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Three Essays on Energy Econometrics

by Marco Tedeschi

This study explores the relationship between energy markets, environmental factors,

and economic performance. In the first chapter, we follow a two-step procedure (coin-

tegration and spillover) to investigate energy market dynamics. We find a substitution

(complementarity) relationship between fossil fuels and wind (solar) energy, driven

by a growing environmental, social, and governance (ESG) sentiment. In the second

chapter, we develop a panel data model to identify the path of energy consumption

in Europe, then study the determinants of CO2 in a context of decarbonization that

Europe is experiencing, finding evidence in the positive effect of renewable energy

consumption. In the third chapter, we build a time-varying model to identify the role

of temperature in shaping the gas demand and inflation for Euroarea. Our main result

reports the significant role of temperature in containing the price surge. Finally, we

provide some policy implications for governments and financial advices for investors.
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1

Introduction

This thesis aims to discuss the main issues in energy economics. Given the current

interest in the subject, we aim to investigate about some particular features of this

field, starting from its relevance in financial markets.

Recent literature describes the influence of energy uncertainty on financial mar-

kets.1 While Xu et al. (2021) used a factor augmented vector autoregression model

to construct a time-varying global energy market uncertainty, Dang et al. (2023) in-

troduced the Energy-Related Uncertainty Index (EUI), based on previous work by

Afkhami et al. (2017) using text search.

Given the current increase in global social awareness of financially sustainable

products and the discussion on ESG principles that should be followed by companies,

we propose to test two crucial hypotheses:

• financial markets have been increasingly influenced by the energy sector;

• renewable energies are increasingly integrated into financial markets, especially

from the perspective of hedging and portfolio optimization.

Consequently, the remarkable impact of the financial energy series could be used to

understand investors’ choices and increase their knowledge of the subject.

In this sense, we discuss "sustainable finance"2 as an evolving financial approach

that conducts capital into renewable energy initiatives and supports the energy tran-

sition. It shapes the course of economies and the environment.

Governments and regulations are trying to promote the use of renewable energy

to reduce fossil fuel consumption (Shen et al., 2010; Schaffer and Bernauer, 2014).

Switching to renewable energy can significantly reduce air pollution (Omer, 2008;

1Among others, some notable recent works are Reboredo and Uddin (2016), Naeem et al. (2020),
and Wang et al. (2023b).

2This concept is extensively discussed in Fatemi and Fooladi (2013) and Schoenmaker and Schra-
made (2018).
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Galimova et al., 2022), an urgent global problem with far-reaching implications for

public health and the environment. Most studies have introduced the role of technol-

ogy in the economic growth-energy consumption-environmental degradation nexus.

See, among others, Ozcan et al. (2020), Rahman et al. (2021), Magazzino et al. (2022),

and Lasisi et al. (2022). Therefore, scholars investigated the validity of the Environ-

mental Kuztnez Curve (EKC), an inverted U-shaped relationship between environ-

mental degradation and economic growth. The EKC was introduced by Grossman

and Krueger (1991) and several empirical applications have tested its applicability.

Some authors have found the validity of EKC (i.e. Orubu and Omotor, 2011; Conrad

and Cassar, 2014; Shahbaz et al., 2015b; Ahmad et al., 2021), while others have not

validated this theory (i.e. Pao et al., 2011; Bakirtas and Cetin, 2017; Pontarollo and

Mendieta Muñoz, 2020; Ridzuan et al., 2020). Wagner (2015) explained how the role

of the cointegration relationship in the validity of the EKC is crucial to establish its

validity. In addition, Mikayilov et al. (2018) discussed the concept of decoupling,

understood as the growth of pollutant emissions being lower than that of GDP (rel-

ative decoupling) or, at best when the former decreases relative to economic growth

(absolute decoupling).

The adoption of renewable energy brings other economic benefits: it is a gener-

ator of jobs, a catalyst for technological innovation, and a reduction in external costs

related to environmental and health impacts. Several authors have studied the impli-

cations of renewable energy consumption in influencing environmental quality and

economic growth. While the effectiveness of promoting renewable energy to reduce

environmental degradation has been widely demonstrated, the relationship with eco-

nomic growth is not clear. Although several authors (Pao and Fu, 2013; Alper and

Oguz, 2016a; Kasperowicz et al., 2020; Wang et al., 2022b) have found a positive

role of renewable energy on economic growth, several studies have found evidence

of degrowth when renewable energy is used (Alper and Oguz, 2016b; Rommel et al.,

2018; Gunderson et al., 2018; Tsagkari et al., 2021).3

By studying the context of energy consumption and environmental degradation,

an important variable to study is temperature. The temperature of our planet is not

just a matter of meteorological curiosity but is closely linked to global economic

3A comprehensive meta-analysis can be found in Kalimeris et al. (2014).
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performance. The impacts of climate change, driven by global warming, can yield

significant economic disruption, with consequences ranging from agricultural insta-

bility and supply chain disruptions to inflationary pressures and increased government

spending. In fact, according to Bilgen (2014) and Martins et al. (2019), the average

temperature level (and global warming more generally) affects economies, particu-

larly the gas sector (as also demonstrated by Szoplik, 2015).

The rest of the Dissertation is organized as follows. Chapter 1 is an empirical

cointegration analysis of renewable energy ETF prices, followed by an investigation

of aggregate volatility and frequency spillovers. Chapter 2 attempts to explain the

role of energy consumption (renewable and non-renewable) in the current economic

(de)growth scenario using a new panel data technique discussed in Chudik et al.

(2016). Chapter 3 concludes with a practical exploration of the role of temperature

in the current energy crisis and rising inflation.
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Chapter 1

Idiosyncratic and systematic

spillovers through the renewable

energy financial systems

Abstract

This study examines the relationship between fossil fuels energy

prices and renewable energy ETFs through a two-step approach.First,

we build a vector error correction model (VECM) on the daily closing

prices of the commodity series from May 5, 2014 to October 31, 2023,

and then use the VECM residuals to conduct a volatility spillover anal-

ysis in order to understand the behavior in mean and variance. We find

evidence of cointegration among prices and a substitution (comple-

mentarity) relationship between fossil fuels and wind (solar) energy.

Exploring the system’s common trend and correction mechanism un-

derscores the influential role of growing Environmental, Social, and

Governance (ESG) sentiment in the market. External events, such as

the Russia-Ukraine war and the Covid-19 pandemic, have discernible

impacts on financial prices. The study provides valuable implications

for investors and hedgers, offering guidance for portfolio optimization

and emphasizing the consideration of sustainable financial products.

Keywords: Cointegration; Spillovers: Renewable Energies; Fossil Fuels; ESG.

JEL Classification: C22; C58; Q40.
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1.1 Introduction

With the increasing worsening of environmental conditions, renewable energies be-

come one of the potential solutions for improving environmental conditions. The

renewable energy industry experienced rapid growth and established itself as one

of the most rapidly evolving sectors within the global economy. Meanwhile, the

growing “social awareness” catalyzed the transition toward more sustainable energy.

Consequently, financial investors prioritize accessible options, such as green bonds

or stocks, issued by environmentally responsible companies (in general, this fact is

known as ESG sentiment; see, for instance Ning et al., 2022; Linhai et al., 2022).

Extensive evidence supports the notion that economic actors embracing cleaner

energy production strategies, alongside a robust commitment to social responsibility,

attracted substantial attention and investment from stakeholders worldwide. While

social awareness played a noteworthy role in renewable energy expansion, the deple-

tion of fossil energy sources forced economic actors to re-evaluate their development

strategies, especially in light of the global impact of the Covid-19 pandemic.1

While a strand of literature agrees on the substitution relationship between fos-

sil fuels and clean energies (see, Bondia et al., 2016; Barreto, 2018; Zhao, 2020),

according to Karltorp and Sandén (2012), Kumar et al. (2015) and Dominioni et al.

(2019) these sources could be complementary in some circumstances. Regarding

substitutability, fossil energy prices play a fundamental role: their increase makes

clean energy sources more attractive (see Henriques and Sadorsky, 2008; Reboredo,

2015; Bondia et al., 2016) as it stimulates investments in renewable energy, thus en-

couraging renewal of production systems (see, e.g. Sen and Ganguly, 2017; Hoang

et al., 2021). Moreover, the presence of energy infrastructures, raw materials avail-

ability, and green investments determine the development of the renewable energy

sector (He et al., 2019). Differently, Valckx et al. (2021) observe that a complemen-

tarity emerged when the increase in fossil energy prices led to a slowdown in energy

transition mechanisms, especially after the 2015 Paris Agreement. This increase, in

fact, has augmented the prices of agricultural products and raw materials on which

the development of renewable plants is based to rise.

1Notably, on April 20th, 2020, the price of Crude Oil (WTI) fell to negative values, leading to
significant challenges in global oil storage capacities.
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To overcome potential limitations related to sample selection bias and inaccurate

firm analysis, we employ Exchange-Traded Funds (ETFs) to capture the behavior of

specific sectors. To the best of our knowledge, existing studies such as Foglia and

Angelini (2020) focused on specific sectoral firms, while others like Xia et al. (2019)

and Liu and Hamori (2020) used aggregate indices to explore related dynamics.

This study fills several gaps in the existing literature. From a methodological point

of view, we adopt a two-step approach to study the behavior of energy prices. First, we

carry out Johansen cointegration analysis to obtain the VECM residuals and secondly

we use them as endogenous variables in the subsequent volatility spillover analysis

based on the Diebold and Yilmaz (2012) and Baruník and Křehlík (2018) models.

From an empirical perspective, we aim to investigate the relationship between renew-

able and fossil energies. Specifically, we try to shed light on whether these resources

are substitutes for each other, thus fostering the green transition, or whether there is

a complementary relationship that keeps the current energy mix policy.

Some relevant results emerge from our empirical analysis. First, we find that en-

ergy prices are cointegrated, thus confirming the results in Bondia et al. (2016). Sec-

ond, our results confirm the role of S&P500 volumes in influencing renewable energy

prices as higher financial trading occurs during turbulent times. Third, focusing on

volatility spillover effects, we find a short-term connection between renewable ETFs,

market indices, commodities and selected fossil energy prices, with evidence of some

long-term spillovers, especially during the COVID-19 pandemic. Our results are ro-

bust to the different volatility proxies we used.

The remainder of this paper is organized as follows. Section 1.2 is a brief literature

review of the related works. Section 1.3 describes the dataset employed in this work

and presents the theoretical framework. Section 1.4 presents and discusses the results,

while section 1.5 concludes.

1.2 Literature review

The existing body of literature exploring the connections between oil prices and clean

energy variables yielded intriguing insights into their spillover effects. Specifically,

research on forecasting methods and spillover effects of energy stock returns has
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gained increasing relevance. A landmark study by Henriques and Sadorsky (2008)

sets the stage for this line of inquiry by modeling the relationship between oil prices,

technology stock prices, and clean energy stocks. Notably, the findings reveal that

technology stock prices exert a more pronounced influence on US clean energy stock

prices than oil prices, thus attributing the economic production shift toward cleaner

sources and mechanisms.

Several studies, such as Kumar et al. (2012) and Managi and Okimoto (2013),

further investigate the aforementioned framework, confirming the key findings pre-

sented in Henriques and Sadorsky (2008). These studies contribute to the existing lit-

erature by highlighting that, following the 2008 crisis, short-term causal relationships

between macroeconomic variables and clean energy stock prices are statistically sig-

nificant, with oil prices exerting a positive impact on renewable energy stock returns.

Inchauspe et al. (2015) make a noteworthy contribution by employing a state-space

model to examine the interconnections between the MSCI World Index, technology

stock returns, and clean energy. Their research shows a high level of correlation

among these variables.

The literature has extensively investigated the causal relationship between oil prices

and clean energy stock returns. Using a Coupla VAR model, Reboredo (2015) finds

that oil prices influence approximately 30% of the renewable energy stocks’ upside

and downside risk (CoVaR). Subsequently, employing a wavelet coherence analysis,

Reboredo et al. (2017) examine the dependence between oil prices and renewable

energy stock returns. This work reveals a weak short-term dependence that gradu-

ally strengthened in the long run, particularly during 2008-2012. In the same study,

they show evidence of linear causality from oil prices to renewable energy stocks

at higher frequencies, while the opposite causal direction does not hold in both the

short and long term. Bondia et al. (2016) find a causal relationship through a thresh-

old cointegration analysis, demonstrating a significant short-run relationship between

oil prices and clean energy stock returns. Recently, Zhang et al. (2020), document

a causal impact of oil supply and demand shocks on clean energy stocks. They em-

ploy a wavelet-based quantile-on-quantile method mixed with a Granger causality-in-

quantile technique, and their results indicate a statistically significant positive effect

of oil demand shocks on clean energy stocks in the medium term. Additionally, they
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observe an asymmetric impact of oil-specific demand shocks on higher quantiles of

energy stocks in the long run.

Simultaneously, the literature examining the interactions between oil prices and

renewable (or clean) energy prices has been growing, aiming to provide valuable in-

sights for investors, opening up to hedging strategies and for policymakers in terms of

policy support decisions related to renewable energy deployment. Furthermore, re-

searchers delve into the volatility interrelationships between the oil and clean energy

stock markets, commonly known as volatility spillover. Corbet et al. (2020) conduct a

Dynamic Conditional Correlation Fractionally Integrated GARCH analysis, employ-

ing the original technique developed in Diebold and Yilmaz (2009), to identify the

spillover effects between crude oil and renewable energies during turbulent periods,

such as the fall in crude oil prices. Their findings suggest that during periods of uncer-

tainty, investors perceive renewables as a more dependable mechanism for ensuring

energy consumption demand. Volatility, in general, plays a significant role in port-

folio selection strategies and the evaluation of Value-at-Risk for risk management

purposes.2 Accordingly, following Sadeghi and Shavvalpour (2006) and Wei et al.

(2010), understanding the dynamics of volatility spillover is crucial in understanding

the influence of clean energy stocks on oil prices and the stock market.

Using a standard OLS regression on different Realized Volatility proxies (Parkin-

son, 1980; Rogers and Satchell, 1991; Alizadeh et al., 2002), Dutta (2017), find that

Oil Volatility Index (OVX) influence the stock market and WTI returns during both

pre and post-crisis period. In addition, they show how the clean energy stock mar-

ket returns are sensitive to OVX shocks. In particular, a decrease in OVX implies a

reduction in clean energy realized volatility and vice-versa. On the contrary, using

the revised Diebold and Yilmaz (2012) framework, Ahmad (2017) and Ferrer et al.

(2018) show how technology and clean energy stocks influence the stock market re-

turns (emits volatility spillovers), while stock market dynamics affect crude oil price

(receive volatility spillovers). Ferrer et al. (2018) report a higher degree of intercon-

nectedness during turbulent times, such as financial crises. On this line, Maghyereh

2See, for instance, Duffie and Pan (1997), Basak and Shapiro (2001), Jorion (2007) and many
others.
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et al. (2019), using a mixed wavelet GARCH method, confirms the volatility trans-

mission between clean energy and the technology stock index. Then, Pham (2019),

using the same methodology of Maghyereh et al. (2019) combined with a multivari-

ate GARCH generalized in a Diebold and Yilmaz (2012) framework, declare how the

link between oil price and clean energy prices is quite heterogeneous.

Given the corresponding literature and the increasing relevance of Environmen-

tal, Social, and Governance (ESG) products,3 has the concern about renewables in-

creased? How are the financial variables (co)integrated into each other? Do the inno-

vation spillovers differ between sectors? In this work, we try to understand all these

features using Exchange Traded Funds (ETF).

1.3 Empirical Analysis

This paper aims to investigate two distinct aspects. First, we analyze the relationship

between renewable energies, fossil fuels, and commodity prices. Through a cointe-

gration analysis sought to spot the error correction mechanism in the series, we aim to

investigate the economic behavior of the different sectors. Second, we use the VECM

residuals to conduct a spillover analysis based on volatilities’ proxies.

1.3.1 The Data

The data refers to the daily time series of 6 commodity prices and 4 energy Exchange-

Traded Funds (ETF) over a period from May 5, 2014, to October 31, 2023 (T = 2478

observations). The source is the Yahoo Finance database.4 The start date depends on

data availability, thus allowing us to study the period following the Paris Agreement

(2015), the most recent international treaty on climate change. This agreement aims

to develop capital flows into sustainable businesses, renewable energy initiatives, and

low-carbon innovations by limiting polluting emissions, requiring transparent behav-

ior and environmentally responsible practices from companies. All time series are

plotted in Figure 1.1.

3For a general review of ESG investments at firm level see Gillan et al. (2021).
4The Yahoo finance database is a free accessible storage of financial market data.
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Figure 1.1: Closing Prices

Since the prices of renewable energies are not available on the stock markets, we

employ ETFs for renewable energies because of their ability to replicate the specific

market/sector indexes. Therefore, we use Invesco Solar (TAN), First Trust Global

Wind Energy (FAN), and VanEck Vector Uranium+Nuclear Energy (NLR)5 repre-

senting the solar, wind and nuclear energy markets. We also use the Invesco Global

Clean Energy ETF (PBD), which takes into account the temporal evolution of an

aggregate of renewable energies by replicating the WilderHill New Energy Global

Innovation Index. This inclusion contributes to the robustness of our results.

To improve the readability, Table 1.1 provides a concise overview of the charac-

teristics of the ETFs. Numerous energy ETFs and indices have emerged in financial

markets, including offerings from BlackRock and iShares. While the time series be-

havior of these options is similar, we opted for ETFs based on data availability, not

performance, since our work is not a pure portfolio optimization investigation nor a

specific hedging analysis because it aims to provide general insights.

Given our dataset, we investigate the contagion effects between renewable ener-

gies and fossil fuels using the Crude Oil West Texas Intermediate (WTI).6 The in-

creasing awareness surrounding sustainable production methods has prompted many

companies, especially those listed on the stock market, to reassess their manufacturing

5Disclaimer: even though we know that nuclear energy is not renewable, we consider it renewables
but it is (clearly) clean (it does not pollute).

6Given the negative value reached by the WTI on April 20th, 2020, we cannot include the log of
prices in our analysis.
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Ticker ETF Sector Description

PBD Invesco
Global Clean
Energy

Renewables The investment objective of the Fund is to achieve the net total return
performance of the WilderHill New Energy Global Innovation Index
less fees, expenses and transaction costs

TAN Invesco Solar Solar energy It is based on the MAC Global Solar Energy Index. It is computed
using the net return and are rebalanced quarterly

FAN First Trust
Global Wind
Energy ETF

Wind energy The investment objective of the Fund is to seek investment results that
correspond generally to the price and yield, before the Fund’s fees and
expenses, of an equity index called the ISE Clean Edge Global Wind
Energy Index

NLR VanEck Vec-
tors Uranium
& Nuclear
Energy

Nuclear energy It seeks to replicate as closely as possible, before fees and expenses, the
price and yield performance of the MVIS Global Uranium & Nuclear
Energy Index (MVNLRTR)

Table 1.1: Renewable EFTs

processes. Consequently, this transition has amplified the interest of global investors

in renewable and clean energies. To deepen our analysis, we also consider the price

of Natural Gas (NG) and Heating Oil (HO), which have been the subject of extensive

discussion since the onset of the Russia-Ukraine war, that has produced several issues

in financial markets due to the sudden energy supply interruption.

The energy crisis had significant consequences on financial markets, including

the rise in raw material prices. To examine the interactions between these factors and

energy components, both renewable and non-renewable, we incorporate the prices of

copper, silver, and aluminum. We do not include gold price in this analysis due to

the singular characteristics of this metal, such as storage of value and hedging risk

properties. In addition, gold is not used for the production processes of renewable

energy plants, while copper, silver, and aluminum are relevant in this sense. The

increase in functional raw materials prices can negatively affect the energy transition.

The results of the Unit Root tests reported in Table 1.2 confirm that the prices are

non-stationary. In standard energy finance applications, it is traditional to work with

stationary series, employing returns obtained through the first logarithmic difference.

However, since our primary focus is on the long-run average influence among the

variables, we prefer to keep the original closing prices without differencing them and

losing information.

In this study, we include n = 4 additional control variables (exogenous), which

account for market sentiment. We incorporate the exchange volumes of two major

financial indices: the SP500, representing the American market, and the STOXX50,
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WTI PBD FAN TAN NLR NG COP SIL ALU HO

Mean 62.2664 15.1731 45.7074 43.588 13.4714 3.2724 3.1038 19.0432 21.355 2.0752
Med. 58.36 11.6886 44.7814 31.2805 11.9316 2.84 2.93 17.567 21.9787 1.9284
SD 19.7193 6.7061 6.9192 25.8306 3.9676 1.4215 0.7125 3.8444 3.8791 0.736
Max 123.7 38.9014 72.99 121.94 24.8175 9.68 4.929 29.398 38.73 5.1354
Min -37.63 8.1284 32.0036 15.8312 8.0181 1.482 1.9395 11.735 14.52 0.6104
Kurt. 3.2143 3.8148 3.7786 2.4314 2.3001 7.6857 2.3869 2.2113 4.2352 3.7392
Skew. 0.5463 1.3096 0.9559 0.8486 0.6891 2.1091 0.6164 0.6696 0.7892 0.9817

ADF 23.1134
(0.107)

21.5587
(0.7651)

21.9414
(0.6031)

21.7566
(0.6814)

21.6132
(0.7421)

22.8088
(0.2359)

22.453
(0.3865)

23.2669
(0.0764)

21.9694
(0.5913)

22.6619
(0.2981)

PP 212.8773
(0.3915)

24.2459
(0.8729)

215.7969
(0.2287)

26.0807
(0.7706)

27.0639
(0.7157)

215.0104
(0.2725)

29.7736
(0.5646)

218.2136
(0.0984)

28.3966
(0.6414)

211.8999
(0.446)

KPSS 5.874
(0.01)

15.904
(0.01)

20.6344
(0.01)

16.9546
(0.01)

21.0726
(0.01)

4.2765
(0.01)

15.9037
(0.01)

13.7977
(0.01)

6.6203
(0.01)

8.2097
(0.01)

Note: p-values in parenthesis (KPSS test pvalues are higher than 0.01). The unit roots (the Augmented Dickey-Fuller (ADF),

Phillips-Perron (PP) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS)) tests are conducted selecting the lag with the lowest

AIC and with a constant and trend specification of the deterministic component.

Table 1.2: Descriptive Statistics and unit root tests

representing the European market; which are known to be well suited to capturing

volatility dynamics or financial bubbles.

Additionally, we include two dummy variables, namely the “Covid-19 period” and

the “Russia-Ukraine conflict”, to account for their respective impacts on the economic

environment. The “Covid-19 period” dummy corresponds to the recessionary period

caused by the Covid-19 pandemic, as identified by the National Bureau of Economic

Research (NBER), February-April 2020.7 On the other hand, the “Russia-Ukraine

conflict” dummy captures the effects and consequences of the Ukrainian-Russian con-

flict, starting from its outbreak (February 25th, 2022) to the end of the sample.

However, since several specific events occurred, we incorporate some specific-

date dummies, such as:

• April 20 and 21, 2020: the unprecedented fall of oil prices into negative terri-

tory for transport limitations;

• March 9 and 16, 2020: the sharp decline in commodity prices attributed to the

Covid-19 pandemic;

• February 18th and June 27th, 2018: two severe spikes observed in aluminum

(and copper) prices.
7We did several trials for the setting of the Covid-19 dummy around the February-April 2020 period

with robust results.
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1.3.2 Methodology

We develop a cointegration analysis followed by a standard spillover analysis on the

squared VECM residuals. Accordingly, we used the Johansen procedure to allow for

testing the validity of some hypotheses on the cointegration matrix.

The methodology employed can be summarized in different steps:

• First, we employ the Johansen cointegration method, which allows hypothesis

testing on the cointegrating vector, thereby enabling the investigation of the

common factors influencing prices.8

• Second, we use squared residuals from the VECM model as a consistent mea-

sure of realized volatility in a standard VAR analysis.9

• Third, we conduct a spillover analysis based on the Diebold and Yilmaz (2012);

Diebold and Yılmaz (2014) (DY) and Baruník and Křehlík (2018) (BK) method-

ology.

Despite a large literature on financial contagion and spillover,10 there is no univer-

sally accepted definition of it. According to Forbes and Rigobon (2002), the spillover

is the significant increase in cross-market linkages after a shock to one market (or

group of markets). In particular, we consider volatility spillovers following Liu and

Hamori (2020), who defined the spillover as the “contagion effect” that occurred after

sudden changes in the series behavior.

Cointegration analysis

The non-stationarity of the time series raises the cointegration problem, which we

address using the Johansen (1991) technique. The Johansen technique defines five

different specifications of the deterministic component:

• case 1: no constant;

8We do not employ a first step based on GARCH conditional volatility proxy since the estimation
relies on a fitted regressor, which introduces inherent biases and measurement errors in the spillover
analysis.

9See, for instance,Andersen et al. (2003); Andersen and Benzoni (2008); Andersen and Teräsvirta
(2009).

10See, for instance, King et al. (1990), Susmel and Engle (1994), Allen and Gale (2004), Longstaff
(2010) and many others.
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• case 2: restricted constant;

• case 3: unrestricted constant;

• case 4: constant + restricted trend;

• case 5: constant + unrestricted trend.

Several similarities emerged from Figure 1.1. Notably, the entire dataset shows

an upward trend, particularly after the onset of the Covid-19 outbreak. Since cases

1 and 2 are not applicable in this context, we test cases 3, 4, and 5, which agree

on the existence of 3 cointegration vectors. Specifically, given the slightly positive

exponential trend of renewable energy ETFs, we proceed with case number 5, the

least restrictive possible.

Table 1.3 presents the Trace and λ-max results for the constant and the unrestricted

trend with the number of lags equal 2 according to the minimization of the Bayesian

Information Criteria (BIC).11 Although the tests disagree, we follow Kasa (1992) and

Serletis and King (1997) in arguing that the Trace test has greater power than the λ-

max statistic, concluding that the cointegration rank is 3. In addition, once we put

all the series together as in Figure 1.2, it is evident how 1 cointegrating trend is not

abmissible in this context while 3 is a plausible number.

Rank Eigenvalue Trace test λ-max test
0 0.0332 319.20 (0.0000) 82.718 (0.0005)
1 0.0242 236.48 (0.0027) 59.937 (0.0720)

2 0.0173 176.54 (0.0412) 42.753 (0.5278)
3 0.0148 133.79 (0.0990) 36.566 (0.5651)
4 0.0119 97.223 (0.1912) 29.452 (0.6666)
5 0.0103 67.771 (0.2715) 25.455 (0.5662)
6 0.0068 42.316 (0.4102) 16.409 (0.8174)
7 0.0059 25.907 (0.3393) 14.626 (0.5461)
8 0.0043 11.282 (0.3722) 10.781 (0.3354)
9 0.0002 0.50088 (0.4791) 0.50088 (0.4791)

p-value in parenthesis

Table 1.3: Trace and λ-max tests

Following this preliminary part, we estimate a Vector Error Correction Model

(VECM)

∆yt = ct + Πyt21 +
p21

∑
i=1

Γi∆yt2i + BExot + ·t, (1.1)

11Statistics for cases n.3 and 4 are available upon request.
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Figure 1.2: Closing Prices in a single chart

where yt is a 10-dimensional vector of endogenous variables, p = 2 is the lag order

according to the minimization of the BIC Information Criteria, Π is the matrix of long

run coefficients, Γi are matrices of short-run coefficients, B is the estimated matrix

coefficient for the exogenous variables and Exot is the vector of exogenous regressors,

and · is the error component. In addition, given the trend identification discussed,

ct = µo + µ1t. Therefore, since the rank (r = 3) of Π matrix is lower than n (full

rank) and higher than 0, Π can be written as αβ2 and the VECM equation can be

identified as

∆yt = µ0 + µ1t + αβ2yt21 + Γ∆yt21 + BExot + ·t (1.2)

where β is estimated to guarantee that β2yt is a stationary process.

Diebold and Yilmaz (2009)

Following the cointegration analysis, we develop a spillover section based on the

Diebold and Yilmaz (2012) procedure. Some empirical works, such as Nazlioglu

et al. (2013), Liu and Hamori (2020) and Dahl et al. (2020), employ the estimated

conditional variances from a GARCH model as input for the VAR framework, which
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allows the investigation of the spillover between the series. However, this procedure

suffers from the generated regressors problem that basically leads to smaller standard

error since generated regressors have their own sample variance. Therefore, we build

the Diebold and Yilmaz (2012) methodology on the time series of errors (·t) obtained

from the estimation of the VECM system in Equation (1.2). We aim to understand

the role of volatility spillovers between the series. We partially follow the spillover

definition from Forbes and Rigobon (2002), where for each innovation i, the spillover

index adds the shares of its own forecast error variance coming from shocks to asset

j.

The original Diebold and Yilmaz (2009) procedure, follows the estimation of a

standard VAR system on stationary variables. For example, let consider the standard

bivariate VAR(1) model

zt = d7
t + Φzt21 + ¿t (1.3)

where d7
t is the deterministic component, Φ is the matrix of parameters, ¿t is the error

term, and zt is a vector made by the two series.12 Since the Diebold and Yilmaz (2009)

methodology is often used in financial economic series, such as returns, the average

value is zero, leading to assume the deterministic component is null. Therefore, we do

not consider d7
t . The process is assumed to be covariance stationary, so it is possible

to obtain a Moving Average (MA) representation of the VAR as follows

zt = Θ(L)¿t, with Θ(L) = (I2 2 ΦL)21. (1.4)

where I2 is the identity matrix. Using the Cholesky transformation it can be useful to

rewrite the Equation (1.4) as

zt = A(L)ut, (1.5)

with A(L) = Θ(L)Q21, ut = Q¿t, E(utu
2
t) = I2, with Q is the lower triangular

Cholesky factor of the covariance of ¿t. The optimal one-step ahead forecast is

zt+1 = Φzt (1.6)

12In general financial applications, zt is a vector of n stock returns or volatilities.
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and the following one-step ahead error vector (ut+1) is:

ut+1 =

þ

ø

a0,11 a0,12

a0,21 a0,22

ù

û

þ

ø

u1,t+1

u2,t+1

ù

û where E(ut+1u2
t+1) = A0A2

0, (1.7)

is the covariance matrix. This formulation comes from the initial hypothesis of two

series in the VAR that can be generalized to n factors. For the first series (x1,t) the one-

step ahead error in forecasting is a2
0,11

+ a2
0,12

, while for the second it is a2
0,21

+ a2
0,22.

This variance decomposition allows us to split the forecast error variances of each

variable into different parts: the percentage of the one-step ahead error variance in

forecasting x1 is due to shocks to x1 (this is called own variance shares), and for

shocks to x2 (this is called cross variance shares). Broadly, we are discussing the

Impulse Response Function (IRF) method to understand the dynamic behavior of the

system when a shock occurs.

There exist two possible spillovers in our example with two variables: x1t shock

that affects the forecast error variance of x2t (with contribution a2
0,21

) and x2t shock

that affects the forecast error variance of x1t (with contribution a2
0,12

). The sum of their

contributions gives the total spillover: a2
0,12

+ a2
0,21

. Consequently, the percentage

ratio between the total spillover and total forecast error variation gives the (bivariate)

Spillover index is given by the total forecast error variation (the sum of all components

in A0):

BiS =
a2

0,12
+ a2

0,21

a2
0,12

+ a2
0,21

+ a2
0,11

+ a2
0,22

(1.8)

Obviously, this index can be generalized to pth-order n-variable VAR (still with a

one-step ahead forecast) and can be more elegantly reported in matrix form for h

steps:

BiSh = ∑
h

»2Ah A2

h» 2 tr(Ah A2

h)

»2Ah A2

h»
. (1.9)

where tr() is the trace operator and ι is the vector of ones. However, the Diebold

and Yilmaz (2009) framework has a few limitations, methodological and empirical.

First, the spillover index refers to the Cholesky-factor identification of the VAR, which

makes the resulting error variance decomposition dependent on variable ordering.

Second, the spillover index measures the total spillovers, not the directional ones,
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which are more interesting to analyze. The first issue is fixed by the Generalized

Vector AutoRegressive (GVAR) system introduced by Koop et al. (1996) and Pesaran

and Shin (1998) (KPPS). The second one is addressed implementing the net spillover

which clarify the direction of spillovers from a series to another.

Diebold and Yilmaz (2012)

The Diebold and Yilmaz (2012) methodology fixed the issues in Diebold and Yilmaz

(2009). Let generalize Equation (1.3) setting the determinstic component to zero and

considering the VAR in companion form

xt = Φxt21 + ·t, (1.10)

with ·t > WN(0, Σ). As in Equation (1.5) let us consider a Moving Average (MA)

representation

xt =
∞

∑
i=0

Ψi·t2i, (1.11)

with Ψ0 = In. The MA representation leads to the Impulse Response Function (IRF)

and the Forecast Error Variance Decomposition (FEVD). As we noted, the FEVD

makes it possible to split the influence of the shocks. The standard VAR representa-

tion uses the Cholesky factorization based on the orthogonality property of innova-

tions. Economically, it identifies the shock as independent of others. On the contrary,

the Generalized VAR (GVAR) allows possible correlated shocks but calculates them

appropriately, using the historically observed distribution of errors. Therefore, since

shocks are not orthogonalized, the sum of the single contributions to the variance

error forecast is not necessarily equal to one, as for the standard VAR.

Denoting with θ
g
i,j(H) the KPPS H-step ahead forecast error variance decompo-

sition (FEVD), we obtain

θ
g
i,j(H) = σ21

jj

H21

∑
h=0

(÷2iΨhΣ÷j)
2

(÷2jΨhΣΨ2
h÷i)

, (1.12)

where Σ is the covariance matrix for the vector ·t, σjj is the standard deviation of

the error term for the j-th equation and ÷ is the selection vector with 1 as the i-th
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element and 0 otherwise. The sum of θ
g
ij(H) is not equal to 1 since the shocks are

not orthogonalized and, to use all the necessary information available in the variance

decomposition matrix for the calculation of the spillover index, each entry of θ
g
ij(H)

must be normalized

θ̃
g
i,j(H) =

θ
g
i,j(H)

»2»g(H)»
. (1.13)

The Total Spillover Index (TSI), measured with the GVAR framework is

TSIg(H) =
»2»̃g(H)» 2 tr(»̃g(H))

»2»g(H)» 2 1
(1.14)

The TSI measures the contribution of spillovers from a volatility shock across asset

classes to the total forecast error variance. The Generalized VAR approach, invariant

for the variable ordering, allows us to learn more about the direction of the volatility

spillover across the class assets. The direction volatility spillover received by market

i from all other markets j is measured as

S
g
i.(H) =

1

n

[

»2»̃g
i,j(H)» 2 tr(»̃

g
i,j(H))

]

S
g
.i(H) =

1

n

[

»2»̃g
j,i(H)» 2 tr(»̃

g
j,i(H))

]

(1.15)

Then the net volatility spillover from market i to all other markets j is computed as

S
g
i (H) = S

g
.i(H)2 S

g
i.(H). (1.16)

The net volatility spillover is the difference between the gross volatility shocks trans-

mitted to the other markets and the received. To conclude, the net pairwise volatility

spillovers between markets i and j can also be calculated as a simple difference be-

tween the gross volatility shocks transmitted from market i to market j and those

transmitted from j to i

S
g
i,j(H) =

1

n

[

»2»̃g
i,j(H)» 2 »2»̃g

j,i(H)»
]

. (1.17)

This pairwise comparison determines the prevalence of volatility spillovers between

series. If it is positive, it means that spillover from series/market i exhibits a higher

degree of turbulence on another j (and vice-versa).
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Baruník and Křehlík (2018)

Since the economic literature has recognized the importance of persistence in finan-

cial analysis, using spectral methods such as Baruník and Křehlík (2018) (BK), we

can emphasize the duration of spillovers, not identifiable by the DY method. The

BK framework is based on the Generalized Forecast Error Variance Decomposition

(GFEVD) as expressed in Eq. (1.12), dealing with the frequency domain. Denoting

with Ψ the VMA matrix coeffcients in Equation (1.11) this method explores the spec-

tral behavior of each independent variable by employing its own frequency response

function

Rx(ω) =
∞

∑
h=2∞

E(xtx
2
t2h)e

2iωh = Ψ(e2iω)ΣΨ2(eiω), (1.18)

where Ψ(e2iω) = ∑h(e
2iωh)Ψh is obtained as a Fourier transformation of the coef-

ficients Ψh with i =
:
21, Σ is the covariance matrix for error terms in Eq. (1.11)

and xt is the vector of endogenous variables in the VAR model in Eq. (1.10). The

power spectrum Rx(ω) is a fundamental quantity for understanding frequency dy-

namics since it describes how the variance of xt is distributed over the frequency

components ω.

Using the spectral representation for covariance,13 the frequency domain coun-

terparts of variance decomposition emerged. Denoting with k and j the considered

series,the spectral GFEVD on the ω frequency is expressed as

F(ω)k,j = σ21
jj

|(Ψ(e2iω)Σ)k,j|2
[Ψ(e2iω)ΣΨ2(e2iω)]k,k

(1.19)

where Ψ2(e2iω) is the Fourier transformation of the Impulse Response Ψh. It is im-

portant to note that F(ω)k,j represents the spectrum of the j-th variable at a given ω

frequency in the k-th variable (for the sake of simplicity we do not use the index i

which, for the spectral decomposition, refers to the complex root). The natural eco-

nomic interpretation of this quantity is within frequency causation as the denominator

holds the spectrum of the jth variable at a given frequency ω.

Since we are working with unconditional GFEVD, the forecast horizon does not

13E(xtx
2
t2h) =

∫ ∞

2∞
Rx(ω)eiωhdω
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play a relevant role, considering infinite horizon relations. Given an arbitrary fre-

quency band d = (a, b), with a, b * (2π; π), the Generalized Variance Decompo-

sitions on frequency band d (Θd) are defined as:

(Θd)k,j =
1

2π

∫ b

a
Γk(ω)F(ω)k,jdω (1.20)

where Γk = 2π
[Ψ(e2iω)ΣΨ2(e2iω)]k,k

∫ π
2π[Ψ(e2iλ)ΣΨ2(e2iλ)]k,k dλ

is a weighting function that represents the power of the jth variable at a given fre-

quency, where λ is the subsequent frequency and sums over frequencies to a con-

stant value of 2π. The generalized causation spectrum is the squared modulus of the

weighted complex numbers, thus producing a real quantity. The scaled generalized

variance decomposition on the frequency band d is:

(Θ̃d)k,j =
(Θd)k,j

∑j(Θ∞)k,j
with (Θ∞)k,j =

1

2π

∫ π

2π
Γk(ω)F(ω)k,jdω. (1.21)

Subsequently, inspired by the DY spillover measures on the GFEVD, we can define

the frequency domain spillovers. According to Eq. (1.21), the overall spillover on

frequency band d is:

SW
d = 100

[

1 2
tr((Θ̃d)k,j)

»2(Θ̃d)k,j»

]

(1.22)

When the value of SW
d is high (more than 80%), it indicates a massive spillover effect

within the respective frequency band not related to the aggregate spillover measure,

which might be relatively low. For this reason, we set the apex W to indicate the

within spillover. Despite the spillover, the contribution of a given frequency band d

to the aggregate measure may be of more interest. This can be proved by weighing

the within measure. The aggregate measure on the frequency band d is then defined

as frequency spillover:

SF
d = SW

d

[

»2(Θ̃d)k,j»

»2(Θ̃∞)k,j»

]

(1.23)

The sum of SF
d equals the total connectedness exploited in Eq. (1.14). The degree of

decomposition can be decided by accounting for long and short movements.
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1.4 Results

1.4.1 Cointegration analysis

Since we employed the Johansen technique for the statistical inference allowed, we

do not report the verbose unrestricted VECM preliminary results,14 but in Table 1.4

we show the corresponding cointegration vector β. Given the significant daily clos-

β1 β2 β3

WTI 1.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000)

PBD 0.0000 1.0000 0.0000
(0.0000) (0.0000) (0.0000)

Copper 0.0000 0.0000 1.0000
(0.0000) (0.0000) (0.0000)

FAN 0.1465 -1.6596 -0.298
(0.809) (0.1615) (0.0541)

TAN 0.0067 -0.1037 0.0145
(0.0721) (0.0144) (0.0048)

NLR 0.889 -0.4713 -0.0642
(0.2527) (0.0504) (0.0169)

NG 3.1021 -0.357 0.0777
(0.7355) (0.1469) (0.0492)

Silver -1.1418 0.2051 -0.0065
(0.356) (0.0711) (0.0238)

Aluminium 1.5179 2.666 -0.9754
(2.7908) (0.5573) (0.1868)

HeatingOil -37.750 -0.4052 0.0109
(2.1634) (0.4320) (0.1448)

standard errors in parenthesis

Table 1.4: Unrestricted VECM cointegration vector estimation

ing price observations (T = 2478), the inference on the cointegration vector β can

be considered robust. Testing for some patterns in β ensures the accuracy of the es-

timated long-run relationship estimation between variables. Based on the results of

Table 1.4, we test the following 8 restrictions including the indetification constraints:

• the influence of renewable energies ETFs (TAN, FAN, NLR) in the first coin-

tegrating relationship is nul (3 constraints, PBD: identification);

• the copper price in the second cointegration vector is zero (identification 1 con-

straint);

14The unrestricted estimations are available upon request.
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• the impact of fossil fuels (Crude Oil, Natural Gas and Heating Oil) in the second

and third cointegration vector is zero (3 constraints, WTI: identification);

• the silver price is not relevant for the third cointegration vector (1 constraint).

The LR test is given in the table 1.5. Since we cannot reject the restrictions,

we estimate the restricted model in Eq. (1.2). Table 1.6 shows the corresponding

restricted VECM cointegration vectors while Table 1.7 reports the results.

Unrestricted loglikelihood (lu) 8384.0451
Restricted loglikelihood (lr) 8376.7252
2 (lu 2 lr) 14.6398
P(χ2(8) > 14.6398) 0.0665

Table 1.5: LR test on VECM

As expected, the Covid-19 dummy reduces crude oil prices. However, it does not

affect renewable energy and commodities, except aluminum, as reported by Mehta

et al. (2022). This result is due to the drop in oil prices during the pandemic, thus

indicating that the renewable energy market did not feel the crisis like fossil fuels. In

particular, the sudden outage of transportation causes a decrease in fossil prices.

β1 β2 β3

WTI 1.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000)

PBD 0.0000 1.0000 0.0000
(0.0000) (0.0000) (0.0000)

Copper 0.0000 0.0000 1.0000
(0.0000) (0.0000) (0.0000)

FAN 0.0000 -1.6284 -0.4074
(0.0000) (0.1220) (0.0662)

TAN 0.0000 -0.1142 0.0255
(0.0000) (0.0112) (0.0071)

NLR 0.0000 -0.3319 -0.1381
(0.0000) (0.0380) (0.0239)

NG 1.8545 0.0000 0.0000
(0.5954) (0.0000) (0.0000)

Silver -1.0552 0.2466 0.0000
(0.2019) (0.0537) (0.0000)

Aluminium 6.8407 1.5957 -0.8791
(2.4126) (0.3547) (0.2107)

HeatingOil -39.681 0.0000 0.0000
(1.8581) (0.0000) (0.0000)

Table 1.6: Restricted VECM cointegration vector estimation

In contrast, the effect of the Russia-Ukraine conflict is significant for wind, solar,

and nuclear energies, with the highest magnitude reached by solar energy. During
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the war, the supply crisis drove up fossil energy prices except Crude Oil. As a result,

especially economies with a high dependence on Russian supplies (e.g., Europe),

tried to immediately convert energy consumption more sustainably, thus also causing

prices to rise due to the lack of infrastructure for this transition.

In general, SP500 trading volumes reduce the price of listed stocks. In particu-

lar, higher trading volumes reduce the quotation of renewable energy ETFs. Since

ETFs reflect the performance of companies operating in such sectors, wind, solar,

and nuclear energy companies’ performances decrease as financial trading volumes

increase. The increase in financial swaps occurs during the period of higher volatility,

which means that the overall level of uncertainty in the market is pronounced. As a

result, the renewable energy market suffers from increased market uncertainty. These

considerations do not apply to European investors, as they have less influence on the

price of energy stocks, underlining the crucial role of the US market in influencing

the performance of renewable energy companies.

Since we employ ETFs, the increase in prices means that the value of the compa-

nies associated with the index increases (this is not an increase in the price of renew-

ables). Therefore, the growing value of renewable companies is associated with the

increasing interest in renewable energies. Crude oil, heating oil, and natural gas do

not impact ETFs, confirming Reboredo (2015) and Sun et al. (2019).

While the average renewable energy ETF (PBD) does not significantly impact

crude oil prices, solar (TAN) and wind (FAN) ETFs influence WTI. An increase in the

wind market (FAN) performance generates a decrease in WTI price by 0.479 points,

indicating a substitution relationship between wind energy and crude oil, consistent

with findings by Dominioni et al. (2019). To be more accurate, the increased perfor-

mance of the wind sector could shift investor interest towards this renewable energy

sector. The growth and progress of the wind sector could improve the technology

and infrastructure used, reducing the costs of using wind energy. The contraction

in the cost of wind energy inevitably leads to its use (consumption and production)

growing. Therefore, the demand market function for crude oil decreases, reducing

the corresponding equilibrium price.

Interestingly, an increase in TAN corresponds to a rise of 0.1365 points in the

price of WTI, supporting the Dominioni et al. (2019) claim about the complementary
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nature of crude oil and solar energy. Figure 1.3 explains the difference between solar

(complementary) and wind (substitute) energis.
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Figure 1.3: Renewable energies costs and capacity.

Given that the storage capacity of wind energy is considerably higher (and grow-

ing) than that of solar energy (panel a, Figure 1.3), the attractiveness of investments

in wind power is greater than to those on solar. In other words, the reduced ability to

actively maintain the stored energy of solar systems forces integration via fossil fuels

(or renewable energies themselves).

The installation costs of solar power (panel b, Figure 1.3) have recently become

lower than those of wind, leaving room for discussion on its future employment. How-

ever, as the International Renewable Energy Agency (IRENA) data show, wind energy

has almost constant costs, which, being lower than those of solar energy until 2015,

led interested economic actors to think of this energy as historically less expensive

than solar energy. Furthermore, the Levelized Costs of Electricity (LCOE, panel c,

Figure 1.3) confirm how wind energy leads to significantly lower expenses than solar

energy. However, both energies seem to converge at the same level, thus signaling the

recent efficiency gain of solar systems.

As a result, given the advanced stage of development of wind energy than solar

energy, especially looking at its storage capacity, investors perceive this technology

as a viable (current) alternative to fossil fuels. Furthermore, Kumar et al. (2015)

show how the materials used to construct solar panels still require fossil fuels usage,

increasing the complementarity between these two sources.15 In this sense, it should

15A further indirect issue is that solar energy plants require a significant amount of land that is
not always available. However, some alternatives are already being developed: agrophotovoltaics or
floating photovoltaics.
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be clear that the installed capacity of solar plants is almost zero compared with fossil

fuels, indeed no replacement is taking place at the world level yet.

The estimated complementarity implies that solar energy systems cannot currently

be considered an absolute substitute for fossil fuels (yet). On the other hand, it needs to

be strengthened through subsidies and investments aimed at modern and sustainable

facilities. Kalair et al. (2021) claimed the importance of nuclear fusion and artificial

photosynthesis in expanding the storage capacity of solar energy. Carfora et al. (2018)

argue that government intervention in this sector is relevant for its long-term devel-

opment. Furthermore, together with the IRENA (2022) energy outlook, the expected

high fossil fuel prices will consolidate the structural change that has seen renewable

energy production become the least expensive source of new generation, allowing so-

lar energy to become a viable alternative to fossil fuels. With the growing interest

in renewable energy, investors and consumers can be sheltered from fossil fuel price

shocks, avoid physical supply shortages, and improve energy security.

As expected, the increase in WTI and NG prices leads to decreases in heating oil

quotations, indicating that global investors ar likely to see them as a substitute.

The impact of PBD on each of the considered renewable energy prices is consis-

tently negative. However, the conclusions diverge looking at renewable energy as a

whole. In this context, there is evidence of a complementary relationship between

solar and wind energy, as indicated by the positive and statistically significant coeffi-

cients (confirming the result in Takle and Shaw, 1979; Song et al., 2022a). From an

economic perspective, these findings suggest that wind and solar energy can be strate-

gically combined in a policy mix to mitigate environmental degradation and foster the

growth of renewable energy.

According to Ghandehariun et al. (2023) and Wang et al. (2023a), copper is one

of the most used conduits in renewable energy systems. We expect that increases

in copper prices may reduce the development of the renewable energy sectors. This

result is confirmed for solar energy, while the effect on the wind and nuclear ETFs is

marginal. The increase in aluminum price may reduce both TAN and FAN, signaling

the influence of raw material prices in renewable energy development.

Since we run the non restricted trend case of the Johansen procedure, we estimate

the time trend of each equation. The growth trend is significant for all renewable
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energy ETFs and commodity prices. Furthermore, it has great importance for fossil

fuels, except crude oil. This result highlights the growing ESG (environmental, social,

and governance) sentiment in the market as the performance of renewable energy

companies increases.

Error Correction Mechanism investigation

The restrictions applied to the cointegration matrix allow us to study the adjustment

process toward long-run equilibria. The last three rows of Table 1.7 show the impact

of the individual time series of the Error Correction Mechanism (ECM) on the en-

dogenous variables. Since the ECM acts as a long-run corrector, the corresponding

time series are negative (see Figure 1.4). Consequently, when considering the impact

of the ECM on the single column of Table 1.7, if the estimated coefficient is positive,

it is premultiplied by a negative ECM, thus resulting in a negative effect (contraction)

on the series considered.

The first ECM (green in Figure 1.4) is significant for fossil fuels and silver, while

the second (red in Figure 1.4) and third (blue in Figure 1.4) contribute more to re-

newable ETFs and commodity prices. Figure 1.1 reported the sudden increase in

ETF prices in the middle part of the sample. The higher magnitude and statistical

significance of the coefficients relating to the second error correction mechanism for

renewables ETFs confirm that the second ECM refers to the correction mechanism of

renewables.

Figure 1.4 shows the time series of the adjustment mechanisms. Since we are

dealing with stock prices, these ECMs could be interpreted as market sentiment (par-

tially following the discussion in Chiang and Tsai, 2023). An absolute increase in the

magnitude of the ECM means that sentiment is also increasing. As a result, we need

to understand how each ECM relates to different market sentiments.

The first ECM tracks the overall energy market sentiment since three focal points

emerged: the relative decline in crude oil in the second half of 2014, the Covid-

19 pandemic, and recent volatile behavior following the Ukraine crisis. The second

and third ECMs show comparable behavior as they reached their positive peak after

the Covid-19 pandemic. However, the second ECM shows a negative trend, which
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2014 2016 2018 2020 2022 2024
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Figure 1.4: Error Correction Mechanisms (ECMs) Time Series

includes the need to adjust the growing trend of renewable energy ETFs. The values

of ECMs are pronounced due to high stock price levels. Finally, the third ECM seems

to correct the behavior of commodity prices. Given these observations, we build the

following hypothesis scheme:

H1: the first ECM mainly refers to the general energy (fossil) market sentiment -

Energy Sentiment;

H2: the second ECM accounts for a kind of ESG sentiment, referring to renewable

energies development - ESG Sentiment;

H3: the third ECM seeks to correct the commodity markets prices - Commodity

Sentiment.

To verify these hypotheses, we compare the ECMs behavior with the SP500 En-

ergy Index, the iShares ESG Aware MSCI EM ETF (ESGE), and the WisdomTree En-

hanced Commodity Strategy Fund (GCC), respectively as a proxy of (fossil) energy,

ESG, and commodity sentiment.16 Since ECMs are negative, we expect the behavior

of the time series used as sentiment proxies to be theoretically reversed compared

16SP500 Energy: https://finance.yahoo.com/quote/%5EGSPE/, ESGE https:

//finance.yahoo.com/quote/ESGE/, and GCC https://finance.yahoo.com/quote/GCC/
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to ECMs. In other words, we should observe a negative and significant correlation

between the series to confirm our hypothesis.

Figure 1.5 reports the time series representation of the ECM, and market senti-

ment indices. To obtain a comparable measures, we report all the standardzed series.

As expected, the behavior of ECMs seems to be reversed (on average) compared to

the sentiments proxies. Moreover, the correlation values in Table 1.8 confirm our

hypotheses. To ensure the robustness of our findings, Table 1.9 reports the nonpara-

metric Pesaran and Timmermann (1992) test based on distances. Since the null hy-

pothesis of the test is that the series move together we could conclude about ECMs as

proxies for sentiment.

(a) Energy Sentiment (b) ESG Sentiment (c) Commodity Sentiment

2018 2020 2022 2024
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Figure 1.5: Standardized time-series

Energy ESG Commodity
Sentiment Sentiment Sentiment

ECM1 -0.56 777 - -
ECM2 - -0.31 777 -
ECM3 - - -0.71 777
7 : 5% < p < 10%,77 : 1% < p < 5%,777 : p < 1%

Table 1.8: Correlation between sentiments and ECMs

The ECM and Sentiment series in Figure 1.5 diverged most between Covid-19

and the Russia-Ukraine conflict. This result is mainly due to two reasons. First, the

ECM corrected the price increase of renewable energy ETFs. During this period,

Energy - ECM1 14.91777

ESG - ECM2 12.12777

Commodity - ECM3 35.6777
777 : p < 1%

Table 1.9: Pesaran and Timmermann (1992) test.
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companies have, on average, increased investments in the renewable energy sector,

improving their ESG performance (Gamlath, 2020; Atkins et al., 2023). Secondly,

the issue of climate change has led to an increase in adverse events, which have led

to greater “social awareness”.

Furthermore, we can confirm the results by analyzing the economic history of the

last decade: until the Covid-19 pandemic, the energy market remained almost stable

while ESG criteria started to increase, on average, after 2017. With the pandemic, the

Energy sentiment declined while ESG sentiment peaked due to the desire to include

more renewable energy components into the optimal energy mix. The outbreak of

the war in Ukraine led the energy sentiment to decrease. However, in this case, the

average market uncertainty leads to the common tendency for more frenetic behav-

ior. These results are crucial from an economic perspective as overall energy market

sentiment diverges from the ESG component.

From the analysis, we can also conclude that renewable energies will experience

a growing trend. This conclusion is supported by the time series of the second ECM,

which exhibits a negative trend with a higher absolute magnitude to correct the general

ESG market sentiment. In addition, the current regulations and limitations for energy

use are crucial to increasing the companies’ usage of renewable energy sources. Our

analysis is essential to explain the behavior of the renewable energy market in the

context of the recent energy transition. On average, it seems that the ESG perception

of investors is increasing,17 further confirming the necessity of promoting industries

and companies that use sustainable production ways.

1.4.2 Financial Spillover

In the context of growing instability, financial behavior is becoming massively studied

by scholars and practitioners. In light of this, the results obtained from Section 1.4.1

are of fundamental relevance since it estimates the time series of each error term

once we include additional financial information, such as prices, volumes, and market

events. Therefore, the estimated error terms are ascribable to something that cannot

be predicted by markets and investors when additional information is available.

17As stated among others by Eccles et al. (2017); Espahbodi et al. (2019); Park and Jang (2021).
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Recently, the financial spillover literature strand has become popular across com-

modities. Several works analyzed the returns or estimated volatility spillovers (see,

for instance, Foglia and Angelini, 2020; Liu and Hamori, 2020; Zhou et al., 2021,

and others). In our case, we use the squared value of residuals (see, Andersen and

Benzoni, 2008) as a proxy of realized variance and we standardize each time series

in order to obtain comparable measures. In particular, the endogenous variables of

Equation (1.10) are

xt = ζ̂t
2

(1.24)

where ζ̂t are the error terms from the cointegration model (see Equation 1.2). We

include a graphical representation of innovations and the realized variance proxy in

Appendix 1.A, Figure 1.13 and 1.14. As a result, the outcomes of our analysis can

be relevant from a hedging perspective since it explains the volatility relationship

between the series.

The volatility spillover is the transmission of instability from market/series “i”

to market/series “j”. It occurs when a sudden change in one market causes a lagged

impact on volatility in another market above the local market effects. Some authors

defined the spillovers as the “contagion effect” derived from changes in series volatil-

ities.18

Static analysis

Figure 1.6 presents the static pairwise spillover index of realized volatility for renew-

able energy ETFs, raw materials, and fossil energies innovations with the additional

consideration of the volatility of the American and European benchmark indices.19

We based our results on a VAR of order 1 (determined by the BIC information

criteria) where the vector of endogenous variables xt in Equation 1.10 is composed

of all the proxied realized variances (K = 12). The Generalized Forecast Error Vari-

ance Decomposition (GFEVD) expressed in Equation 1.12, is based on 70-step-ahead

forecast errors. According to the Diebold and Yilmaz (2012); Diebold and Yılmaz

18We follow the original definition of Forbes and Rigobon (2002) despite many definitions were
introduced in the corresponding literature, (see, among others Sachs et al., 1996; Allen and Gale,
2000; Dornbusch et al., 2000; Pritsker, 2001).

19The volatilities of the American and European benchmark indices (SP500 and STOXX50) are
computed using the squared daily first difference of logarithmic closing prices.
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(2014) (DY) theoretical framework, the step-ahead number should be a limit beyond

which the results obtained are comparable, i.e. exhibit similar behavior. Accordingly,

after 70 periods, the spillover results stabilized.

In Figure 1.6 we report the K × K matrix of pairwise spillovers obtained from the

DY application. While the main diagonal reflect the own-variable spillover caused by

the self-caused variations within a given market (these are not particularly interesting

in our context), the off-diagonal elements (i ;= j) measure the market cross-spillovers.

Each entry in the heatmap is the estimated contribution of the innovation in market

j to the GFEVD of market i (i.e. the pairwise relationship). For instance, the first

column measures the directional connectedness from crude oil to other markets (i.e.,

SWTI³j) and so on for the others, and vice-versa for the rows.
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Figure 1.6: Static Spillovers: DY and BK

In Section 1.3.2, we derived four measures of contagion (TOTAL Eq 1.14, FROM
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Eq 1.15, TO Eq 1.15, NET Eq 1.16). Figure 1.6(a) reports the DY pairwise net

spillovers heatmap. The directional spillovers are listed in the last two rows (FROM

and NET), the latter column (TO) and the last cell reports the Total Spillover Index

(TSI), which amounts to 43.82, meaning that relevant evidence of interconnection

between the variables emerged.20

According to Figure 1.6(a), some features emerged mainly for renewables inno-

vations. The volatility of the solar market explains around the 25% variation in total

renewables innovations (PBD), while the Eoilc makes up 18%. The spillovers from

raw materials to renewables are around 5%.

The relationship between renewables and American and European market indices

is not pronounced except for wind energy (near 10%), confirming Lundgren et al.

(2018) and demonstrating investors’ care about a novelty from more sustainable mech-

anisms.

As opposed to Umar et al. (2022) and Foglia and Angelini (2020), the Crude Oil

turns out to be marginal in our model, confirming Ferrer et al. (2018). This result is

due to the dummy imposition in Section 1.4.1 fixed to catch peaks in WTI prices. The

only notable exception is the relationship with Heating Oil. Financially, this result is

attributable to the difference between speculative and fundamental parts included in

the Crude Oil market price. While the spillover impacts exclusively on the fundamen-

tal part, the role of the speculative one is essential in generating market turmoils.

Looking at the last row of Figure 1.6(a), renewable energies, except Nuclear,

seem to emit volatility, while fossil fuels and raw materials act as volatility receivers.

Among others, this result confirms Attarzadeh and Balcilar (2022); Le (2023), while

it does not agree with Ahmad (2017), which found a relevant role as volatility emitters

of fossil fuels.

This outcome has significant financial consequences for investors as movements in

clean markets, particularly those of wind and solar industries, can result in significant

market fluctuations, thus leading to hedging considerations. Several opportunities

have emerged for investors to optimize their portfolios and manage risks. Investors

20Several papers typically compare spillovers from estimated volatilities from the GARCH model
and returns (Maghyereh et al., 2016; Kang et al., 2017; Dahl et al., 2020). However, since this work is
based on innovations from a cointegration model, we do not consider results with returns.
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interested in renewable energy should consider hedging strategies to mitigate volatil-

ity, while those trading in fossil fuels and commodities should carefully evaluate their

exposure and consider the speculative and fundamental aspects of the market.

To extend the literature contribution of this paper, we include the Baruník and

Křehlík (2018) frequency spillover. We follow the related works in this field to iden-

tify three frequencies: high (1 to 5 days - short period), medium (5 to 10 days -

medium period), and low (10 to 20 days - long period).

As reported from Figure 1.6(b)-(d), the highest Total Spillover Index (TSI) is as-

sociated with the highest (17.02) and lower (17.09) frequency, followed by medium

(9.72) term. The average volatility spillover from any market transmitted to other

markets has immediate effects, improving the result in Ferrer et al. (2018), who did

not consider the Covid-19 pandemic and Russia-Ukraine war. Baruník and Křehlík

(2018) explained that periods in which high-frequency spillovers are generated seem

to lead financial markets to process information quickly. Our finding aligns with Liu

and Hamori (2020) and Zhang and Hamori (2021), who also found a long-term per-

sistency in volatility spillovers. They claimed the importance of structural market

breaks in influencing the perception of financial series, as we will see in the dynamic

analysis. Since the information is quickly processed in the energy and commodity

markets, the implications for hedgers are relevant since they need to constantly con-

trol their portfolio optimizations.

The relationships across the network are shown in Figure 1.7. In this case, the

color node represents the role of the series (red - receivers, green - emitters) and the

size of the cumulated spillovers emitted/received. Edges are reported if the volatility

contribution is higher than 20% on the GFEVD. From this analysis, the role of the

PBD is emphasized in almost every series, for every frequency. Solar and wind energy

influence the commodity sectors. The US market leads the EU index, signaling the

influence of American sentiment on European sentiment, which generally lags.

To ensure the robustness of our results, in Appendix 1.C - Figure 1.17 and 1.18 -

we report the same connection measures calculated on squared log-differences, used

as volatility benchmarks. Although the spillover coefficients are different, the con-

clusions are the same. The spillovers occur in the short term, with the relevant role of

renewable energy financial products in influencing other markets. In addition, WTI
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Figure 1.7: Network net volatility spillover

is a volatility receiver, highlighting how dependent the fossil market is on external

market conditions, thus confirming the uncertainty in the fossil energy market.

Covid-19 splitting

In the context of financial markets, the impact of Covid-19 has garnered substan-

tial attention in academic research. Numerous studies have explored how this event

influenced market performance.21 We partition our dataset into two segments, be-

fore (length of the sample 1457 observations) and after (length of the sample 990

21He et al. (2020); Baek et al. (2020); Uddin et al. (2021); Zaremba et al. (2021).
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observations) December 31, 2019.22 Due to space constraints, we have included all

the estimations in Appendix 1.B for reference. Notably, the DY spillover exhibits the

highest TSI after the outbreak of the Covid-19 pandemic, amounting to approximately

34.46%, compared to the pre-pandemic 25.76%. This finding suggests that the pan-

demic led to an elevated level of interconnectedness among financial markets, with a

particular shift of attention towards renewable systems. Furthermore, the spillover ef-

fect from WTI becomes more pronounced in the post-Covid-19 sub-sample. It trans-

forms into a net volatility emitter, demonstrating intriguing relationships with raw

materials.

Many differences emerge between Figures 1.15 and 1.16 (in the Appendix), espe-

cially according to the connectedness spread between Renewables and Materials. The

variation in the influence of indices and the progressive change towards a reduction

in dependence on WTI innovations led the post-COVID spillover to develop more

in renewable energy markets. The increase in significant renewable spillover con-

firms investors’ interest in more environmentally sustainable investments. Therefore,

the innovations in these markets produced appealing connections with the materials

used. We saw in Section 1.4.1 the significance of the price of copper for the renew-

able cointegrating vector, confirming the energy dependence on that material. The

BK findings are consistent with the ones obtained from the whole sample.

Therefore, by merging the cointegration analysis with this one of financial spillovers,

it is possible to notice how, after the Covid-19 disease, the volatility for the entire in-

novations increased with some change in variable relevance, being in line with Geng

et al. (2021). Indeed, aluminum has become a relevant source of volatility, rein-

forcing the findings from the cointegration: in the short-run, a negative statistically

significant relationship between aluminum and renewables emerged. Furthermore,

the interconnection between materials innovations was enhanced, emphasizing the

role of aluminum as a net-volatility emitter. As well as the full-sample analysis, the

Baruník and Křehlík (2018) split spillover frequencies confirm the short-period TSI

higher than the others in both sub-samples. This splitting is the base for the dynamic

analysis. It aims first to discover the time-connectedness of the variables and second

22The lengths are 1475 and 1000 respectively for pre and post December 31, 2019.
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to overcome the issue of the static Diebold and Yilmaz (2012) methodology, which

fails to identify the significance of results.

Rolling dynamic analysis

The static analysis provides a general idea of the volatility connections over the en-

tire period. However, it does not help us understand how connectedness changes over

time. Since we have recently gone through a worldwide pandemic, and wars are ongo-

ing,23 a dynamic rolling window analysis could improve the robustness of this work.

Including the time component is crucial to underline some aspects that the general

static measures fail to individuate.

In detail, based on the full length of the timeseries (from May 8th, 2014) we

estimate the VAR model in equation (1.10) using a 250-day rolling window as in

Toyoshima and Hamori (2018), which roughly refers to a year of trading days.24 In

this way, according to Lovcha and Perez-Laborda (2020), we could determine the

time-varying TSI defined in Equation (1.14) to understand the periods of higher and

lower interconnection.

First, we report in Figure 1.8 the dynamic aggregate TSI. Looking at the dynamic

TSI in Figure 1.8, most volatility spillovers occurred in the short period. The only

notable exception was the Covid-19 pandemic, where the long-run TSI peaked, high-

lighting the role of Covid-19 in the structural behavior of the financial market. This

result is significant because it highlights how, at the beginning of the pandemic, the

expectations of economic and financial actors were significantly negative, especially

given the non-existence of vaccines and a potential treatment for Covid-19.

In contrast, the behavior of the volatility connection in the medium run is more

homogeneous, indicating constant and stable spillover around 5-10 days.

According to the results obtained in the cointegration analysis, the Russia-Ukraine

war had a more pronounced impact on stock prices. Conversely, the Covid-19 pan-

demic was associated with higher volatility spillovers between the different series,

confirming Li et al. (2022a). From a financial markets point of view, this evidence

23In addition to the war in Ukraine, the conflict in Gaza has also influenced financial markets.
24As we did for the step-ahead number (static analysis), we conducted several trials using different

rolling schemes higher than 250, with almost comparable results.
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Note: The Total Spillover Index is computed via Equation (1.14). It is a volatility connectedness measure that ranges from 0
to 100.

Figure 1.8: Dynamic Total Spillover Index.

suggests that the pandemic effects had broader and more unpredictable effects on fi-

nancial markets, causing turbulence across various sectors beyond just energy and raw

materials. In addition, this implies that geopolitical events referring to global energy

suppliers (such as Russia) can directly affect the market prices of different sectors,

especially those from energy and raw materials. This pattern is confirmed in Figure

1.19, where we report the rolling TSI on standard squared returns.

The dynamics of net volatility spillovers are illustrated in Figure 1.9 and 1.10.

On average, Aluminum and Silver receive volatility spillover in almost all the

timespan considered. However, copper started to emit volatility spillovers after the

Russia-Ukraine conflict and consequent material crisis, as previously stated by Mensi

et al. (2022). This observation aligns with the findings of the cointegration analysis,

highlighting the copper price relevance in the context of renewable energy pricing.

Except for Nuclear energy, which receives volatility spillovers in almost all the

samples, the behavior of solar and wind sectors is non-homogeneous, corroborating

Hanif et al. (2023). Aside from the general renewable ETF (PBD), both the solar
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(TAN) and wind (FAN) sectors display positive and negative peaks. This result par-

tially agrees with Shahzad et al. (2022), who describe wind energy as the largest trans-

mitter of shocks in financial markets, while it received volatility spillovers during the

Covid-19 period.

Notably, the observed volatility coincides with the peaks registered by fossil fu-

els, especially during the Covid-19 and Russia invasion (Dutta and Dutta, 2022).

Economically, rising fossil energy prices stimulate heightened investor interest in re-

newables, thereby enhancing their significance. Consequently, this complex relation-

ship leads to increased volatility, which in turn influences the other considered series

(aligning with Zhou et al., 2021). All these features are confirmed by the robustness

analysis conducted in Figure 1.20, where the squared returns are used as volatility

benchmarks.

Despite the fall in Oil Prices during the Covid-19 period and the turmoils gener-

ated in the energy market by the Russia-Ukraine conflict, the behavior of Crude oil

within this volatility spillover system appears to be mixed before the pandemic but

after, during the highest turmoils period, it receives spillovers from other markets.

The behavior of Natural Gas and Heating Oil is similar to those of the WTI, reversing

the findings of Yadav et al. (2023), which found Natural gas to be the highest contrib-

utor of the shocks while confirming crude oil as the net volatility receiver from the

network connection.

On the other hand, considering different spillover frequencies enlarges the re-

search. In Figure 1.10, we report the Baruník and Křehlík (2018) spillovers where

the blue line shows the high-frequency spillovers (1-5 days), the red line refers to the

medium frequency (5-10 days), while the green line represents the long period (10-20

days). Renewable energies (except nuclear) have produced relevant high-frequency

volatility spillovers. In particular, wind and solar energy systems generate immedi-

ate volatility spillovers to the system. From an economic perspective, this result is

slightly profitable because it shows how renewable energy innovations have a signif-

icant prompt consequence on financial systems. Nonetheless, under specific condi-

tions, the wind market produces low-frequency spillovers. In particular, in the early

part of the sample, it receives turbulence from other markets at low to medium fre-

quencies.
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Moreover, in early 2018, the development of the renewable industry caused signif-

icant long-run spillovers in all financial systems, except for wind sources. This result,

combined with the high dependence on higher frequencies, indicates that renewables

energy sentiment is becoming prominent in portfolio choices and optimal asset al-

locations since it influences the investors’ risk management. However, during the

Covid-19 pandemic, these series receive spillovers, also in the long term, signaling a

volatility dependence during this event.

Regarding fossil fuels, we notice some interesting patterns in how frequency volatil-

ity spillover spreads. WTI (West Texas Intermediate) plays a prominent role in trans-

mitting volatility, especially over longer time frames until the Russia-Ukraine war.

However, it tends to receive volatility spillovers in the short term. There is a notable

exception during the energy crisis caused by the Russia-Ukraine conflict, where WTI,

Natural Gas (NG), and Heating Oil (HO) all started emitting volatility. Heating Oil

behaves similarly to WTI, while Natural Gas consistently acts as a receiver of volatil-

ity across various time frequencies, confirming Umar et al. (2022) and Mensi et al.

(2022).

Commodity prices typically receive volatility. However, their behavior diverged

during the Covid-19 epidemic. Notably, aluminum received low-frequency spillovers,

indicating a more structural interdependence within the network. In contrast, copper

and silver experienced substantial short-term spillovers after the Covid-19 pandemic,

thus confirming (Adeleke and Awodumi, 2022).

The US market emits volatility spillover for almost all the period considered, with

a long-term peak around the Covid-19 pandemic. The behavior of the European sys-

tem is, on average, different from the American system since it receives volatility

spillover. It still exhibits several peaks, but the American markets exceed Europe in

the highest frequency. This difference between the European and American systems

raises the question of how investors view renewable energy: an immediate market

reaction signals a consistent change in investor sentiment toward renewable energy.

Quite the opposite, a slow response may underscore the market’s willingness to wait

and see what happens. In practice, it is synonymous with the investors’ social caring

about investments.25

25The BK spillovers are confirmed by the robustness analysis conducted in Figure 1.21.



1.4. Results 41

Pairwise Spillover Analysis

Figure 1.11 and 1.12 report the pairwise spillover analysis. The role of the US market

as an emitter of volatility is exacerbated with the onset of the Covid-19 pandemic. Al-

though it emits volatility repercussions during almost the entire time frame, it shows

significant peaks during the initial market collapse due to the spread of Covid-19 and

the measures to contain the contagion. All the renewable energy ETFs began to in-

fluence European market volatility after the second half of 2021, when the economic

recovery began, thus confirming the increasing investors’ social awareness.

While WTI receives volatility spillovers from renewable energy even during the

recent conflict between Russia and Ukraine, natural gas and heating oil increase volatil-

ity in every renewable sector except FAN, thus making wind industries a profitable

hedging opportunity. The volatile behavior of aluminum and silver was confirmed

during the Russia-Ukraine conflict. However, the commodity crisis caused by the

war caused copper to emit significant volatility spillovers on solar and nuclear sys-

tems while receiving spillovers from FAN and PBD. In this sense, we confirm Valckx

et al. (2021), concluding how copper prices and volatility are crucial for renewable

energy investments.

Recently, wind and solar energy emit volatility spillovers to silver and aluminum,

while they receive volatility spillovers from copper. Nuclear energy appears to be-

have as a volatility receiver, with the only noteworthy spike occurring at the start of

the Russia-Ukraine war, when fear of nuclear war began to spread across economies.

This result highlights how this type of energy is usually considered marginal in stable

market situations, compared to wind and solar, which are used more because they

are considered safer and more profitable (Kath et al., 2020). We do not report re-

sults from the Baruník and Křehlík (2018) perspective to facilitate discussion, but the

consequences of volatility fade within a week in almost all pairs.26

These results leave room for some recommendations. Investors should monitor

the evolving dynamics of volatility spillovers in energy markets, particularly during

turmoil events like the Covid-19 pandemic and geopolitical conflicts. These events

can present both investment opportunities and risks, and understanding the impact of

26For reasons of space, we do not report the robustness version of Figure 1.11, but the results are
also confirmed in light of previous robustness checks.
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specific commodities, such as copper, on the renewable energy sector is crucial. Mar-

ket preferences for energy sources (especially for wind and solar sources considered

safer and more profitable) can lead to portfolio rebalancing and short and long-term

investment choices, especially when considering raw materials such as copper. It

is worth noting that these volatility spillovers tend to have short-term effects, typi-

cally lasting no more than one week, which underscores the need for timely decision-

making in response to changing market conditions.

1.5 Conclusions

With the increasing global environmental pollution and energy crisis, investment in

renewable energy has become a concern for investors in recent years. In this study, we

first deepen the study of the cointegration relationship held for the energy variables

and the raw material prices. To generalize the work, we used ETFs to identify solar

(TAN), wind (FAN), and nuclear (NLR) markets to produce sectorial reports. Then,

residuals from VECM models are squared and considered as volatilities proxies. As a

result, we conduct a volatility spillover analysis using the Diebold and Yilmaz (2012)

and Baruník and Křehlík (2018) methodologies.

We identified a cointegrating relationship among the variables, confirming a long-

term relationship among various energy sources, including fossil fuels and renew-

ables, along with raw material prices. The relationship between wind and crude oil

aligns with the findings in Bondia et al. (2016), which suggested a substitution rela-

tionship between fossil and clean energy sources. Quite the opposite, we confirm a

kind of complementarity relationship between solar energy and fossil fuels, confirm-

ing Dominioni et al. (2019).

While the Ukrainian war influenced almost all the series, the Covid-19 dummy

does not impact prices, except crude oil. Interestingly, the American financial swaps,

meant as volumes rise, led renewable energy performance to decrease during turmoil

(higher volatility) periods.

The static volatility spillover connectedness analysis revealed the influence of re-

newables on raw materials. Moreover, a bidirectional relationship between returns
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and clean innovation emerged. We reported the unexpected result of WTI that, on av-

erage, does not transmit volatility spillovers. Furthermore, decomposing the spillover

frequencies showed a certain persistence of volatility transmission mechanisms, set-

tling at around five days.

Conversely, from a dynamic rolling perspective, the WTI is a net emitter of volatil-

ity during turbulent periods for almost all the employed series and with some long-

lasting effects. During market turbulence, the interconnectedness between the series

increased, showing a willingness to substitute fossil energy with renewable ones in

portfolio optimization. Moreover, the raw materials sector became a net volatility in-

novation receiver encompassing the role of “system stabilizer”, thus not contributing

to increases in global market uncertainty.
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1.A Innovations and realized volatilities
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Figure 1.13: Innovations from cointegration analysis.
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Figure 1.14: "Realized" Volatilities.
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1.B Covid estimation splitting
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Figure 1.15: Pre Covid Spillovers both DY and BK
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Figure 1.16: Post Covid Spillovers both DY and BK
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Chapter 1. Idiosyncratic and systematic spillovers through the renewable energy

financial systems
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Chapter 2

Energy consumption and economic

growth in the decarbonization era. A

panel data analysis

Abstract

This study investigates the relationship between energy consumption,

economic growth, and environmental degradation in European countries

from 1990 to 2022. We use a panel data estimator (Dynamic Common

Correlated Effect Mean Groud, DCCEMG) to account for heterogene-

ity in the panel, unit root, and cointegration in the series dynamics, thus

leading us to some relevant policy discussions. First, we highlight the

significant role of renewable energy consumption in mitigating environ-

mental degradation in Southern and Eastern European countries. Second,

we report significant long(short)-term environmental benefits from using

solar(wind) consumption. Interestingly, in Eastern European countries,

we observe a negative impact of renewable energy consumption on eco-

nomic growth given their poor renewable energy infrastructure develop-

ment, aligning with the sustainable degrowth theory.

Keywords: Renewable Energy; CO2 Determinants; Degrowth theory; Causality

JEL Classification: C23, Q40
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2.1 Introduction

The relationship between energy consumption and economic growth has become the

subject of intense debate in academic literature, especially after the Kyoto Protocol

(1997) and the Paris Agreement (2015). The role of energy policies has been stud-

ied to understand whether they can influence global climate change. Many govern-

ments have sought to develop a transitional mechanism to promote more efficient and

less polluting options that can simultaneously stimulate economic growth (Costan-

tini and Martini, 2010). However, according to the “bioeconomic program” theory

expressed in Georgescu-Roegen (1975), the economy might encounter a period of

negative growth to downsize the economy and reduce the exhaustible resources used.1

The Georgescu-Roegen (1975) essay aligns with the Daly (1973) theory as the first

broad example of a treaty on sustainable economics. In the literature on the energy

transition, several studies have demonstrated the effectiveness of cleaner energies in

reducing global pollution (see, for example, Panwar et al., 2011; Dincer and Acar,

2015; Paramati et al., 2022) that, however, are still a drop in the jar from a worldwide

perspective, see Figure 2.1.

The role of Renewable Energy Sources (RES) depends closely on the relocation

of the most polluting production from the richest to the developing countries that see

environmental damage increase (Dasgupta et al., 2002; Capoani, 2023). Therefore,

following Deshmukh et al. (2023), the development of RES is higher in developed

countries that have had the opportunity not to make the burden of fossil energy con-

sumption heavier.

The development of technology is crucial for a sustainable shift to cleaner en-

ergy. However, technological progress is different between industrialized and emerg-

ing countries. Indeed, Wang et al. (2019) show that in industrialized countries the

positive effect of the development of sustainable sources is reflected in both produc-

tion and consumption. In contrast, this effect is weak in developing countries (Lin

et al., 2017). According to (Akram et al., 2021), developing countries should increase

energy efficiency to stimulate technical progress. Adom et al. (2021) state how tech-

nological progress in poorer countries strongly depends on the levels of inequality

1The Club of Rome, an organization created to promote “sustainable growth”, supported
Georgescu-Roegen’s idea.
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Source: Energy Institute - Statistical Review of World Energy (2023) and ourworldindata.org

Figure 2.1: Global primary energy consumption by source

and the misalignment between energy supply and demand in the market.

The improvement and widespread adoption of RES can bring multiple benefits

to countries from a climate and economic point of view. It allows national govern-

ments to improve their energy security by reducing dependence on imported energy

and instead depending on domestically produced clean energy (Gozgor and Paramati,

2022). Following Balsalobre-Lorente et al. (2023), the shift to self-sufficiency in

energy production can help mitigate the challenges associated with unstable energy

prices, especially for nations heavily dependent on imports from other countries.

As emphasized by Khan et al. (2021a), energy consumption influences economic

growth, thus increasing domestic production and affecting environmental degrada-

tion. Within this framework, Grossman and Krueger (1991, 1995), and Panayotou

et al. (1993) introduced the Environmental Kuznets Curve (EKC) theory. The EKC

hypothesis illustrates an inverted U-shaped relationship between income (x-axis) and

environmental degradation (y-axis). According to the existing literature, some analy-

ses confirm the inverted U-shaped curve (Farhani et al., 2014; Ridzuan, 2019; Ahmad

et al., 2021; Arshad Ansari et al., 2020), while other reject the EKC hypothesis (Har-

baugh et al., 2002; Menegaki, 2011a; Pontarollo and Mendieta Muñoz, 2020; Ridzuan

et al., 2020, see also Table 2.11 in Appendix 2.A, where we report a more detailed

explanation of this theory).
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The EKC hypothesis is a controversial topic that has been questioned in the aca-

demic literature. First, following Arrow et al. (1995) and Stern et al. (1996), the valid-

ity of the EKC strictly depends on the effects of trade on the distribution of polluting

industries. In this sense, Dasgupta et al. (2002) introduced the “race to the bottom”

scenario, in which industries in developed countries apply a sort of relocation to de-

veloping countries, thus making their environmental burden heavier. Furthermore, as

Stern (2004) highlights, the role of control variables (if not motivated) is quite rele-

vant in this debate. On this line, Luzzati and Orsini (2009) argue that the choice of

the subsample is fundamental to validate the EKC. Given these considerations, we

use economic growth among the CO2 determinants, but we do not have the aim to

test the validity of the EKC.

As evident, energy consumption and economic growth are closely connected.

Many scholars attempt to study the contribution of energy consumption to economic

development. Mehrara (2007) introduced four hypotheses based on the causality be-

tween economic growth and energy consumption (see Table 2.1). For instance, Bhat-

tacharya et al. (2016a), Zafar et al. (2019) and Le et al. (2020), confirm the growth

hypothesis while Bento and Moutinho (2016), Destek and Aslan (2017) and Mbarek

et al. (2018), find several elements in favor of the feedback hypothesis.

Growth hypothesis It suggests that there is one-way causality from energy consump-
tion to economic growth. According to Payne (2010), the growth
hypothesis supports the view that conservation-oriented policies
have a lower impact on economic growth

Conservation hypothesis The opposite of the growth hypothesis since an increase in real
GDP provokes a one-way rise in energy consumption. According
to this hypothesis, conservation policies, such as the GreenHouse
Gas (GHG) reduction and energy efficiency enhancement guide-
lines, would not impact economic growth. Payne (2010) affirmed
that in a prosperity economics period, political, infrastructural, or
resource mismanagement could generate inefficiencies and a re-
duction in the demand for goods and services, including energy
consumption. In this case, an increase in real GDP might harm
energy consumption

Feedback hypothesis This suggests that energy consumption and economic growth are
interdependent and supplementary. In this case, any increase (de-
crease) in energy consumption results in an increase (decrease) in
GDP and vice-versa.

Neutrality hypothesis There is no causality between energy consumption and GDP.
Therefore, neither a conservative energy policy nor an energy ex-
pansion policy, has any effect on economic growth.

Table 2.1: Classic causality hypothesis



2.1. Introduction 59

We aim to fill the literature gap in several ways. First, while several studies used a

panel of heterogeneous countries (see, for example Jebli and Youssef, 2015; Ivanovski

et al., 2021; Namahoro et al., 2021), we examine a panel composed of countries from

the same geographical area, Europe. In particular, we distinguish from Simionescu

(2021) and Simionescu et al. (2022) by expanding the sample to Northern European

countries and including slope heterogeneity, cross-sectional dependence, and coin-

tegration in our analysis, also considering the effect of environmental policies. We

improve the work of Frodyma et al. (2022) by using an aggregate measure of carbon

dioxide emissions. To the best of our knowledge, we are the first to deal with all these

issues around the European economies.

Second, we divide renewable/clean energy consumption into subgroups: hydro-

electric, nuclear, solar, and wind. Accordingly, given the high differences in renew-

able energy consumption sources in the EU (see Figure 2.2), understanding the effect

of different renewable energy sources on environmental degradation could improve

the definition of policies. Within this context, we investigate the role of economic

growth on specific renewable energy consumption and vice versa to comprehend

whether some patterns emerge.

Third, differently from Marra and Colantonio (2021) and Hassan et al. (2024), we

include the Environmental Policy Stringency (EPS) index to investigate its country-

by-country impact on renewable energy and economic growth. To conclude, we ex-

tend the sample after the Covid-19 period and the Russian invasion of Ukraine, thus

considering the recent decarbonization era.

Among the determinants of CO2, we find a non-linear relationship with economic

growth, proxied by the per capita GDP. Renewable energy consumption reduces eco-

nomic growth in some Eastern European countries. Based on the degrowth theory,

we align with the “sustainable decrease hypothesis”. Additionally, the negative im-

pact of environmental policies on economic growth and renewable consumption in

Eastern Nations is emphasized.

The rest of the Chapter is divided as follows. Section 2.2 provides an extensive lit-

erature review, while Section 2.3 explains the methodology and introduces the dataset.

Section 2.4 discusses the result and Section 2.5 concludes.
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Wind Solar

0.013 28.4 53.9 85 164 209 327 0 9.72 36.3 52.5 71.8 88 158

Hydro Nuclear

0 17 36 73.4 116 182 333 0 41.1 109 737

Note: All the values are measured in terawatt-hours. White: no data.

Figure 2.2: Renewable energy sources consumption (2022)

2.2 Literature review

Given the demonstrated empirical relationship between economic growth and energy

consumption (both renewable and fossil), energy policies are becoming essential to

guarantee a sustainable development path (Dasgupta et al., 2002). The Kyoto Proto-

col (1995) developed the first joint global action to ensure fixed pollution degree to

guarantee sustainable development. The Paris Agreement (2015) strived to restrict

global average temperature rise.

Part of the literature investigated the causality between energy consumption and
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GDP growth, often used as a proxy for wealth. Scholars focused on the four causal hy-

potheses discussed in Table 2.1. Tiba and Omri (2017) published a general literature

review of this topic, dividing the work into two fields: the causality between energy

consumption/production and the nexus among economic growth, environment, and

production. They report mixed and contradictory results. The main reason resides

in the methodology used and the omitted variable bias, as also discussed in Luzzati

et al. (2018) and Armeanu et al. (2018); it occurs when the analysis does not consider

one or more relevant variables.

Given the growing interest in renewable energies, literature has begun to study

its role in economic growth. Sustainable economic development is one of the main

factors that governments consider when formulating energy policies (Stiglitz, 2017).

The effect of renewable energy consumption on wealth levels strictly depends on the

country’s characteristics (such as social awareness and green policies). Bhattacharya

et al. (2016b) find a positive effect of renewable energy consumption on economic

growth for 57% of countries in a sample of 38 nations. Tugcu et al. (2012) reach a

contrasting result for the panel of G7 countries. Inglesi-Lotz (2016a) discover a pos-

itive statistical significance of renewable energy consumption on economic growth,

thus suggesting that promoting environmentally friendly energy stimulates economic

conditions.

Menegaki (2011a) analyzes the relationship between renewable energy and GDP

in Europe, finding no significant effects. Alper and Oguz (2016a) investigates the

link between economic growth and renewable energy in Eastern European countries,

reporting a positive relationship. Cho et al. (2015) argue that the impact of renew-

able energy sources on the economy is closely linked to the structural development of

countries, suggesting considering the level of industrialization. Therefore, to study

the role of the degrowth hypothesis, we also believe that the degree of renewable en-

ergy development in the country is crucial to explain the differences across countries.
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2.2.1 Causality analysis

The first set of analyses based on a Fully Modified OLS (FMOLS) and an Autoregres-

sive Distributed Lags (ARDL) approach show the validity of the feedback hypothe-

sis (Apergis and Payne, 2010a,b, 2011, 2012; Apergis and Tang, 2013; Pao and Fu,

2013). Apergis and Payne (2010a) study a sample of Eurasian countries from 1992 to

2007. Apergis and Payne (2010b) conduct a panel data analysis based on 20 OECD

countries from 1985 to 2005 studying non renewable energy consumption behavior.

The same period is analyzed by Apergis and Payne (2011), which examine the per-

formance of renewable energy consumption in six US countries. According to Pao

and Fu (2013), economic growth plays a relevant role in fostering the development of

the renewable sector. The same study reported the unidirectional causality between

non-hydro renewable energy consumption and economic growth. In addition, they

prove a bidirectional causality between economic growth and total renewable energy

consumption.

Destek and Aslan (2017) confirm the feedback hypothesis using a panel bootstrap

causality analysis on emerging economies between 1980 and 2012. In addition, the re-

sults show that renewable energy consumption stimulates economic growth in Peru,

Greece, and South Korea. Quite the opposite, Non-Renewable Energy Consump-

tion develops the economy in China, Colombia, Mexico, the Philippines, and Turkey.

Mbarek et al. (2018) obtain the same result in France, Italy, Spain, and Turkey (Bento

and Moutinho, 2016, confirm the feedback hypothesis for Italy). In addition, Sebri

and Ben-Salha (2014) and Kahia et al. (2016) conduct a VECM analysis, the former

on the BRICS countries from 1971 to 2010 and the latter on the Middle East and

North Africa (MENA) oil-exporting countries from 1980 to 2012, again confirming

the feedback hypothesis. For the BRICS countries, the results were confirmed by

Shahbaz et al. (2016).

Lin and Moubarak (2014) find the feedback hypothesis for China from 1977 to

2011. In addition, the results of Alper and Oguz (2016b) and Saad and Taleb (2018)

show the validity of the feedback hypothesis for a sample of EU member countries in

the periods 1990-2009 and 1990-2014, respectively, using ARDL and VECM causal-

ity methods. The feedback hypothesis is also confirmed by Narayan and Doytch
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(2017), who analyzed a sample of 89 countries from 1971 to 2011 using the Gen-

eralized Method of Moments (GMM) and fixed-effects (FE) estimates. Furthermore,

according to Sun et al. (2020), and Sebri and Ben-Salha (2014) respectively, bidi-

rectional causality between energy consumption and economic growth emerge for a

panel of OECD and B&R (Belt & Road) countries from 1992 to 2015 and for BRICS

countries from 1971 to 2010.

One of the widely used techniques in the literature to identify causality is the

Toda-Yamamoto procedure. On this line, Bowden and Payne (2010) and Fang (2011)

support the growth hypothesis for the United States and China. The ARDL technique

led Amri (2017) to conclude about the boost in the economic growth led by the rise in

renewable sources for Algeria between 1980 and 2012. Bilgili (2015) studies the re-

lationship between renewable energy and economic growth in the US using a wavelet

(partial) coherence analyses, finding a relevant role of industrial production.

Bhattacharya et al. (2016a) analyze the nexus between economic growth and en-

ergy consumption. They confirm the growth hypothesis for non renewable energies

and the neutrality relationship for renewables systems for a sample made by 38 coun-

tries from 1991 to 2012. Le et al. (2020) apply a Feasible Generalised Least Square

(FGLS) technique to identify the causal relationship between energy consumption

and economic growth in 102 countries, finding elements supporting the growth hy-

pothesis. These achievements are confirmed by Zafar et al. (2019), who perform the

same econometric method on 16 Asia-Pacific countries from 1995 to 2015.

Menegaki (2011b) employs the Dynamic Error Correction Model (DECM) to ex-

amine the nexus between renewable energy and economic growth in European coun-

tries from 1997 to 2007. She supports the neutrality hypothesis since no relationship

between renewable energy and economic growth emerged. The neutrality hypothe-

sis was confirmed also by Jebli and Youssef (2015) and Adams et al. (2018). The

first selected a sample of 69 countries from 1980 to 2010 and employed FMOLS and

OLS with Granger causality analysis. Adams et al. (2018) analyze the behavior of re-

newable energy consumption in 30 Sub-Saharan African countries (1980-2012) using

the Dumitrescu-Hurlin causality. According to Ivanovski et al. (2021), the impact of

renewable energy consumption on economic growth is statistically indistinguishable

from zero in OECD countries from 1990 to 2015, while renewable energy promotes
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energy growth in non-OECD countries.2

The literature does not convey the validity of the conservation hypothesis. How-

ever, (Sadorsky, 2009a,b) demonstrate how increasing GDP per capita is one driver of

renewable energy consumption. This result is strongly related to the characteristics of

the countries analyzed. For example, Furuoka (2017) conducts a Dumitrescu-Hurlin

causality test for a sample of Baltic countries (Estonia, Latvia, and Lithuania), in-

vestigating the link between renewables and growth between 1992-2011. The author

has provided a comprehensive literature review organized in tabular form that can

be a reference for the reader. The findings suggest that governments in the Baltic

countries are free to implement conservation policies without hindering economic

development. Rahman and Velayutham (2020) confirm this relationship for a sample

of 5 South Asian countries

Fewer analyses focused on individual countries. Ocal and Aslan (2013) exam-

ine the economic growth-renewable energy nexus for Turkey, Azlina et al. (2014)

for Malaysia, and Brini et al. (2017) for Tunisia. The former found a negative im-

pact of renewable energy consumption on economic growth from an ARDL analysis,

confirming the validity of the conservation hypothesis. Azlina et al. (2014) reveal a

Granger causality nexus from income to energy consumption and renewable energy

use. In conclusion, Brini et al. (2017) analyze through an ARDL approach the situa-

tion in Tunisia for a time frame 1980-2011, supporting the conservation hypothesis.

There is also a field in the literature focusing on the cauality between Carbon

Emmissions and Renewable Energy Consumption which we summarize in Table 2.2.

Authors Methodology Variables Controls Periods Sample Results

Sadorsky

(2009b)

Pedroni, FMOLS,

DOLS

REC, CE GDP, OP,

CO2

1980-

2005

G7 CE ³
REC

Apergis et al.

(2010)

Panel ECM, GC REC, NE GDP, NE 1984-

2007

19 de-

velop.

CE ³
REC

Menyah and

Wolde-Rufael

(2010)

Toda-Yamamoto,

GC

REC, NE NE, GDP,

EPI

1960-

2007

US CE³ NE

2For a more exhaustive review of causality between non-renewable energy consumption and eco-
nomic growth see Adedoyin et al. (2020).
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Tiwari (2011) SVAR model REC, CE GDP, CE 1960-

2009

India REC ³
CE

Payne (2012) Toda-Yamamoto REC GDP, OP,

CE

1949-

2009

US REC ;=
CE

Apergis and

Payne (2014)

FMOLS, Panel

causality

REC GDP, OP,

CP

1980-

2010

7 Ameri-

can

REC ³
CE

Shafiei and

Salim (2014)

STIRPAT model,

AMG, Panel GC

REC POP,

URB, EI,

nREC,

SIS

1980-

2011

OECD CE ³
REC

Sebri and Ben-

Salha (2014)

VECM REC GDP, TO,

CE

1971-

2010

BRICS CE ³
REC

Jaforullah and

King (2015)

Johansen, VECM CE GDP, EPI,

NE

1965-

2012

US REC ³
CE

Al-Mulali and

Ozturk (2016)

Kao Coint.,

FMOLS, GC

REC GDP,

nREC,

TO, URB,

EI

1990-

2012

27 de-

velop.

REC ³
CE

Dogan and

Seker (2016)

DOLS, DH REC GDP, TO 1980-

2012

EU REC ´
CE

Bilgili et al.

(2016)

Pedroni, FMOLS,

DOLS

REC,CE GDP 1977-

2010

17 OECD REC ³
CE

Bento and

Moutinho

(2016)

ARDL, Toda-

Yamamoto

REC CE, GDP,

IT

1960-

2011

Italy REC ´
CE

Jebli et al.

(2016)

Pedroni, FMOLS,

DOLS/VECM

REC,CE GDP,

nREC, IT

1980-

2010

OECD REC ´
CE

Mbarek et al.

(2018)

Pedroni, Kao,

VECM

REC GDP, CO2 1980-

2012

South EU CE ³
REC

Inglesi-Lotz

and Dogan

(2018)

Long Panel, DH REC GDP, TO 1980-

2011

Sub-

Saharan

CE ³
REC

Hu et al. (2018) FMOLS, DOLS REC GDP, TO 1996-

2012

25 devel-

oping

REC ´
CE

Nguyen and

Kakinaka

(2019)

Pedroni, FMOLS,

DOLS

REC GDP, OP,

CE

1990-

2013

107 coun-

tries

REC ³
CE
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Destek and

Aslan (2020)

AMG, Panel

bootstrap causal-

ity

REC GDP, CE 1991-

2014

G7 REC ³
CE

Adedoyin et al.

(2020)

PMG, DARDL REC NE, GDP,

RQ, CO2

1990-

2014

BRICS REC ³
CE

Saidi and Omri

(2020)

FMOLS, VECM REC,CE GDP,

URB,

CO2, LF

1990-

2014

15 count. REC ´
CE (short-

run)

Ahmad et al.

(2021)

Westerlund, DH REC GDP, TO,

FDI

1990-

2014

OECD REC ´
CE

Table 2.2: Main Literature

Note: Renewable Energy Consumption (REC) and Carbon Emission (CE) defined based on Smyth and Narayan (2015) and

Sarkodie and Strezov (2019). GDP: Real Gross Domestic Product, OP: Real Oil Price, NE: Nuclear Energy, EPI: Energy Price

Index, CP: Real Coal Price, EI: Energy intensity, TO: Trade Openess, SIS: Share of industry and services, LF: Labor force,

NUC:Nuclear, IT: International Trade, RQ: Regulatory Quality, DH: Dumitrescu-Hurlin, AMG: augmented mean group

estimator, GC:Granger Causality;³ Unidirectional GC from x to y;± Unidirectional GC from y to x;´ Bidirectional GC

from x to y.

2.2.2 Environmental Kuznets Curve

At the nexus between energy consumption and economic growth, the Environmental

Kuztnes curve (EKC) is an extremely popular theory among scholars.3 In particular,

let suppose that environmental degradation and economic growth are linked by the

following equation

ED = β0 + β1GDP + β2GDP2 + et (2.1)

where ED is the Environmental Degradation, GDP is the Gross Domestic Product

and et is the disturbance term. Typically, the literature tests if β1 < 0 and β2 > 0 to

conclude about the EKC validity.

In many empirical works, Equation (2.1) is augmented by a set of control variables

to mitigate the omitted variable bias discussed in Stern (2004). With the additional

consideration of a set of control variables into the equation, researchers study the

determinants of CO2 rather than the validity of the EKC. Given the contrasting results

3The name EKC was taken from Kuztnes (1955) who stated that income inequality and economic
development were linked by a non-linear relationship (first it increases and then decreases).
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(see Table 2.11), the choice of ad hoc control variables could lead to the EKC validity

as also reported in Kaufmann et al. (1998) and Itkonen (2012).

For example, including some controls, an inverted U-shape between income and

environmental quality is found in Shahbaz et al. (2015b) for a subset of high-, middle-

, and low-income countries, while Orubu and Omotor (2011) confirmed the validity

of the EKC for an African panel. Furthermore, Ozturk and Acaravci (2010) showed

how the EKC was not valid for Turkey in the period 1968-2005, while Al-Mulali

et al. (2015) established the inverted U-shaped relationship between environmental

degradation and GDP for Vietnam from 1981 to 2011.

The country-by-country investigation produced mixed results. According to Bouznit

and Pablo-Romero (2016) Sinha and Shahbaz (2018), Mrabet and Alsamara (2017),

Nnaji et al. (2013) and Shahbaz et al. (2015a), the EKC theory applied for Algeria

(1970-2010), India (1971-2015), Qatar (1980-2011), Nigeria (1971-2009) and Por-

tugal (1971-2008), respectively. Asian countries such as Pakistan and China have

been heavily analyzed (see, for instance, Mirza and Kanwal, 2017; Sharif et al., 2017;

Koondhar et al., 2020; Yuan et al., 2015), partially demonstrating on average the ex-

istence of the EKC curve.

Saint Akadırı et al. (2021) tested the EKC for BRICS countries, finding statistical

evidence of the long-run inverted U-shaped relationship between economic growth

and environmental degradation. BRICS countries have been strongly studied because

they are a group of comparable countries (Balsalobre-Lorente et al., 2019; Haseeb

et al., 2018, confirm the EKC). The EKC hypothesis was tested and validated for a

sample of Sub-Saharan African countries (Sarkodie, 2018). Bibi and Jamil (2021)

study the EKC for six different regions, including Latin America and the Caribbean,

East Asia and the Pacific, Europe and Central Asia, South Asia, the Middle East and

North Africa, and sub-Saharan Africa, during the period from 2000 to 2018. They

find statistical evidence for EKC in the entire panel, except for sub-Saharan Africa.

As we saw, scholar focused on different countries and try to validate the EKC

hypothesis considering different controls and based on the analysed sample. Indeed,

Balado-Naves et al. (2018) conducted a regional study finding that the role of neigh-

bouring per capita income and national per capita emissions is crucial to validate the
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EKC hypothesis.4

2.2.3 Control Variables

In the context of CO2 determinants, the choice of control variables is fundamental to

limit the endogenous estimation since the omitted variable problem could affect the

energy-growth nexus. Several authors, such as Camarero et al. (2015), declare the en-

tire energy-growth nexus framework questionable due to econometric weakness and

theoretical inconsistencies. In general, we could try to mitigate the bias by employ-

ing the available variables based on economic theory. According to Westerlund et al.

(2015), a robust set of control variables should be employed to reduce the bias, but

there is no agreement in the literature on the specific control variables. The general

analysis of Apergis and Tang (2013) concludes that three or more variables can mit-

igate the coefficient estimation bias. This correction ensures the robustness of the

results.

Sadorsky (2006) use the oil price as the additional variable for a sample of G7

countries to determine the relationship between renewables and carbon emissions.

According to Shafiei and Salim (2014), the urban population and the share of industry

and services in the whole industrial set are essential to mitigate the problem of omitted

variables.

Urban population is one of the most frequently used variables in this framework

(Sebri and Ben-Salha, 2014; Al-Mulali and Ozturk, 2016; Wang and Zhang, 2020)

together with tarde openness (Shafiei and Salim, 2014; Al-Mulali and Ozturk, 2016;

Dogan and Seker, 2016; Bento and Moutinho, 2016; Inglesi-Lotz, 2016b). In general,

other common controls in this context are: labor force (Wen and Dai, 2021; Bilgili

et al., 2023), primary energy consumption (Valadkhani et al., 2019; Bekun et al.,

2021) and coal consumption Altıntaş and Kassouri (2020); Jonek-Kowalska (2022).

To align with this literature we include these variables in our analysis.

4see Table 2.11 and Pata and Aydin (2020); Pata and Caglar (2021) for a more detailed review.
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2.3 Metodology and Data

2.3.1 Methodology

Given the enormous amount of data on energy consumption and economic determi-

nants, we have tried to collect as much data as possible in the context of European

countries. Therefore, we need a panel data estimator dealing with a long time se-

ries component and a cross-sectional dimension. Consequently, we use the Dynamic

Common Correlated Effect Mean Group (DCCEMG) estimator of Chudik and Pe-

saran (2015).5 In particular, the DCCEMG estimator allows us to account for the

cross-sectional dependence between panel data and the non-stationarity of the vari-

ables, thus modeling the potential cointegration relationship. We specify the model

according to Chudik et al. (2016) via a CS-ARDL (Cross-Sectional AutoRegressive

Distributed Lags) specification to calculate the short-run and long-run coefficients.

Before proceeding with the estimations, we need to check the validity of statistical

assumptions through the usage of specific tests:

1. Slope heterogeneity test: it aims to test if slope coefficients are heterogeneous

in the cross-sectional dimension.

2. Cross-sectional dependence test: it assesses the potential correlation between

error terms across different cross-sectional units.

3. Unit Root test: it determines whether the variables exhibit a unit root.

4. Cointegration test: it investigates whether there exists a long-run relationship

between the variables.

Slope heterogenity

According to Pesaran and Smith (1995), especially when the time series dimension

(T) is high, the slope heterogeneity might bias the results. Baltagi (2008) proposed

to apply an F-type test on the difference of the sum of squared residuals from pooled

ordinary least squares and cross-section unit-specific OLS to test slope homogeneity.

Bun (2004) demonstrated that when T > N (with N cross-sectional units), this test

5It is the dynamic version of the work Pesaran (2006).
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has a good performance. Pesaran et al. (1996) introduced a Hausman-type test when

N > T compares the Fixed Effects (FE) estimator and cross-section unit-specific

OLS. However, according to Pesaran and Yamagata (2008), the procedure does not

apply to models with only strictly exogenous regressors or autoregressive compo-

nents.

According to Pesaran and Yamagata (2008), the slope homogeneity test is a stan-

dardized version of Swamy (1970) test. Consider the panel data model with two re-

gressors

yit = αi + x21,itβ1i + x22,itβ2i + εit (2.2)

where i = 1, . . . , N, t = 1, . . . , T, and β1i and β2i are k1 × 1 and k2 × 1 vectors of

slope coefficients, with k = k1 + k2. In this case, the hypothesis system is

ù

üú

üû

H0 : β21 = β22 = · · · = β2n,

H1 : β2i ;= β2j, for some i ;= j.
(2.2H)

Since x2,it vector contains strictly exogenous regressors, the coefficients in β2i are

tested for slope homogeneity. The test statistic is

∆ =
1:
N

(
S̃2 2 k2:

2k

)

, (2.3)

where, under the H0, it is asymptotically distributed as a standardized normal distri-

bution. S̃2 is defined as

S̃2 =
N

∑
i=1

(β̂2i 2 β̂2,FE)
2 (x22iM1ix2i)

σ2
i

(β̂2i 2 β̂2,FE), (2.4)

with β̂2i and β̂2,FE are the estimate of β2i respectively from the individual OLS es-

timation and a Fixed Effect (FE) model. M1i = IT 2 z1,it(z
2
1,itz1,it)

21z1,it is the

projection matrix which include the regressors that are not of interest (the constant

and x1,it). The σ2
i is

σ2
i =

(y2 x22,itβ2,FE)
2M1i(y2 x22,itβ2,FE)

T 2 1
.
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Using bias adjusted ∆̃ test may lead to robust findings to increase the properties of

the small samples. ∆̃ is described as follows

∆̃ =

:
N:
Ξ

(
1

N
S̃2 2 k2

)

(2.5)

where

Ξ =
2k2(Ti 2 k2 1)

Ti 2 k2 1

Since the Pesaran and Yamagata (2008) test is based on the homoskedasticity and

no serial correlation assumption, Blomquist and Westerlund (2013) defined an alter-

native test which takes into account these two features. To avoid that autocorrelation

in errors, the Blomquist and Westerlund (2013) test is based on the HAC version

∆HAC =
:

N

(

N21S̃HAC 2 k2

)

:
2k2

(2.6)

with S̃HAC =
N

∑
i=1

Ti(β̂2i 2 β̂2,HAC)
2(Q̂2iti

V̂21
iti

Q̂iti
)(β̂2i 2 β̂2,HAC),

where Q̂it is a projection matrix to bias the heterogeneous variables

Q̂it =
1

Ti
(x22iM1ix2i),

and β̂2,HAC is a robust HAC estimator of the pooled β2 coefficients

β̂2,HAC =

(
N

∑
i=1

TiQ̂iti
V̂21

iti
Q̂iti

)21
N

∑
i=1

Q̂iti
V̂21

iti
x22iM1iyi.

The V̂it matrix is the HAC correction

V̂it = Bi(0)
Ti21

∑
t=j

Ke

(
j

BandiTi

)

[Bi(j) + B2i] (2.7)

with Bi =
1

Ti

Ti21

∑
t=j+1

ûitû
2
it2j, û = (x̃2,it 2 ˜̄x2,it)ε̂it, ˜̄x2,it =

1

Ti

Ti

∑
t=1

x̃2,it, where x̃2,it is

the t-th element of x2,itM1i. ε̂it is the estimated residual from FE model, Ke is the

kernel function, and Band is the bandwidth parameter. To account for cross-sectional
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dependence the model is expressed with a common factor structure. The difference

from previous tests is based on the cross-sectional averages of yit, x1,it and x2,it to

eliminate the strong cross-sectional dependence.

Cross Sectional dependence

Since we experienced an increasing economic and financial integration of countries

and financial entities, the interdependencies between cross-sectional units steadily

rose. As a consequence, the panel-data literature (See, among others, Robertson and

Symons, 2000; Anselin, 2003; Pesaran, 2004) concludes that panel estimations reveal

substantial cross-sectional dependence in the errors. The cross-sectional dependence

may arise from common shocks, unobserved components, spatial dependence, and

idiosyncratic errors pairwise dependence.

According to Chudik et al. (2011), the literature differentiates the weak and strong

cross-sectional dependence. The weak cross-sectional dependence is accounted em-

ploying spatial methods. Conversely, the strong cross-sectional dependence is mod-

eled via common time-specific factors and loadings. We refer to strong (or strict)

cross-sectional dependence.

To address the cross-sectional dependence problem, the Pesaran (2004) (CD) test

has typically been used. This test is an investigation of the average correlation be-

tween panel units. The intuition is about the transformation of the sum of pairwise

correlations between panel units that are normally distributed. The null hypothesis is

strict cross-sectional independence. Consider the generalization of Equation 2.2

yit = αi + x2itβ + eit (2.8)

with i = 1, . . . , N, t = 1, . . . , T, αi is the time-invariant individual nuisance pa-

rameter, xit is a k × 1 vector of regressors and β is a k × 1 vector of parameters to

estimate. Under the null hypothesis, the eit is assumed to be iid over periods and

across cross-sectional units (no cross-sectional dependence). Thus, the hypothesis is

ù

üú

üû

H0 : ρij = ρji = corr(εit, ε jt) = 0, for i ;= j

H1 : ρij = ρji ;= 0, for some i ;= j.
(2.9H)
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where ρ is the product-moment correlation coefficient of the errors

ρij = ρji =

T

∑
t=1

eitejt

√
√
√
√

(
T

∑
t=1

e2
ite

2
jt

) (2.9)

The CD test resembles the Breusch and Pagan (1980) test (BP), generalized as the

LM test

LM = T
N21

∑
i=1

N

∑
j=i+1

ρ̂2
ij (2.10)

where, ρ̂ is the estimated product-moment correlation coefficient of the errors in

Equation (2.9). The LM statistic is asymptotically distributed as a χ2 with N(N 2
1)/2 degree of freedom. Pesaran (2004) introduced the CD test because the LM is

likely to exhibit substantial size distortions when N is large and T is finite. The CD

test statistic for balanced panel is

CD =

√

2T

N(N 2 1)

(
N21

∑
i=1

N

∑
j=i+1

ρ̂ij

)

. (2.11)

The CD test is distributed as a standard Normal when N ³ ∞ and T is sufficiently

large. Both tests do not account for the problem of proximity in the data. To deal

with this, the weak cross-sectional dependence test developed by Pesaran (2004) ac-

counts for an appropriate subset of neighboring cross-sectional units to check the null

of no cross-sectional dependence against the alternative of local cross-sectional de-

pendence. The test is called CD(s)

CD(s) =

√
√
√
√
√
√

1
N21

∑
i=1

N

∑
j=i+1

ω(ρ)ij

(
N21

∑
i=1

N

∑
j=i+1

ω(ρ)ij

√

Tijρ̂ij

)

, (2.12)

where ω(ρ)ij is the i, j-th element of the proximity matrix of order p-th with Tij

being the number of observations of the time series in common between individuals

i and j. The CD(s) test overcomes the strict cross-sectional dependence problems of

the basic CD test.
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Unit-roots

A unit root is a statistical concept indicating that a time series variable has a stochastic

trend and does not revert to a constant mean over time.

Usually, unit root tests in panel data are of two types. The first refers to the “first-

generation unit root test”, based on cross-sectional independence between units. The

second type of test is the “second-generation unit root test”, based on cross-sectional

augmented statistics, depending on the CD test result.

This work uses the Cross-sectional dependence versions of the Augmented Dickey-

Fuller (CADF) and Augmented Im, Pesaran, and Shin (CIPS) proposed by Pesaran

(2007).6

The CADF statistic can be obtained from the regression given below

∆yit = di + φiyi,t21 + ciȳt21 +
s

∑
j=0

βij∆ȳt2j +
s

∑
j=1

γij∆ȳi,t2j + εit, (2.13)

where di is the deterministic component, ȳ and ∆ȳ are the cross-sectional averages

of lagged levels and first differences, respectively, at time T for all countries. The t

statistic of φ estimated from the equation (2.13) is then used to calculate the CIPS

statistic, which can be represented as follows

CIPS =
1

N

N

∑
i=1

CADFi (2.14)

where CADFi are the t-statistics of φi, estimated from Eq. (2.13). Both the CADF and

CIPS tests are performed under the null hypothesis of homogeneous non-stationarity

of the variables

H0 : φi = 0 "i = 1, 2, . . . , N (2.15)

Cointegration

As well as the first-generation panel unit root tests, the most widely used panel coin-

tegration estimators, such as Kao (1999) and Pedroni (2004), do not account for panel

6There are other unit root tests (augmented by cross-sectional units), such as Breitung and Das
(2005) and Hadri (2000), but they assume, under the null hypothesis, that all panels have the same
value of the autoregressive term (φ). The Im et al. (2003) test relaxes the assumption of a common φ,
allowing each panel to have its own autoregressive coefficient.
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cross-sectional dependence. Therefore, Westerlund (2007) developed four new panel

cointegration tests based on structural rather than residual dynamics, thus not im-

posing any common factor restrictions. The idea is to test the null hypothesis of no

cointegration by inferring whether the error correction term in a conditional panel

Error Correction Model (ECM) is zero. When the data exhibit heterogeneity and

cross-sectional dependence, these methods outperform the standard Pedroni (2004)

and Kao (1999) methods.

Let the ECM generats from a DGP as follows

∆yit = δ2i dt +
P

∑
j=1

φij∆yi,t2j

Q

∑
p=1

βip∆xi,t2p 2 (12 φi)[yit21 2 βixit21] + εit,

(2.16)

where t=1,. . . ,T and i=1,. . . ,N are the time-series and cross-sectional units. The term

dt contains the deterministic components, y is the endogenous variables vector and

x comprehends the exogenous variables. The element (12 φi) = λi, is the loading

factor that determines the speed of adjustment after a sudden shock toward the long-

run equilibria defined by the yit 2 βxit relation. Therefore, we can state the null

hypothesis of no cointegration as

H0 : λi = 0, "i = 1, 2, . . . , N. (2.17)

The alternative hypothesis depends on what is being assumed about the homogeneity

of φi. Two of the tests, called group-mean tests, do not require the φi,s to be equal,

which means

H1 : φi < 0 for at least one i.

The second pair of tests, called panel tests, assume that φi is equal for all i and are,

therefore, designed to test H0 against

H1 : φi = φ < 0, "i = 1, 2, . . . , N.

Notably, the group statistic tests the existence of cointegration in at least one of

the cross-sectional units. Quite the opposite, the panel statistic examines cointegra-

tion among all cross-sections within the panel. When cross-sectional dependence
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is present, the bootstrap approach reduces the bias. The test details are reported in

Appendix 2.B.

Panel regression methodology

According to Eberhardt (2012), to account for slope heterogeneity and cross-sectional

dependence the Common Correlated Effect Mean Group (CCEMG) estimator by Pe-

saran (2006) can be used. Basically, the idea is that, for relatively large N, a number

of ft factors can be approximated by the cross-sectional averages of regressors. Con-

sider the model

yit = αi + β2ixit + uit with uit = δ2i ft + εit, (2.18)

where αi is the individual fixed-effects,7 βi are the heterogeneous coefficients ran-

domly distributed around a common mean, βi = β + νi, νi > I ID(0, σν), ft is an

unobserved common factor and δi is a heterogeneous factor loading. The regressors

xit are generated by linear combinations of the unobserved, cross-sectionally invariant

factors ft:

xit = ωi + λ2i ft + νit. (2.19)

Putting together Equation (2.18) and (2.19), leads to the following setup

þ

ø
yit

xit

ù

û

︸ ︷︷ ︸

zit

=

þ

ø
1 β2i

0 In

ù

û

þ

ø
αi

ωi

ù

û

︸ ︷︷ ︸

dt

+

þ

ø
1 0

βi IN

ù

û

þ

ø
δi

λi

ù

û

︸ ︷︷ ︸

C2 it

ft +

þ

ø
εit + β2iuit

νit

ù

û

︸ ︷︷ ︸

vit

. (2.20)

From Equation (2.20) the cross-section averages can be defined as

z̄it = d̄t + C̄2 ft + v̄it. (2.21)

Then, if the sum of squares of C̄ is invertible, the common factors can be written as:

f = (C̄2C̄)21C̄(z̄2 d̄2 v̄). (2.22)

7According to Pesaran (2006), a general deterministic time trends can be added.
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If N³ ∞, then v̄
p2³ 0 and C̄

p2³C, the estimator is consistent since f2 (C̄2C̄)21C̄(z̄2
d̄2 v̄)

p2³ 0. Pesaran (2006) shows that the cross-sectional averages of the response

(ȳt) and regressors (x̄t) are N-consistent estimators of the unobserved common factors

and can therefore be used as observable proxies for them.

The usage of these averages takes the name of Augmenting regression with com-

mon correlated effect (CCE) which can be also an estimator for β by computing OLS

to the augmented regression:

yit = αi + β2ixit + θ2iwt + εit with wt = (ȳt, x̄t)
2. (2.23)

The vectors β and θ are estimated through a GLS transformation:

γ =

þ

ø
β̂

θ̂

ù

û = (x2itM̄xit)
21x2itM̄yit with M̄ = I2 H̄(H̄2H̄)21H̄2, (2.24)

where I is the identity matrix, H̄ is the T(K + 1) matrix of cross-sectional averages of

wt and the deterministic component comprising individual intercept and time trend.

Now the average follow a Mean Group (MG) specification building the so called es-

timator of “Common Correlated Effects Mean Groups”:

γ̂CCEMG =
1

N
ι2γ̂. (2.25)

The CCEMG estimator is consistent for any fixed, unknown number of possibly non-

stationary common factors. Pesaran and Tosetti (2011) show that CCE estimator is

robust from both strong and weak forms of cross-section dependence.8

However, this estimator is static, thus it does not allow for the consideration of lags

in the dependent variable. To increase consistency, we account for the Autoregressive

part employing the Dynamic Common Correlated Effect Mean Group (DCCEMG) by

Chudik and Pesaran (2015). This estimator is consistent under stationary of variables.

According to Chudik and Pesaran (2015) and Ditzen (2019), the DCCEMG reviews

8According to Chudik et al. (2011) and Kapetanios et al. (2011), the estimator was proved consistent
under a variety of further assumptions on the error term.
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Equation (2.23) including the lag of the dependent variable:

yit = αi +
py

∑
j=1

φijyi,t2j +
px

∑
k=0

β2ikxi,t2k +
pCS

∑
m=0

δimwt2m + εit. (2.26)

Chudik and Pesaran (2015) proposed to include pCS = 3
:

T lags of the cross-sectional

averages to reduce the bias and to gain consistency. Then, according to Chudik et al.

(2016) and Ditzen (2021) the short-run coefficients are obtained and used to compute

the long-run coefficients

γ̂LR2ARDL,i =
∑

px

k=1 β̂ik

12∑
py

j=1 φ̂ij

(2.27)

where β̂ and φ̂ are the short-run estimations of parameters. The individual long-

run covariance matrix is estimated via Delta Method (see, Ditzen (2019) for details).

Among others, this specification is partially followed in Khan et al. (2020), Ma et al.

(2021), Khan et al. (2021b), Noureen et al. (2022) and Chien et al. (2022).

Heterogeneous panel causality analysis

In standard time series analysis, causality between series is determined by the so-

called Granger Causality (GC) procedure, which goes through the estimation of a

VAR(p) model. In many empirical studies GC is used extensively, sometimes inap-

propriately. Generalization in a panel framework has been employed by Dumitrescu

and Hurlin (2012) - named DH. Let us consider the standard panel regression:

yit = αi +
K

∑
k=1

P

∑
s=1

φiksyikt2s +
K

∑
k=1

Q

∑
l=1

βiklxikt2l + εit, (2.28)

where y and x are stationary time-series and the lags of the variables are determined

by the lowest IC. The coefficients may differ between individuals, but they are as-

sumed to be invariant over time. As in Granger (1969), the procedure for determin-

ing the existence of causality is to test the significant effects of past values of x on the

present value of y. The null hypothesis will be:

H0 : βi1 = βi2 = · · · = βik = 0, (2.29)
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which corresponds to the absence of causality for all individuals in the panel. The

DH test assumes there can be causality for some individuals but not necessarily for

all.

The first proposed step in the DH procedure involves running the N individual

regressions in the original panel set specified in the equation (2.28), running the F-

test of βs significance defined in the equation (2.29), and specifying the Wald (W)

statistic. Using Monte Carlo simulations, Dumitrescu and Hurlin (2012) show that

W̄ behaves asymptotically well and can really be used to investigate panel causality.

Wald’s Wi statistic under the null hypothesis is the absence of causality for all pan-

els of individuals, considering an iid distribution among individuals, when properly

standardized (Z) follows a normal distribution:

Z̄ =

√

N

2K
(W̄ 2 K)

d2³ N(0, 1) (2.30)

This statistic holds when T³∞ faster than N. For a fixed T dimension with T > 5+

3K, the approximated standardized statistic Z̃ follows a standard normal distribution

Z̃ =

√

N

2K

T 2 3K2 5

T 2 2K2 3

(
T 2 3K2 3

T 2 3K2 1

)

(W̄ 2 K)
d2³ N(0, 1). (2.31)

The verification procedure is based on the two normalized calculated statistics, Z̃ and

Z̄. When these values are greater than the critical values, H0 should be rejected and

the conclusion leads to the existence of Granger causality. For panels of N and T of

large size, one can reasonably consider Z̄. For data sets with large N but relatively

small T, one should favor Z̃. The empirical problem of cross-dependence can be

addressed by the bootstrap technique:

Step 1: Fit the original Equation (2.28) to obtain Z̄ and Z̃, as defined in (2.30) and

(2.31);

Step 2: Fit the model under H0:

yit = αi +
K

∑
k=1

P

∑
s=1

φikyikt2s + νit,
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and save the estimated residuals (ν̂it). More in details, the residuals obtained

from the equation must be collected in a matrix of dimension (T-K)×N;

Step 3: Build a matrix ν7it of dimension (T-K)×N by resampling (overlapping blocks

of) rows (that is, time periods) of matrix ν̂it. If autocorrelation is present (block)

bootstrap can mitigate the issue.

Step 4: Generate a random draw y71 , y72 , . . . , y7n, with y71 = y71t, y72t, . . . , y7Nt, from the

model under H0 and the residuals ν̂it, by randomly selecting a block of K con-

secutive time periods with replacement (see Stine (1987) and Berkowitz and

Kilian (2000)).

Step 5: Generate the timeseries under H0:

y7it = α̂0
i +

K

∑
k=1

P

∑
s=1

φ̂0
iky7ikt2s + ν7it,

conditional on the random draw for the first K periods.

Step 6: Fit the model in Equation (2.28) with the random draw:

y7it = αb
i +

K

∑
k=1

P

∑
s=1

φb
iky7ikt2s +

K

∑
k=1

Q

∑
l=1

βikxikt2l + εit,

and compute Z̄b and Z̃b.

Boot: Run the resampling procedure (Step 1 to 6) B times and compute the p-values

and critical values for Z̄ and Z̃ based on the distributions of Z̄b and Z̃b, where

b is the number of bootstrapped resampling.

2.3.2 Data

Based on data availability, we consider yearly data from 1990 to 2022 (T = 33)

for a total panel of N = 33 countries that refer to the European geographical area.9

In our case, we consider the geographical division essential as energy consumption,

9Austria, Belgium, Belarus, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Nether-
lands, North Macedonia, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden,
Switzerland, Ukraine, United Kingdom (UK).
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especially renewable energy sources, depends on the geographical characteristics of

the territories. For example, solar (wind) energy availability in southern (northern)

countries is higher than in the northern (southern) nations (Figure 2.3).

(a) Wind Availability in the EU (b) Solar Electricity Potential in EU

Source: Held (2010) Source: Talebi et al. (2016)

Figure 2.3: Comparison of Solar and Wind availability in the EU

The primary objective of this study is to investigate the CO2 determinants, while

simultaneously studying the mutual relationship between renewable energy consump-

tion, environmental degradation, and economic growth. Given the discussion in Luz-

zati et al. (2018), it is evident how the model specification, the sample, and the used

variables influence the validity of estimations. For this reason, we restrict the sam-

ple to European countries and we follow the literature to include several controls to

mitigate the omitted variable bias.

Our main variables of interest are the Renewable Energy Consumption (REC)

measured in terawatt-hours and the carbon dioxide emissions (CO2) measured in mil-

lion tonnes as a proxy of environmental degradation. We employ the GDP corrected

per capita instead of GDP at chained prices because it provides a more accurate indica-

tor for capturing the economic welfare of countries, while simultaneously accounting

for potential inflationary effects. We include a square term of the GDP to account for

the non-linear relationship between environmental degradation and economic growth.

According to Apergis and Tang (2013), as discussed in Section 2.2, the study

acknowledges the importance of including three or more relevant control variables in

the estimation to address the omitted variable problem. As a result, we incorporate

the total Primary Energy Consumption (PEC), measured in terawatt-hours, the PEC
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Main variables

GDP Per capita Gross Domestic Product
https://data.worldbank.org/indicator/NY.GDP.MKTP.KD

REC Renewable Energy Consumption
https://ourworldindata.org/renewable-energy

CO2 Environmental degradation
https://ourworldindata.org/co2-and-greenhouse-gas-emissions

Control variables

PEC Primary energy consumption
https://ourworldindata.org/energy

COAL Coal energy consumption
https://ourworldindata.org/energy

URB Urban population
https://data.worldbank.org/indicator/SP.URB.TOTL

LF Labor force
https://data.worldbank.org/indicator/SL.TLF.TOTL.IN

Table 2.3: Variables with URL

from coal, measured in terawatt-hours (COAL), urban population (URB), and the total

amount of labor force (LF).10 These selected control variables have been selected

according to Section 2.2.3 since they play a crucial role in this context to reduce the

endogeneity issue (see Table 2.3 for source details). In Appendix 2.C, we report a

panel-by-panel graphical representation of the main variables and Table 2.4 reports

the descriptive statistics.

CO2 GDP REC URB LF COAL PEC
mean 133.8906 28870.64 73.0752 1.20e+07 8.8095 121.9402 693.6288
sd 187.9506 22953.05 110.4397 1.54e+07 12.0187 217.0605 916.2582
min 2.104 1317.746 0 231255 0.1428 0 19.275
max 1054.741 112417.9 727.48 6.53e+07 56.5225 1529.691 4192.642

Table 2.4: Summary Statistics

First, we estimate the following dynamic heterogeneous panel data model

ln CO2it = αi +
py

∑
j=1

φij ln CO2it2j +
px

∑
k=0

β2likZit2k +
pCS

∑
m=1

δimwt2m + εit (2.32)

where Z is the vector of explanatory variables expressed in logarithmic terms

Z2it = (RECit, GDPit, GDP2
it, LFit, COALit, PECit, URBit)

2, (2.33)

10Alternatively, we could have used the number of hours worked or labor productivity, but in some
cases we had several missing values and we proceed by considering the total amount of workforce.
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and w represents the averages for cross sections. We consider log to compute elastic-

ities.

The general representation expressed in Equation (2.32) leads to the computa-

tion of the long-run coefficients as discussed in Equation (2.27). The idea is that the

long-run relationship can be considered as a sort of market equilibria. The short-run

coefficients represent the fluctuations around the long-run relationship. The inclusion

of the squared GDP term allows to test the include any non linearities in the CO2-GDP

relationship. The average non linear relationship between economic growth and car-

bon dioxide emissions seems to emerge from Figure 2.4.
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Figure 2.4: Scatterplot of average log per capita GDP (x-axis) and
CO2 (y-axis)

We revise Equation (2.32), including different renewable energy sources. In par-

ticular, we innovate the literature considering four different categories of REC: hydro-

electric (HY), nuclear (NC), solar (SC), and wind (WC) consumption. In particular,

we consider 2 additional model specifications one with RES and the other with nuclear

energy, to distinguish for renewable and clear energy effects. A noteworthy consid-

eration is that some countries may report zero values for specific renewable energy

types (see Appendix 2.D for a graphical representation). This is due to factors such as

the limited availability or adoption of specific renewable technologies. Accordingly,

these variables are not log-transformed, allowing the coefficients to be interpretable

as semi-elasticities.

Since the literature has not investigated the role of economic growth on renewable

energy consumption of this type of heterogeneous panels after the Paris Agreement

(2015), we apply the DCCEMG model in estimating the following linear panel data
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equation

ln RECit = αi +
py

∑
j=1

φij ln RECit2j +
px

∑
k=0

β2likQit2k +
pCS

∑
m=1

δimwt2m + εit (2.34)

where REC is expressed in logs, Z is the vector of explanatory variables (in logs)

Q2it = (CO2it, GDPit, GDP2
it, LFit, COALit, PECit, URBit)

2, (2.35)

and w represents the averages for individuals.

Finally, to understand the role of energy consumption on economic growth, we

estimate the model with the GDP as the dependent variable while REC and CO2 are

included in the set of regressors

ln GDPit = αi +
py

∑
j=1

φij ln GDPit2j +
px

∑
k=0

β2likTit2k +
pCS

∑
m=1

δimwt2m + εit (2.36)

where GDP per capita is expressed in log and Z is the vector of explanatory variables

(in logs)

D2it = (CO2it, RECit, LFit, COALit, PECit, URBit)
2, (2.37)

and w represents the averages for cross-sections. Also in this case the renewables are

broken down individually.

Since we deal with yearly data, we set the autoregressive order equals to one (py =

1), such as the lag in the exogenous variables (px = 1). Since T = 33, we follow

Chudik and Pesaran (2015) setting pCS = 3. As a result, we estimate in each case a

CS-ARDL(1,1,3).11

11We tested the model of the equation (2.36) considering any non-linearities in CO2 emissions and
REC, including their squared terms in the set of regressors expressed in the vector Dit in Eq. (2.37),
but we find no statistical evidence. To not make the tables burden, we do not include this case but it is
available upon request.
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2.4 Results and policy implications

Preliminary diagnostic statistics are given in Table 2.5 and 2.6. The heterogeneity

tests (∆ and ∆HAC), reveal how the null hypothesis of the homogeneous slope co-

efficients is strictly rejected. In addition, the rejection of the no-cross-sectional de-

pendence in the CD test underscores the need for an estimator that can address both

problems.

Long panels are characterized by extended time series data, typically with T values

exceeding 25, commonly dealing with macroeconomic time series. In such datasets,

issues related to non-stationarity and cointegration often arise. To assess the presence

of unit roots and cointegration in our data, we conducted second-generation unit root

tests using the Unit Root (CADF, CIPS) and cointegration tests (Westerlund). These

tests were conducted with both constant and trend components in the deterministic

part, indicating the existence of unit roots and cointegration. When examining the

bootstrapped pvalues, all tests considering different alternative hypothesis reject the

null hypothesis of no cointegration. Therefore, the DCCEMG estimator is the most

suitable in our case. It is worth noting that some studies still employ fully modified or

dynamic OLS despite their comparatively poorer performance in statistical inference.

CDw CDw+ CADF CIPS
CO2 -1.07 1521.68777 19.2597 4.8007
REC 2.64777 2095.05777 59.0895 2.4973
GDP 4.68777 2407.08777 30.2985 3.4239
COAL -3.34777 1618.97777 76.7054 0.1668
URB -2.98777 2360.61777 65.7840 3.5431
LF 2.14777 2209.13777 94.9104777 0.8254777

PEC 10.34777 1253.98777 220.5682777 -6.5679777

75% < p < 10%,77 1% < p < 5%,777 p < 1%

Note: The Slope Heterogeneity test ∆ = 22.608777, Adjusted ∆HAC = 25.973777

Table 2.5: Diagnostic tests

DCCEMG Results

First, we study the CO2 determinant, then, we explore the dynamic relationship be-

tween economic growth and energy consumption. Finally, we apply the test proposed
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Statistic Value Z-value P-value Robust P-value
Gt -2.782 -3.296 0.001 0.000
Ga -13.266 -1.849 0.032 0.000
Pt -14.577 -3.513 0.000 0.040
Pa -9.771 -1.994 0.023 0.050
VRsingle -2.2032 0.03
VRtotal 5.61 0.00

Note: the robust p-value is obtained through 100 bootsrap iteration. The VR test is the Westerlund (2005) test.

Table 2.6: Panel Cointegration tests

by Dumitrescu and Hurlin (2012) to identify causality between these variables and en-

sure the robustness of our findings.12 Table 2.7 reports the estimations of Equations

2.32, 2.34, and 2.36.

2.4.1 The non linear effect of GDP on CO2

Since the lagged value of CO2 is not significant, we need to study the dependence of

CO2 on external variables, such as economic development and energy consumption.

Given the longer-term perspective of the relationship between environmental degrada-

tion and economic growth, Equation (2.32) focuses on the long-run outcomes (Table

2.7, first column).

We found an inverted U-shape relationship between CO2 and per capita GDP with

a turning point estimated at $34822.53, which surpasses the average GDP of the sam-

ple ($28870.64). We can study the different decoupling stages of European countries,

thereby enhancing the implications associated with the worsening environmental con-

ditions. In our context, the decoupling stage (refer to Mikayilov et al., 2018, and

Figure 2.14) involves substituting the average GDP value (or country-specific values)

within the panel and comparing its value relative to the turning point, examining the

sign of the derivative.

Since the turning point is higher than the average GDP per capita of the sample,

European countries are (on average) in the early stages of industrialization and on the

path of relative decoupling, confirming the conclusions discussed in Mikayilov et al.

(2018) and Gyamfi et al. (2021). Table 2.8 shows the list of countries before and after

12We decided not to include country-by-country estimates to allow for a more readable result and
conclude about global average policies. In some cases, we report the country-by-country estimates in
bar plots.
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Equation (2.32) Equation (2.34) Equation (2.36)
Dep.Var ln CO2 ln REC HY NC SC WC ln GDP

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Short-Run

ln CO2t -1.94477 -102.977 -64.41 3.633 -48.10 0.39977 -2.228 0.28077

(0.381) (34.59) (51.43) (12.77) (34.00) (0.142) (2.872) (0.109)
ln CO2t21 -0.0266 0.0300 -0.103 0.5754 -77.26 -56.827 21.73 47.91 -0.00519 2.140 0.0381

(0.0611) (0.0715) (0.0748) (0.520) (72.08) (30.37) (29.98) (34.69) (0.0607) (2.268) (0.107)
ln RECt -0.0977777 0.0166

(0.0283) (0.0191)
ln RECt21 0.00336 0.236977 -0.02007

(0.0220) (0.12) (0.01)
ln GDPt -1.447 9.4917 2.764 28.3213 4102.27 -4974.8 -963.87 -753.9

(4.736) (5.120) (7.344) (27.36) (2254.5) (3149.7) (552.9) (602.3)
ln GDPt21 7.556 5.971 -3.530 6.9301 -1639.4 12337.1 -2589.3 -3798.6 0.394777 1.020 0.25677

(5.151) (9.427) (6.944) (43.029) (5559.5) (9373.7) (2011.4) (2632.0) (0.0776) (1.162) (0.0898)
ln2 GDPt 0.0598 -0.4407 -0.123 -1.440 -196.67 236.0 45.947 35.18

(0.228) (0.246) (0.349) (1.37) (108.2) (150.2) (26.33) (29.35)
ln2 GDPt21 -0.378 -0.275 0.156 -0.2493 72.63 -591.7 124.5 183.7

(0.239) (0.443) (0.329) (2.10) (266.5) (443.6) (97.73) (125.6)
HYt -0.0306 -0.0360

(0.0290) (0.120)
HYt21 -0.00857 -0.250777 0.395

(0.0330) (0.0718) (0.369)
NCt -0.001 -0.00067

(0.0007) (0.0003)
NCt21 -0.0006 -0.1017 -0.0006

(0.0005) (0.0557) (0.0009)
SCt 0.216 -0.237

(0.378) (0.493)
SCt21 -0.789 0.721777 0.106

(0.507) (0.158) (0.555)
WCt -0.17577 -2.714

(0.088) (2.308)
WCt21 0.179 -0.00138 -0.641

(0.194) (0.102) (0.550)

Long-Run

ln CO2 1.121777 2.580 0.322 1.759 0.343 -0.606777 -1.088 -0.682777

(0.525) (1.646) (0.214) (1.577) (0.290) (0.171) (3.973) (0.180)
ln GDP 10.2777 20.5277 -1.130 29.2558 -17.57 -4.280 -6.336 6.874

(4.857) (8.077) (6.490) (26.7587) (67.08) (18.51) (39.29) (29.29)
ln2 GDP -0.53877 -0.96577 0.0463 -1.3905 1.270 0.167 0.204 -0.251

(0.252) (0.388) (0.315) (1.25) (3.531) (0.881) (1.929) (1.388)
ln REC -0.15677 -0.09577

(0.0606) (0.0579)
HY 0.0941 -0.0531

(0.189) (0.104)
SC -0.51177 -0.815

(0.240) (1.226)
WC 0.00669 0.347

(0.147) (0.396)
NC -0.00377 0.0004

(0.0014) (0.005)

Note: Dynamic CCEMG estimation with control variables (PEC, LF, URB, COAL) included but omitted in the representation
for space reasons. Full estimations with control variables are available upon request.

Table 2.7: Panel data estimation



88
Chapter 2. Energy consumption and economic growth in the decarbonization era.

A panel data analysis

the estimated turning point. In fact, the heterogeneity of the panel emerges because

the countries of Eastern Europe are the majority in the industrialization phase, while

those of the South are in the transitional phase and those of the North are in a more

advanced phase.

Before turning point After Turning point
Belarus, Bulgaria, Croatia, Cyprus, Czechia,
Estonia, Greece, Hungary, Latvia, Lithuania,
North Macedonia, Poland, Portugal, Roma-
nia, Slovakia, Slovenia, Ukraine

Austria, Belgium, Denmark, Finland, France,
Germany, Iceland, Ireland, Italy, Luxemburg,
Netherlands, Norway, Spain, Sweden, Switer-
land, UK

Table 2.8: Pre-Post Countries turning point

The most industrialized countries, such as those in Northern Europe, are in the

absolute decoupling stage since their GDP is higher than the average where increased

economic growth reduces environmental degradation, confirming the results of McK-

ibbin et al. (2014) and Schandl et al. (2016). This result is also related to the high

degree of renewable energy use and the downward trajectory of carbon dioxide emis-

sions (see Figure 2.15). Additionally, in line with the findings of Mikayilov et al.

(2018), European countries have actively pursued more stringent carbon mitigation

policies (Paris Agreement, 2015) compared to other major economies such as China,

the United States, and Russia.

Given the discussion in Wu et al. (2023), our results reinforce the importance of

Nordic countries. Their increasing GDP and recent adoption of environmental poli-

cies aimed at expediting the transition to more sustainable energies underscore their

growing relevance in lowering emissions. These findings align with Papież et al.

(2021), who extensively discussed the efficacy of European environmental policies,

especially for the wealthier countries, in promoting the decoupling process. A de-

tailed discussion is presented in Section 2.4.3.

In terms of model specification we also tested the validity of the N-shaped rela-

tionship by considering a cubic GDP term, but no statistical evidence emerged.13

13Results are available upon request.
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2.4.2 REC and environmental degradation

Equation (2.32) explores the association between REC and CO2. Since we have

defined the logarithmic transformation, coefficients are interpretable as elasticities

(εCO2,REC). On average, the short-term effect of the REC significantly reduces the

amount of CO2 in the atmosphere with εShort2run
CO2,REC = 20.0965, confirming the role

of the REC in reducing environmental pollution. This result strengthens in the long

run with an elasticity of ε
Long2run
CO2,REC = 20.156. While from a worldwide perspective,

REC usage is still marginal, European governments could gain from promoting REC

via subsidies and incentives. This findings are in line with most of the literature (see,

among others, Hu et al., 2018; Adams and Acheampong, 2019) but do not confirm

Murshed et al. (2022).

However, given the high delocalization level of European companies, the pollu-

tion burden could be transferred to developing countries, thus producing negative

externalities in promoting environmental improvement in Europe. Furthermore, it

is essential to consider that consumer goods are produced in the rest of the world,

particularly in Asian countries.

Figure 2.5 shows individual long-term εCO2,REC estimates for each country. Given

the average estimation result, in almost all cross-sectional units, a negative effect of

the REC on CO2 emerged, with the exception of the Lithuanian case where the sign

of ε
Long2run
CO2,REC is positive and significant at 5%. Lithuania has reduced emissions more

slowly than the EU average, as reported by Jensen and Seppala (2021). EU effort-

sharing legislation has allowed Lithuania to increase its emissions by 15% (2020) to

improve the country’s economic development by promoting industrialization (IEA,

2021). This policy, combined with a relatively slower increase in the percentage of

renewable energy use (see Figure 2.6), implies that the increase in REC is not useful

for addressing the increase in environmental pollution at this stage, as evidenced by

the increasing trajectory of greenhouse gases reported in Figure 2.6 since 2015.

From Figure 2.5 we could also find the ε
Long2run
CO2,REC positive coefficient in the Ice-

land case. However, the coefficient is not significant, such as in Northern European

countries (Denmark, Finland, Germany, Netherlands, Norway, and Sweden). On av-

erage, according to Wolf et al. (2022), the Environmental Performance Index places
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Figure 2.5: Country-by-country estimation of ε
Long2run
CO2,REC , Eq. (2.32).

Iceland in 10th place, mostly behind the Nordic lands. This outcome implies that the

environmental conditions in these countries significantly surpass those in the rest of

the panel. Furthermore, it suggests that renewable energy consumption is not a deter-

minant factor contributing to environmental degradation (see, for instance, Nathaniel

et al., 2021). However, in other cases, especially in Eastern countries, the REC sig-

nificantly reduces CO2.

Examining the results for each renewable energy source (col. 2 of Table 2.7),

enlarge the implications of the work. We find a substantial impact of wind and so-

lar energy in mitigating environmental degradation, particularly in the short and long

term. This result is in line with Maka and Alabid (2022), who found that solar en-

ergy efficiently reduces environmental degradation. Furthermore, given the constant

decrease in costs related to solar energy such as installation and maintenance (see the

IRENA, 2022, report and Figure 1.3, Chapter 1), the energy policy formulation could
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Figure 2.6: Lithuaninan REC on total energy and GHG emissions
(measured in million tonnes of CO2-equivalents).

promote technologies aimed at containing solar energy costs and simultaneously im-

prove climate conditions.

The long-term importance indicates that solar energy requires structural invest-

ments to produce environmental benefits, especially in Southern European countries

where solar sources are significantly more available (see Figure 2.3). To strengthen

this discussion, we report in Figure 2.7 panel (a) the role of the effect of solar energy

consumption for each of the countries considered. The highest impact of SC on CO2

is found in southern (and eastern) European countries such as Italy and Spain.

As we saw from Figure 2.3, the availability of wind power plants in Northern Eu-

rope is further confirmed by the short-term effectiveness of wind in reducing carbon

emissions. The immediate impact underscores the well-established influence of wind

energy within the panel, particularly evident in the Nordic European countries and

the noteworthy exception of Spain (refer to Figure 2.2). In this context, the studies

conducted by de Castro et al. (2019) and Susini et al. (2022) delve into the potential

enhancement of wind energy by proposing the establishment of plants in the North

Sea, where winds are notably stronger.

Column 3 of Table 2.7 shows the CS-ARDL estimates considering nuclear energy

consumption (NC). The semi-long-run elasticity of the NC on CO2 is negative and
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significant, thus underlining the role of NC in improving environmental conditions.

However, we need to consider the fact that several countries do not use nuclear energy

as power plants, so in most cases the impact is zero. This result is in line with that of

Nathaniel et al. (2021), Murshed et al. (2022), and Pan et al. (2023), who discovered

a curbing role of nuclear energy on carbon dioxide emissions. In particular, we found

a relevant role of France and Spain, see Figure 2.7.

Our findings highlight the importance of implementing long-term policies for so-

lar and nuclear energy, which are significant drivers of environmental improvement

in the long term. Investments in renewable plants could diversify the energy mix

of families, making the impact of exogenous shocks on the energy market less pro-

nounced. New renewable energy plants bring substantial environmental benefits to

the real market. In particular, it has the potential to trigger various positive spillovers

in other sectors, including job creation and strengthening geopolitical relations be-

tween countries.14 Furthermore, developing cleaner energy alternatives can also pro-

duce higher financial returns, as demonstrated in studies such as Prokopenko et al.

(2023).

On the contrary, looking at the result of Table 2.7 column 4, CO2 reduces the con-

sumption of renewable energy in the short term, while it has a positive effect in the

long term, especially when considering the total REC. This result is relevant because

it underlines the role of social awareness in the long term and strengthens the ef-

fectiveness of growing regulations on limiting pollution while stimulating renewable

energy sources.

As reported in Figure 2.8, the maximum long-term positive impact of CO2 on

REC is achieved in Sweden and the United Kingdom, where the estimated cross-

sectional coefficient is above the average. In contrast, there are three countries where

the impact of CO2 on the REC is negative and significant: Bulgaria, Greece, and Hun-

gary. The main reason for this result is that these countries are relatively poorer than

the sample average and rely more on traditional fossil fuels, which could increase their

wealth. Therefore, while renewable energy consumption has increased, but relatively

less than in other countries, they may continue to use these fossil factors, negatively

affecting REC.

14For further discussion, please refer to Sen and Ganguly (2017) and Arcelay et al. (2021).
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(a) SC effect on CO2
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(b) NC effect on CO2
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Note: The continous red line is the average coefficient reported in Table 2.7 columns 2-3, while the dotted red lines are the
confidence bands for the average coefficient.

Figure 2.7: Country-by-country estimation of long-run renewable
sources impact on CO2 (semi-elasticities), Eq. (2.32).
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Figure 2.8: Country-by-country estimation of ε
Long2run
REC,CO2 coefficients

in Eq. (2.34)

Several interesting paths emerge in the short term when considering REC sources

(columns 4 - 8). Although income is not relevant to total REC, we found a U-shaped

relationship between income and solar energy (low point at GDP = $35945.89), while

an inverted U-shape emerged in the hydroelectric consumption case (highest point at

GDP = $33957.33). In the first case, it is a sign of how solar energy is used by

wealthier countries, given its higher average cost compared to wind power. Quite the

opposite, for higher income countries, the hydroelectric source is substituted by other

renewable (such as solar). This result strengthens the discussion on the promotion of

solar energy incentives.
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2.4.3 REC and economic growth

Given the 10% significant value of εGDP,REC, the effect of renewable energy on eco-

nomic growth is, on average, negative. This result is in line with Tsagkari et al. (2021)

and Muazu et al. (2023), which report a detrimental role of renewable energy usage

on economic growth. However, the outcome does not coexist with Alper and Oguz

(2016a) and Kasperowicz et al. (2020), which determine the positive influence of

renewable energy consumption.

Roughly this finding aligns with the “sustainable degrowth” (or decrease) theory,

recently discussed in Van den Bergh (2011), Lorek and Fuchs (2013) and Sekulova

et al. (2013).15According to Van den Bergh (2011), the role of social companies is

crucial to guarantee an increase in a sustainable degrowth context. Moreover, this

switch implies several simultaneous institutional changes, starting with the change of

the corporate structure as a form of productive organization. Moreover, following the

view expressed in Lorek and Fuchs (2013), the major problem in degrowth lies in the

weak sustainable vision of economic agents. In particular, following the principles

expressed by the theory of sustainable degrowth, corporate policy, and governance

should lead to the production of better-quality products that are sufficient to address

current ecological and social challenges.

Given the results of Sekulova et al. (2013), it will be necessary to disentangle the

effect of renewable energy on GDP since this consideration cannot be extended to

a group of different countries. To this end, we report in Figure 2.9 the country-by-

country coefficients of ε
Long2run
REC,GDP. While almost all coefficients are negative, Iceland,

Finland, and Switzerland have a positive coefficient, confirming Furuoka (2017).

Looking at Table 2.8 (or the preliminary scatterplot in Figure 2.4), Iceland, Fin-

land, and Switzerland are in the absolute decoupling phase, as confirmed by the va-

lidity of the nonlinear relationship between CO2 and GDP. Therefore, given the well-

structured integration of renewable energy in these countries, the consumption of

renewable energy has a positive effect on economic growth. In the opposite case, the

highest (negative) values are reached in Bulgaria, Greece, and Romania, which are

on the upward path of the inverse U-shape relationship between CO2 and GDP. This

15This concept was broadly introduced by Daly (1973) and Georgescu-Roegen (1975).
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result could raise the question of improving economic growth and renewable energy

consumption while simultaneously containing CO2. In this sense, environmental eco-

nomic policies are tough to implement without influencing economic growth.

However, country-by-country estimates reveal that ε
Long2run
GDP,REC is empirically zero

for those countries around the estimated turning point between CO2 and GDP, such

as France, and Spain.

The European Union could act as an intergovernmental agency to rigorously pro-

mote economic growth and investment in the sustainable energy sector, especially in

the Eastern nations, to reinforce the development of cleaner energies and promote

the decarbonization path. Achieving the objectives of the Agenda 2030 represents a

fundamental step to begin evaluating the effectiveness of the economic policies im-

plemented by States and evaluating how to best integrate renewable infrastructures in

Eastern Europe.

The “sustainable degrowth” hypothesis applies to those countries with an unde-

veloped renewable energy infrastructure and in a relative de-copulation path (before

the turning point), mainly Eastern European countries (Bulgaria, Greece, Lithuania,

Romania, Slovakia, Slovenia). Governments dealing with this dilemma should con-

template adopting a multifaceted approach. This strategy aims to concurrently reduce

pollutant gas emissions, promote renewable energy consumption, and sustain positive

economic growth through targeted subsidies. Additionally, stringent control over fos-

sil energy usage is crucial, and a carbon tax setting could facilitate a transition toward

a low-carbon economy, ultimately fostering environmental improvement.

The sustainable degrowth hypothesis

To understand the factors of the negative effect of RECs on GDP, we disentangle

the role of environmental policies on economic growth. Figure 2.10 indicates the

total number of national renewable energy policies since the Paris Agreement (2015).

This indicator highlights how the relevance of environmental policies has increased.

However, it does not consider the stringency or quality of these policies. In particular,

given the “sustainable degrowth” hypothesis, we want to test whether the quality of

environmental policies affects renewable energy consumption and economic growth.
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Note: The continous red line is the average coefficient reported in Table 2.7 column 9 while the dotted red lines are the
confidence bands for the average coefficient.

Figure 2.9: Country-by-country estimation of REC coefficients in Eq.
(2.36)

To determine the role of environmental policies, we incorporate the OECD Envi-

ronmental Policy Stringency (EPS)16 index in the DCCEMG estimation. This index

is a country-specific and internationally comparable measure of environmental policy

stringency, reflecting the extent to which these policies impose an explicit or implicit

price on polluting or environmentally harmful behavior. It is based on 13 environmen-

tal policy instruments related to climate and air pollution, ranging from 0 (indicating

no stringency) to 6 (representing the highest degree of stringency).17

Table 2.9 presents the EPS coefficients. While in the short term, the role of EPS

is not relevant for both GDP and REC, except for its lag for REC, it is significant in the

16https://stats.oecd.org/Index.aspx?DataSetCode=EPS.
17We did not consider this variable in the general analysis since this is not available for the entire

panel but is used now to investigate the role of environmental policies in this context, accordingly we
excluded: Belarus, Bulgaria, Croatia, Cyprus, Estonia, Iceland, Latvia, Lithuania, North Macedonia,
Romania, Ukraine.
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Figure 2.10: Number of sustainable energy policies post Paris Agree-
ment (2015).

ln GDPt ln RECt

Short-run

EPSt 0.00962 -0.0887
(0.0146) (0.116)

EPSt21 0.0127 -0.05257

(0.0208) (0.0262)
ln RECt21 -0.0127 -0.0873

(0.0312) (0.149)
ln RECt -0.0394

(0.0350)
Long-run

EPS -0.05547 -0.2817

(0.0317) (0.155)
ln REC -0.0591

(0.0436)

Note: Dynamic CCEMG estimation of Equations (2.34) and (2.36) with the additional consideration of EPS index. Full
estimations with control variables are available upon request.

Table 2.9: DCCEMG Estimation of EPS effect on GDP and REC

long run, thus emphasizing the importance of environmental policies in the long term,

thereby confirming the need to consider this factor when formulating these policies.
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Considering the EPS variable leads to the REC coefficient becoming statistically zero.

This result implies that the stringency of environmental policies plays a crucial role

in shaping the relationship between renewable energy consumption and economic

growth.

Figure 2.11 shows country-by-country coefficients of the long-run effect of EPS

on GDP (panel A) and REC (panel B). In the EPS-GDP case, the country coefficients

are almost similar to the average value in Table 2.9, except Ireland, which shows a rel-

atively higher coefficient. According, Botta and Koźluk (2014) claim how the strin-

gency of Ireland’s environmental policies is the lowest in the sample since it aims to

develop other alternative economic policies to improve capital inflows after the 2012

debt crisis (taxes easiness), directly affecting its economic growth. Therefore, the

effect of environmental policies can harm economic growth because environmental

policies have not played a significant role in the industrial context of the country in

recent years. Furthermore, controlling greenhouse gas emissions could influence the

production dynamics of those companies not accustomed to using clean energy, with

a detrimental effect on wealth.

In the EPS-REC case, while the average value is negative and significant, we found

several interesting results from Figure 2.11. For those countries with a developed re-

newable energy infrastructure, such as Spain, the EPS stimulates the use of REC, as

reported in Marra and Colantonio (2021) and Hassan et al. (2024). In these coun-

tries, EPS is a positive factor for economic growth, emphasizing how the integration

of these energies promotes economic growth in the long term. Our results do not

confirm the “sustainable degrowth” hypothesis for the wealthier countries of the sam-

ple. Magazzino et al. (2022) obtained the same results for a panel of Scandinavian

countries.

In contrast, a significant detrimental effect of EPS on REC is found in the Czech

Republic and Hungary, which need to improve their environmental standards to align

with other European countries, as highlighted by Bashir et al. (2022). The divergence

from the literature also lies in the fact that previous studies investigate the aggregate

role of EPS without enlarging the discussion to the countries within the panel.

In some cases, such as France, Germany, and Italy, the EPS impact on REC is

not significant. This observation aligns with the three economic stages discussed in
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(a) EPS effect on GDP
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(b) EPS effect on REC
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Note: The continous red line is the average coefficient reported in Table 2.9, while the dotted red lines are the confidence
bands for the average coefficient.

Figure 2.11: Country-by-country long-run estimation of EPS impact
on GDP and REC respectively, Table 2.9.
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Grossman and Krueger (1991), placing these countries in the industrialization phase,

nearing the post-industrialization period. Consequently, there is a heightened social

awareness among governmental bodies and economic actors despite the renewable

infrastructure development process.

2.4.4 Causality analysis

To ensure the robustness of our results and broaden the economic discussion, we

perform Granger Causality (GC) analysis following Dumitrescu and Hurlin (2012)

(DH). Unlike other studies that employ non-stationary time series for the DH test (or

do not specify variable integration),18 we take the first difference of the non-stationary

variables to avoid spurious results as underlined by hypothesis A3 of the DH test

(stationary covariance). The detailed statistics of the Z̃ test with the corresponding

bootstrap p-values for cross-sectional dependence for the main variables can be found

in Table 2.10, while Figure 2.12 reports the directional results.

CO2

REC

GDP

PEC

EPS

Note: The red arrows indicate a p-value of 1%, the black arrows mean a p-value of 5% and the grey arrow refers to a p-value
of 10%

Figure 2.12: Granger Causality directions across main variables

The results in Figure 2.12 confirm Miller and Russek (1990), which suggests that

Granger Causality (GC) must exist in at least one direction when two variables are

cointegrated. Although we have not reported the estimate of Primary Energy Con-

sumption (PEC) in Table 2.7, we take advantage of this additional analysis to test the

18See, among others, Balsalobre-Lorente et al. (2022) and Usman and Balsalobre-Lorente (2022).
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four causality hypotheses discussed in Table 2.1. Since we find a unidirectional effect

from GDP to PEC, we validate the conservation hypothesis.

REC predicts CO2, confirming the Dynamic CCEMG results. Considering this

result with that of the Table 2.7 we can underline how the role of REC has a signif-

icant contemporary effect on carbon dioxide emissions. Furthermore, we could say

that there is no sort of carry over effect (the coefficient RECt21 is not significant) in

this case. The causality from GDP to CO2 is also relevant for establishing the role

of economic growth on environmental degradation. We confirm the bidirectional re-

lationship between GDP and CO2, as reported in Dogan and Seker (2016). Notably,

a unidirectional causality emerged from REC to GDP, corroborating the validity of

the sustainable degrowth hypothesis. We demonstrate a feedback hypothesis at 10%

between REC and CO2, confirming Saidi and Omri (2020), Ahmad et al. (2021), and

Magazzino et al. (2022).

Furthermore, we find a unidirectional causality environmental policy stringency

to renewable energy consumption, as Hassan et al. (2024) reported. To conclude, the

role of EPS on GDP is also confirmed by the causality test.

Z̃
PEC does not GC CO2 7.21 77

CO2 does not GC PEC 8.35 77

REC does not GC CO2 12.679 777

CO2 does not GC REC 5.214
GDP does not GC CO2 14.04 777

CO2 does not GC GDP 5.144 777

PEC does not GC GDP 2.97
GDP does not GC PEC 4.49 7

REC does not GC GDP 4.127 77

GDP does not GC REC 1.98
GDP does not GC EPS 0.75
EPS does not GC GDP 13.00 777

REC does not GC EPS 2.10
EPS does not GC REC 15.60 777

75% < p < 10%,77 1% < p < 5%,777 p < 1%

Table 2.10: DH test, Z̃
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2.5 Conclusions

This study focuses on European countries that faced significant economic and political

transformations, particularly during and after the 1990s. Preliminary, we test for slope

heterogeneity and spatial cross-dependence, followed by unit root tests and cointegra-

tion analysis. Our results revealed the presence of heterogeneity and cross-sectional

dependence in the samples, with the main variables cointegrated. Subsequently, we

estimate a Cross-Sectional Autoregressive Distributed Lgs (CS-ARDL) model via the

Dynamic Common Correlated Effect Mean Group (DCCEMG) estimator. This tech-

nique is robust in the presence of slope heterogeneity and cross-dependence in the

data, while it allows for considering long-run relationships.

Based on the control variable used determined following the existing literature, we

investigate the CO2 determinans. Then, we enlarge the discussion between economic

growth and Renewable Energy Consumption (REC).

We found a non linear relationship between environmental degradation (CO2) and

economic growth (GDP), discussing the different decoupling stages across European

countries. Our main findings indicate that REC reduces air pollutant emissions, espe-

cially in the long run, aligning with the existing literature. However, it is noteworthy

that the average effect of renewable energy consumption reduces GDP in Eastern Eu-

ropean countries, particularly in the long period, thus aligning with the sustainable

degrowth theory.

Finally, we include the Environmental Policy Stringency (EPS) index to under-

stand the role of environmental government policies in influencing economic growth.

Similarly, our analysis reveals an aggregate negative effect on per capita GDP and

REC. However, when analyzing the country-by-country coefficients, we found sev-

eral interesting results. The adverse impact of environmental regulations is particu-

larly pronounced for the economies of Eastern Europe, especially considering their

relatively underdeveloped renewable energy infrastructure compared to other coun-

tries.

The validity of the non linear relationship between CO2 and GDP, combined with

EPS-REC country-by-country results, highlights three considerations. First, Eastern

European countries are in a phase of relative decoupling from the rest of European
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nations. In these Eastern countries, environmental policies damage economic growth

and the REC since the general renewables infrastructure is weak. This situation is

in line with the hypothesis of sustainable degrowth. Second, industrialized countries

(such as France, Italy, and Portugal) have a marginal role of environmental policies for

renewable energy consumption and economic growth. Third, for economies where re-

newable energy consumption is well integrated into the country’s energy mix (France

– nuclear, Netherlands – wind, Spain – wind/solar), environmental policies promote

the growth of renewable energy and the national economy.

From a policy point perspective, the negative relationship between environmental

policies and renewable energy shows that Eastern European countries should promote

a green financial system, thus attracting capital inflows into such projects (Irandoust,

2019; Saud et al., 2019). Furthermore, these countries need to focus on market rules

when subsidies are not enough to promote the integration of renewable energy. Fi-

nally, it is essential to streamline bureaucratic procedures, encourage investment in

research and development, and facilitate the efficient operation of patents and licenses

in the market.

In contrast, for those richer countries where environmental policies improve eco-

nomic growth and renewable energy consumption, economic policies to implement

are considerably easier. In particular, given the substitutability effect of renewable

energy compared to dirty energy, when these technologies are well integrated into

markets, the presence of energy taxes and renewable energy certificates as market-

based policies has a positive effect on the development of renewable energy (Kar-

maker et al., 2021; Zhu et al., 2022). Furthermore, the positive role of EPS on REC

and GDP underlines the value of non-market environmental policies, such as limiting

carbon emissions in the transport sector, to develop hybrid/electric technologies that

could reduce emissions and be more convenient for all the economic actors (Da Rosa

and Ordóñez, 2021).

Future research can assess the weak exogeneity properties of the primary regres-

sors by reevaluating the baseline model specification using a Panel Error Correc-

tion Model representation. As discussed in Urbain (2012) and Nicolau and Palomba

(2015), this approach allows researchers to determine whether conditioning the model

on certain variables preserves significant information. From an economic point of
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view, it could be interesting to repeat the analysis for different geographical areas,

such as South America and China, given their different developments in renewable

energy usage.
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2.A Environmental Kuznets Curve

In terms of the relationship between carbon emissions and renewable energy con-

sumption, a large part of the literature focuses on the relationship between energy

consumption (degradation) and economic growth. On the opposite side of the Envi-

ronmental Kuznets Curve is the so-called "growth limit theory." This field of study

originated from the viewpoint of the economists of the Rome Group, whose studies

affirmed how economic development cannot proceed indefinitely due to the insuffi-

cient availability of extracted natural resources. This branch of analysis considered

an N-shaped association between production and pollution. However, the N-shaped

curve was empirically tested, and the results showed the non-significance of this hy-

pothesis (Gyamfi et al., 2021).

The EKC was introduced into the literature by Grossman and Krueger (1995),

who defined how environmental degradation is promoted by fiscal expansion and

economic growth. In their pioneering work, Grossman and Krueger (1995) intro-

duced three types of effects in the inverted U-shaped relationship linking environ-

mental degradation to economic growth. In Figure 2.13, these three situations are

highlighted:

1. Scale effect: the market for natural resources increases in significance as eco-

nomic developments come through the use of these elements that are converted

in the production cycle. In this state of production, companies begin to produce

more and more products, increasing the total amount of toxic chemical gases.

In this situation, to promote economic growth, governments neglect to reduce

pollutant gas emissions, and as a result, ecological damage increases as eco-

nomic development increases. We are in the increasing part of the nonlinear

function depicted in Figure 2.13. This phenomenon is more pronounced if the

market is based mainly on dominant and complementary fields.

2. Structure effect: economic development evidenced during the scale effect leads

to an increase in wages. As the market structure influences the development of

economic growth, the increase in wages leads to a more socially concerned

population. At this stage, the shape of the curve begins to change. When the
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maximum degradation level has been reached, and people recognize the possi-

bility of a natural disaster, it starts to decrease.

3. Technique effect implies that companies begin to revise the production way by

using more sustainable technologies that increase efficiency. It implies that the

tertiary sector begins to improve, and the business environment gradually goes

to be information-intensive rather than wealth-intensive. All these elements

lead the central government to spend more on innovation and production-based

operations, replacing polluting technologies with more sustainable systems.

Many studies have investigated this model, and the literature has not reached a mu-

tual closure. A recent review of methods can be found in Koondhar et al. (2021) and

Pincheira and Zuniga (2021). Several control variables have been used in this type

of literature, mainly to avoid the problem of endogeneity. The most recent and cited

works are given in Table 2.11, with identification of the sample and the relevant meth-

ods used. The various studies involved different times and samples, but we can say

that most of the investigations do not reject the EKC hypothesis.

Furthermore, according to Mikayilov et al. (2018), when emissions grow less

rapidly than GDP, environmental economists express the concept of relative decou-

pling; if emissions even decrease relative to the pace of economic growth, then de-

coupling is absolute (see Figure 2.14).
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Authors Methodology Sample/countries Time-

span

EKC Results

Ahmad et al. (2021) Long panel OECD 1990-
2014

Confirmed

Ummalla and Goyari (2021) Long panel BRICS 1992–2014 Confirmed
Pontarollo and Mendieta Muñoz
(2020)

Spatial Bayes
Panel

221 Ecuador’s can-
tons

2007-
2015

Not-
Confirmed

Arshad Ansari et al. (2020) Long panel 37 Asian countries 1991-
2017

Confirmed

Dogan et al. (2020) Long panel BRICST 1980-
2014

Not-
confirmed

Halliru et al. (2020) Long panel
quantile

6 West African
countries

1970-
2017

Not-
confirmed

Pontarollo and Serpieri (2020) Spatial panel 42 Romanian econ. 2000-
2014

Confirmed

Usama et al. (2020) ARDL Ethiopia 1981-
2015

Confirmed

Ridzuan et al. (2020) ARDL Malaysia 1978-
2016

Not-
confirmed

Aydin and Turan (2020) Long panel BRICS 1996-
2016

Confirmed

Boubellouta and Kusch-Brandt
(2020)

GMM-TSLS 30 EU 2000-
2016

Confirmed

Dogan and Inglesi-Lotz (2020) Long panel EU 1980-
2014

Confirmed

Zhang et al. (2019) Pooled OLS 121 countries 1960-
2014

Confirmed

Yilanci and Ozgur (2019) Bootstrap
methods

G7 countreis 1970-
2014

Not-
confirmed

Usman et al. (2019) VECM India 1971-
2014

Confirmed

Haseeb et al. (2018) Long panel BRICS 1995–2014 Confirmed
Abdouli et al. (2018) Pooled OLS BRICST 1990–2014 Confirmed
Sarkodie (2018) Long panel 17 African coun-

tries
1971-
2013

Confirmed

Bakirtas and Cetin (2017) Panel VAR 5 countries 1982-
2011

Not-
confirmed

Hanif and de Santos (2017) FE model 86 dev. countries 1972-
2011

Confirmed

Antonakakis et al. (2017) Panel VAR-
IRF

106 countries 1971–2011 Not-
confirmed

Al-Mulali and Ozturk (2016) VECM 27 dev. countries 1990-
2012

Confirmed

Al-Mulali et al. (2015) GMM High income coun-
tries

1980–2008 Confirmed

Kasman and Duman (2015) Long panel EU countries 1992–2010 Confirmed
Azlina et al. (2014) VECM Malaysia 1975-

2011
Not-
confirmed

Pao and Tsai (2011) VECM BRICS 1992-
2007

Confirmed

Pao et al. (2011) Johansen
coint.

Russia 1990-
2017

Not-
confirmed

Acaravci and Ozturk (2010) ARDL India 1971-
2014

Not-
confirmed

Apergis and Payne (2009) IPS, Pedroni
coint.

Central America 1971–2004 Confirmed

Note: Confirmed states that EKC is valid for at least 80% of the panel. For long panel we meant
Pooled Mean Group Estimator, FMOLS, DOLS and panel cointegration methods. For an older EKC
review see Dogan and Seker (2016) and Bilgili et al. (2016).

Table 2.11: Recent selected literature Review on EKC.
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Environmental
degradation

Economic growth

Turning Point

Worsening Enhancement

Scale Effect

Structure Effect

Technique Effect

Pre industrialization

Industrialization

Post industrialization

Figure 2.13: EKC curve.

ln GDP

ln CO2

Relative

Decoupling

∂ ln CO2

∂ ln GDP
> 0

Absolute

Decoupling

∂ ln CO2

∂ ln GDP
< 0

Figure 2.14: EKC and decoupling theory
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2.B Panel Cointegration methodology details

Group-mean

Group-mean tests are based on the equation (2.16) in which the (V)ECM representa-

tion is given. Group mean tests can be constructed in three steps. First, it is essential

to estimate the parameters of the equation (2.16) to least squares for each unit i, thus

obtaining:

∆yit = δ̂2i dt +
P

∑
j=1

φ̂ij∆yi,t2j

Q

∑
j=1

β̂ij∆xi,t2p 2 (12 φ̂i)[yit21 2 β̂ixit21] (2.38)

where the lag and advance orders, P and Q, can vary among individuals and can

preferably be determined using a data-dependent rule. From the estimate, one can

also obtain the estimated error terms ε̂it which, together with β̂, are used to compute

the long-run variance estimators Newey and West (1994):

ûit =
P

∑
j=2Q

β̂ij∆xit2j + ε̂it. (2.39)

Considering ûit for calculating Newey’s variance-covariance matrix and West ωu,

define ŷit for estimating ωy. The ratio of ωu to ωy gives the estimated value of φi(1).

This estimation procedure does not take into account any deterministic terms. To

correct for this, ∆yit in ω2
yi

must be replaced by the fitted residuals of a first-order

regression of ∆yit on the deterministic dt part. Finally, tests of the group mean are

calculated as follows:

Gτ =
1

N
ι2
(

φ̂i

SE(φ̂i)

)

and Gφ =
T

N
ι2
(

φ̂i

φ̂i(1)

)

(2.40)

Panel test

As for the panel test, the procedure is divided into three parts. First, to obtain the

estimated coefficients, it is necessary to define a regression of ∆yit and yit21 on the



2.B. Panel Cointegration methodology details 111

deterministic part, the deltas of y and the lagged value of x:

ù

ü

ú

ü

û

∆ỹit = ∆yit + δ̂2i dt + β̂2ixit21 2∑
P
j=1 φ̂ij∆yit2j + ∑

Q
j=1 β̂xit2j,

ỹit21 = yit21 + δ̃2i dt + β̃2ixit21 2∑
P
j=1 φ̃ij∆yit2j + ∑

Q
j=1 β̃xit2j.

(2.41)

The fitted values of ∆ỹit and ỹit21 are then used for computing the Common Error

Correction Parameter (CECP), φ̂:

φ̂ =
(

ỹ
2
ỹ
)21

(

ỹ2∆ỹ

ι2φ̂i

)

, (2.42)

where ι is the vector of ones, φi and ỹ are obtained from Eq (2.41) and expressed

as vectors. In the second stage, the significance of the parameter must be computed.

The standard error follows the estimated coefficients ỹ2
it21 and the value of φ̂:

SE(φ̂i)
2 = Θ

21
(

ỹ
2
ỹ
)

, with: Θ =
ε̂
2
ε̂

N(ι2φ̂)
, (2.43)

with ε̂ being the vector of standard error from Eq. (2.38). The third, and last step, is

to determine the statistics dividing the estimated value of the CECP by its standard

deviation:

Pτ =
φ̂

SE(φ̂)
and Pφ = Tφ̂. (2.44)

Asymptotic distribution of tests

For both tests, panel and mean-group, the asymptotic distribution is based on sequen-

tial limit theory, in which T goes to infinity before N. Consequently, the tests are

justifiable for a large T. We define Wd
i (r) with r * [0, 1] as a vector formed by t,

the limiting trend function, Vi(r) and Wi(r) the standard scalar and K-dimensional,

independent Brownian motions, respectively. A Brownian motion is a continuous

stochastic real-valued process introduced by Norbert Wiener in which the uncondi-

tional probability density function follows a normal distribution with zero mean and

variance t. Then let Ui(r) and the vectors Bi(r) and B̃i(r) be defined as follows:

Ui(r) = Vi(r)2
(

∫ 1

0
Vi(r)(W

d
i (r))

2
)(

∫ 1

0
Wd

i (r)(W
d
i (r))

2
)

Wd
i , (2.45)
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Bi(r) =

(

∫ 1

0
U2

i (r),
∫ 1

0
Ui(r)dVi(r)

)2
, (2.46)

B̃i(r) =

û

ý

∫ 1
0 Ui(r)dVi(r)
∫ 1

0 U2
i (r)

,

∫ 1
0 Ui(r)dVi(r)
√

∫ 1
0 U2

i (r)

þ

ø . (2.47)

By indicating with η and η̃ the mean values of Bi(r) and B̃i(r), and with Σ and Σ̃

their variance, the test has the following asymptotic distribution:

Hj 2
:

N(ηH
j )³ N(0, Σ

h
j ), (2.48)

where H = (
:

NGφ,
:

NGτ,
:

NPφ, Pτ) is the vector of tests,

η
H = (η̃1, η̃2,

η2

η1
,

η2:
η1

), and Σ
H = (Σ̃11, Σ̃22, α2Σα, θ2Σθ) (2.49)

are the associated mean and variance vectors with:

α =

(

2η2

η2
1

, η21
1

)2

and θ =

(

2 η2

2
:

η1
3

,
1:
η1

)2

. (2.50)

The values are then compared with the left tail of the normal distribution: high nega-

tive values imply rejection of the null hypothesis. The bootstrap technique is used to

account for cross-sectional dependence.
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2.C Panel time series representation
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Figure 2.15: Carbon Dioxide Emissions
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Figure 2.16: GDP per capita (2015 US$)
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Chapter 2. Energy consumption and economic growth in the decarbonization era.

A panel data analysis
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Figure 2.18: Primary Energy Consumption
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A panel data analysis
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Figure 2.20: Nuclear Consumption
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Figure 2.21: Solar Consumption
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Figure 2.22: Wind Consumption
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Chapter 3

The role of temperature in natural

gas demand and the recent inflation

surge. An Eurozone perspective.

Abstract

The impact of global warming on the current economies is get-

ting heavier. To account for this development, we employ a Time-

Varying Parameter Vector Autoregression (TVPVAR) model to inves-

tigate whether the decrease in European gas demand is ascribable to

the gas price increase (especially after the Russia-Ukraine conflict) or

is a global warming consequence. Using monthly data from January

2015 to September 2023, we show the relevant role of average temper-

ature in the demand contraction. Moreover, through a wavelet coher-

ence analysis approach, we study the role of temperature and geopolit-

ical risk in the current European inflation surge, confirming that higher

temperatures have partially contained the increase in energy inflation.

Our results provide some policy recommendations for policymakers

and governments.

3.1 Introduction

Global warming is a phenomenon that has been extensively studied in the scientific

community. Indeed, the literature agrees on its significant impacts on our planet and
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its ecosystems (Trenberth et al., 2002; Shultz et al., 2014; Su et al., 2020; Qin et al.,

2023b,a). According to National Aeronautics and Space Administration (NASA),

the Earth’s average surface temperature has increased by approximately 1.1°C since

the late 19th century, with a warming trend since the 1970s. The primary cause of

this warming trend is the increased Greenhouse Gas emissions, which have risen by

more than 45% from the Industrial Revolution due to the burning of fossil fuels. The

concentration of carbon dioxide in the atmosphere reached its maximum value in

2021.

The World Meteorological Organization (WMO) reports that the 10 warmest years

on record have all occurred since 2005. In particular, 2016 and 2020 were the warmest

years. The increase in global temperatures has also resulted in a sea level rise of about

21 cm (melting glaciers) since 1880, with almost half of that rise occurring in the last

25 years. The Arctic sea ice extent has declined by an average of 12.8% per decade

since satellite records began in 1979, which is attributed to natural climate variability

and human-caused warming.

The Intergovernmental Panel on Climate Change (IPCC) reports that extreme

weather events, such as heat waves, droughts, and heavy precipitation, have become

more frequent and intense in many regions of the world in recent decades, increas-

ing the average temperature and the phenomena associated with climate change, as

demonstrated by the growing climate anomalies reported in Figure 3.1. The avail-

able scientific research and data on global warming provide ample evidence of the

reality of this phenomenon and its significant impact on the planet (see, for instance,

Cavicchioli et al., 2019; Habibullah et al., 2022; Kemp et al., 2022).

According to Nelson and Palmer (2007), Nelson et al. (2009) and Wang and Li

(2020), urbanization is one of the main problems of climate change and global warm-

ing since it increases pollutant emissions. Figure 3.2 shows the percentage of Urban

Population in a panel of selected European Countries. With the only exception of Aus-

tria, the percentage of urban population increased significantly from 1960 to 2020 in

the eurozone.

Given such trend in the Urban Population growth, the average European pollution

increased. As reported in Figure 3.3, the average share of temperature produced using

GreenHouse Gas (GHG) emissions increased, except for the share of Methane (CH4).
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Figure 3.1: Combined land-surface air and sea-surface water temper-
ature anomaly
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The other sources, such as Carbon Dioxide (CO2) and Nitrous Oxide (N20), exhibit a

growing trend. Therefore, the increase in these elements leads to an increase in global

warming, causing an ever-increasing increase in adverse climatic phenomena.

1900 1940 1980 2020
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— CH4 — GHG — N20 — CO2

Source: Jones et al. (2023)

Figure 3.3: Share of temperature change from GreenHouse-
Gas(GHG) emissions sources for the Eurozone

Given these premises, the climate change issue has been influencing the current

state of the European economy. According to Bilgen (2014) and Martins et al. (2019),

a natural dependency between global warming and gas demand exists. The gas price

boomed due to the Russia-Ukraine war. Since we observed a relative drop in gas

demand, we aim to identify whether this fall is ascribable only to the gas price in-

crease or is a global warming consequence. In addition, due to the unstable financial

and macroeconomic situation, we intend to estimate the role of Title Transfer Facility

(TTF) price,1 geopolitical risk, and temperature, in the current inflation rise to under-

stand their contribution. To be more specific, the research questions are the following

1The TTF is a natural gas trading hub located in the Netherlands. It serves as a benchmark for
natural gas prices in Europe.
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H1: Does the rising temperature influence (more than the increase in TTF price) the

decline in natural gas demand?

H2: Does the temperature and geopolitical risk contribute to the current European

inflation surge?

To answer the first research question, we investigate the impact of exogenous

shocks on gas demand in the Euro area using a Time-Varying Parameter Vector Au-

toregression (TVP-VAR) model. Given the dynamic nature of this model, it is partic-

ularly suitable for studying the effects of certain events. In particular, we focus on the

effects of two events that occurred in recent years: the Covid-19 pandemic and the

escalation of the Russia-Ukraine conflict. The second research question is addressed

through the Wavelet technique, which allows us to identify short and long-term corre-

lation frequencies, thus simultaneously allowing for the investigation of the lead-lag

relationship.

Using monthly data from January 2015 to September 2023, we show the relevant

role of average temperature in European gas demand contraction, independently from

the time shock considered. Furthermore, we confirm the rush to store natural gas

following the rifts between Russia and Ukraine, reporting increased demand for gas

despite an increase in the TTF price. We find the presence of multiple breaks in the

global interconnectedness of the system. To conclude, we assert the mitigating role

of temperature in the current inflation surge.

The rest of the chapter is organized as follows. Section 3.2 presents a compre-

hensive literature review. Section 3.3 and 3.4 provide details on the data sources and

methodologies employed. Section 3.5 analyzes and discusses the results, while sec-

tion 3.6 concludes and provides some policy implications.

3.2 Literature Review

Over the years, many studies reviewed the factors of natural gas and energy demand

(see, among others, Mu et al., 2018; Bastianin et al., 2019; Zheng et al., 2021; Lawal

et al., 2022). Given the different nature of the elements affecting natural gas demand,
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we aim to disentangle its most significant determinants and explore the dynamic re-

lationship with the recent inflation boom.

The literature investigate the impact of extreme events on the energy sector, which

are becoming more frequent due to climate change (Qin et al., 2023a; Su et al., 2020).

As natural gas is a crucial source of heating energy for Europe, numerous studies ex-

amine the relationship between energy sources and climate events. For instance, Qin

et al. (2023b) investigate the relationship between extreme events, geopolitical tur-

moil, and supply chain stability, which strongly relies on the energy sector. Accord-

ing to Qui et al. (2020), which applies a wavelet-based causality analysis, the Oceanic

Niño Index (ONI) index for climate change measurement has a negative influence on

oil price and demand in the long run.2 This result produce several relevant conse-

quences since it emphasizes the rise in global temperature, which means a warmer

winter, supporting the existing literature (Trenberth et al., 2002; Shultz et al., 2014).

Additionally, recent investigations from Song et al. (2022b) claim the importance of

extreme events in natural gas demand forecasting as a functional factor for the energy

transition.

Moreover, the natural gas market is subject to periods of growth and decline due to

the different economic conditions (Erias and Iglesias, 2022). The Covid-19 pandemic

contributed to the contraction of natural gas demand. However, the subsequent period

of post-pandemic recovery attracted inflationary pressures, especially in the European

countries with the highest reliance on external sources for natural gas supply (Ruble,

2017; Pedersen et al., 2022). The BP Statistical Review of World Energy (June 2022)

indicates that natural gas consumption accounts for almost a quarter of Europe’s pri-

mary energy consumption. Given this high dependency, several scholars examined

the economic impact of rising geopolitical events on natural gas supply in the Euro-

zone. Studies by Salameh and Chedid (2020), Lambert et al. (2022), and Gong and

Xu (2022) highlight the importance of such events, emphasizing that EU sanctions on

Russia’s economy, for example, can negatively impact natural gas exports to Europe.

This result is in line with Qureshi et al. (2022). Consequently, our study acknowledges

the importance of considering geopolitical events in the EU context when forecasting

2The ONI is the rolling 3-month average temperature anomaly, a difference from the average, in
the surface waters of the east-central tropical Pacific, near the International Dateline.
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natural gas demand.

Gas demand factors in different economic regions

Broadly, the body of literature concerning the determinants of natural gas demand

is extensive, encompassing a wide array of research. Notably, there is a prominent

focus on China, where economic growth stands out as the foremost driver behind

the expansion of natural gas demand. Concurrently, Mu et al. (2018) observe that

the technological advancements exert a negative influence on consumption patterns.

Liang et al. (2019) apply a Markov-Switching (MS) model to identify the different

requirements of natural gas demand. They find “rapid” and “slow” growth regimes in

the development process of natural gas consumption in China depending on different

aspects such as natural gas price, industrialization level, and wealth. Wang and Li

(2020) conclude that energy consumption structure, GDP, and urbanization rate are

the three main influencing factors of natural gas demand. The role of industrialization

and wealth in influencing the Chinese natural gas demand is confirmed by a wide

range of scholars (see, for instance, Li et al., 2020; Zheng et al., 2021; Duan et al.,

2021). In addition, the role of alternative energy prices is crucial to reduce the natural

gas demand in China, as Wang and Lin (2014), Liang et al. (2019), and Li et al.

(2022b) report.

Furthermore, given its prominent role in the global energy system, the United

States natural gas market has also been extensively researched. Goldstein and Mohnen

(1992) develop the milestone work of natural gas demand forecast in the context of

growing climate uncertainty and global warming. Kelley (2017) claim the role of

fossil fuel consumption and emissions as one of the reasons for climatic changes and

natural disasters in the USA. Accordingly, different works try to estimate the negative

impact of natural gas consumption and its main influencing factors. Indeed, Singh

et al. (2023) state how the increasing population wealth could reduce natural gas con-

sumption and simultaneously promote the development of alternative (and cleaner)

production ways. In terms of factors that influence the natural gas demand, Gautam

and Paudel (2018) and Adebayo et al. (2023), report the important role of temperature

and global warming, emphasizing the influence of alternative energies in the natural
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gas demand mitigation. Other works studied the natural gas market in the US context

(see, for instance, Zhang et al., 2018; Tiwari et al., 2019; Sharma and Escobari, 2018;

Lawal et al., 2022). Tiwari et al. (2019) find a pro-cyclical behavior in the natural gas

market similar to crude oil. Sharma and Escobari (2018) conclude about the signif-

icant role of market bubbles in energy pricing, especially natural gas and crude oil.

Lawal et al. (2022) confirm this finding suggesting that disruptions in the market will

be short-lived as the market will fundamentally adjust back to equilibrium.

Erdogdu (2010), Özmen et al. (2018), and Yukseltan et al. (2021), conduct dif-

ferent analyses to understand the natural gas market behavior in Turkey. Erdogdu

(2010) reveals that natural gas demand elasticities in Turkey are quite low, meaning

that consumers do not respond to possible abusive price increases by decreasing their

demand or substituting natural gas with other energy sources. However, the substitu-

tion with other energy sources is found by İpek and İpek (2022). Özcan et al. (2013)

report the important role of wealth and age in energy choices. Özmen et al. (2018) use

predictive models MARS (Multivariate Adaptive Regression Splines) and CMARS

(Conic Multivariate Adaptive Regression Splines) to forecast the one-day ahead natu-

ral gas demand of residential users. Including the temperature significantly improves

the forecasting performance, confirming that the temperature is a relevant factor in

predicting natural gas demand.

In contrast, natural gas dynamics in European countries received relatively little

attention in the literature. However, this trend is changing due to the recent escala-

tion of energy inflation following the Russia-Ukraine war. As a result, there is an

increasing need for research to examine the factors that influence natural gas demand

in Europe to understand how market forces impact energy prices in the region.

Over the last decade, investigations aimed at predicting natural gas consumption

within European countries have predominantly centered on specific geographical ar-

eas, often neglecting to consider the broader context of Europe as a cohesive entity

(Li et al., 2022c). The EU represents a coalition of European countries that share

economic and political ties, approaching climate change issues in a coordinated way,

as evidenced by its climate and energy targets. Although EU member states may

establish their own climate and energy targets, these objectives are aligned with the

European unified strategy. Consequently, it is important to clarify the prospects of



3.3. Data 129

natural gas in each EU member state. This observation is particularly critical because

the literature show that natural gas markets have converged (Bastianin et al., 2019).

In their study, Dilaver et al. (2014) use a structural time series model to determine

income and natural gas prices as significant factors for natural gas demand in OECD

European countries. However, this analysis only employed annual data from 2012

to 2020, not considering the post-Covid period. Szoplik (2015) find that weather

(temperature) has a pronounced effect on the natural gas market. Recent research

by Su et al. (2023) highlight the importance of considering exogenous factors, such

as geopolitical and climate factors. They suggest that transitioning towards greener

technologies and supplies could have a positive impact on natural gas demand. In ad-

dition, their study focused on identifying bubbles in the current framework of growing

global uncertainty, which is an important aspect to consider when forecasting natural

gas demand in the region.

3.3 Data

We use two datasets to address the research questions introduced at page 124. First,

we provide an exposition of the dataset employed for discerning the factors impacting

natural gas demand. Then, we delve into an extensive examination of the different

categories of inflation with the additional consideration of TTF price, geopolitical

risk, and temperature.

Dataset: natural gas demand factors

In this section, we introduce the dataset we used to deal with the first research question

developed at page 124. To ensure data availability, we use Euroarea monthly data from

January 2014 to September 2023 (T = 117 months). First, we consider European

natural gas demand and price, the latter proxied with the benchmark Title Transfer

Facility (TTF) price. In addition, we use the average monthly Amsterdam temperature

as a proxy of European temperature.3

3We compute several robustness checks with other measures. For instance, we consider the Euro-
pean average temperature and the temperature registered in the central part of Europe.
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We employ the Geopolitical Risk (GPR) index developed by Caldara and Ia-

coviello (2022). However, since an aggregate European GPR is not available, we

compute it as the simple average of the country-by-country Euroarea GPR indices. In

addition, we consider the Industrial Production Index (IPI) to proxy the wealth in our

analysis, given its relevance according to the whole literature and the unavailability

of monthly data on European GDP. Finally, we also include the European Renewable

Index (ERIX) to understand the role of renewable energy prices in gas demand. The

entire list of variables and the relative sources can be found in Table 3.1.

Variable Measure Source
Gas Demand Terajoules Eurostat database
TTF price Euro Investing
Temperature Celsius degree NASA database
ERIX Euro Investing
GPR Newspaper share Iacovello webpage
IPI Index 2015 = 100 Eurostat database

Note: In the NASA webpage that will open we fix the Lat/Lon of Amesterdam 52.3676° N, 4.9041° E, we choose daily data to

compute the monthly average and we select “Temperature at 2 Meters”.

Table 3.1: Variables measure and sources

Figure 3.14 and Table 3.7 (Appendix) show the original time series with the de-

scriptive statistics and unit root tests. Accordingly, while gas demand and tempera-

ture exhibit a stationary behavior, they clearly show seasonality issues, and we correct

them for seasonality. Except for GPR, we proceed with differentiating the series. In

particular, while we apply a standard first difference on the Industrial Production In-

dex, we consider the annual log difference of the financial values of TTF price and

ERIX to obtain a sort of returns on annual basis. Figure 3.4 illustrates the final series

used in this work. Table 3.2 reports the descriptive statistics and unit root tests, which

confirm the stationarity of the entire set of endogenous variables.

As a preliminary analysis, Table 3.3 shows all the static correlations between vari-

ables. The correlation between temperature and gas demand in Europe is negative

(-0.63). The reason is attributable to the role of natural gas in Europe: it is one of the

primary energy sources used for residential and commercial heating. As temperatures

decrease, the demand for heating increases, leading to a corresponding rise in natural

gas consumption.
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Figure 3.4: Differentiated series

Dataset: inflation, geopolitical risk and temperature

In this subsection, we describe the dataset that we consider to answer the second

research question on page 124. Our objective is to examine the impact of gas price,

temperature, and geopolitical risk on the real economy. In particular, we aim to inves-

tigate the influence of these variables on different inflation components. We consider

the headline, core, and energy inflation categories. The former is ascribable to the

price behavior of all goods in the Euro area. The core inflation is a proxy of the
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Demand TTF Temp IPI ERIX GPR
Mean -0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000
Med 0.0924 -0.0728 -0.0068 0.0144 -0.0904 -0.2065
SD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Max 2.7790 7.1337 2.7111 4.2864 4.1905 3.6686
Min -3.4209 -2.6305 -2.7793 -6.9802 -3.4396 -1.4354

ADF -5.9695 777 -4.0295 777 -7.6726 777 -5.4832 777 -4.8503 777 -3.1513 777

PP -88.7175 777 -42.3967 777 -92.4347 777 -82.2549 777 -60.2107 777 -46.3219 777

KPSS 0.0306 0.1227 0.0251 0.0394 0.0465 0.3231
7p<0.1; 77p<0.05; 777p<0.01

Note: The unit roots (the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the Kwiatkowski-Phillips-Schmidt-Shin

(KPSS)) tests are conducted selecting the lag with the lowest AIC and with a constant specification of the deterministic

component.

Table 3.2: Descriptive statistics and unit root tests of differentiated se-
ries.

Demand TTF Temp IPI ERIX
TTF 0.0579 - - - - -
Temperature -0.6353 0.0393 - - - -
IPI 0.1907 0.0122 -0.0360 - - -
ERIX -0.0316 0.0476 -0.0138 0.0394 - -
GPR 0.0267 0.1725 0.0024 -0.0258 -0.0848 -

Table 3.3: Static correlation matrix

overall inflation, encompassing various components, such as food and energy prices,

which often exhibit higher volatility and are susceptible to inflationary spikes. Finally,

energy inflation focuses on the contribution of energy commodities to price increases.

All these data are based on the Harmonised Index of Consumer Prices (HICP) for the

Euro area, and Table 3.4 reports the sources of each variable. The dataset spans from

January 2014 to September 2023 (T = 117 months).

Variable Measure Source Token
Headline Inflation Index 2015 = 100 Eurostat database [CP00]
Core Inflation Index 2015 = 100 Eurostat database [TOT_X_NRG_FOOD]
Energy Inflation Index 2015 = 100 Eurostat database [NRG_FOOD_S]

Table 3.4: Inflation components and sources

In Figure 3.5, we illustrate the behavior of the differentiated HICP for each cat-

egory, headline, core and energy. We do not include TTF price, temperature, and

geopolitical risk because the graphical representation is described in Figures 3.4(b),

3.4(c), and 3.4(d). Table 3.5 reports the descriptive statistics with the unit root tests.

We can state that the differentiated inflation series are stationary at 5%. However,

it is interesting to note that the latter part of the charts, after the Covid-19 period,

exhibits a non-stationary behavior. This situation is due to the surge in the inflation
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levels caused by the recovery period after the Covid-19 pandemic and then with the

Russia-Ukraine conflict.

(a) Core Inflation (b) Headline Inflation
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Figure 3.5: Differentiated CPI components

Core Headline Energy
Mean 0.0319 0.0302 -0.0284
Med 0.0000 0.0000 0.0500
SD 0.2852 0.4239 3.1578
Max 1.2000 1.5000 12.3000
Min -0.8000 -1.6000 -14.6000

ADF -3.79824 777 -2.8917 7 3.6551 77

PP -144.5290 777 -101.4506 777 -86.4098 777

KPSS 0.2712 0.1097 0.1099
7p<0.1; 77p<0.05; 777p<0.01

Note: The unit roots (the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the Kwiatkowski-Phillips-Schmidt-Shin
(KPSS)) tests are conducted selecting the lag with the lowest AIC and with a constant specification of the deterministic
component.

Table 3.5: Descriptive statistics and unit root tests of inflation differ-
entiated series.

From a static point of view (Table 3.6), the correlation between TTF price and

inflation components is positive. Quite the opposite, the temperature is inversely cor-

related with all the inflation components. However, while GPR and headline/core

inflation are positively correlated, the correlation between GPR and energy inflation
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is almost zero. Nevertheless, due to the static nature of the correlation data, we can-

not understand the underlying dynamics driving these patterns. Since we are work-

ing with macroeconomic series, understanding the short, medium, or long dynamics

is relevant. Consequently, we analyze the phase-plot relationship between inflation,

TTF price, GPR, and temperature with a wavelet method.

TTF GPR Temperature
Core 0.1149 0.1118 -0.0870
Headline 0.1826 0.1111 -0.1520
Energy 0.0838 0.0039 -0.1209

Table 3.6: Static correlation between inflation, TTF, GPR and temper-
ature.

3.4 Methodology

In this work, we follow two different methodologies to fulfill the two research ques-

tions on page 124. To identify the main factors of natural gas demand, we apply a time

varying VAR model for a twofold reason. First, it allows us to understand the differ-

ent impacts of exogenous shocks (i.e. the Covid-19 pandemic and the Russia-Ukraine

war). Second, the Generalized Forecast Error Variance Decomposition enables the

discussion of the spillovers and the definition of pairwise relationships.4 Besides, we

apply a Wavelet-based study to understand the role of temperature in the context of

rising inflation. Accordingly, we follow a dynamic in and out-of-phase analysis to

understand the dynamic relationship between the variables.

Time-Varying Parameter VAR

The Time-Varying Parameter Vector AutoRegression (TVPVAR) model has gained

notable importance as a prominent instrument to investigate the dynamics beyond the

financial and macroeconomic time series. In contrast to the approach of Del Negro

and Primiceri (2015), which employs Gibbs sampling and the Markov chain Monte

4As we noticed on page 10, the definition of spillover is not unanimous. In this case, we mean the
spillover as a mechanism of influence from one variable to another.
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Carlo (MCMC) technique to delineate time-varying parameters, our methodology ad-

heres to the framework set by Koop and Korobilis (2013). We also follow the empiri-

cal applications of Antonakakis et al. (2020) and Foglia et al. (2023).This framework

is rooted in Bayesian principles for parameter initialization, followed by the applica-

tion of a recursive method to derive the time-varying coefficients.Koop and Korobilis

(2013) include the parameter variation to avoid the definition of rolling window size,

a requisite in conventional rolling dynamic analyses. This methodology exhibits sen-

sitivity to outliers and offers an excellent way to examine the interconnected dynamics

of data characterized by low frequencies.

Let the following companion form of the TVPVAR

yt = Ótxt21 + ·t with ·t > N(0, Ωt) (3.1)

where

Ót
(n×np)

=
[

Ó1t Ó2t . . . Ópt

]

and xt21
(np×1)

=

þ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ø

yt21

yt22

...

yt2p

ù

ú

ú

ú

ú

ú

ú

û

.

In Equation 3.1, yt is the n-dimensional vector where each component is calculated

as a deviation from the unconditional mean. The matrices Ópt are n × n matrices

containing the time-varying model parameters, p is the number of lags, and ·t is the

vector of disturbances conditional to the information set I t21. In particular, n is the

number of the variables n = 6 and, according to the Bayesian, Akaike, and Hannan-

Quinn ICs, the number of lags is p = 1.

To initialize parameters, we split our dataset of dimension T into two subsamples

named training (T0) and test (T1) set. The first set estimates the initial matrix Ó0, and

the second is employed to obtain the estimates of the time-varying parametric matri-

ces Ót for t = 1, 2, . . . , T1 recursively. T0 is fixed from January 2014 to December

2018 (T0 = 60) while the rest of the sample is updated recursively according to the

methodology (T1 = 57).5

5We select T0 accounting for the “stable” per Covid-19 period. We did different trials around that
date, and the results are robust.
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Let Φt = vec(Ót), we assume that each element is a random walk according to

the equation

Φt = Φt21 + ¿t with ¿t > N(0, Σt), (3.2)

where ¿t is a n2p × 1 vector.

The Kalman filter initialization is obtained from the VAR(p) estimation in the

training set, according to prior techniques developed by Primiceri (2005) and Del Ne-

gro and Primiceri (2015), who set the prior

Φ0 > N(µ0, Σ0), (3.3)

where Φ0 = vec(Ó0) and Ó0 is the estimated matrix of parameters, and the initial

residual covariance matrix is Ω0 = T21
0 E2

0E0 where E0 is a T0 × n matrix. To ini-

tialized the multivariate Kalman filter, we need to set the following initial conditions

ù

ü

ü

ü

ü

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

ü

ü

ü

ü

û

Ót|I t21 = Ót21,

·t|I t21 = yt 2 Ót21xt21,

Ωt|I t21 = κ2Ωt21 + (1 2 κ2)
·t·

2
t

T0

∣

∣

∣

∣

I t21,

Σ
7
t |I t21 = κ21

1 Σt21 = κ2t
1 Σ0.

(3.4)

When t = 1 the following starting condition hold:

ù

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

û

Ó1 = Ó0,

Ω1 = T21
0 ·t·

2
t|I t21 = Ω0,

Σ
7
1 = κ21

1 Σ0.

To guarantee numerical stability, Koop and Korobilis (2014) and Del Negro and Prim-

iceri (2015), incorporate a couple of decay factors into the Kalman filter algorithm.

Following Koop and Korobilis (2013), we set these parameters to κ1 = 0.99 and
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κ2 = 0.96. Thus, the multivariate Kalman filter proceeds as follows:

Ωt = z2t21(Σ
7
t |I t21)zt21 + κ2Ωt21 + (1 2 κ2)

·t·
2
t

Tt21

∣

∣

∣

∣

I t21, (3.5)

Kt = (Σ7
t |I t21)zt21Ω

21
t , (3.6)

Φt = Φt21 + Kt·t, (3.7)

·t = yt 2 Ótxt21, (3.8)

Σt = (In2 p 2 Ct)Σ
7
t |I t21, (3.9)

where t = T1 2 T0, Ct = Ktz
2
t21, zt21 = xt21 ¹ In, In is the n-dimensional identity

matrix. The Kalman gain (Kt) determines the degree of adjustment required for the

time-varying parameter Ót in each state. When the eigenvalues of matrix Σ
7
t are low,

the prior states should closely resemble the parameters Ót, the eigenvalues of the error

variance Σt are low, and the parameter matrix Ωt should be similar to that provided

by the prior.6

The dynamic nature of the model allows the estimation of Time-Varying Impulse

Response Functions (IRFs), which we define to understand the role of exogenous

shocks in the system. We follow the Generalized version proposed in Koop et al.

(1996) and Pesaran and Shin (1998) to avoid identification issues. Given the sta-

tionarity of the variable, the Wold representation theorem allows us to retrieve the

Time-Varying Parameters Moving Average (TVPMA). The TVPVMA representation

is obtained by recursive substitution

yt = M 2(V k21
t xt2k21 +

k

∑
i=0

V i
t ¿t2i), (3.10)

where

M
(np×n)

=

þ

ÿ

ÿ
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ÿ

ÿ
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ø
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0

...

0

ù
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ú

ú

ú
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û

, Vt
(np×np)

=

þ

ø

Ót

In(p21)0n(p21)×n

ù

û , ¿t
(np×1)

= M·t.

6This methodology is available in MatLab and R. We develop a Gretl main source code available
in Appendix 3.B.
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Considering the limit as k approaches ∞, we obtain

yt =
∞

∑
i=0

M 2V i
t ¿t2i, (3.11)

that, considering ³it = M 2V i
t M can be transformed as follows:

yt =
∞

∑
i=0

³it·t2i (3.12)

The Generalized Impulse Response Functions (GIRFs), represented as ó, illus-

trate the reactions of all variables j to an exogenous shock from variable i. Given

the absence of a structural model, we compare scenarios where variable i is shocked

with the case that the variable i remains unaffected. According to Antonakakis et al.

(2020), this difference can be attributed to the shock in variable i

ót(H, ¼jt) = E(yt+H|÷j = ¼jt)2 E(yt+j|I t21) =
³HtΩt÷j

¼jt
(3.13)

where, ³ is the coefficient matrix from the TVPMA representation, ¼ is the standard

deviation of the error term for the j-th equation, ÷j is an n × 1 selection vector with

unity in the j-th position, and zero otherwise.

Spillover analysis based on TVP-VAR

The estimation of time-varying coefficients finds practical utility in the measure of

the generalized connectedness procedure, as initially introduced by Diebold and Yil-

maz (2012); Diebold and Yılmaz (2014). This procedural approach is rooted in the

underpinning structure of Generalized Impulse Response Functions (GIRFs), as de-

lineated in (3.13). In this case, we use the initialization of (3.4) up until T0 = 72, and

then we estimate the TVPVAR model on the whole dataset T1 = T. In this way, we

are able to identify spillovers for the entire length of the sample in order to conclude

about potential breaks in the system interconnectedness.

We want to identify the Total Connectedness Index (TCI) introduced in Chapter 1

to understand the interconnectedness between the variables. Accordingly, we define

the Generalized Forecast Error Variance Decomposition (GFEVD, »). The GFEVD
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represents the pairwise directional connectedness from j to i. It is computed as follows

»ij,t(H) =

H21

∑
h=1

ó2
ij,t

n

∑
j=1

H21

∑
h=1

ó2
ij,t

. (3.14)

The GFEVD are normalized so that each row sums up to 1, meaning all the variables

together explain 100% of variable i’s forecast error variance. The denominator in

Equation 3.14 is the cumulative effect of all the shocks, while the numerator represents

the cumulative effect of a shock in variable i. Therefore, according to Chatziantoniou

et al. (2021), we are able to construct the unbiased TCI

TCI =
1

n 2 1

n

∑
i,j=1

»ij,t(H) "i ;= j (3.15)

Wavelet Analysis

Wavelet analysis is a mathematical technique to analyze signals and data in both time

and frequency domains. It involves breaking down a signal into different frequency

components using wavelets, which are small, wave-like functions. The wavelet tech-

nique is excellent for estimating co-movement and causation between two-time series.

A wavelet is a real-valued square-integrable function defined as

Ψν,s(t) =
1:
b

Ψ

(

t 2 ν

b

)

, Ψ(.) * L
2, s ;= 0, (3.16)

where L2 is the Hilbert space of square-integrable one-dimensional functions, and

the scalar 1/
:

b denotes a normalization factor ensuring unit wavelet variance and a

comparable value across b, the scale, and ν, the location parameters.

The most popular mother wavelet is the Morlet wavelet empirically introduced by

Morlet et al. (1982) and Goupillaud et al. (1984)

ΨM(t) = π21/4 exp

{

iω0t 2 t2

2

}

, (3.17)

where π1/4 ensure the wavelet integrability through the Hilbert space, and ω0 denotes
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the central frequency of the wavelet set as 6 as the majority of economic applications

(see, for instance, Aguiar-Conraria et al., 2008; Vacha and Barunik, 2012; Yang et al.,

2016; Ahmed, 2022). Accordingly, Soares et al. (2011) claim that ω0 = 6 is used

since it presents the most desirable compromise between frequency and time localiza-

tion. This wavelet is classified as complex, thus with both real and imaginary parts,

which allows the identification of amplitude and phase.

According to Vacha and Barunik (2012), the Continuous Wavelet Transform (CWT)

of a time series that belongs to the Hilber space, is defined as

Wx(ν, b) =
∫ ∞

2∞
xt

1
√

|b|
Ψc

(

t 2 ν

b

)

dt, (3.18)

where “c” indicates the complex conjugate operator and xt is the time series. Accord-

ing to Grinsted et al. (2004), we obtain xt, inverting the CWT function, integrating

the Hilbert space integral by the location parameter and the positive part with respect

to the scale parameter b

xt =
1

CΨ

∫ ∞

0

[

∫ ∞

2∞
Wx(ν, b)Ψc

(

t 2 ν

b

)

dν

]

db

b2
(3.19)

where CΨ is the local continuous phase projection of the time series x(t) on the Morlet

transformation. The variance is

σ2
x =

1

CΨ

∫ ∞

0

[

∫ ∞

2∞
|Wx(ν, b)|2dν

]

db

b2
(3.20)

where |Wx(ν, b)|2 is the local wavelet power spectrum (sometimes called scalogram

or wavelet periodogram) used to interpret the degree of the local variance xt on a

scale-by-scale basis. The wavelet power spectrum reflects the intensity of the time

series variance for each time and frequency.

Further, we employed the cross-wavelet transformation (XWT) to investigate the

interdependence between two individual time series xt and yt. It can be defined as

follows

Wx,y(ν, b) = Wx(ν, b)Wc
y(ν, b) (3.21)

where Wc
y is the complex conjugate of the yt CWT. From the XWT, we can define
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the cross-wavelet power (XWP) as its absolute value. The XWP indicates the power

similarity between the two time series. In addition, the series co-movement over time

and across frequencies can be identified by applying wavelet coherence charts, as

introduced in Torrence and Compo (1998) and Torrence and Webster (1999)

R2
x,y(ν, b) =

∣

∣S
(

Wx,y(ν, b)
)∣

∣

2

S
(

|Wx(ν, b)|2
)

S
(

|Wy(ν, b)|2
) (3.22)

where S is a smoothing operator in both time and scale, which leads to the coherence

R2
x,y * [0, 1]. Therefore, we can identify the intensity of co-movement between se-

ries. When the R2
x,y is around one, the intensity is quite relevant, and vice versa in

0. Despite this feature, we cannot distinguish between positive and negative effects.

Consequently, Torrence and Webster (1999) introduced the phase plot to limit and

overcome this issue. The wavelet coherence phase difference is determined as the

angle of the complex coherency

ζx,y = arctan21

( I{S(Wx,y(ν, b))}
R{S(Wx,y(ν, b))}

)

, (3.23)

where I and R are the imaginary and real part operators. The phase element ζx,y

is defined between |π|, capturing the lead-lag (causal) relationship between xt and

yt at each time and frequency. A zero phase difference indicates that the two series

move together, while extreme values of π show an opposite direction. For this reason,

wavelet analysis is becoming relevant in finance to identify possible hedging opera-

tions, as reported by Gallegati and Semmler (2014) and Addison (2017). Generally,

the phase plot is reported in the cross-wavelet chart with arrows. Depending on the

pointed direction, we retrieve information about the series co-movement. If the ar-

row points up (down), the first (second) series is leading the second (first), and the

wavelet coherence phase is ζx,y =* [0, π/2] ([2π/2, 0]). Quite the opposite, if the

arrow points right (left), the two series move in phase (out-of-phase), as a result of

the wavelet coherence phase ζx,y =* [π/2, π] ([π,2π/2]). In this case, the first

series predicts the second (and vice versa).
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Most of the economics and financial applications focused on the study of the stan-

dard XWT and phase diagram. In our case, we compute additional wavelets differenti-

ating for a third zt time series. Therefore, to identify the dynamic correlation between

two-time series xt and yt, we eliminate the influence of the controlling variable zt.

Economically, the intuition of this approach involves first conducting a regression of

yt on zt. Subsequently, the wavelet analysis is applied to the error time series of the

preliminary regression and another variable xt.

According to Kendall et al. (1979) and Aguiar-Conraria and Soares (2014), the

partial wavelet coherence is given by

R2
x,y|z(ν, b) =

|Rx,y(ν, b)2 Rx,z(ν, b)Rc
y,z(ν, b)|2

|1 2 Rx,y(ν, b)2||1 2 Ry,z(ν, b)2| (3.24)

where Rx,z(ν, b) is the wavelet coherence between xt and zt, Rx,y(ν, b) is the wavelet

coherence between xt and yt, and Ry,z(ν, b) is the wavelet coherence between yt and

zt. Then, we define the partial phase-delay (phase-difference) of xt over yt, given the

zt series, as the angle of R2
x,y|z(ν, b)

ζx,y|z = arctan21

( I{R2
x,y|z(ν, b)}

R{R2
x,y|z(ν, b)}

)

. (3.25)

For each wavelet coherence plot, we report with a dotted white line the so-called

Cone Of Influence (COI), a threshold below which regions of the wavelet spectrum

are subject to edge effects.7. However, according to Percival and Walden (2000), these

edge effects are likely to downward bias the results.

3.5 Results

Esmaeili and Rafei (2021) demonstrate the importance of the TVPVAR to capture

inherent dynamics in the gas demand forecast. Accordingly, it allows to capture sea-

sonality, short-term fluctuations, and long-term trends in the data. As we saw in Sec-

tion 3.2, following Mezghani and Haddad (2017), and Qiao et al. (2023), the energy

7These emerge when the CWT has border distortions at the beginning and the end of the power
spectrum.
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demand is influenced by a range of factors, including weather patterns, geopoliti-

cal events, technological advancements, and policy changes. These factors are not

constant over time, thus some structural breaks in their relationships could arise (as

reported by Dogan, 2016; Pata and Caglar, 2021).

3.5.1 Generalized Impulse Response Functions (GIRFs)

Figure 3.6 reports the Generalized Impulse Response Functions (GIRFs) for 13 months.

Since we use a time varying model, we compute the natural gas demand on two ex-

ogenous shocks: the Covid-19 pandemic (March 2020) and the Russia-Ukraine war

(February 2022). We also report with dotted and warmer lines the GIRFs of three

months after the main shock period to discuss the role of the time-varying coefficient.

Given the stationarity of the data, each shock is quickly reabsorbed by the system.

Since we standardize variables, we make shocks comparable in magnitude. The

reaction of gas demand to exogenous TTF price shock differs between the Covid-19

pandemic and the Russia-Ukraine war. Both shocks share a contained effect on gas

demand. According to Gros (2023), the relatively low reaction of gas demand to TTF

price is due to the apparent higher elasticity of demand in those major EU gas markets

where prices were allowed to increase much higher than anticipated.

The Russia-Ukraine conflict had a louder impact on natural gas demand since it

directly affected European energy security. This conflict led to a limitation of Rus-

sian gas supplies in mid-2022. Consequently, after the initial panic spread, Euro-area

countries reduced their gas consumption. However, they pass through a noteworthy

sudden increase in gas demand to ensure sufficient stock of gas given the conflict

(Obadi and Korcek, 2020). As a result, despite an increase in TTF price, the corre-

sponding natural gas demand increases due to the need for security of supply (con-

firming the thesis in Tesio et al., 2022). After the first month of gas storage, increases

in TTF price lead to a decrease in gas demand.

During the Covid-19 pandemic, the rigidity of gas demand due to lockdown and

restriction periods can explain the positive reaction of TTF shocks. Given that the
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consumption of natural gas (and more generally of energy) was almost constant dur-

ing the pandemic,8 the price shocks did not produce a significant effect on the quantity

demanded. Furthermore, during the pandemic recovery, the industrial sector tried to

replace productive energy sources as it is heavily dependent on fossil sources, such

as natural gas. As a result, we started to have a negative effect of TTF price on Eu-

roarea gas demand that simultaneously increased with the bettering performances of

the renewable energy sector (ERIX).

As expected, the GIRFs indicate that an increase in the average temperature is as-

sociated with an immediate decline in gas demand during both the Covid-19 pandemic

and the Ukraine war. On average, the temperature shock produces more pronounced

effects on gas demand than the TTF price shock. The immediate increase in temper-

ature led to a reduction in gas demand of approximately 1 point in both situations.

In the short term, we observed a greater temperature shock at the beginning of 2020.

However, in the medium term, the temperature shock has a more persistent effect dur-

ing the Russia-Ukraine conflict with respect to the Covid-19 pandemic. In addition,

the temperature is the main factor driving natural gas demand, as demonstrated by the

values of the variance decomposition in Figure 3.7.

During the Russia-Ukraine conflict, the persistent effect of the temperature shock

could be due to various factors. First, the war may have disrupted gas supply routes

or led to concerns about energy security, which could have influenced medium-term

gas demand patterns. On the other hand, the Covid-19 pandemic caused immedi-

ate widespread economic disruptions and lockdown measures, resulting in reduced

economic activity and energy demand. In particular, the quicker absorption of the

temperature shock during the Covid-19 period depends on the warmer seasons (from

April onwards) in which the lockdowns and restrictions occurred.9

In Figure 3.4 (a), we observed a sharp decline in the Industrial Production Index

following the outbreak of the Covid-19 pandemic. Consistently, we expected shocks

during the beginning of 2020 to have a more pronounced effect on gas demand than

8The implementation of measures relating to remote working and the development of the main
activities directly from home increase the dependency on the energy sector.

9We tested the effects of temperature shocks in different months, finding a strong influence on the
season where they occur. Specifically, we conducted several trials during the warmer season and found
that the effects of the shock were significantly lower.
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those during the Ukrainian war. This hypothesis is supported by the relative GIRFs,

which indicate an immediate positive response in the Gas Demand series following

a sudden exogenous increase in the IPI during the Covid-19 crisis. However, during

the recent conflict, this reaction did not occur. In particular, after an immediate effect

of 0.3 points on natural gas demand, the GIRF declined and stabilized around zero.

These outcomes suggest that IPI influences the natural gas demand in the short run

and should be considered by investors and policymakers in energy demand forecasting

and energy security planning disclosure.

The European Renewable Index (ERIX) shock prompts different reactions in nat-

ural gas demand: when the shock comes from the Covid-19 pandemic, an immediate

negative effect of 0.05 occurs; conversely, during the Russia-Ukraine conflict, it yields

a more substantial positive impact of 0.07. As expected, the significance of the ERIX

shock amid the Covid-19 pandemic was limited due to the rigidity of economic agents

from the energy sector, which reduced after the recovery period. Quite the opposite,

the ERIX shock produced a pronounced and positive effect on natural gas demand dur-

ing the Russia-Ukraine war, particularly in the short term. At the beginning of 2022,

the renewable energy market experienced a marginal contraction, coinciding with a

reduction in natural gas demand. Consequently, an initially positive GIRF emerged,

with a negative peak around the third month. Notably, despite the surge in fossil fuel

prices attributable to the Russia-Ukraine conflict, the underdeveloped infrastructure

and limited integration of the renewable energy sector within the European energy

mix precluded it from sufficiently bolstering the demand for additional energy.

The relationship between Geopolitical Risk (GPR) and gas demand is mixed.

While, as expected, the effect of a positive GPR shock on natural gas demand was

jagged during the Covid-19 period, it turned out to be positive during the Russia-

Ukraine conflict. Geopolitical tensions and conflicts can create an environment of

uncertainty, which may prompt countries to increase their energy reserves as a pre-

cautionary measure. The recent Russia-Ukraine war raised concerns about the sta-

bility of natural gas supplies, leading to a potential increase in demand as countries

sought to secure their energy needs.

The findings obtained from the GIRFs analysis are enlarged with Figure 3.7, which

reported the Generalized Forecast Error Variance Decomposition of the Gas Demand.
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Figure 3.7: Gas Demand Forecast Error Variance Decomposition

Accordingly, we can discuss the percentage contribution of variables in gas demand

determination. As expected, the role of temperature is the most relevant for gas de-

mand setting. Indeed, the 35% of gas demand variation is explained by the average

temperature, followed by TTF price, the second principal factor.

In this sense, the role of the Covid-19 pandemic is also demonstrated by the Un-

biased Total Connectedness Index (Equation 3.15) reported in Figure 3.8.10 Based

on the Bai and Perron (2003) test for the simultaneous estimation of multiple break-

points, we test if structural breaks emerged in the relationship in the test set. We set

the number of maximum breaks allowed to 5 and consider a trimming parameter of

10%. The Bayesian Information Criteria (BIC) and the modified Schwarz criterion

(LWZ) indicate that the optimal break number is 2. We report with red vertical lines

in Figure 3.8 the breaks and the corresponding dates.

The first breakpoint in the series happens in March 2020, concomitantly with

the Covid-19 period, and the second before the summer of 2021, when the economy

started to rise after the fall during the Covid-19 pandemic. This result signals the

role of the fall in the Euro area wealth (IPI) and the prompt European reaction to

the Russian invasion that produced relevant effects in the markets. Recently, the TCI

10Supplementary material on pairwise relationships can be provided upon request.
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Figure 3.8: Unbiased Total Connectedness Index

declined, emphasizing the reduction in the interconnection of these series and the

willingness of the Euro area to switch towards energy alternatives.

3.5.2 Wavelet analysis

In this section we estimate the dynamic phase relationship of TTF price on different

inflation components. We proved in Section 3.5.1 the relevance of temperature in in-

fluencing the natural gas market. As a result, we consider both the standard Wavelet

coherence plot between TTF price and inflation components (we define it “gross”

TTF, see Figures 3.9 a.1, b.1, c.1) and the partialized version pruned by the tempera-

ture and GPR effects (“net” TTF, Figures 3.9 a.2, a.3, b.2, b.3, c.2, c.3).

The TTF wavelets between energy and headline inflation show comparable and

similar behavior, whereas the core inflation is, as expected, poorly integrated within

this context.11 On average, the TTF price plays a relevant role in the headline and en-

ergy components, especially in the low-medium frequencies. The European sanctions

imposed on Russia due to the invasion of Ukraine shook the political and economic

patterns. Europe suffered a sudden energy shock, which led to a price increase. As

a result, the TTF price played a leading role in driving up energy inflation in the

medium term after the escalation of the war, as demonstrated by the wavelet plot in

Figure 3.9 (a.1).

11We also tested for the natural gas demand effect on inflation without evidence of statistically sig-
nificant impact. Estimations are available upon request.
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The behavior of the TTF price coherence and its partialized version differs in cor-

relation intensity. Indeed, after removing the temperature and GPR effects, the degree

of phase is significantly reduced, as demonstrated by the higher percentage of blue

shades in the coherence plot. From an economic viewpoint, this finding underlines

the speculative component on the TTF price that does not reflect the market price

equilibrium. The temperature effect is directly attributable to climate change issues,

which are becoming more and more relevant in influencing economic decisions (Sun

et al., 2022). The increasing geopolitical tension led the markets to a radical change.

In particular, the failure to develop a renewable energy industry such that it can make

up for the problems with fossil energy sources has led to a relative increase (until sum-

mer 2022) in demand for natural gas as a cleaner alternative to other fossil fuels (see,

among other, Wang et al., 2022a; Umar et al., 2022), influencing the corresponding

price. Thus, higher demand generates higher prices, resulting in an inflation boost.

As a result, the delay of EU policies and regulations aimed at reducing greenhouse

gas emissions and promoting renewables may have contributed to an increased de-

pendency on natural gas, further influencing the correlation.

Figure 3.10 reports the wavelet coherence plots for inflation components, temper-

ature, and GPR. The GPR is in phase with energy inflation during the recent Russia-

Ukraine conflict in the short term. In general, the GPR influences also the inflation

components in the longer term. This evidence signals the role of geopolitical ties be-

tween countries in the behavior of the real economy. Quite the opposite, the tempera-

ture is inversely correlated (out-of-phase) with all inflation components, especially in

the recent period in the short run, evidencing the containing role of temperature for

the inflation boom.

In addion, we consider TTF price, GPR, and Temperature plus one inflation com-

ponent (in order: energy, headline, and core) in three different TVPVAR models:

• model A: Energy Inflation, TTF price, GPR, and Temperature;

• model B: Core Inflation, TTF price, GPR, and Temperature;

• model C: Headline Inflation, TTF price, GPR, and Temperature.
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(a.1) Energy - Temperature (a.2) Energy - GPR

(b.1) Core - Temperature (b.2) Core - GPR

(c.1) Headline - Temperature (c.2) Headline - GPR

Figure 3.10: Wavelet Coherence Plots: Inflations, Temperature and
GPR

The training and test sets are the same as those discussed on page 135. Figure 3.11

reports the time-varying coefficients of TTF, Temperature, and GPR on the relative

inflation components with a 90% confidence interval.

The first row of Figure 3.11 shows the time-varying coefficients of TTF, Tempera-

ture, and GPR on Energy inflation. While the impact of TTF and GPR is statistically

null for the majority of the period, the role of temperature contributes to reducing

energy inflation in the 2022 winter season, confirming the out-of-phase relationship
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found in the Wavelet analysis (Figure 3.10-a.1).

Moreover, the role of temperature in reducing inflation is higher in the headline

case, especially during 2022. During this year, the GPR contributed to increasing

the average level of headline inflation, being a crucial factor in the current inflation

increase. Since we have included TTF, temperature, and GPR in these systems, the

marginal impact of the TTF price on the inflation components underlines how tem-

perature and GPR are relevant factors in the current economic environment.

From a macroeconomic viewpoint, our result demonstrates that the recent higher

temperatures were relevant to restricting the inflation boom, while the ongoing geopo-

litical tensions contributed heavily to the inflationary rise. As a result, policymakers

and governments should reduce the reliance of domestic economies on exogenous

shocks.

Furthermore, looking at the confidence interval of the coefficients, the uncertainty

in the markets led by the Russia-Ukraine war increased. This occurrence leads to

higher standard deviations and higher intervals that make the variables less signif-

icant, implying the role of exogenous shocks in the development of inflation com-

ponents, such as the expectations of market actors. This result is mainly due to the

de-anchoring of inflationary expectations of economic actors (Blanchard and Pisani-

Ferry, 2022).

The GFEVD results reported in Figure 3.12 suggest that despite the lack of sig-

nificance in the individual coefficients, shocks or innovations in TTF price impact

the overall forecast error variance of the inflation components. Despite the TTF price

might not help predict inflations in the short term, once considered for GPR and Tem-

perature, its unexpected shocks are crucial for the overall volatility of the model. This

result could have important implications for understanding the dynamics of the rela-

tionship between energy prices (TTF) and inflation over a longer time horizon.

We extend the results for the US obtained in Giri (2022). Using wavelet analysis,

he found that core inflation is weakly correlated with headline inflation, especially at

the lower frequencies. On the contrary, energy inflation is strongly correlated with

headline inflation at a broad range of frequencies.

Figure 3.13 reports the wavelet plots for headline, core, and energy inflation.

Since core inflation is adjusted for energy and volatile components, we do not include
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Note: The red line is the estimated time-varying coefficients while the grey shades is the 90% confidence interval.

Figure 3.11: Time-Varying Coeffients of Inflation VAR models.

its coherence with energy inflation. While we confirm the results of Giri (2022) for

the relationship between headline and energy inflation, confirming doubts about the

exemption of energy inflation from a trend inflation measure, we cannot validate his

evidence for the headline and core inflation linkage. Indeed, we find evidence of a

strong phase relationship between headline and core inflation in the short term, at least

until the onset of the Russia-Ukraine war, which corresponds to the misalignment of

inflation expectations. From an economic perspective, this result is relevant because

it confirms the thesis that controlling core inflation could allow central bankers to

keep inflation stable in the medium term.
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Figure 3.12: Time-Varying FEVD of Inflation VAR models.

(a.1) Energy - Headline (a.2) Core - Headline

Figure 3.13: Wavelet Coherence Plots between inflation components

3.6 Conclusions and policy implications

In this study, we analyze the role of temperature in the current development of the

energy market. First, we discuss the importance of temperature on gas demand. Sec-

ond, we describe the role of temperature in containing the inflation surge especially

after the Russia-Ukraine war.

As evidenced by the Generalized Impulse Response Functions (GIRFs), we found

an immediate and persistent effect of temperature shocks on gas demand, with a more

prolonged impact observed during the Russia-Ukraine conflict. The importance of

temperature in containing natural gas demand was confirmed by the variance decom-

position results.

The wavelet analysis provided additional insights into the dynamic relationships

between TTF price, temperature, and inflation components. The role of tempera-

ture in mitigating inflation, especially during the 2022 winter season, highlighted the

broader implications of climate-related factors on economic dynamics. Moreover,

the impact of exogenous shocks, such as the Russia-Ukraine conflict, on inflationary



3.6. Conclusions and policy implications 155

expectations was evident in the time-varying VAR models and Generalized Forecast

Error Variance Decomposition results.

This work leaves room for some policy suggestions. The persistent impact of tem-

perature shocks on gas demand, as revealed by the GIRFs and variance decomposi-

tion, highlights the significance of climate considerations in energy planning. Policy-

makers should prioritize climate-resilient energy infrastructure and formulate policies

that account for the varying effects of temperature on gas demand. On this line, the

positive impact of the ERIX on natural gas demand during the Russia-Ukraine conflict

indicates the importance of renewable energy infrastructure. Governments should

consider increasing investments in renewable energy projects to enhance energy se-

curity and reduce dependency on fossil fuels during geopolitical crises. Strengthen-

ing the integration of renewables within the European energy mix can contribute to

long-term sustainability.

The relationship between Geopolitical Risk (GPR) and gas demand underscores

the need for proactive geopolitical risk management in energy policies. Policymakers

should closely monitor geopolitical developments and develop strategies to mitigate

the potential disruptions in energy supply chains. Diversification of energy sources

and diplomatic efforts to ensure stable international relations can contribute to reduc-

ing the impact of geopolitical risks on gas demand.

Our work has some limitations. Our analysis focuses on the aggregate European

level, whereas future research could study these relationships in a specific country,

reducing the loss of information in the aggregation of results. In addition, future

research could address the issue of the differentiation of gas demand for domestic or

industrial use to obtain a more detailed market description.
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3.A Level Series
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Figure 3.14: Level series

Gas Demand TTF Temperature IPI ERIX GPR
Mean 31563.7552 33.8511 10.9600 102.8274 1426.3562 0.2087
Med 29327.3600 19.7040 10.8337 104.2000 1086.5200 0.1880
SD 10736.3372 40.1434 5.4180 4.6656 648.2268 0.1012
Max 57628.4000 239.9070 20.3471 109.5000 2829.7200 0.5817
Min 14524.7854 4.3850 0.5914 75.0000 625.7800 0.0632
ADF -8.4479 ∗∗∗ -2.6123 -12.4511 ∗∗∗ -2.8776 -1.6633 -3.1513 ∗∗∗

PP -39.7024 ∗∗∗ -13.6833 -41.6302 ∗∗∗ -24.6123 ∗∗ -9.2374 -46.3219 ∗∗∗

KPSS 0.0641 0.8373 0.0405 0.7079 ∗∗∗ 2.1458 0.3231
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.7: Descriptive statistics and unit root tests of original series.
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3.B Gretl main loop

Figure 3.15: Prior definition
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Figure 3.16: TVPVAR main loop
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