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Background: Once the pandemic ended, SARS-CoV-2 became endemic, with 
flare-up phases. COVID-19 disease can still have a significant clinical impact, 
especially in older patients with multimorbidity and frailty. 

Objective: This study aims at evaluating the main characteristics associated to in- 
hospital mortality among data routinely collected upon admission to identify 
older patients at higher risk of death. 

Methods: The present study used data from Gerocovid-acute wards, an 
observational multicenter retrospective-prospective study conducted in 
geriatric and internal medicine wards in subjects ≥60 years old during the 
COVID-19 pandemic. Seventy-one routinely collected variables, including 
demographic data, living arrangements, smoking habits, pre-COVID- 
19 mobility, chronic diseases, and clinical and laboratory parameters were 
integrated into a web-based machine learning platform (Just Add Data Bio) to 
identify factors with the highest prognostic relevance. The use of artificial 
intelligence allowed us to avoid variable selection bias, to test a large number 
of models and to perform an internal validation. 

Results: The dataset was split into training and test sets, based on a 70:30 ratio 
and matching on age, sex, and proportion of events; 3,520 models were set out to 
train. The three predictive algorithms (optimized for performance, interpretability, 
or  aggressive  feature  selection)  converged  on  the  same  model,  including 
12  variables:  pre-COVID-19  mobility,  World  Health  Organization  disease 

 
 

 

 

Abbreviations: WHO, World Health Organization; EU, European Union; NLR, neutrophil-to-lymphocyte 
ratio; COPD, chronic obstructive pulmonary disease; JADBIO, Just Add Data Bio; BBC-CV, Bootstrap 
Bias Corrected Cross Validation; CNS, central nervous system; ABG, arterial blood gas bicarbonate; AST, 
aspartate aminotransferase; dNLR, derived neutrophil-to-lymphocyte ratio; WBC, white blood cells; n.a, 
not applicable; ARDS, acute respiratory distress syndrome; NETs, neutrophil extracellular traps. 
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severity, age, heart rate, arterial blood gases bicarbonate and oxygen saturation, 
serum potassium, systolic blood pressure, blood glucose, aspartate 
aminotransferase, PaO2/FiO2 ratio and derived neutrophil-to-lymphocyte ratio. 

Conclusion: Beyond variables reflecting the severity of COVID-19 disease failure, 
pre-morbid mobility level was the strongest factor associated with in-hospital 
mortality reflecting the importance of functional status as a synthetic measure of 
health in older adults, while the association between derived neutrophil-to- 
lymphocyte ratio and mortality, confirms the fundamental role played by 
neutrophils in SARS-CoV-2 disease. 

 
KEYWORDS 

COVID-19, mobility, neutrophil-to-limphocyte ratio, in-hospital mortality, artificial 
intelligence 

 

Introduction 

On 5 May 2023, the World Health Organization officially 
declared the end of the SARS-CoV-2 health emergency that 
started 3 years earlier, on 11 March 2020. In these 3 years, 
according to World Health Organization (WHO) estimates, the 
SARS-CoV-2 virus caused about 20 million deaths and numerous 
other health and social problems. However, although the pandemic 
emergency is over, COVID-19 has not disappeared. Indeed, during 
the 2023-2024 winter, COVID-19 cases and hospitalization rates 
increased across the European Union (EU) (European Centre for 
Disease Prevention). Although many cases are asymptomatic, 
COVID-19 can still substantially increase in-hospital mortality, 
especially in older adults (Rizza et al., 2024). It is therefore 
crucial for clinicians to identify as early as possible those subjects 
who are at the highest risk of developing severe COVID-19 during 
hospitalization to optimize the use of health resources and to 
decrease the chance of fatal outcomes. Several studies on 
hospitalized patients affected by COVID-19 have been conducted 
with the aim of investigating demographics, clinical conditions and 
laboratory markers associated with severe disease outcomes 
(Wynants et al., 2020; Maestre-Muniz et al., 2022). 

In 2020 Mendes et al. (2020) conducted a retrospective cohort 
study on 235 older Caucasian patients of mean age 86 ± 6.5 years, 
considering demographics, clinical, imaging and few routine 
laboratory parameters to determine predictors of in-hospital 
mortality related to COVID-19 in older patients. Using logistic 
regression and Cox proportional hazard models to predict mortality 
they found that male sex, crackles, a higher fraction of inspired 
oxygen, and functionality were independent risk factors for in- 
hospital mortality. In a post-hoc analysis on 1,520 patients 
aged ≥65 years from the HOPE COVID-19 registry, the authors 
found that age ≥75 years, dementia, low peripheral oxygen 
saturation, severe lymphopenia and qSOFA scale >1 were 
independent predictors of in-hospital mortality (Becerra-Muñoz 
et al., 2021). In a single-centre prospective study on 239 older 
patients (median age 85 years), Covino et al. (2021) found that 
regardless of disease severity, increasing age, dementia, and 
impairment in activities of daily living (ADL) were strong risk 
factors for in-hospital mortality. Finally, Ramos-Rincon et al. in a 
multicenter, retrospective, observational study on hospitalized 
COVID-19 older adults confirmed the possible relevance of 
preadmission clinical status on in-hospital mortality beyond 

parameters related to disease severity (Ramos-Rincon et al., 
2021). Since the beginning of the pandemic, numerous evidence 
has also accumulated on the possible role of neutrophils in the 
severity of COVID-19 (Wu et al., 2020). 

More specifically, a higher neutrophil-to-lymphocyte ratio 
(NLR) has been shown to predict mortality in hospitalized older 
adults (Di Rosa et al., 2023) and in COVID-19 patients (Alkhatip 
et al., 2021). Neutrophil-to-lymphocyte ratio was related to in- 
hospital mortality in a Spanish cohort of 177 hospitalized 
COVID-19 older patients with a World Health Organization 
ordinal scale 4 (oxygen by masque or nasal prongs) or 5 (non- 
invasive ventilation or high-flow oxygen) (Lozano et al., 2022). In a 
previous work we also found that, in geriatric patients admitted to 
hospital for COVID-19, beyond age, laboratory markers at 
admission, such as high neutrophil percentage and NLR, were 
among the best and independent predictors of in-hospital 
mortality (Olivieri et al., 2022). The predictive models vary in 
their results on the basis of different variables considered and 
could be biased by a pre-selection of variable to be included in 
multivariate models. Machine learning and artificial intelligence 
algorithms can overcome these issues (Wendland et al., 2023) 
and potentially enhance the predictive capabilities of models 
developed with traditional statistics (Riela, 2023). Casas-Rojo 
et al. (2023), using machine learning techniques to develop 
predictive models of mortality in patients with COVID-19 from 
the SEMI-COVID-19 registry at hospital admission, found that the 
model developed with machine learning technique has a better 
predictive capacity than a previous model developed on the same 
population using traditional statistical methods. In this study, using 
a web-based auto-machine-learning platform and an artificial 
intelligence decision support system, we aim to identify the 
main factors associated with in-hospital mortality among several 
clinical, anamnestic, and laboratory data routinely collected at 
admission in a cohort of hospitalized older adults in different 
Italian hospitals. 

 

Materials and methods 

Study design and participants 
 

The present study used data of 819 patients from the Gerocovid- 
acute wards substudy, an observational multicenter retrospective- 
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prospective initiative, enrolling individuals aged ≥60 years either 
retrospectively or prospectively, conducted in geriatric and internal 
medicine wards in older subjects who had been confirmed to be 
infected with SARS-CoV-2 by real-time reverse transcriptase- 
polymerase chain reaction assay regardless of the clinical 
symptoms. The enrollment started on 1 March 2020 and ended 
on 31 December 2020, with a follow-up until 30 June 2021. A 
complete description of the study methodology has been previously 
published (Trevisan et al., 2021; Okoye et al., 2022; Coin et al., 2023). 
The study was conducted following the STROBE guidelines. Data 
registration was performed using a dedicated electronic register 
designed by Bluecompanion (UK, France) to collect all clinical 
data from every investigational site across Italy. The primary 
outcome was in-hospital mortality, defined as death during the 
hospitalization. 

 
 
Ethics statement 

 
The study protocol has been approved by the Ethics Committee 

of the Campus Bio-Medico University (reference number 22/ 
20 OSS) and registered under the ClinicalTrials.gov database 
(reference number NCT04379440). Each study site’s ethics 
committee approved the protocol. All statistical analyses were 
performed on anonymized data. All research was performed in 
accordance with relevant guidelines and regulations. 

 
 

Data collection and preprocessing 
 

At hospital admission, GeroCovid researchers collected data 
concerning the demographic data (sex, age, ethnicity), living 
arrangements, smoking habits, and pre-COVID-19 mobility 
(categorized as moving independently, using walking aid/moving 
with a wheelchair, moving with assistance in a wheelchair/ 
bedridden). The presence of chronic diseases was retrieved from 
medical charts, in particular arterial hypertension, cardiovascular 
diseases (including cardiomyopathies, ischemic heart disease, heart 
failure, atrial fibrillation), chronic obstructive pulmonary disease 
(COPD), diabetes mellitus, obesity, chronic renal failure, depression, 
and cognitive impairment. 

All laboratory biomarkers, including arterial blood gas 
analysis, complete blood count, albumin, glucose, potassium, 
sodium, chloride, blood urea nitrogen (BUN), creatinine, 
aspartate aminotransferase (AST), alanine aminotransferase 
(ALT), gamma-GT, total bilirubin, lactate dehydrogenase 
(LDH), high-sensitivity CRP (hs-CRP), d-dimer, procalcitonin, 
INR, aPTT, and fibrinogen, were measured by standard 
procedures. 

Variables with <40% of missing values were included in the 
dataset as predictors. Multiple imputation was performed on 
missing values using the package mice (van Buuren and 
Groothuis-Oudshoorn, 2011), assuming they were missing at 
random. No missing data on the primary outcome of in-hospital 
mortality were present. Data balancing was not performed in this 
study to preserve the real-world distribution of outcomes, which is 
inherently imbalanced in COVID-19 mortality datasets. 

 
Statistical analysis 

 
Variables were summarized using descriptive statistics. Median 

and interquartile ranges were used for continuous variables, and 
frequencies and proportions for categorical measures. 
Mann–Whitney U and Chi-squared tests were used to evaluate 
differences between groups. 

Just Add Data Bio (JADBIO), a web-based auto-machine- 
learning platform for analyzing potential biomarkers 
(Tsamardinos et al., 2022), was used. The platform employs a 
multivariate analysis approach to (i) identify the minimal set of 
features necessary for predicting a specific outcome, (ii) develop the 
optimal predictive model using those selected features, and (iii) 
evaluate the model’s performance. To ensure unbiased performance 
estimation, it uses Bootstrap Bias Corrected Cross-Validation (BBC- 
CV), which accounts for the testing of multiple machine learning 
pipelines. The classification methods include linear, ridge, and Lasso 
regression, decision trees, random forests (RF), and support vector 
machines (SVMs) with both Gaussian and polynomial kernels. To 
create a simple and interpretable model, the platform uses 
Statistically Equivalent Signatures (SES) for feature selection 
(Tsagris and Tsamardinos, 2018). Machine learning techniques 
such as penalized Cox regression, survival decision trees, and 
survival random forests are employed to build the predictive 
models. Each stage of the analysis is cross-validated to ensure fair 
performance evaluation of the models, with bootstrapping added to 
eliminate any optimism bias from overfitting. 

Here, we tested configurations optimized for different criteria, 
namely, performance, interpretability, and aggressive feature 
selection. The  Performance-optimized model reports the 
configuration with the highest expected predictive performance. 
The interpretability-optimized model produces the best-performing 
configuration among those whose predictive algorithm generates 
models that are humanly interpretable. The Aggressive Feature 

Selection model enforces the identification of minimal size 
feature subsets at the expense of reduced performance, on average. 

JADBIO 1.4.93 with extensive tuning effort and 6 CPU was used    
to model the dataset on the overall 82 variables by splitting data into 
a training set and a test set in a 70:30 ratio. The training set was used 
for model training and, the test set was used for model evaluation. 
The outcome was in-hospital mortality. Model performance was 
assessed through the Harrell’s concordance index (c-index). The 
c-index computes the percentage of patient-pairs correctly ordered 
by the predictive algorithm according to their time-to-event. 

Censored cases are dealt with by removing the corresponding 
pair whenever a meaningful comparison in terms of time-to- 
event is not possible. A c-index of 1 indicates perfect ranking of 
their patients according to their relative risk while 0.5 indicates 
random risk assessment, and a value <0.5 corresponds to a model 
performing worse than random guessing. 

The resulting model can be obtained upon request to the 
Corresponding Author and run with Java executor for the 
classification of COVID-19 samples based on the variables 
presented in the results for further explorations. 

Statistical analysis was performed using R version 4.1, and 
Jamovi version 2.3. A two-sided p < 0.05 was regarded as 
statistically significant for all tests. 

https://doi.org/10.3389/fragi.2024.1473632
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org/
http://clinicaltrials.gov/


TABLE 1 Clinical and laboratory characteristics of the study cohort at admission. 

(Continued on following page) 

 

 

 
Variable Deceased N = 213 Survived N = 606 Total N = 819 p 

Age (years) 84 (79–88) 77 (70–84) 79 (71–86) <0.001 

Sex (males, %) 114 (53.5) 296 (48.8) 410 (50.1) 0.274 

Smoking status (n, %) 

No 133 (62.4) 415 (68.5) 548 (66.9) 0.030 
Yes 3 (1.4) 22 (3.6) 25 (3.1)  

Unknown 77 (36.2) 169 (27.9) 246 (30.0)  

Drinking (n, %) 

No 78 (36.6) 249 (41.1) 327 (39.9) 0.088 
Yes 10 (4.7) 48 (7.9) 58 (7.1)  

Unknown 125 (58.7) 309 (51.0) 434 (53.0)  

Mobility classification (n, %) 

Can walk independently 61 (28.6%) 383 (63.2%) 444 (54.2%) <0.001 
Can walk with a cane 24 (11.3%) 52 (8.6%) 76 (9.3%)  

Can walk with a walker 37 (17.4%) 69 (11.4%) 106 (12.9%)  

Can move around with a wheelchair 10 (4.7%) 18 (3.0%) 28 (3.4%)  

Does not move around but is accompanied outside on the wheelchair 13 (6.1%) 17 (2.8%) 30 (3.7%)  

Is confined at home, mostly lying on the bed, sometimes sitting on the wheelchair 34 (16.0%) 38 (6.3%) 72 (8.8%)  

Lying on the bed, does not stand up or get in sitting position autonomously 34 (16.0%) 29 (4.8%) 63 (7.7%)  

General condition (n, %) 

Good 28 (13.1%) 307 (50.7%) 335 (40.9%) <0.001 
Bad 114 (53.5%) 260 (42.9%) 374 (45.7%)  

Very deteriorated 62 (29.1%) 37 (6.1%) 99 (12.1%)  

Terminal 9 (4.2%) 2 (0.3%) 11 (1.3%)  

WHO disease severity (n, %) 

No oxygen therapy (4) 31 (14.6%) 219 (36.1%) 250 (30.5%) <0.001 
Needs oxygen by mask or nasal prongs (5) 95 (44.6%) 269 (44.4%) 364 (44.4%)  

Severe disease, needs non-invasive and mechanical ventilation (6–9) 87 (40.9%) 118 (19.5%) 205 (25.0%)  

Comorbidities (n, %) 

Arterial hypertension 154 (72.3%) 415 (68.5%) 569 (69.5%) 0.298 
Cardiomyopathy (ischemic, valvular, arrhythmias) 92 (42.3%) 187 (30.9%) 279 (34.1%) 0.001 
Atrial fibrillation 56 (26.3%) 110 (18.2%) 166 (20.3%) 0.011 
Peripheral artery disease 33 (15.5%) 67 (11.1%) 100 (12.2%) 0.089 
Heart failure 46 (21.6%) 56 (9.2%) 102 (12.5%) <0.001 
History of stroke 26 (12.2%) 55 (9.1%) 81 (9.9%) 0.188 
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Variable Deceased N = 213 Survived N = 606 Total N = 819 p 

Diabetes 58 (27.2%) 159 (26.2%) 217 (26.5%) 0.778 
Depression 22 (10.3%) 57 (9.4%) 79 (9.6%) 0.695 
Osteoarthrosis 39 (18.3%) 129 (21.3%) 168 (20.5%) 0.355 
COPD 42 (19.7%) 81 (13.4%) 123 (15.0%) 0.026 
Chronic renal failure 48 (22.5%) 66 (10.9%) 114 (13.9%) <0.001 
Chronic liver disease 4 (1.9%) 13 (2.1%) 17 (2.1%) 0.814 
Obesity 32 (15.0%) 81 (13.4%) 113 (13.8%) 0.546 
Poor nutritional status 35 (16.4%) 45 (7.4%) 80 (9.8%) <0.001 
Dementia 105 (49.3%) 203 (33.5%) 308 (37.6%) <0.001 
Cancer 53 (24.9%) 118 (19.5%) 171 (20.9%) 0.095 
Immune system disorders 9 (4.2%) 10 (1.7%) 19 (2.3%) 0.032 

Number of comorbidities 4 (2–5) 3 (1–4) 3 (2–5) <0.001 

BMI (kg/m2) 25.0 (22.1–28.3) 25.4 (22.5–29.0) 25.4 (22.3–28.8) 0.302 

Heart rate (bpm) 85.0 (74.0–100.0) 80.0 (70.0–90.0) 80.0 (70.0–90.0) <0.001 

Systolic BP (mmHg) 120.0 (110.0–135.0) 130.0 (120.0–140.0) 130.0 (115.0–140.0) <0.001 

Diastolic BP (mmHg) 70.0 (60.0–80.0) 70.0 (66.5–80.0) 70.0 (63.5–80.0) <0.001 

Arterial blood gas 

pH 7.5 (7.4–7.5) 7.5 (7.4–7.5) 7.5 (7.4–7.5) 0.034 

PaO2 (mmHg) 64.0 (54.0–79.0) 70.0 (60.0–86.0) 69.0 (59.0–85.0) <0.001 

SpO2 (%) 94.0 (90.0–97.0) 95.0 (93.0–98.0) 95.0 (92.0–98.0) <0.001 

PaCO2 (mmHg) 34.0 (30.0–40.0) 35.0 (32.0–39.0) 35.0 (31.0–39.0) 0.115 

HCO3- (mEq/L) 24.0 (22.0–27.0) 25.0 (24.0–28.0) 25.0 (23.0–28.0) <0.001 

P/F ratio 238.1 (147.6–304.8) 296.2 (231.1–360.7) 285.7 (204.8–347.6) <0.001 

Laboratory 

RBC (n x mm3) 4.2 (3.8–4.7) 4.3 (3.9–4.7) 4.3 (3.9–4.7) 0.075 

Hemoglobin (g/dL) 12.4 (10.6–13.7) 12.6 (11.4–13.9) 12.6 (11.2–13.9) 0.021 

Hematocrit (%) 37.4 (33.0–41.9) 38.1 (35.0–41.8) 38.0 (34.5–41.8) 0.129 

MCV (fl) 89.7 (86.0–94.3) 89.7 (86.2–93.2) 89.7 (86.1–93.6) 0.592 

MCH (pg) 29.6 (27.8–31.1) 29.7 (28.1–31.0) 29.6 (28.0–31.0) 0.714 

MCHC (g/dL) 33.0 (32.0–34.1) 33.4 (32.4–34.3) 33.3 (32.3–34.3) 0.002 

PLT (x10^3/mm3) 196.0 (143.0–257.0) 211.5 (159.2–271.8) 207.0 (155.0–269.5) 0.020 
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Variable Deceased N = 213 Survived N = 606 Total N = 819 p 

WBC (x10^3/mm3) 7.3 (5.8–10.2) 6.4 (4.7–8.7) 6.6 (4.9–9.0) <0.001 

Neutrophil % 83.4 (74.2–89.1) 74.0 (65.0–82.9) 77.0 (67.0–85.1) <0.001 

Lymphocyte % 9.6 (6.0–16.2) 16.0 (10.0–23.2) 14.1 (8.2–21.0) <0.001 

Monocyte % 5.6 (3.3–7.4) 7.5 (5.0–10.0) 6.8 (4.6–9.5) <0.001 

Eosinophil % 0.1 (0.0–0.4) 0.2 (0.0–0.8) 0.1 (0.0–0.7) <0.001 

Basophil % 0.2 (0.1–0.4) 0.2 (0.1–0.4) 0.2 (0.1–0.4) 0.004 

Neutrophil # 6.0 (4.4–8.6) 4.6 (3.1–6.8) 5.0 (3.3–7.2) <0.001 

Lymphocyte # 0.7 (0.5–1.0) 1.0 (0.7–1.3) 0.9 (0.6–1.3) <0.001 

Monocyte # 0.2 (0.0–0.4) 0.3 (0.1–0.5) 0.2 (0.1–0.5) <0.001 

Eosinophil # 0.0 (0.0–0.0) 0.0 (0.0–0.1) 0.0 (0.0–0.1) 0.012 

Basophil # 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.178 

NLR 8.7 (4.6–14.7) 4.6 (2.7–7.7) 5.2 (3.1–10.1) <0.001 

dNLR 4.9 (2.8–8.2) 2.9 (1.8–4.7) 3.3 (2.0–5.7) <0.001 

PLR 253.1 (165.3–398.0) 215.4 (148.9–329.7) 225.0 (152.6–352.5) 0.002 

LMR 4.1 (1.8–14.5) 3.8 (1.8–11.8) 3.9 (1.8–12.3) 0.245 

Albumin (g/dL) 3.1 (2.7–3.4) 3.2 (2.8–3.5) 3.1 (2.8–3.5) 0.014 

Glucose (mg/dL) 126.0 (102.0–158.2) 110.0 (95.0–132.1) 113.0 (96.0–139.0) <0.001 

Potassium (mEq/L) 4.0 (3.7–4.4) 4.0 (3.6–4.3) 4.0 (3.6–4.3) 0.016 

Sodium (mEq/L) 138.0 (135.0–142.0) 138.0 (135.0–140.0) 138.0 (135.0–141.0) 0.102 

Chloride (mEq/L) 101.0 (97.0–107.0) 100.0 (97.0–104.0) 100.0 (97.0–104.0) 0.017 

BUN (mg/dL) 37.5 (17.5–73.0) 30.0 (15.0–50.9) 32.0 (15.0–54.0) 0.001 

Creatinine (mg/dL) 0.8 (0.0–1.3) 0.8 (0.5–1.1) 0.8 (0.0–1.1) 0.814 

AST (IU/L) 41.0 (30.0–58.0) 32.0 (21.0–46.0) 34.0 (23.0–50.0) <0.001 

ALT (IU/L) 24.0 (16.0–43.0) 23.0 (16.0–39.8) 23.0 (16.0–40.0) 0.156 

Gamma-GT (IU/L) 36.0 (22.0–74.0) 32.0 (19.0–59.8) 33.0 (20.0–61.0) 0.024 

Total bilirubin (mg/dL) 6.8 (0.5–12.0) 6.8 (0.6–12.0) 6.8 (0.6–12.0) 0.440 

LDH (IU/L) 343.0 (240.0–504.0) 287.0 (218.2–410.5) 300.0 (223.0–438.0) <0.001 
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Results 

Baseline subject characteristics 
 

A total of 819 geriatric patients (mean age 78.5 ± 9.5) who were 
hospitalized at 19 investigational sites due to COVID-19 were 
included in the analysis. The 26% (n = 213) of the enrolled 
patients died during the in-hospital stay. The mean number of 
days from hospital admission to discharge for the recovered patients 
was 22.1 ± 17.8, and that for the deceased patients was 14.2 ± 13.1. 
The minimum number of days for which patients in the recovered 
group remained hospitalized was 1 day, while the maximum number 
was 97 days for survived patients and 76 days for deceased patients. 

The clinical and laboratory characteristics of the study cohort at 
admission are reported in Table 1. Deceased patients were 
significantly older than survivors, whereas no sex-related 
difference was highlighted in terms of mortality. The prevalence 
of impaired mobility, including individuals capable of walking with a 
device and those confined in bed, and poor nutritional status were 
significantly higher among deceased patients. Overall, deceased 
patients had worse general conditions at admission and were 
characterized by a higher prevalence of cardiac (cardiomyopathy, 
atrial fibrillation, heart failure), central nervous system (CNS), renal, 

and autoimmune comorbidities. Regarding the laboratory 
assessments, deceased patients had significantly lower levels of 
hemoglobin and platelets, higher neutrophil counts, and 
consistently lower counts of the other leukocyte populations. 

 
 

Artificial intelligence-based in-hospital 
mortality prediction 

 
The dataset was split into training and test sets based on a 70: 

30 ratio and matching on age, sex, and proportion of events. The 
JADBIO’s AI system estimated the out-of-sample performance of 
the models produced by each configuration using Repeated 10-fold 
CV  without  dropping  (max.  repeats   =   20).   Overall,   
176 configurations × 20 repeats × 10 folds = 3,520 models were 
set out to train. Three predictive algorithms optimized for 
performance, interpretability, or aggressive feature selection, 
were  computed  (details  in  Methods).  Of  notice,  the   
three algorithms converged on the same model, computed using 
Ridge Cox Regression with penalty hyper-parameter lambda = 1.0. 
The model achieved a good predictive ability, with a concordance 
index of 0.774 (95% CI 0.726–0.821) (Figure 1A). The 
complete analysis report is available at JADBio website 
(JADBio, 2024). 

The prediction algorithm selected 12 variables out of the 
71 available variables. Variables included in the model, along 
with the model coefficients and derived odds ratios (OR) are 
reported, in order of decreasing importance, in Table 2. 

The training model included age, pre-COVID-19 mobility, 
WHO disease severity, and variables that are routinely assessed 
upon hospital admission in COVID-19 patients, such as the ABG- 
derived parameters SpO2, HCO3

−, and the P/F ratio, the vital signs 
systolic BP and heart rate, levels of blood glucose, aspartate 
aminotransferase (AST), and the derived neutrophil-to- 
lymphocyte ratio (dNLR, calculated as neutrophil count divided TA
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FIGURE 1 
(A) C-statistic distributions and (B) predictive performance drop for the mortality prediction model computed on the training dataset. (C) Kaplan- 
Meier survival estimates for the training dataset, stratified according to categories of mortality risk. 

 
 

by the result of white blood cells (WBC) count minus 
neutrophil count). 

The plots in Figure 1B show the predictive performance 
percentage drop that will result from removing specific variables 
from the model. 

The model was used by the algorithm to estimate the mortality 
probability for each patient in the training group. Patients were then 
grouped based on tertiles of predicted mortality into high-, 

intermediate-, and low-risk. Kaplan-Meier survival functions, 
performed to illustrate differences in mortality according to the 
models’ predictions, showed that the training model achieved a 
significant stratification of patients according to the mortality risk 
(log-rank p < 0.001, Figure 1C). The Cox regression model, 
computed using the probability tertile as a predictor, confirmed 
the increasing trend of hazard ratios among groups, which were 
significantly different from each other (p < 0.001, Table 3). 
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TABLE 2 Model coefficient for each predictor. A positive coefficient indicates that as the value of the independent variable increases, the mortality risk also 
increases. 

 

Order of importance Feature Coefficient Exp(Coefficient) 

1 Pre-COVID-19 mobility 

Walks independently Ref. Ref. 

Walks with the aid of ambulatory devices (cane, walker) 0.724 2.063 

Reduced mobility (on wheelchair, mostly or totally on bed) 0.969 2.635 

2 WHO disease severity classification 

Hospitalised; no oxygen therapy (4) Ref. Ref. 

Hospitalised; oxygen by mask or nasal prongs (5) 0.327 1.386 

Hospitalised: severe disease (6–9) 0.992 2.698 

3 Age 0.339 1.403 

4 Heart rate 0.222 1.248 

5 
 − 

ABG HCO3 −0.300 0.741 

6 Serum potassium 0.164 1.178 

7 Systolic blood pressure −0.151 0.860 

8 Blood glucose 0.064 1.067 

9 AST 0.135 1.145 

10 dNLR 0.190 1.209 

11 ABG SpO2 −0.128 0.879 

12 P/F ratio −0.264 0.768 

ABG, arterial blood gas bicarbonate; AST, aspartate aminotransferase; dNLR, derived neutrophil-to-lymphocyte ratio. 

 
Significant differences among groups were highlighted in the 

distribution of all the variables included in the model (Figure 2). In 
particular, WHO disease severity, age, heart rate, and dNLR 
significantly increased from low-to intermediate-to high-risk 
patients, whereas systolic BP and the P/F ratio followed an 
opposite trend. Serum potassium, blood glucose, and AST were 
higher, whereas HCO3- and SpO2 were lower in high-risk compared 
to intermediate- and low-risk patients. Moreover, a progressive 
increase in the predicted mortality risk was observed with 
deteriorating pre-COVID-19 mobility. 

Finally, the training model was validated against the test set, 
composed of 30% cases of the original dataset. The model 
maintained the performance achieved during training, with a 
validation concordance index of 0.774 (Figure 3A). Therefore, 
the survival function was computed for patients grouped according 
to tertiles of predicted mortality. The Kaplan-Meier survival 
function was statistically significant (log-rank p < 0.0001, 
Figure 3B), and the Cox regression computed using tertiles of 
predicted probability as predictors confirmed that the high-risk 
group had a higher mortality risk compared to the low- and 
intermediate-risk groups (Table 4). 

 

Discussion 
 

In this study, from 71 available variables, including 
sociodemographic data, smoking habits, mobility, chronic 

diseases, and clinical and laboratory parameters, we identified 
12 factors associated with in-hospital mortality in older 
inpatients with SARS-CoV-2 infection. These selected were able 
to detect with moderate accuracy patients at increased risk of in- 
hospital mortality. 

Using a statistical analysis method based on machine learning and 
artificial intelligence allowed us to test all the variables collected during 
the study, avoiding variable selection bias. AI models have the 
advantage of capturing more complex, and not always linear, 
relationships between variables, offering the possibility to test several 
models (Ngiam and Khor, 2019). Here, routinely collected laboratory 
and clinical hospital admission data were integrated into a web-based 
machine learning platform to identify, among factors with established 
or putative association with unfavorable COVID-19 outcomes, those 
with the highest prognostic relevance in older patients. 

In the final model, factors associated with a high risk of in- 
hospital mortality were pre-COVID-19 mobility, WHO disease 
severity, age, heart rate, ABG HCO3-, serum potassium, systolic 
blood pressure, blood glucose, AST, dNLR, ABG SpO2, P/F ratio. 

As expected, factors identifying respiratory disease severity 
(WHO disease severity and ABG parameters) were associated 
with a worse prognosis (Santus et al., 2020). Other factors such 
as serum potassium concentration, low systolic blood pressure, 
higher blood glucose and AST values, and heart rate probably 
reflect acute organ/system failure, while age is a well-established 
risk factor for adverse outcomes in COVID-19 patients (Henkens 
et al., 2022). 
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TABLE 3 Survival statistics and Cox regression for in-hospital mortality prediction in the training dataset. 

 

Risk category n Events Mean survival (days) SE Median survival (days) HR (95% CI) HR (95% CI) 

Low 191 13 78.3 5.7 n.a Ref. - 

Intermediate 191 33 67.0 6.2 76.0 2.08 (1.10–3.96) Ref. 

High 191 103 40.7 3.6 22.0 7.48 (4.20–13.32) 3.61 (2.44–5.35) 

n.a. not applicable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2 
Risk prediction scores for the 12 predictors included in the training model. Figure legend: *p < 0.05, **p < 0.01, ***p < 0.001 vs. low-risk, walks 
independently, or WHO disease severity class 4; *p < 0.05, **p < 0.01, ***p < 0.001 vs. intermediate-risk, assisted mobility or WHO disease severity class 
5 for Dunn’s post-hoc analysis. 

 
One of the most relevant findings of our analysis is that 

mobility level before hospitalization was the only pre-morbid 
and the most important factor associated with in- 

hospital mortality. To the best of our knowledge, no other 
studies have investigated this association in  SARS-CoV-  
2 older patients. 
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TABLE 4 Survival statistics and Cox regression for in-hospital mortality prediction in the test set. 
 

Risk category n Events Mean survival (days) SE Median survival (days) HR (95% CI) HR (95% CI) 

Low 119 10 77.1 4.6 n.a Ref. - 

Intermediate 81 28 43.3 3.9 44.0 3.80 (1.84–7.86) Ref. 

High 46 26 39.0 6.7 17.0 8.54 (4.08–17.88) 2.26 (1.32–3.88) 

n.a. not applicable. 
 

Mobility before hospitalization might be considered as a proxy 
of preadmission functional status and disability. Indeed, impaired 
activities of daily living have been shown to be associated with 
COVID-19 negative outcomes (Ramos-Rincon et al., 2021; Wang 
et al., 2022; Rodriguez-Sanchez et al., 2021; Laosa et al., 2020; 
Cangiano et al., 2020; Bruno et al., 2022). However, previous 
studies did not always address a population of very old adults, 
had a smaller sample size, or did not include a large set of variables. 
Moreover, although tools to assess functional status, such as the 
Barthel Index, do not require formal training, examiners need to be 
familiar with the functional item being assessed and the scoring 
system used. Instead, pre-morbid mobility is a piece of information 
easy to collect by any health personnel involved in the 
patient’s care. 

A second finding of our study is that, in line with previous reports, 
elevated neutrophil and reduced lymphocyte counts, as reflected by the 
dNLR index, are important predictors of in-hospital mortality in older 
inpatients with SARS-CoV-2. While less impactful than other factors, 
the dNLR index still significantly contributed to a model encompassing 
variables related acute respiratory and organ dysfunction (Olivieri et al., 
2022). Although neutrophils play a role in viral clearance, i.e., with the 
production of Interferon, they may favor the pathogenesis of SARS- 
CoV-2 and exacerbate its complications such as acute respiratory 
distress syndrome (ARDS), thrombosis, and multisystem 
inflammatory disease (McKenna et al., 2022) and strong evidence 
has been accumulated on the key role of neutrophils in severe 
COVID-19 pathogenesis (Zeng et al., 2021; Wang et al., 2020; Wan 
et al., 2020; Vafadar Moradi et al., 2021; Seyit et al., 2021; Masso-Silva 

 
 

   

 
 
 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 
 
 

FIGURE 3 
Model validation: (A) C-statistic (in green), (B) Kaplan-Meier survival function. 
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et al., 2022; Ma et al., 2021; Liu et al., 2020; Li et al., 2020; Huang et al., 
2020). Elevated neutrophils were found in the nasal epithelium, the 
lower respiratory tract, and the bloodstream in patients with SARS- 
CoV-2 infection (Reusch et al., 2021). Moreover, several researches 
showed that, in severe COVID-19 patients, neutrophils are not only 
abundant but also have an altered phenotype and functionality 
(McKenna et al., 2022; Reusch et al., 2021). In particular, increased 
production of neutrophil extracellular traps (NETs) has been found, 
with possible direct damage to the pulmonary endothelium and 
facilitation of the thrombosis pathway, as well as a greater presence 
of the neutrophil subtype responsible for the suppression of the adaptive 
immune response, usually typical of a chronic condition such as cancer 
(McKenna et al., 2022; Reusch et al., 2021). 

 
 
Study limitations and strengths 

 
Some limitations of this study should be acknowledged. Data 

were collected during the first and second COVID-19 waves. This 
implies that patients were unvaccinated, and variants of SARS-CoV- 
2 involved in the patients’ infection were different from those 
currently circulating in terms of the degree of infectivity, the 
ability to evade the immune response, and the severity of the 
disease caused. 

The present analysis considered only in-hospital mortality, with 
no information on long-term mortality (or other long-term 
outcomes), although the occurrence of long-term sequelae of 
SARS-CoV-2 has also been widely documented. 

We did not compare findings deriving from the application of 
machine learning algorithms with predictions based on conventional 
statistical methods. However, machine learning models are generally 
characterized by an overall better, or at least non-inferior, predictive 
capacity, also concerning COVID-19 outcomes (Casas-Rojo et al., 
2023), and most of the predictors included in the model were 
previously extensively characterized for their prognostic role. 

On the other hand, it should be recognized that although many 
studies have focused on specific aspects associated with SARS-CoV- 
2 disease-related mortality, only a few have comprehensively assessed a 
large number of factors in older inpatients, such as our study. Moreover, 
we considered only variables routinely collected in a hospital setting. 
This is particularly important since identifying clinical and laboratory 
parameters among those routinely collected can guide the physician in 
the early patient risk stratification, facilitating the assessment of the 
most appropriate care setting and an optimal allocation of 
health resources. 

 

Conclusion 
 

Three main conclusions can be drawn from our study. First, in a 
multivariable analysis encompassing all sociodemographic, acute 
clinical and laboratory findings, and comorbidities, mobility 
emerged as the strongest predictor and the only pre-morbid 
condition that could substantially influence in-hospital mortality 
in SARS-CoV-2 older adults. Second, the significant feature 
importance of dNLR that we observed in our model strongly 
confirms that in SARS-CoV-2 infection, unlike other viral  
infections, neutrophils play a fundamental role in the 

pathogenesis and worsening of COVID-19. In this context, dNLR 
could represent a feasible and inexpensive biomarker of COVID-19 
severity in hospitalized older adults. Third, the endpoint of in- 
hospital mortality can be predicted with good accuracy at the time of 
admission using functional status indicators and commonly 
available laboratory results. 

These findings support the application of machine learning to 
develop predictive algorithms based on existing clinical and 
laboratory variables and highlight the importance of functional 
status above all other chronic diseases and conditions as a 
synthetic health measure in older adults, which may be a strong 
predictor of adverse outcomes. 
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