) and (iii) that

(L'(un), @) = on(D @™ )W = on (Dl
and so L' (u,) — 0in W'. Therefore, the sequence (u,) fulfills (4.8). ]
Next we prove the boundedness of Pohozaev-Palais-Smale sequences of L.

Lemma4.2 Every sequence (u,) C W satisfying (4.8) is bounded in W .

Proof From (4.8), we know

2

1 1 .
emp +0n(1) = L(un) = - P(n) = 3 I Vunl 7,
i=1

which implies that (|| Vu, | 1 » (RN)) isbounded in R forall i = 1, 2. In particular, when p; <

N, (unll, 5z (RN)) is bounded in R for all i = 1, 2. It remains to verify that (|lu, IILP1 @&y T
e ||‘L’f,2 ® N)) is bounded in R. Arguing indirectly, suppose that
A A e
Define
1
N
t 1= (15, v,y + a3 ) ) = 0,
and
U (X) = up(x/t).
Foralli =1, 2, we see
”Un”Lp, ®N) = ”Mn”Lp, (RN) =1
N— i
||an ”Lp, RN) [Il b ”v”n”Lp, ]RN)
We claim
sup / lup|P2dx — 0 asn — +o0. (4.10)
yeRN JBi(y)

To this end, we show that ,, := v, (-+y,)—01in W for every sequence (y,) C R¥. Since (7,)

is bounded in W, up to a subsequence, we may assume that v,—vin W, v, — vinLj (RM)
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forallr € [1, p3),and v, — v a.e.in RN.Fix ¢ € CSO(RN) and set @, (x) 1= @(tyx — yp).
Then it holds

AL (), ) = [Z / Vo P>V, Ve, dx — / (unmdx]

2

= Z [tlfi/ |Vﬁn|pi72Vﬁnv¢ dx] _/ gWn)pdx.
RN RN

@.11)

Let us observe that ™ (L' (uy,), ¢,) = 0,(1) owing to

NAL un), @) | < N IL @)l llnllw

2 _N-pi _N
=t,iv||L’<un>||W/{Z[zn "NVl yy + ||<p||Lp[(RN)“

i=1

2 14 Pi=DN (pi—=DN
=1L @l 1Y e " IV@ln@yy +ta 7 llom @y

i=1
— 0 asn — +oo.

Exploiting this fact, (9, is bounded in W, v,, — ¥ in LZ’OC(RN) forallr € [1, p3), Uy — ¥
ae. in RV, 1, — 0, and the compactness lemma of Strauss [12, Theorem A.I], it follows
from (4.11) that

f g@gpdx =0 forallp € CRY).
RN

Therefore, g(v) = 0. Since ¥ € W and r = 0 is an isolated solution of g(r) = 0 (by (g1)),
we have that v = 0. Hence, v,—0 in W and v, — 0 in L[OC(RN) for all r € [1, p3).
As a result, (4.10) is true. Then, by Lemma 2.2, we infer that v, — 0 in L"(R") for all
r e (pz p3). Now, using (L' (uy), t,{vu,,) = 0,(1) (note that t,llvun — 0 in W because
ot |12 LP1(RV) + ||un||1’j§,2(RN) — +o0 and (| VuyllL»i gvy) is bounded in R for all i = 1, 2),
t, — 0, and the boundedness of (||Vuy, || » (RN)) inRforalli =1, 2, we see

/ goundx = £ / gt dx
RN RN

2
= l‘rllv |:Z ||Vun||lrjipi(RN):| (L (Hn)s n un) = On(l).
i=1

Let us recall that g = g1 — g2. In light of (3.1) and (3.2), we can apply Lemma 2.4 with
W (t) = g1(t)t (see Remark 2.2) to discover

(4.12)

/N g1(v)v,dx - 0 asn — +oo. (4.13)
R

Combining (3.3) with (4.12) and (4.13), we obtain
p
20012y oy + 10l ) < /R e dx

:/ g](Un)Undx+0n(1) :On(l)v
RN
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2

@Yy 0, which is a contradiction due to

and thus [|v, |17}, e 4

”vn ||]£lpl(RN) + ||Un||€3;2(RN) = tnN |:||M"||€]l’l (RN) + ||un||€2pz(RN):| = 1 for all ne N

Hence, (||u;, ”ilpl(RN) + |lu, IIIL)f,z(RN)) is bounded in R, and so ([|lun || .ri r¥y) is bounded in
R for all i = 1, 2. Therefore, (u,) is bounded in W. O

Remark 4.3 When p < N, we can show that (||uy, | r; ®n)) is bounded in R forall i = 1,2
in a more direct way. Indeed, because P (u,) = 0,(1), we have

2
N — p; .
> Pi) |97, IRN+N/ Gz(unmx:N/ G () i + 0y (1),
i LPERY) RN RN

i=1 g

Using (3.4) with e = % and the boundedness of (||u,|| ), We see

L ®RY)

2

N — p; :
fRN Ga(uy) dx = fRN Gilun)dx — ( o ) 19100012, g, + 0D

i=1 !

1 / p3
<5 [, Gatwndr + €yl L +ou(D)

1
=z f Ga(up) dx + C" + 04(1),
2 RN
which implies
/ Ga(up)dx < C" + 0,(1).
RN
Since (3.3) guarantees that

t|P1 t|P2
Gy(t) = 2v <L + L

> forall t € R,
P1 P2

we deduce that (||u, || 7 » RN )) isboundedin R foralli = 1, 2. Consequently, (u,) is bounded
in W.

The result below will be crucial to ensure the almost everywhere convergence of the
gradients of Pohozaev-Palais-Smale sequences.

Lemma4.3 Let (u,) C W be a bounded sequence such that L' (u,) — 0in W' asn — +o0.
Up to a subsequence, we assume that for some u € W, as n — +00,

Up—uinW, u, - uin LfOC(RN) foralls € [1, p3), up > uae. in RV 4.14)

Then, up to a subsequence, as n — +00,

Vu, - Vu a.e.in RN,

. N
_Pi
[Vun|P =2 Vu,—|Vu|P">Vu in (Lvr'(RN)> foralli =1,2.
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Proof We follow [7, formula (58) in Proposition 4.1]. Pick n > 0 and consider the truncation
function T, : R — R at height 5 defined as

t o iffe <,

T, (1) :== .
n® {nﬁ if [¢] = 7.

Take R > 0 and select Y € CC°°(RN) such that 0 < ¢g < lin RY, Vg = 1in Bg(0), and
Yr = 0in BS,(0). We can write

/RN YR [|Vin| P 2V, — [Vu|P 2 Vu] VT, (uy — u) dx
+ /RN YR [|[Vun| P22V, — Va2 2Vu] VT, (u, — u) dx
=— /RN Ty (un — ) [|[Vun| "' ">V + [ Vun P>V, | Virg dx
- /RN YR [IVU|P =2 Vu + |Vu|P22Vu] VT (un — u) dx + (L' (un), YTy (n — u))
+ /RN g YRTy(uy —uydx =: Xy, g+ Xp o+ X, g+ Xt ke
(4.15)

Employing (4.15), we obtain that 7, (4, —u)—0in W and T, (u, — u) — Oin Lfoc RM)

for all s € [1, p5). On the other hand, (L' (u,,), YrT;(u, —u)) — 0 dueto L'(u,) — Oin
W' and the boundedness of (Yr T}, (u, — u)) in W. Hence,

X}, g — 0 asn— too forall j=1,2,3. (4.16)

Utilizing |T,(t)] < nforallt € R, 0 < ¥ < 1, supp(¥gr) C Bar(0), the growth
assumptions on g, the Holder inequality, and the boundedness of (u,) in W, we get

X3, gl < Cgn foralln €N, 4.17)

where Cp > 0 is a constant that depends only on R. Let us observe that to arrive at (4.17),
we exploit |g()] < C(|t|"'~! + |7|P271) for all t € R when py < N, whereas if pp = N
then we invoke the Trudinger-Moser inequality. Since the verification in the case p» < N is
straightforward, we provide the details in the case pp = N. Because (u,) is bounded in W,
there eﬁists Co > 0 such that ||u,|yy < Co foralln € N. Fix ¢ > N and « > 0 such that

ozq’CoNi’1 < ay, where ¢’ := %. In view of (g1) and (g2)’, there exists C; > 0 such that

lg()] < Cy (|t|1"‘1 + Wy (a|:|%)) forall 7 € R.
Therefore,

4
|Xn,r],R|

IA

N
Con [ tual" s+ Con [y (a7 v
RN RN
=:nC1An R +nC1 By k.

Thanks to the Holder inequality, 0 < ¢¥rg < 1, supp(¥g) C Bar(0), and |u, |y < Cop for
all n € N, we see that A, p < CQC}e for all n € N. Concerning B, g, using the Holder
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inequality, (2.4), 0 < ¢¥rg < 1, supp(¥g) C B2g(0), (2.3), and |lu,|lyy < Co foralln € N,
we learn

ey )\
Bug < (/ Dy (aq/cow-l ( Zn ) ) dx) IRl Logyy < C3Cf foralln € N.
RN 0

Thus we can deduce that (4.17) is true even if po = N.

Let us now note that the integrands on the left-hand side in (4.15) are nonnegative by
virtue of g > 0, (3.25), and the definition of T},. Then, combining (4.15), (4.16), (4.17),
and recalling that g = 1 in Bg(0), we have

lim sup/ [(|Vu,,|l’1—2wn — IVulP12Yu) + (Vi P22V, — |Vu\p2_2Vu):| VT, (n — 1) dx
n—+00 J B
< Cpy. (4.18)
Define
en(x) 1= (|Vitn () 1P 72V (x) — [Vu ()P Vu(x) (Vi (x) — Vu(x))
+ (I Vun () P22V (x) — |Vu ()72 2Vu(x) (Vi (x) — Vu(x)).
In light of (3.25), we know that ¢, > 0 in RY. Moreover, (e,) is bounded in L' (R")

Pi
because (Vuy) is bounded in (L” (RV))Y and (|Vu,|”~2Vu,) is bounded in (L 7i—T (RV )N
foralli =1, 2. Take 8 € (0, 1) and split Bz (0) by considering the sets

= {x € BR(0) : [un(x) —u(x)| <n}
and
Vi = {x € BR(0) : |un(x) — u(x)| > n}.

From the Holder inequality, it follows that

/ ezdx:/ egdx—i—/ egdx
Br(0) xp Vi
(/X”

(4.19)

IA

0 6
endx) IXIZIIO—F(/nendx) IJJZIFG.
Y
R

R

We stress that, for n > 0 fixed, |y2| — 0 asn — +o0o. Employing this, the boundedness of
(en) in LY(RN), (4.18), and (4.19), we obtain

limsup/ el dx < (Cgn)’|Br(0)|' .
n—>—+o0 J Bg(0)

Letting n — 0T, we deduce that e,el — O in LI(BR(O)). Hence, up to a subsequence,
e, — 0 ae. in Bg(0). Since R > 0 is arbitrary, up to a subsequence, ¢, — 0 a.e. in
RM. This fact and (3 25) ensure that Vu,, — Vu a.e. in RY. Given that (|Vu,|?~2Vu,)

is bounded in (L l’f‘ R¥NHN for all i = 1,2, we can infer that, up to a subsequence,
|Vitn [P 2 Vu,—|Vu|P~2Vu in (prl(]RN))N foralli =1,2. |

We now focus on the convergence of Pohozaev-Palais-Smale sequences of L. More precisely,
we establish the next result.
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Proposition 4.2 Let (u,) C W be a sequence such that

(i) (L(uy)) is bounded,
(ii) L'(u,) — 0in W' and P(u,) — 0 asn — +o0.

Then,

(1) either up to a subsequence, u, — 0in W asn — +o0o,
(2) or we can find u € W\{0} such that L'(u) = 0 and (x,) C RN such that, up to a
subsequence, u, (- — x,)—u in YW as n — +oo.

Proof We start by observing that Lemma 4.2 implies that (u,) is bounded in W. Let us
suppose that (1) does not hold. Without loss of generality, we may assume that

LII_T}}_I;E llun ”WLPZ(]RN) > 0. (4.20)

We claim that, for every r € (p2, p3),

liminf sup [lunllzr(B,(x)) > 0. 421

n——+00 xo€RN
We first examine the case p» < N. Suppose by contradiction that, for some r € (p2, p}),

liminf sup |y |lLr (B, (xe)) = O-

n—+00

X()E]RN
On account of
_N-pnm pi N-—p2 P2 1
/RN Gi(up)dx = Npp IVunlly ) &y T Tm”v”"”LPZ(RN) + RN Go(up)dx — NP(un),
and using (3.3), P(u,) — 0, and (4.20), we see
lim inf/ Gi(up)dx
n—+0o RN
.. N — P1 P1 N — P2 P2
> lim inf| o Vil by vy + =3 IV 4.22)

+2v i||u k4 +i||u 122 —iP(u Yy >0
P n Lpl(]RN) P n LI'Z(]RN) N n .

On the other hand, thanks to (3.1), (3.2), and Lemma 2.1 with t = p; and s = r, we can
argue as in the proof of Lemma 2.4 with W () = G(¢) to get

liminf/ Gi(uy)dx =0,
N

n—>+o0 Jr

which contradicts (4.22). Hence, (4.21) is valid. Now we deal with the case p» = N. Since
(uy,) is bounded in WL (RV), there exists M > 0 such that || Vu, v wyy < M for all

n € N. Pick r € (N, 400) and ¢ > 0 such that aM% < ay. From (3.1) and (3.2), we
know that fixed ¢ > 0 there exists C, > 0 such that

g1 (D)1 < e(t|P' + @y (alt|FT)) + Colt|” forallr € R. (4.23)
Exploiting (L' (uy), un) = 0,(1), (3.3), and (4.23), we obtain

2
0n(1) = (L"), un) = Y IVunll 7y vy = /RN 8(un)un dx
i=1
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2

- ; IV}, ®RY) A;N g2(up)up dx — /]RN g1 (up)uy dx
2

S [ L P A e M
i=1

N
—e [ ontalinl ) dx = Collunly e
RN
2
Z Z I:”V”tn' Zipi (RN) + 21}””"' I’ilp, (]RN)] & ”unlle] (RN)

- C/E ”un”LN(RN) CS””H“Zr(RN),

where we have used (2.3) to infer

N
N N (up\ =T Hu”LN(RN)
/]RN Dy (afup|N-T)dx Z/]RN Py ((YMNI (7) ) dx < CT =C’ ||Mn||LN(]RN)

Therefore, choosing ¢ € (0, min{2v, 2v/C’}), we can find ¢y, ¢; > 0 such that

on(1) + Cellunll, o, = Z 190121, o, + €ilan 7, e |-
i=1

By Lemma 2.1 and the boundedness of (i) in W1V (RN), we see

~|=

]_
“unH{,vVI_N(RN) <c” ( sup “””'L’(Bl(xo))) ’

1—
I‘”"”Z’(RN) <C sup I‘”"”L’(B](xo))
X()E]R

X0 eRN
and so
1_,
on()+C" [ sup Nualhrpn ] = Z (19001175, v, + €illenll P, o) |-
XQERN
Combining this fact with (4.20), we deduce that, for all » € (N, +00),

lim inf sup lunllLr By (xo)) > O,
xpeR

that is, (4.21) holds even in the case p; < pp = N. Accordingly, up to a translation, we may
assume that, for some r € (p3, p;‘),

nglfg lwnllLr By o) > 0.

As (uy,) is bounded in W, up to a subsequence, we may suppose that u,—u in W, u, — u
in L?UC(RN) for all ¢ € [1, p3), and u, — u ae. in RY, for some u € W \ {0}. Using
L'(u,) — 01in W and Lemma 4.3, we see

Vu, - Vu ae. inRY,

_Pi
IVitn |2V, —|Vu|P>Vu  in (L7 RY)N foralli =1, 2.
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Utilizing L'(x,) — 0 in W, the above weak convergence for (|Vu,|”~>Vu,) with
i = 1, 2, and the compactness lemma due to Strauss [12, Theorem A.I], it is straightforward
to verify that (L'(u), ¢) = 0 for every ¢ € C° (RVM). Because CfO(RN) is dense in W, we
conclude that u is a weak solution to (1.1). ]

In the next result we prove the existence of an optimal path in the spirit of [29, Lemma 2.1].

Lemma4.4 Let w € W\ {0} be a weak solution to (1.1). Then there exists y € I such that
w € y([0, 1]) and

,2}3’% L(y (1)) = L(w).

Proof Put w,(x) := w(%) for x € RN and ¢t > 0. First we assume that p2 < N. Define
7 : [0, +00) — W by setting

7)) = {SW) g; ~ gf

Clearly, y € C([0, +00), W). Since P(w) = 0, for all t > 0 we have

% % i ~ 1 pi N-pi _ N(N—pi
LW”:L(V(’”‘WP(“’):gg”vw”mm [; iy <T>}

Differentiating with respect to ¢, we find

d d d
EL();([)) =0 forr=1, EL();(I)) >0 forallt € (0, 1), EL(];(I)) <0 forallt € (1, +00),

which implies
max Ly ®) = L{y(1) = L(w).

Because L(y (1)) - —oo ast — +00, we can infer that L(y (7)) < O for some T > 1.
Letting y (t)(x) := y(¢tT)(x) fort € [0, 1] and x € R¥, we reach the assertion.

Now we assume that pp = N. In this situation, the construction of the required path is
more complicated with respect to the previous case. Our purpose is to select #p € (0, 1),
t1 € (1, +00) and 91 € (1, +00) so that the curve y, constituted of the three pieces defined
below, gives the desired path:

[0, 1] = W; 6 — Owy,, (4.24)
[to, t1] > W; t — wy, (4.25)
[1,61] = W; 6 +— Owy,. (4.26)

Let us observe that in this context the Pohozaev identity is

N =P g2 - N/ G(w)dx = 0. 4.27)
pi LPLRY) RV
As L'(w) = 0 and w € W\{0}, we obtain

/R gwdx = [Vulll}, ) + V0l )y gy > 0.
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Then we can choose 61 € (1, +00) such that

f glw)wdx >0 forallf € [1,6]. (4.28)
RN
Define o
0t
() := iT" forz #0,
lim, o $5¢ for ¢ = 0.

In view of (g1), we learn that ¢ € C(R). With this notation, (4.28) becomes
/ pOw)|lw|’'dx >0 foralld € [1,06;]. (4.29)
RN

Let us now observe that

d
EL(ewt) = (L' (Owr), )
_gr1—1 P1 N-1 p1—1 14
= 0PIVl vy O ||th||LN(RN) P! /RN @Ow;)|w [Pl dx
p1=1;N-pi N-1 —gP1— 1N Pl
=0 ||Vw|\Lp1(]RN)+9 vallLN(RN) 0 t fRN pOw)|w|l dx

=oN- llleHLN(RN) +oP1—1N=p1 [nwuw @) — P /RN eOw)|w|P! dx].
(4.30)
Take ty € (0, 1) small enough such that

||Vw||Lp1(RN) t(‘f' /RN eOw)|w|’'dx >0 forall§ € [0, 1]. 4.31)
By virtue of (4.29), we can select 1 € (1, +00) such that

p1
||Vw||Lp1(RN) 4 /RN pOw)|w|P dx

1 pi oy
< e ||Vw||Lp1(RN) (9“ — ||Vw||LN(RN) forall € [1,6,]. (4.32)

From (4.31), we deduce that L(Qwy,) increases along (4.24) and achieves its maximum at
6 = 1. By (4.27), we know

_ 1 vuwllY tNl_ N i_i 4
L(wt) - N” w”LN(]RN) + P t P ” |Lp1(RN) ( 33)

Thus, using (4.30), (4.32), (4.33), p1 < N, 11,61 € (1, +00), we see

01 d
L@Owyy) = L(wyy) +f] %L(Gwll)de

N 11
vV L (== <) [Ivwi
” e T "\pp N LPLRN)
61
N-1 P lN P1 P1 P
+/1 {6 ||Vw\|LN(RN)+91 f [”kuu,l(RN) t /Nw(ew)\w| ldx:“d@

tf\’*m vl 1 9N
llvw”LN<RN> o (E_N) llvw”L"uRN)+7”V“’”LN<RN>
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o1 1 oN
_ pi—1,N—pi p1 p1 1 N
/1 T [ef"—1lvw'L"l<RN>+N orr—1 ) Vv | 40

1 N ’1N_pI N(1 1 PI oY —1 N
= ﬁ”vaLN(RN) + T —n E N ”Vw”Lpl ®) + Tllvw”LN(RN)

N—
t p1 N

0
! P1 %1 N-
Pl Vel o eyy = 3t

P1 N
vallLN(RN)

N

1o o e
N 1 N
- <p1 - N) IV vy =NVl gy <O

Consequently, y € I'. This completes the proof of the lemma. O
Let us define
T :={ueW\{0}: L) =0}, cLg := inf L(u),
ueT
P:={ueW\{0}: P(u) =0}, cpo := in7f3L(u).
ue

Now we are ready to give our first proof of Theorem 1.1.

First proof of Theorem 1.1 On account of Propositions 4.1 and 4.2, we can find a Pohozaev-
Palais-Smale sequence (u,) C W for L at the level cpp > 0 such that u, —u in W, for some
u € W\ {0} which satisfies (1.1). Exploiting P(#) = 0, Vu, — Vu ae. in RY, Fatou’s
lemma, L(u,) — cmp, and P (u,) — 0, we see

L(u) = L(u) — %P(u) < 1,}2‘1‘;}: [L(un) - %P(un)] = cMmp- (4.34)

Since u is a nontrivial weak solution to (1.1), we derive from the definition of ¢y g and (4.34)
that

cLE < L(u) < cwmp. (4.35)

Letnow v € W\ {0} be any weak solution of (1.1) with L(v) < L(u).If welift v to apath asin
Lemma 4.4, then it follows from the definition of cpp and (4.35) that L(v) > cymp > L(u).
As aresult, L(v) = L(u) = cmp = cLg. Finally, we note that u € 7 C P, and so
ecmp = L(u) > cLg > cpo. On the other hand, an inspection of the proof of Lemma 4.4
reveals that for all w € P there exists a path y € C([0, 1], W) such that y € T" and
max;efo,1] L(y (t)) = L(w). Therefore, cmp = L(u) = cLE = cpo. O

Next we show the strong convergence of the translated subsequence of Proposition 4.2.
Corollary 4.1 Under the assumptions of Proposition 4.2, if we assume that

liminf |Ju,|w > 0,

n——+4oo
and

lim sup L(u,) < cLE,
n—+o0o

then there exists u € W\{0} such that L' () = 0, and a sequence (x,) C RN such that, up
to a subsequence, u, (- — x,) — uin W asn — +o0.
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Proof By Proposition 4.2, up to a subsequence and translations, we may assume that for
some u € W\ {0}, up—u in W, u, — u in L?UC(RN) forall g € [1, p3), un — uae.in
R¥, and that

Vu, - Vu ae.in RN,
L (4.36)
IVitn|P 2V, —|Vu|P>Vu in (L7 RY)N foralli =1, 2.

Hence, u € W solves (1.1). Thus we have

cLE < L(u) = L(u) — lP(M)

(Z IVull?, RN)>

< lim inf (Z IVunll7 (RN)>
1 2

< lim sup m (Z Vi, |7 i (RN)>

n—-+o00 i1

= lim sup <L(un) - %P(Mn))

n——+oo
= limsup L(u,) < cLE,

n——+4oo

from which L(u) = c g and

Z IVl vy = lim (Z Va7, RN)) (4.37)

Recalling that (u,) is bounded in W and Vu, — Vu a.e. in RV (by (4.36)), we can use the
Brezis-Lieb lemma [14, Theorem 1] and (4.37) to arrive at Vi, — Vu in (L”I (RV))N for
alli =1,2.

Assume that p; < N. By the Sobolev inequality (2.1), we see that u,, — u in LPi RN
LP: (RM). Using the boundedness of (u,,) in W and the interpolation of L? spaces, we obtain
that u, — u in L*(R"Y) for all s € (py, p3]. When po = N, we exploit Vu, — Vu in
LP2(RY), the boundedness of (i) in L2 (RN ), and the Gagliardo-Nirenberg interpolation
inequality [2, Theorem 5.8], to deduce that #,, — u in L*(RN) forall T € (N, +00). In any
case, u, — u in LY(RN) for all g € (p2, p3). Let us now introduce

h(t) := g(t) +v(|1|P' 72t + |1|P27%1)  forall s € R. (4.38)

Then & is an odd continuous function on R having the following properties:

h(t) h(@)

(hl) —oo < liminf, o+ < limsup,_ o+ —v < 0if pp < N, and

-1 = P11
lim, o+ -1 = —vif py = N,
(h2) 1limy— 400 % =0if pp < N, and lim,— 4o &~ = 0 for all@ > 0 when p» = N.

From (h1), there exists fo > 0 such that (h(¢)t)™ = 0 for all |¢| < 1. In light of this fact
and (h2), we see that (h(t)t)* satisfies (2.14) and (2.15). Thus, applying Lemma 2.6 with
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V(1) = (h(t)t)™, we have

lim / (h(un)un)+dx:/ (h(w)u)™ dx. (4.39)
RN RN

n—+0o
Utilizing (L' (up,), un) = o, (1), (L' (), u) = 0, (4.39), and Fatou’s lemma, we discover

2
limsup ) <||Vun| Lo @y v llunll), (RN))

n—+00o i=1

= lim sup/ h(uy)u, dx
]RN

n—+00

= lim SUP/ [(h(un)un)™ = (h(up)utn) "1 dx
RN

n—+00

=/ (h(u)u)"’—liminf/ (h(up)uy)~ dx (4.40)
RN n—-+o0o RN

Sf [(Rw)™* — (h(yu)~1dx
RN

:/ h(w)udx
RN
2
= 3 (Il ey + V1l ) -
i=1
Combining (4.40) with ||V, ||, &)~ Ivull?, @, fori = 1,2, we infer that u, — u
in LPY(RV) N LP2(RN). Therefore, u, — u in W. O

Remark 4.4 With suitable modifications, we can prove the existence of a positive ground
state solution to (1.1). In fact, due to L(Ju|) = L(u) for all u € W, we may assume in
the proof of Proposition 4.1 that (y,) C I fulfills y,(t)(x) > O foralln € N, ¢t € [0, 1]
and x € RY. According to [46, Theorem 2.8], there exists ((6,, v,)) C R x W such that
(L o @)(6y, vy) = cmp, (L o @) (6,,v,) — 0in (R x W), and

distr xw (6, V), {0} x ¥, ([0, 1])) > 0 asn — +oo.

The above relation yields |[v, | — 0 and 6, — 0 as n — +oo. Setting u,(x) =
v, (e~ x), we deduce that (u,) C W is a Pohozaev-Palais-Smale sequence of L at the level
cmp such that |lu, [lyw — 0 as n — +4o00. Reasoning as in the proof of Corollary 4.1, we
obtain that, up to subsequences and translations, u#,, — u in W as n — 400, for some
u € W\{0} such that # > 0 in R" and u satisfies (1.1). Employing the Harnack inequality
[45, Theorem 1.2], we conclude that # > 0 in RV .

Remark 4.5 Define
= inf L(y(t)),
CMP,r ylgrr max, (y (@)
with
Ii={y e C(0,11,W;) : y(0) =0, L(y(1)) < 0}.
Let us demonstrate that

CMP = CMP,r- (4.41)
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By the definitions of cyp and cvp,r, we know that epp < cmp,r. To establish the opposite
inequality, fix y € I" and put y.(¢) := pe * y(¢), with ¢ > 0, where (p;) C CSO(RN) isa
sequence of mollifiers. Then, y. € C([0, 1], W), y:(0) = 0, and y.(¢) € C®@®RN) N W for
all + € [0, 1]. Moreover, y (¢) and y,(¢) are uniformly equicontinuous. From

sup [lye(t) —y(@®)|lw — 0 as ¢ — 0T,
1€[0,1]

it follows that

max L(y. (1)) = max L(y(t)) as ¢ = 0.
max. (ye (1) max, (y(@) as ¢

Denote by . (¢) the symmetric decreasing rearrangement of y, (¢). Using the Polya-Szeg6
inequality (see [3, Theorem 2.7]), we have

||VJ/5*(1)||LP1(RN) <NWVyeOlipriwyy foralli =1,2.
On the other hand, it holds

/ G(y;‘(t))dxzf G (y: (1)) dx.
RN RN

Therefore, L(y;(¢)) < L(y.(t)) forall ¢ € [0, 1]. Since y,(t) € C®(RY), the convolution
Ye(t) is co-area regular (see [3, definition 1.2.6]), and so [3, Theorem 1.4] implies that
v € C([0, 1], Wr). Hence, y,;* € I'; and (4.41) is true. In view of this fact, we can study
L on W; and, modifying slightly our arguments, we can establish the existence of a radially
symmetric ground state solution to (1.1). Note that in this case we can take advantage of
the compactness of the embedding in Theorem 2.3 to arrive at u, — u in LY(R") for all

q € (p2, p3).

As byproduct of Corollary 4.1, we obtain that the set of ground state solutions to (1.1) is
compact, up to translations.

Proposition 4.3 The set
Spe={ueW: L) = crg, L'(w) =0}

is compact in W endowed with the strong topology up to translations in RN, Furthermore,
there exist two constants C, ¢ > 0 independent of u € Sy g such that

lu(x)| < Ce= ™ forall x € RV.

Proof Let (u,) C Sy . Then L(u,) = c g and L' (u,) = 0 for all n € N. By Theorem 3.1,
P(u,) = 0foralln € N. Proceeding as in the proof of Corollary 4.1, we can see that, up to a
subsequence and translations, u;, — u in W for some u € W\ {0} such that L(u#) = cLg and
L'(u) = 0. Thus, Sy g is compact up to translations in RN It remains to prove the uniform
exponential decay estimate. This will be done by following the strategy in Theorem 3.2.
Since each u,, solves (1.1), we derive from the proof of Theorem 3.1 that |u, | fulfills

—Ap ln] — A py Ly | + 20([un |7 4 |1, |27 < g1 (uy) in RY.

Exploiting the growth conditions of g and the boundedness of (u,) in W, we can adapt
the Moser iteration argument performed in Theorem 3.1 to infer that, for some T > O,
E77 ||LOO(RN) < Y foralln € N, thatis, Sy ¢ is bounded in L*(R"). Because ||u,, ||LOO(RN) <
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T and [|g(un)llpo@ny < Cy for all n € N, it follows from [24, Theorem 1] that u, €
Cllo’g (RV) for some o € (0, 1), and that there exists C = C(N, p1, p2, ¥) > 0 such that

Vuplipooqmyy < € foralln € N.

The above estimate implies that (u,) is uniformly equicontinuous in R¥| that is, for all
& > 0 there exists § = §, > 0 such that, if x,y € R are such that |[x — y| < 4, then
|y (x) — uy(¥)| < & for all n € N. This fact combined with u, — u in L?! (RY) ensures
that

lim sup |u,(x)| =0.
[x]=>+00 ;eN

Hence, with the help of (3.1) and p; < p», we can find R > 0 such that
g1(un) < (|l 4 |un|P27") in Br(0)'
Consequently,
—Apyltn| = Apyltn] + v(|un P 7" + 1y |77 < 0in Br(0).

Put ¢ (x) := TeRe*I¥| where

voo\P vo\®
0 < Kk < min R — N — .
[((m—l)) ((p2—1)> }

Clearly, |u,(x)| < ¢ (x) forall x| < R and n € N. On the other hand, we can see that ¢ sat-
isfies (3.24). Then it suffices to develop the same comparison argument given in Theorem 3.2
to achieve the desired exponential estimate. O

5 Decomposition result of bounded Palais-Smale sequences

This section is devoted to a second proof of Theorem 1.1. Motivated by [30, Theorem 3.1], we
prove a new decomposition result for bounded Palais-Smale sequences of L in the (p1, p2)-
Laplacian setting.

Theorem 5.1 Let B € R and (u,) C W be a bounded Palais-Smale sequence for L at the
level B. Then, up to a subsequence of (up), there exist | € N, (y,ll), . (y,ll) c RN and
wi, ..., w; €W such that the following statements hold:

(i) y,ll =0foralln e Nand|y,],' - y,{/| — 4ooasn — +ooforalll < j < j <L
(ii) un(- + y)—=wh in Wwith L'(w*) = 0 forall 1 <k <1, and w* #0if2 <k <1.
(iii) B =Timy oo L(tn) = Y4y L(wh).

(iv) Let vL =u, — Zi:l wk (- — yfl)for alln € N. Then ||vfl||W — 0asn — 4o0.

Proof We divide the proof into three main steps.

Step 1. Let y! = 0 for all n € N. Since (u,) is bounded in W, we may assume that, up
to a subsequence, u, (- + yD)—=w!in W, u, (- + y!) > wlin L (RY) forall g € [1, p3),
and u, (- + y,{) — w'ae. inRY , for some w! € W. Arguing as in the proof of Lemma 4.3,
we obtain

Vu,(+ y,ll) — Vvw! ae.in RV,

Pi
Vi (- 4+ yDI1P 72V, (- 4+ yH—=|vw! [Pi72vw!  in (L7TRY)N foralli = 1,2.

@ Springer



210 Page 38 of 59 V. Ambrosio

Using these facts, L'(#,) — 0 in W, and the compactness lemma of Strauss [12, The-
orem A.I], we deduce that L'(w') = 0. Without loss of generality, we may suppose that
lim,,—s 400 fRN G (uy,) dx exists. Set v,ll = Uy — w1(~ — y,{) = u, — w! for every n € N.
Thanks to (g1)—(g2), we know that G obeys (2.11). By Lemma 2.5, we have

lim G(uy) dx = f Gw"dx + lim / G}y dx.
n—-+4o0o RN RN n—-+4o0o RN

This combined with the Brezis-Lieb lemma [14, Theorem 1] (applied to (u,) and (Vu,))

shows that

— T _ 1 : 1
p= tm L(u)=Lw)+ lm L(v,).

Step 2. Assume that m > 1 and that for each 1 < k < m there are (y,’f) cRY andw* e W
such that the following statements hold:

(S1) y! =0foralln € Nand |y,{ —y,ﬁ —ooasn — +ooforalll < j < j <m.
(82) un(- + y5)—wk in W with L’ (w*) = 0 forall 1 <k < m,and w® #0if2 <k <m.
(83) Letv) = up — Y 4y wk (- — yﬁ) for all n € N. We have that (v)') is bounded in W,

lim G(vy)') dx exists, 5.1
n——+4oo RN
and
m
_ k . m
ﬂ—;L(w )+ Jim L)), (52)
Define

o™ := lim sup supf v |72 dx ).
n—>+00 \yeRN JBi(y)

We distinguish two cases: non vanishing and vanishing.
Non vanishing occurs, that is, ¢ > 0. Then, up to a subsequence of (u,), (S1)—(S3)
hold for m + 1.
Up to a subsequence, there exists (y"+!) ¢ RY such that
lim v |72 dx > 0.
n——+oo Bl(y’};lﬂr])
Thus, |y,’l”+1 - y§| — +ooasn — 4ooforall 1 <k < m (because v)'(- + yﬁ) — 0in
L}” (RM)), and, up to a subsequence, v/ (-+ ym+1)—w™+! in W for some w1 € W\ {0}.
By the definition of v}, w¥ (- + yk — y"*1) — 0in L] (R") and Vw* (- + yk — ym+1) — 0
in (L7 _(RM)N forall r € [1, p}) and for all 1 < k < m, we also have
m
un (43 =G+ D+ Y w ey D= i,
k=1
Since (u, (- + y,’l’“rl )) C W is a bounded Palais-Smale sequence of L, we can argue as in the
proof of Lemma 4.3 to infer

Vu, (- + y,’l”"'l) — vu"t!l ae. inRY,

Pi
[Vitn (- + Y TDPI=290, (- 4y = v Pi=2y g (LT @V )N forall i = 1, 2.
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In particular, Vv (- + y"+1) — Vw™*+! ae. in RV, Reasoning as in Step 1, we can prove
that L'(w™*!) = 0. Set v"*+! := v/ — w™*+1(. — y"+1) for every n € N. From (5.1) and
Lemma 2.5, we deduce

lim G <+y’”+‘>>dx:/ G"dx + lim f G+ ) dx,
]RN n—-—+o0o ]RN

n—+o0 JpN

which combined with (5.2) and the Brezis-Lieb lemma [14, Theorem 1] yields

I
NE

k . m
p LD+ nEI—OI—loo L(Un )

~
Il
—_

L@®)+ tim LOJC+y"h)

HNGERANGE

L") + [L(wm“) + lim LG+ y;"“))]

3
x

k . m+1
L™ +nl}r—}r—looL(v" )-

~
Il
—_

Hence, up to a subsequence of (u,), (S1)—(S3) hold for m + 1.

Vanishing occurs, that is, 6™ = 0. Then Theorem 5.1 holds with | = m.

Since (S1)—(S52) and (5.2) hold, it suffices to prove that ||v}’[lyy — 0 asn — 4o00. Let
us note that if (v,) C W and (w,) C W are two bounded sequences such that, as n — 400,

2
Z{/ |an|p' 2V, — |an|p"_2an) (Vv, — Vw,) dx

/ (lvn |p, |wn|pi_2wn)(vn - wn)dx] — 0,

then ||v, — wy|lyw — 0asn — +oo. Indeed, invoking the well-known Simon’s inequalities
[43, formula (2.2)] :

Uml™ 21 — Il ) — m) = erlm —mal” ifr > 2, (5.3)
Uml+ D> A 20 — 2l 2 ) — n2)1 = calm —mal* if 1 <7 <2, (5.4)

forallny, ny € RY, where ¢, ¢a > 0 are constants depending on r, we can see that, if p; > 2
then (5.3) gives

/ (|Vv P2V, — |Vw,,|”"72Vw,,) (Vv, — Vw,) dx
/ (Jvp |p, |wn|pi_2wn)(vn —wy)dx > cillvy — wy ”Wl Pi (RNY?

while if 1 < p; < 2 then (5.4), the Holder inequality with exponents - and 5=, and the
boundedness of (v,) and (w,) yield

pi

2
C. Up — W
2 o =l
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Pi

pi
2 2
< (/ (19017 72V 0y = 190172V, ) (Vo - an)dx) </N<|vm + [V |)Pi dx)
R R

—p;

Pi 2
L L 2 ) 2
+ (fRN (1017200 = ol 2w ) (o wn)dX> ([RN<|vn| + [wa )P dx)

pi
2
< c[(/N (\anlpi_2an - |Vw,,|Pi—2an) (Vg — Vw,,)dx>
R

Pi

o o 2
+ (A;N <|vn|p' zvn - |wn|p’ zwn) (vn — wn)dx> ]

Therefore, if we show that, as n — +o00,

(5.5)

then we can conclude that [|v)" |\, — 0 as n — +o00, as desired. Henceforth, we focus on
(5.5). Since (v}}') is bounded in W and ™ = 0, it follows from Lemma 2.2 that v’ — 0 in
L7(RN) forall ¢ € (p2, P3). Now, recalling the definition of / in (4.38), we observe that

m m
- p,‘—Z
Y ) ST L TR FOX
k=1 —
= E {/ Vi, |7 =2V u, Vo dx+v/ it | P2t 0" dx}
. N RN

L ) R e ()

i=1 = =
m

o [t () ()]

k=1 k=1
:/ hun)! dx + (L (), o)
RN

-2l
() e

m
+ /
N
RY = k=1

> (=)
= / h(up)vy' dx + 0,(1)
RN

o= S [l tsn o(Eat () (G (o)) ez

2

m

T () (ot

k=1 k=1
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B i;[/RN‘V(ki wk('—yﬁ))}pﬂv(kﬁ; wh (- =t ) Vol ax
+v/RN‘k§;w’<(. _y,’;) mz(ﬁ wk(._y’/;))v’rln dx],

where we have used the fact that (L' (u,,), vI') = 0,(1) because L' (u,) — 0in W’ and (v}})
is bounded in W. In view of (L' (w*), v+ yﬁ)) =0forallk=1,..., m, we see

[ o = [, - St () e 5 [ bt (g
RN Y | = ] 2 ).
- /;w _h(un) —km;h(wk(. —y}{f))- v dx+lé[;w h(wk)v,',"(~+yﬁ) dx
Z./]RN h(”n)_ih(w"(-—y,’j)) o dx—i(L’(wk),u,'f(.+}v”;)>

L k=1 ]

k=1

2

m
+ ZZ/RN [kalp"ﬂvwkvvf,"( . +y,’§) + u\wkl”"*zw"v,’;’(. +y,’;')] dx
k=1 i=1

=fRN :h(un —gh(w"(- —yﬁ)): VM dx
i ii/ﬂw (190 (- =)ot (- =) Vol vt (- =) 17 (- ok Jor] .
k=1 i=1

Therefore,

o= [ 93 (k) (k) o

i=1 k=1

~
Il

P G P b T )
= k=1 k=1
= /]RN |:h(un) —éh(wk<.—y§>):| v dx + on(1)

m 2

30 B I O e O R () [ ey g
IR0 SR B G ST E
oo [t (o)

p,-fz& k(- =yE) ot )

k=1 k=1

= An+on(1)+ ) _ Byj — Cn. (5.6)
k=1

We claim that

limsup A, <0, (5.7)

n—+400

@ Springer



210 Page 42 of 59 V. Ambrosio

m
Jim Z} By =0, (5.8)
and
lim C, =0. 5.9)
n—-+00

Once verified (5.7), (5.8), and (5.9), it follows from (5.6) that (5.5) is true. We start by
proving (5.7). Foralln € Nand M > O, put Q, y := {x € RN . [t (x)] = M}. We begin
by showing that

lim sup sup/
M—+o00 \neNJQ, »

Pick s > N and set

h(un) =Y h(w* (- = y8))

k=1

|v,’;'|dx> =0. (5.10)

w] = P
= 1fP2—N,

*’f
wz::{pZ ipa <N,

and

s ifpp =N.

Note thatw; € (1, pf 21) and 21'2:1 wi, = 1. Using the Holder inequality and the boundedness
of (v) in L“2(RY), we obtain

*/g.zn,M

m
< (nh(un)nm @) T Y @ = 35 o (QW‘M)) Wy lpea @y (5.11)

k=1

h(un) =Y h(w* (- = y5))

k=1

m
lv, | dx

m
<Co (nh(un)nm @) T Y M@ ¢ = 35 o (Q,,_m) :

k=1
for some Cy > Oindependent of ¢, n, and M. Exploiting the boundedness of (v') in L*? RM)
once again, we have
C1 = 012, vy = 1001520 g, ) = MR ] foralln € Nand M > 0,
and so

sup |2, M| = 0 asM — +oo. (5.12)
neN

Now, we observe that, for all v € W, it holds

_w (p2
—1 -1
I g = 12l ™ R g (5.13)
Let us recall that (21) and (h2) imply that for all ¢ > 0 and & > O there exist C¢, Cg o > 0
such that, for all r € R,
- 1 1 1-w 1 x|
2700 Co || +2785|t|”2* if pp <N,
RO < 10y L 1 (5.14)
2L 42 e Dy <a|t|N 1) if p» = N.
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Using (5.14), (4.2), (2.4), and that |¢|”1~! < |¢|P2=1MP1=P2 for all |t| > M, we see that, for
all [t] > M,

R Celt|1(P2=D M1 (P1=P2) 4 g |1|P2 if pp <N, 5.15
t < N\ . .
lh(@OI"! = 7 |¢t|@1P2=D) prer(p1=p2) 4 o @y (Olwl|l|m if pp=N ( )

where & > 0 is such that xw; K VT < ay, and K > 0 is such that [luy || 1.0, gy) < K for
all n € N. Then, taking into account (5.13), (5.15), and the boundedness of (u,) in W, we
have, when p» < N,

sup (nh(un)nmm ot Z 1A = yENIGh o, M)>
ne

< sup{[cg||un||“"”’2‘”

Mwl(m*m) 123 ]
neN Lere2=D (@, m Felenls g, )
ky @1 (p2—1) w1(p1—p2) k P2
+I;[Cg k=g o M Felwte =iy o
w1 (p2—1) ®1(p1—p2) P ]
< rslgg[[Cg||u,,||Lwl<p2_l>(Qn M el
m
kv j@1(p2a—1) 1(p1—p2) P
+;;[ el C = DI g, M el “L"Z(RN)]}

<

e e,

—1

w1(p1—p2) 1-2up=h

C.M sup |2, m| . tg
neN

and when py = N, utilizing (2.3), we find

sup

sup (nh(unnms2 +Znh<w C=ITh g M))

(p2—1) w1 (p1—p2) s
fsu{CHullwl - MPLPLI=PD) e Dy | awy uy | N-T
11\3] e.alinll, o) (py ])(Qn‘M) N 11Un
MerP1=p2) 4 o

Ll(Qn,M)]

_N_
Dy (awllwkc —y5>|~—'>

_N_
Dy (awllunl"’—l>
—1
Ceallwk (- — yby @1 P2—1)

Me1P1—p2) 4 ¢
k=1 La)l(l72_l)(ﬂll,M) +

L1270 (@, 4)

Cellun 117271

LY (Qu,m)
L1 (/}2—1) (Qn

)Mwl(pﬁpz) +e
M

LI(RN):|

[
m
" Z[Csﬁa”wk(- — yhyertp2-h
el
|: Dy (aw1|wk|%> LI(RN):H

1—@1P2—D
<Cy Cg’aMwl(l’l—m) sup |2, p1 ) +el,
neN

for some C> > 0 independent of ¢, n, and M. Exploiting the above estimates, (5.11), and
(5.12), we arrive at

lim sup sup/ lvp'|dx | < Cse.
M—+oo \neNJQ, u
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Because ¢ > 0 is arbitrary, we obtain

lim sup sup/
M—+o00 \neNJQ,

Now, we denote by x, » the characteristic function of the set {x € RN . [V (x)] < M}.
Clearly, forall j =1,...,mand R > 0, it holds

h(un) =Y hw (- = y5))
k=1

|v;"|dx) =0. (5.16)

h(un) = Y h(w* (- = yp))
k=1

= / Xn,M( +yrjl)
Br(0)

/ o 0| dx
Br(n)

hun G+ ) = hw?) = 3" w4y = yE)| ¢ + vl dx

=y

<M IhGun -+ ¥3)) = h@?)| + 3 1h@h -+ v — yo1 | dx.
Bg(0) k#j
Since u, (- + y4) — w’ in L _(RY) forall r € [1, p}), |y) — y¥| — oo for each j # k
(andsow*(-+y; —y%) — 0in L} (RN)forallr € [1, p}) and j # k), and / is a continuous
function satisfying (k1) and (h2), it follows from the compactness lemma of Strauss [12,
Theorem A.I] that

m
h(un) = Y h(wk(- = y5)

lim  XnM lvp'ldx =0 forallj=1,...,m and R > 0.
n=>+0 JBr(y) o
(5.17)
Define
m
Vg =RV \ U Br(Y).
k=1
Because & fulfills (k1) and (h2), we can find C3 > 0 such that, for all 1 € R,
, C3(|t|P1=" + [r27 1) if py < N, < 15
N < . .
MOT=1 6 (m =1 + o (™)) it pa = N, G18)
Then, due to (5.18), forall k = 1, ..., m, we have, when p < N,
k k m
| tolhtut = shyopiax
Vr
<o [t = ahin Tt b= B ds
vk (5.19)

k k -1 k kyyPr—L
<G [nw = I I o ey + ¥ = YN (VR)Hv,THLp;(RNJ

ket

m
* p% = 1 s
s o (RN)] or(1)

k —1
< C3 |:||w ”lel(B;(O))”U:ln”Lbl(RN) + ”w
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and when p = N, fixed s > N such that o ;> < ay, we obtain

/ X, m 1Rk (- = yE) o dx
VR

_N_
< c3/V <|wk<- — kP p oy (a|w"<- —yhi = )) v | dx
R

s
log s v
Ll(VR) n LS (RY)

”v;’/ln”Ls(RN) =(1R(1),

-1 K} _N_
<G Pw’% =IO (v 100t ey + H<I>N (“s — =y T )'

s—1

kyp1—1 m ol Paraa
<03 [ k1P L o Iy +”<I>N (a w |N—'>
{ LBy T IR ED s=1 L1 (BR(O)

(5.20)

where og (1) — O uniformly in n and M as R — +o0. In a similar fashion, we can prove

/V Xn M| (Z |w* (- — y,’i)l) dx = og(l). (5.21)
R

k=1

Finally, we estimate

/ h(un) Xn,mitn dx.
Vr
Since & is odd and satisfies (k1), there exists T > 0 such that h(z)t/|¢t|P! < O for all
0 < |t] < t,andso
h(t)t <0 forall |t] <. (5.22)

Take g € (p2, p3). From (h2), we deduce that fixed & > 0 there exists C; > 0 such that, for
all |z] > T,
Celt]? + ¢ |12 if pp <N,

. 5.3
Colt]d +edy (mn%) if py = N, (5.23)

lh(D)t] < {

where o > 0 is such that aK% < apy. Note that C, depends on ¢ and ¢ when p> < N,
while it depends on ¢, g, and « when p, = N. Therefore, thanks to (5.22), (5.23), and
0 < xu.m <1, weget, when pp < N,

/ h(un)Xn,Mun dx = / h(Xn,Mun)Xn,Mun dx
VR VR

= / h(Xn, mtn) Xn,MUn dx
VRHHXn,MMn‘ET}

%
2

p
<
=¢ ”un”L”;(RN

q
)+ Cellun “L‘I(VR)
< Cqe+Celluy ||(zq(vR),

and when p; = N, using (2.3), we find

/h(un)Xn,Mundx:/ h(Xn,mn) Xn,mtn dx
VR VR

< [ h(Xn,M“n)Xn,Mun dx
VRO Xn,mun|=7}
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N
< e ||Py(alu,|N-T )”LI(]RN) + Celluy ”(zq(vk)

<¢ C4 + Cs””n”%q(VR)v

for some C4 > 0 independent of &, n, M, and R. Now, because u,, = v!I' + ZZ’ZI wk(~ — y,’i),
vt — 0in LY (RM), and recalling the definition of Vg, we see

m
1im Sup [|atn| Lo (vg) < lim sup (nv,z"nm(m) + ) lw - y,’:)nm(m)
— 400

n——+o00 n

k=1
m
<timsup [ Y " Ilw*llLes0) | = 0r(D),
n—+00 k=1
which yields
limsup/ h(un) xn,mundx < Cse+Ceor(1).
n—>+o0 JVp
Accordingly,
lim sup (lim sup/ h(un) Xn, min dx) < Css. (5.24)
R—+o00 \n—>+00 JVp

In view of v = u, — Y j; wk(- — y%), (5.19), (5.20), (5.21), and (5.24), we obtain

m
lim sup |:1im sup/ (h(u,,) — Zh(wk(. _ yllj))) Xn, MUy’ dx:| <Cse.
Vg

R—+o00 | n—>+00 =1

Since ¢ > 0 is arbitrary and taking (5.17) into account, we have

lim sup /};N (h(un) - Zh(wk(. _ yf;))) Xn.m Uy dx < 0. (5.25)

n—+oo k=1

Combining (5.25) with (5.16), we conclude that (5.7) holds. Next we deal with (5.8) and
(5.9). We only prove (5.9) because the proof of (5.8) follows the same pattern. We first show
that, foralli =1, 2,

/ D ovut— )
L P

Fix i € {1, 2} and take R > 0 such that

pi—2 m
(Z Vwk(- — y{;)> v"dx - 0 asn— +oo.  (5.26)
k=1

IVwhlLri ooy <& forallk =1,....m. (5.27)

Thus,

/ Lo vete=am
RY =1

=
RN
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m
Z /BR (J’n

j=
=:D,+ E,.

pi—l1 pi—l

[Vt dx —|—/ [Vt dx
Vr

ZVw (- —yn

k=1

ZVw (: —yn

Since |y,; — v — 4ooasn — +oo forall j # k, we see that Vwk (- +yn - yn) —

0in (L)' (RM)N as n — +oo for all j # k. We also know that Vv!"(- + y¥) — 0
in (L;:)'C (RN, ]RN))N asn — oo forall k = 1,...,m. Then, applying the Holder and

Minkowski inequalities, we get

pi—1
[V (- + yi)l dx

m

DnSZ/

j=1

va ( +)7 _yn)
k=1

Br(0)
pi—1

IV ¢+ vl Lri (B ooy
LPi(BR(0))
pi—1

> vk 4y =3k

IV (- + yé)”Lpi (BR(0))
LPi (BR(0))
m pi=l
j k ok
< Z (|Vu)./ ||Lp,' (BR(0)) + Z va ¢+ — }n) LPi (BR(O)))
Jj=1 k#j
On the other hand, using the boundedness of (v};’) in W, the definition of Vg, and (5.27), we
obtain

Vw]-‘rZVw (- +y — 5
k#j

Vo' (- + yi)”LPi(BR(())) =on(1).

m pi—1
Ey < > Vuf(—yh IVl Lo ey
k=1 LPi (Vg)
m -1
< (Z IVw*(- —y,’;>||w<VR>> IV o Il i vy
k=1

IA

m pi—1
(Z ||Vu)k||Lm(B;(0))> ||Vv;,n||[‘pi RN)

m pi—1
Cs (Z IV [l (Bg(0)>) < Ceel ™.

k=1
Consequently,

0 < limsup(D, + E,) < CeePi ™!

n——+00

Because ¢ > 0 is arbitrary, we infer that D, + E,, — 0 as n — 400, and so (5.26) is true.
Analogously, we can verify that, foralli = 1, 2,

/ D owt =y
RY =1

pi—2

m
(Z wh( — yﬁ)) vitdx - 0 asn — +oo. (5.28)
k=1
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Combining (5.26) and (5.28), we deduce that (5.9) is valid. As a result, [[v)'[yy — O as
n — +o00. This completes the proof of the vanishing case.

Step 3. We proceed by iteration as in Step 2. Indeed, if 6" > 0, then the Brezis-Lieb
lemma [14, Theorem 1] ensures that, foralli =1, 2,

0 = o i vy = lttalis s, v, Z 1w 1571, vy F 00 (D),
from which
m 2 2
DD I I ey = D Ntnliga e,y + 0n (D). (5.29)
k=1 i=1 i=1
Since (u,) is bounded in W, we know that there exists M > 0 such that

lunllyy < M foralln € N. (5.30)

On the other hand, we can prove that there exists C > 0 such that

2
Z W, pyy = C forallk =1, (5.31)

In fact, using Remark 4.2, we can find C’ > 0 such that
lwklw > € forallk =1,...,m. (5.32)

Now, let z € W \ {0} be such that ||z||yy) > K for some K > 0. We aim to confirm that, for
some K’ > 0,

”Z”WI Pl (RN) + ”Z”Wl PZ(RN) K/'

For simplicity, we assume that ||z|| 1.0, ®N) = Izl yy1.pa RN Let us consider the following
cases:

. K
o if ”Z”Wl,l’l(RN) =7 = ||Z||W1.pz(]RN)athen

[E4 s + lzlly; > lzlly; = (K/)P,

wlri(RN) wlp2(RN) wlp2(RN)

e K
[ 1f7 < ||Z||Wl,p|(RN) < ||Z||W1.]72(RN),then

lzll}) + llzlly? > (K/D)P + (K /2P,

WII’I(RN) W]FZ(RN)

o if zlly1m ®Ny = ”Z”WLPZ(RN) = 7, then

K
K <|zllw = ||Z||W1 PI(RN) + ||Z||W1 pz(RN) ||Z||W1 P1(RN) + E

from which ||z 1. PIRN) 2 2 Hence, ||z||”! + |1z||P?
S
Therefore, (5.32) and the above argument show that (5.31) is true. Combining (5.29),
(5.30), and (5.31), we see

Wl Pl (RN) Wl pQ(RN) = ”Z”Wl Pl (RN)

2
mC:iC < ZMP" +1,
k=1 i=1
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and thus the vanishing case must occur for some my € N and Theorem 5.1 holds with [ = my.
The proof of Theorem 5.1 is now complete. O

Now we are ready to give a second proof of Theorem 1.1.

Second proof of Theorem 1.1 By Proposition 4.1, we know that there exists a Pohozaev-
Palais-Smale sequence (u,) C W of L at the level cyp > 0. By virtue of Lemma 4.2,
(up) is a bounded Palais-Smale sequence in WW. Now we note that if w € W\{0} is any
critical point of L then L(w) > cyp > 0. In fact, due to P(w) = 0, we can use Lemma 4.4
to construct a path y € I' such that max;¢o,1] L(y (t)) = L(w). Hence, L(w) > cmp, as
claimed. Applying Theorem 5.1 with 8 = cpmp > 0, we see that, up to a subsequence of (i),
there exist/ € N, (y}), ..., (y}) € RN and wy, ..., w; € W such that properties (i)—(iv)
in Theorem 5.1 hold. If/ > 3, or = 2 but w! s 0, then items (ii) and (iii) of Theorem 5.1
yield
I
emp > ) L(w*) > 2emp > v,
k=1

that is a contradiction. Thus, [ = 1, or [ = 2 with w! = 0. Utilizing items (i) and (iv) of
Theorem 5.1, we deduce that u, — w! — 0in W, or u,, — w2(~ — y,%) — 0 in W with
| y5| — 4-00. Therefore, up to a subsequence and translations, u, — u in W for some
u € W\ {0} such that L(u) = cpp and L'(u) = 0. Arguing as in the last part of the first
proof of Theorem 1.1, we conclude that u is a ground state solution to (1.1). O

6 Monotonicity trick: third proof of Theorem 1.1 and proof of
Theorem 1.2

The third proof of Theorem 1.1 and the proof of Theorem 1.2 will be obtained by employing
two abstract results based on the monotonicity trick. First we introduce some notations and
definitions.

Let (X, || - ||) be a real Banach space with dual X’, I C (0, +00) be a nonempty compact
interval. Let (L) be a family of C! functionals on X with parameter A € I of the form

L,(u) :=A(m)—ABu) foriel,

where A, B € C!(X, R) are such that A(0) = 0 = B(0), B > 0 on X, and either A(x) —
+o0 or B(u) — 400 as ||u|| - +oo.
We say that (L, ) has a uniform mountain pass geometry if, for every A € I, the set

o= {y e C([0, 1], X) : y(0) = 0, Ly(y(1)) <0}
is nonempty and

C = inf max L t)) > 0.
wp, = inf max Ay (@)

The next result is an alternative version of [28, Theorem 1.1] (see also [30, Theorem 2.1]).

Theorem 6.1 [28, Theorem 1.1] If (L)) has a uniform mountain pass geometry, then

(i) for almost every A € I, L) admits a bounded Palais-Smale sequence (uﬁ) C X at the
mountain pass level cvip .y, that is,

sup [lu*| < 400, Ly(u') — empy and Liu') — 0in X',
neN
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(ii) the mapping A — cmp. is left continuous.

When A and B are even, we can extend the previous result by considering a suitable
geometric condition.

Forevery k € N, let Dy := {x € RF x| <1} and SF' = {x e RF : x| = 1}.

A family of even functionals (L, ) with parameter A € [ is said to have a uniform symmetric
mountain pass geometry if, for every k € N, there exists an odd continuous mapping Yo :
Sk=1' — X \ {0} such that

max Ly (yox(1)) <0 uniformlyin A € I,
leSk=

the class of mappings
Ty :={y € C(Dk, X) : y is odd and y = yg on S¥~1}
is nonempty, and
= inf L ) 0.
Ck.p = Inf max ry() >
It holds the following result.

Theorem 6.2 [30, Theorem 2.2] Assume in addition that A and B are even. If (L)) has a
uniform symmetric mountain pass geometry, then

(i) foralmostevery A € I, L) admits a bounded Palais-Smale sequence (ui’”) C X at each
level ¢y ;. (k € N), that is,

sup flug |l < +oo, Ly (up,) — cks and Li(up,) — 0in X',
neN

(ii) for every k € N, the mapping A > c ;. is left continuous.

From (g3) we know that G1(§) — G2(&) > 0. Then there exists Ay € (0, 1) such that
rMG1(E) — G2(§) > 0.Fort € Rand A € [Ag, 1], define

t
gH (1) :=2g1(t) — g2(t) and G*(1) := /O g"(s) ds.

Let us introduce a family of even functionals of class C! as follows:

2

L (u) := Z !

—|
i1 Pi

forallu € Wand A € [Xg, 1]. Clearly, A, B € CI(W, R), A and B are even, A(0) = 0 =
B(0), B> 0,and A(u) — 400 as |ju|lyy — +oo (due to (3.3)). Moreover,

[Vu P N Gr(u)dx — A Gi(u)dx =: A(u) — AB(u),
LPERY) RN RN

L) =Li(u) <Lu) <L),(u) forallu e Wand X € [, 1]. 6.1)
Next we prove some uniform geometric properties for the functionals L.
Lemma 6.1 The functional L, fulfills the following properties:
(i) There exist ro > 0 and py > O (independent of ). € [ro, 1]) such that

Ly(u) > L) >0 forallu € W such that 0 < |lully < ro,
Ly(u) > L(u) > po forallu € W such that ||ullw = ro.
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(ii) For every k € N there exists an odd continuous map yor : S*~' — W independent of
A € [Ao, 1] such that

Lyor()) < Ly (yor (D)) < Liy(yox()) <0 foralll € S,

Proof The proof of (i) follows from (6.1), arguing as in the proof of Lemma 4.1, and using
Remark 4.1. For what concerns (i), recalling that G*(£) > 0, we can argue as in the
proof of [13, Theorem 10] to see that for every k € N there exists an odd continuous map
7 SF=1 = Wi, such that

0¢ m (S5 and / GM(m())dx > 1 foralll e S¥1.
RN

Define yor (1) (x) := mr () (x/1) : S¥=1 — W, with r > 1 undetermined. Then,

2 [N_Pi
Ly Gok() =Y

i=1

2
>
i=1

Choosing t = t; > 1 sufficiently large, we complete the proof of the lemma. O

L

pPi N A
IV, gy =1 [ | G d

N > —00 ast — +oo.

[N_Pi
DI, -
pi ||V7Tk( LPi (RN)

Set

2
. N —pi pi A
Py (u) := Z( o ) IIVH||L;;,-(RN) - N/]RN G*(u)dx.

i=1 !
Note that if A = 1 then P; = P. Proceeding as in the proof of Lemma 4.4, we obtain the
result below.

Lemma 6.2 Assume that A € [Ao, 1] is fixed and that w € W\{0} satisfies P, (w) = 0. Then
there exists y € I'; such that w € y ([0, 1]) and max;>o L, (y(t)) = L, (w).

Lemma 6.3 Assume that A € [Ao, 1] is fixed and that (u,) C W is a bounded Palais-Smale
sequence for L at the level cmp, ). Then, up to a subsequence, there exists (y,) C RY such
that the translated sequence (u, (- + y)) is a convergent Palais-Smale sequence for L, at
the level cymp, .

Proof The proof is similar to the second proof of Theorem 1.1. However, we give the details
for completeness. We aim to determine a suitable sequence (y,) C RN such that (i, (- + yu))
is strongly convergent in W. Note that if w € W \ {0} is any critical point of L, then
Ly(w) = emp,n > 0. In fact, Py(w) = 0, and thanks to Lemma 6.2 we can select y € Iy,
such that max;¢[o,1] L, (y (t)) = L (w), whence, Ly (w) > cmp, 5, as required.

Now we apply Theorem 5.1 with L = L; and 8 = cmp,x > 0. Thus, up to a subsequence
of (u,), wecanfind/ € N, (y,i), R (y,ll) c RY and wy, ..., w; € W such that properties
(i)—(iv) in Theorem 5.1 hold. If / > 3, or/ = 2 but w! # 0, then it follows from (i7) and
(iii) of Theorem 5.1 that

l

k
CMP,). = ZLx(w ) = 2cMP,x > CMP, 1
k=1

that is a contradiction. Therefore, I = 1, or [ = 2 with w! = 0. Using items (i) and (iv) of
Theorem 5.1, we reach the desired conclusion. O
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In order to prove Theorems 1.1 and 1.2, we establish the next useful results.

Lemma 6.4 Assume that (7,) C [Ao, 1] and (un,) C W. If

sup Ly (u,) < C and inf Py (u,) > —C,
neN neN

for some C > 0, then (u,) is bounded in W.

Proof Since
1 & 1
5 DIVl oy = Ly W) — ~ Pau () £2C foralln € N,
i=1

we infer that (|| Vu, |7, &)

in the proof of Lemma 4.2 to obtain the assertion. O

) is bounded in R for all i = 1, 2. At this point, we can argue as

Lemma 6.5 Assume that (A,;) C [Xo, 1), X is any subspace of W, and u,, € X is a critical
point of the restricted functional L) |x for everyn € N. If A, — 1 asn — 400, (u,) is
bounded in W and L,,(u,) — c asn — +00 for some ¢ € R, then (u,) is a bounded
Palais-Smale sequence of L) |x at the level c.

Proof Due to the boundedness of (u,) in W, we deduce from (3.1)=(3.2) that
(/RN G1(un)dx) is bounded in R and (g1 (uy)) is bounded in X’. Thanks to A, — 1 and
Jy, (Up) = casn — 400, we see

L(uy) = Ly, (up) + 4y — 1) /N Gi(up) dx = Jy, (uy) + 0n(1) = c + 0, (1),
R
(L|X)/(un) = (L)»,, |X)/(un) + A — Dg1(up) = Ay — g1 (uy) = 0,(1) in X'

Consequently, (u,) is a bounded Palais-Smale sequence of L, |x at the level c. ]

Third proof of Theorem 1.1 Let X = W. In view of Theorem 6.1, there exists a sequence
(An) C [A0, 1) such that

(i) Ay > lasn — 400,
(ii) cmp,), — CMP,1 = CMP as 1 — +0Q,
(iii) L;, has a bounded Palais-Smale sequence at the level cpp,j, for every n € N.

Utilizing Lemma 6.3, we obtain a critical point u, of L, with L (u,) = cmp,,,. Hence
Py, (u,) = 0 for all n € N, and because sup, oy L, (4n) = SUP,cny CMP,A, < CMP,iy> WE
can employ Lemma 6.4 to infer that (u,) is bounded in YW. From Lemma 6.5, we derive that
(uy,) is a bounded Palais-Smale sequence of L at the mountain pass level cvp. Exploiting
Lemma 6.5 once again, we find a nontrivial critical point u € W of (1.1) with L(u#) = cmp-
Arguing as in the first proof of Theorem 1.1, we arrive at L(#) = cMp = CLE = CpO- ]

From now on, we focus on the proof of Theorem 1.2. Let us begin by proving the following
compactness result.

Lemma 6.6 Every bounded Palais-Smale sequence (1) of the restricted functional L|yy,
has a strongly convergent subsequence in V.
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Proof Since (u,) is bounded in W, according to Theorem 2.3 we may assume that, up to
a subsequence, u,—u in Wy, u,, — u in L4 (RM) for all ¢ € (pa, p3), and u, — u ae.
in RV . Reasoning as in the proof of Lemma 4.3, we discover that, up to a subsequence, as
n — 400,

Vu, - Vu ae.in ]RN,
_Pi
IVitn P 2V, —|Vu|P>Vu  in (L7 RY)N foralli =1, 2.

From the proof of the vanishing case in Step 2 of Theorem 5.1, we conclud.e that v} =
U, —u — 0in W;. m]

For each A € [XAg, 1], by Lemma 6.6, we know that L, |, satisfies the bounded Palais-
Smale condition, that is, any bounded Palais-Smale sequence for L, |yy, converges, up to a
subsequence.

For every k € N, we consider the family of maps

Iy :={y € C(Dg, Wr) : yisodd and y = py on Skil},

where yoi is defined in Lemma 6.1-(i7). Note that I'; is nonempty because it contains the
mapping
o
(o) e | 1710 (i57) foro € D\ (0),
0 foro = 0.

From Lemma 6.1-(i), we see that, for all y € I'y,
y @) N {u € Wi 2 lullw = ro} # 9.
Then the symmetric mountain pass value ¢k ; of Lj |y, given by

¢k := inf max Ly (y (o))
y el oehy

is well-defined and ¢ 5, > ck,1 = po > 0. Our aim is to prove that ¢x,; — +0o0ask — 4-o0.
We will use a comparison argument as in [25, Sections 2 and 3]. Fix po € (p2 — 1, p5 — 1)

and define the continuous functions f, f : R — R by setting

Fy = | @O+ (P =1 4 P27 F fort > 0,
TS0 fort < 0,
_ 1P SUPze(0,1] C%) fort > 0,
f@® =470 B fort =0,
—f(=0 fort < O.

Let F(¢) := f(f f(r)dt and F(@) := fot f(r) dt. Inspired by [25, Lemma 2.1 and Corollary
2.2], we establish the next result.

Lemma 6.7 The following properties hold:

(i) There exists 8o > 0 such that f(t) =0 = F(t) forall t € [—8, Sol.
(ii) We have F(t) > G(1) + v (l% 4 %)for all 1 € R.

(iii) 1t holds 0 < (po + D F (1) < f (1)t forall t € R.

(iv) The map t — f(t) — v(|t|P' =1t + |t|P2~ 1) satisfies (g1), (g2) and (g3).
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(v) f(u,,) — .f(u) in LPN (RN)for every sequence (u,) C W, such that u,—u in W, and
u, > uae in RN, where

pPNi= 7P .
~— ¥ p2=N.
Proof The item (i) is evident from the definition of v. The item (ii) is a consequence of
F@0) = f(0) = g@) + v~ 417271 forallz > 0.

Concerning (iii), we first observe that the map ¢ € (0, +00) f(t)/t’70 is nondecreasing.
Thus, forall r > 0,

O DEO = [) [f(t) — (po+ D f(r)]dr
- /(; [;pO% —(po + l)rﬂo%] i
L2 0]
z/o [ﬂ’ W—(poﬂ),p W] o,

In order to check (iv), we clearly have that t f@) — v(|t|1_"_lt + [¢|P27 1) fulfills
(g1) and (g3). To verify (g2)’, it is enough to demonstrate that f satisfies (g2"). Suppose
1 < p1 < p2 < N. Note that, for all t > 0,

FO _ ipy /(@) f(@) !
S =1 sup T = Su 1 -
172 re,] T re(0,] P2 P2 PO

Since f obeys (g2), for all ¢ > 0 there exists T, > 0 such that
f(@)

2ot

<e forallt > 7,.

Put
Sf(@)

2o

C. := sup

O<t<t,

Then we see
*_
f@ |27

12ea

f(@)

2o

sup
7€(0,7¢]

tpi‘—po

&

<max{Ce———, €¢,
-L—pz_p()

, f®
imsup —
t—+oo tP27

fo _ {

|

*__ k
P20 1, 1)

from which

i <e.
Because ¢ > 0 is arbitrary, we get the desired assertion. When p> = N, it suffices to show
that

L)N =0 foralla > 0. (6.2)

1ol N-1

lim

t——+00
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Considering that

N
F@) 1 f@) f)y el
— Sup = Sup N
T€(0,1] 7 popalt| N-T palt|

L L ?
N— N—

tPoectlt|
and f satisfies
f(@)
N

1Poputlt| N1

lim
t—>+00

:O7

we can argue as in the case p» < N to achieve (6.2). Finally, we prove (v). Let u,—u in W;
and u, — u ae.in RV, Invoking Lemma 2.3, we know that if N > 2, p € [1, +00) and
v e WP (RN), then

N—1
)| < CN, p) IxI” 7 [lvllyip@yy, forallx e RV \ {0}.

Hence we can find R = Rs, > 0 such that |u,, (x)|, [u(x)| < 8 forall |x] > Randn € N.
Therefore, in light of (i), we only need to ascertain that f (uy) — f (u) in LPN (Bg(0)).
As (uy,) is bounded in WhP2(RVY), we may assume that there exists M > 0 such that
Nl @yy <M for all n € N. Set

[r]P2~! if pp < N,

R() = N
Sy (aft|¥-T) if pp =N,

N
where o > 0 is such that apyM¥I-T < ay. From (ii), we deduce that for every ¢ > 0 there
exists 1, > 8o such that | f(¢)| < e R(¢) for all |t| > t.. Define

f(@  forlt| <t,
fay:=1 Ff@) fort>t,
f(—t,) fort < —t,.

Let us observe that |f(t) — f(t)| < 2¢R(t) for all t € R. On the otheg hand, sincie f is
bounded and continuous in R, and u,, — u a.e. in RV, we know that fw,) — f(u) in
LPN(Bg(0)). Now we note that

If @n) = FOl on (B0

< fn) = F@n)lipen ey + 17 @n) = F@lipey gy + 1F @ = F@ Loy 30
<2 [R@nl oy @y + 1F @) = F@ll Loy g0y +28 IR Loy @w)

< Ce+lfwn) = F@llrn g )

where we have used the fact that the boundedness of (u,) in wlp2 (RM), our choice of «,
(2.4), and (2.3) yield

—1
sup IR py @y = sup (I P2 <C' ifpp <N,
nel nJLPN (RV) — n pz(RN)

1
N P
sup ||R(”n)||LPN(]RN)<suP f Dy o:pNMNIXI (M)Nfl dx ! <C” ifpp=N.
neN RN M
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Thus,
limsup || f (n) — f @)l Lon Br0)) < C &,
n—+oo
and because ¢ > 0 is arbitrary we get the assertion. O

Lemma 6.8 The sequence of symmetric mountain pass values (ci,1) is such that cy,1 — 400
as k — 4o0.
Proof Let us introduce the comparison functional J : W; — R by setting

2

Tw=) (||w||Lp,(RN) vl v, ) — /RN F(u)dx.
i=1
It is not difficult to check that J has a symmetric mountain pass geometry and that it satisfies
the Palais-Smale compactness condition. In fact, Lemma 6.7-(iv) ensures that O is a strict
local minimum point of J. The odd continuous mapping yox given by Lemma 6.1 is still
valid here since Lemma 6.7-(ii) guarantees that

L(u) > J(u) forallu e W;. (6.3)
Let us define the symmetric mountain pass values of J as follows:

dy = inf max J(y(o)) forallk € N.
yely o€y
Using Lemma 6.7-(iii) and p; < p» < po + 1, we can verify that every Palais-Smale
sequence of J is bounded in W;. Indeed, if (u,) C W; is any Palais-Smale sequence for J,
that is, (J(u,)) is bounded in R and J'(u,) — 0 in W/, then we see that, for all n € N,

CA+ llunllw) = J(un) — (J"(un), un)

po+1

2
1 1 pi
= . ; — pO + 1 |:||vun| LPi (]RN) + v“un“LPi (]RN)]

_ 1 _
- /RN [F(un) - mf(un)un] dx

2
1 1
> (E o+ 1) Z [”V“””Lm @+l (RN)]

which implies that (u,,) is bounded in W;. Up to a subsequence, we may assume that u, —u
in Wy, up, — uin L4RY) forall ¢ € (p2, p3), and u, — u a.e. in RV. Arguing as in the
proof of Lemma 4.3, we find that, up to a subsequence,

Vu, - Vu ae.in ]RN,
_Pi
IVitn P 2 Vu,—|Vu|P=>Vu  in (L7 RY)N foralli =1, 2.

To confirm that J satisfies the Palais-Smale compactness condition, we demonstrate that (i)
has a strongly convergent subsequence in W;. Utilizing J'(u,) — 0 in W, and the above
convergences, we deduce that (J'(u), ) = 0 for all ¢ € W;. In particular, (J'(u), u) = 0,
that is,

2
> (U912 o,y + V2, o, =/RN Fudsx.

i=1
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This fact, combined with

2
Z <||Vun| Ty TV luall], (RN)) = fRN F ) dx + o, (1),

1=
the Brezis-Lieb lemma [14, Theorem 1], and Lemma 6.7-(v), shows that, up to a subsequence,
u, — u in W;. Reasoning as in the proof of [25, Lemma 3.2], we can see that dj is a critical
value of J for all k € N and that d; — +00 as k — 4o00. In view of (6.3), we obtain that
ck,1 = di for all k € N. Consequently, cx,; — +00 as k — +-o00. ]

Now we are ready to provide the proof of the second main result of this paper.

Proof of Theorem 1.2 Let X = W;. By Theorem 6.2, there exists a sequence (1,) C [Ag, 1)
such that

(i) Ay > lasn — o0,
(i) ¢k, — ck,1 asn — 4oo forevery k € N,
(iii) L;,,|w, has a bounded Palais-Smale sequence at the level ¢, for every k, n € N.

Then, for every k, n € N, the restricted functional L;, |y, has a critical point uy , with
Ly, (ukn) = ck,,. The Palais principle of symmetric criticality [40] and the Pohozaev
identity yield Py, (ux,) = O for all k,n € N. Since sup, cy Ly, (Uk,n) = SUP, ey Chp,y <
Ck,79» We can apply Lemma 6.4 to infer that (u,) is bounded in W;. From Lemma 6.5, we
derive that (uy ,) is a bounded Palais-Smale sequence of L|yy, at the level ¢k, ;. This implies
that the restricted functional L|yy, has a critical point vy € W; at each level ¢;,1 (k € N).
By Lemma 6.8, we know that L(vg) = ck,1 — 400 as k — +o00. By the Palais principle of
symmetric criticality [40], we have that (vy) is indeed a sequence of nontrivial solutions to

(1.1). O
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