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Abstract—Breathing Rate (BR) is a fundamental 

physiological parameter and wearable sensors can indirectly 

estimate it through the measurement of electrocardiogram 

(ECG). Indeed, they are widely employed in several application 

fields thanks to their multiple advantages, such as user-

friendliness, availability in different quality and cost segments, 

and capability to acquire multidomain physiological signals. 

This study aims at applying an approach based on respiratory 

sinus arrhythmia to the ECG signals acquired by a cardiac belt 

(Zephyr BioHarness 3.0) and a smartwatch (Samsung Galaxy 

Watch3), evaluating the measurement accuracy as well as 

performing a Monte Carlo simulation to analyze the uncertainty 

propagation along the measurement chain, from the wearable 

sensors to the estimated BR value. The results show that both 

the wearable sensors provide an accurate estimation of BR 

(almost null bias), with good precision (standard deviation of 

residuals: 3 bpm for both sensors), and moderate-high 

correlation with reference values (Pearson’s correlation 

coefficient: 0.77 for Zephyr BioHarness 3.0 and 0.63 for 

Samsung Galaxy Watch3). Considering an uncertainty of ±1 

bpm and ±2 bpm on heart rate for Zephyr BioHarness 3.0 and 

Samsung Galaxy Watch3, respectively, the Monte Carlo 

simulation provided expanded uncertainty values on the 

estimated BR of ±6 bpm and ±8 bpm, respectively, evidencing a 

relevant impact of physiological variability. 

Keywords—wearable sensors, breathing rate, uncertainty 

analysis, Monte Carlo simulation 

I. INTRODUCTION 

Breathing rate (BR) is one of the most significant 
physiological parameters that can be measured on a subject, 
being indicative of pathological instabilities like lung disease 
and cardiopulmonary arrest [1]. Indeed, through the 
respiratory pattern analysis it is possible to evaluate the risk of 
different potential illnesses linked to heart, lungs, blood 
vessels, or red blood cells [2], [3]. The clinical decision-
making processes are often based on the examination of 
(normal or abnormal) breathing patterns [4]. Furthermore, the 
prediction of BR covers a relevant role as a marker for a 
plethora of phenomena: labour pain [5], anxiety [5], 
respiratory diseases (e.g. chronic obstructive pulmonary 
disease and asthma) and respiratory infections [6], driving 
safety [7], treatment of thoracic and abdominal tumours [8], 
just to cite some examples. 

However, the measurement of BR is generally not 
straightforward, especially when a continuous assessment of 
BR is desired; Massaroni et al. [9] reviewed the state-of-the-
art methods, dividing them into contact-based and contactless 
ones. In the former case, the sensing element is in contact with 
the body of the subject to be monitored and the measurement 
can be based on different working principles: 

• Respiratory airflow characterization in terms of both 
volume and velocity; flowmeters [10] and 
anemometers [11] can be exploited; 

• Investigation of the respiratory sounds generated by 
the air flow through throat and airways. Acoustic 
sensors (microphones) sensitive to environment 
changes are employed [12]; 

• Air temperature/humidity variations with breathing 
cycles; indeed, the inhaled air is cooler than the 
exhaled one and the latter is vapour saturated. Both 
electric (e.g. thermistors, thermocouples, and 
resistance temperature detectors [13]) and fibre optics 
sensors (FOS) [14] can be used; 

• Air chemical compositions changes (mainly in terms 
of oxygen, O2, and carbon dioxide, CO2) during 
inspiratory/expiratory phases. Infrared sensors [15] 
can be utilized, as well as FOS [16]; 

• Chest wall movements during breathing, since the 
chest walls expand during inspiration with a diameter 
increase up to 7 cm [17]. Different quantities are 
influenced by these movements: strain, transthoracic 
electrical impedance, inclination, acceleration, and 
velocity; hence, both traditional and FOS sensors can 
be exploited to assess these variations [18], [19]; 

• Cardiac activity modulation, investigated through 
electrocardiographic (ECG) or 
photoplethysmographic (PPG) signals [20]. 

 
Indeed, considering cardiac-related signals, different 

algorithms for the indirect estimation of BR have been 
developed in the last decades. In particular, the respiratory 
sinus arrhythmia (RSA) has been considered; in fact, the RR 
intervals (i.e. the temporal differences between consecutive R 
peaks in ECG signal) are shorter when the subject inhales 
(hence heart rate, HR, is higher) and longer when exhales 
(lower HR) [21], and this phenomenon can be analysed to 
derive BR. For example, this information was exploited by 
Schäfer et al. [22], who correlated HR variability (HRV) to 



breathing cycles; another study combined RSA with the 
amplitude of R peaks, also on single-lead ECG signals [23]. 
HRV data were analysed also through fast Fourier transform 
(FFT) based methods [24] and wavelet transform [25]. 
Recently also artificial intelligence (AI) based technologies 
have been exploited for BR prediction; Bian et al. [26] 
employed a residual network (ResNet) architecture to estimate 
BR from PPG data, achieving a final mean absolute error of 
2.5 bpm. Raji et al. [27] introduced a pattern-based prediction 
system based on an artificial neural network (ANN) fed with 
data gathered through a smart chest band; they obtained a 
classification accuracy of 98%. 

At present, wearable sensors can play a relevant role in this 
field, since their spreading has made the physiological 
monitoring easier [28]. They are leading the way in many 
application fields and this is attributable to their multiple 
advantages: user-friendliness, non-intrusivity, ease of use, and 
capability to monitor many physiological quantities in near 
real-time. This represents a huge advantage in terms of remote 
monitoring and can be pivotal in the field of telemedicine, 
provided that the measurement accuracy of the sensors is 
adequate to the target application requirements. For this 
reason, the metrological characterization of wearable sensors, 
intended as the analysis of their performance when compared 
to a reference device, should be always performed according 
to rigorous procedures, to provide measurement results 
together with the related measurement uncertainty. 

The aim of this work is to perform an experimental study 
for the indirect estimation of BR through ECG data acquired 
by means of wearable sensors, as well as to evaluate the 
measurement uncertainty propagation along the measurement 
chain. Indeed, the uncertainty on the HR values will affect the 
estimated BR, hence the metrological performance of the 
exploited hardware should be considered together with the 
goodness of the estimation algorithms.  

The paper is organized as follows: Section II presents the 
materials and methods used in the study, Section III reports 
the obtained results for both BR indirect estimation and 
uncertainty analysis, which are discussed in Section IV; the 
final conclusions are provided in Section V. 

II. MATERIALS AND METHODS 

A. Experimental campaign 

The experimental campaign was performed at Università 
Politecnica delle Marche, whose Research Ethics Committee 
certified that the research study was compliant with the 
university Research Integrity Code. All the tests were 
conducted in accordance with the WMA Declaration of 
Helsinki and healthy volunteers were recruited; before starting 
the tests, the study methodologies and objectives were clearly 
explained to the participants, who signed an informed consent 
module. All the gathered data were managed according to the 
General Data Protection Regulation (GDPR). 

B. Acquisition devices 

The subjects participating to the study simultaneously 
wore two wearable sensors, namely: 

• Zephyr BioHarness 3.0, a cardiac belt with accuracies 
of ±1 bpm and ±2 bpm for HR and BR, respectively; 

• Samsung Galaxy Watch3, a smartwatch capable to 
measure the ECG at wrist; data on measurement 
accuracy are not provided by the manufacturer. 

The test setup is reported in Fig. 1. 

C. Test protocol 

Tests were performed on 30 volunteer healthy subjects 
(22±3 years old, body mass index: 22.5±2.3 kg/m2). Each 
subject participating to the campaign performed 6 tests: 3 at 
rest, the remaining 3 immediately after having performed 
physiological activity (namely 2 minutes walking/running on 
a treadmill at 3, 8, and 10 km/h (0-slope). All the ECG 
recordings lasted 30 s (since the ECG recording duration on 
the smartwatch cannot be modified) and the subject was asked 
to remain as still as possible throughout the entire test 
duration, in order to minimize the motion artifacts. In this way, 
a total of 180 trials were recorded. 

D. Data processing for BR estimation 

The starting signals for the BR estimation were the ECG 
acquired by Zephyr BioHarness 3.0 and Samsung Galaxy 
Watch3. The algorithm used for the estimation was that 
proposed by Schäfer et al. [22], with the modifications 
proposed in [29] (where all the processing details are 
available); in addition, the ECG signals were at first filtered 
through a 3rd order band pass Butterworth filter (0.5-40 Hz, 
i.e. the frequency range typical of a monitor-quality ECG 
[30]). The tachogram signals derived from the R peaks 
detected through the Pan-Tompkins algorithm [31] were 
cleaned from artifacts before being used as input to the 
algorithm for the BR indirect estimation; in particular, RR 
intervals were considered as erroneous when their absolute 
value was greater than the RR mean value plus 1.5 times the 
related standard deviation. The reference BR values were 
obtained from the breathing waveform measured by the 
Zephyr BioHarness 3.0 (accuracy: ±2 bpm), considering the 
pressure changes on the breathing sensor installed on the 
cardiac belt; before peaks identification and, hence, BR 
computation, the signal was filtered through detrend function 
and moving median (window size of 15 samples, 
experimentally chosen based on visual verification). We have 
not considered the BR values directly provided by the sensors 
since abnormalities in the first seconds were present. To 
evaluate the estimation accuracy of BR, the measurement 
differences between the estimated values and the reference 
ones were computed, considering the average BR on the 30-s 
recordings; it is worthy to underline that the obtained 
differences were rounded up to the unit. Hence, the 
distribution of measurement differences was evaluated and 
their mean and standard deviation values were computed, 
being related to measurement accuracy and precision, 
respectively. Also Bland-Altman plot [32] was made to 

 

Fig. 1 Experimental test setup: the subject simultaneously wear the cardiac 

belt (Zephyr BioHarness 3.0) and the smartwatch (Samsung Galaxy 

Watch3). 

 

Zephyr BioHarness 3.0

Samsung Galaxy Watch3



evaluate the agreement between test and reference 
measurement results. Finally, the linear correlation between 
estimated and reference BR values was evaluated through the 
Pearson’s correlation coefficient (ρ); the correlation strength 
was considered low if ρ was lower than 0.30, moderate when 
lying in the range 0.30-0.70 and strong for ρ above 0.70 [33]. 
In these evaluations, the measurement differences lying 
beyond the 95% confidence interval (covering factor k=2) was 
deleted, being considered as outliers. 

E. Uncertainty analysis 

The measurement uncertainty in the estimation of BR was 

evaluated through the Monte Carlo simulation method, in 

compliance with the Guide to the Expression of Uncertainty 

in Measurement (GUM) [34]. The simulation was iterated 106 

times, in order to deliver a 95% coverage interval for the 

output (i.e. 95%) according to the GUM recommendations. 

The input to the BR estimation algorithm, i.e. tachogram, was 

perturbed according to a Gaussian distribution with a standard 

deviation (i.e. input uncertainty, u(x)) equal to 0.017 s for 

Zephyr BioHarness 3.0 (corresponding to 1 bpm on HR 

values, as declared in the user manual) and to 0.042 s 

(corresponding to 2.5 bpm on HR values – cautionary 

conditions, given that the mean absolute percentage error 

acceptable for HR monitors is 5 bpm according to the 

ANSI/AAMI/IEC 60601-2-27:2011/®2016 [35]) for 

Samsung Galaxy Watch3, for which no accuracy data are 

provided by the manufacturer. Two diverse analyses were 

performed, namely: 

• Simulation performed on a unique trial (randomly 

selected) used as input, perturbed as described 

above, iterated 106 times; 

• Simulation performed on 100 random trials selected 

as input to the algorithm, perturbed as described 

above, iterated 104 times. In this way, a total of 106 

BR predictions were simulated. 
In the former case, the obtained uncertainty (i.e. output 

uncertainty, u(y)) can be related to the input signal 
uncertainty (i.e. sensor uncertainty), whereas in the latter also 
intra- and inter-subject physiological variability comes into 
play. This is particularly relevant, given that its contribution 
cannot be neglected [36]. 

III. RESULTS 

In this section the results related to the indirect estimation 
of BR along with the Monte Carlo method-based uncertainty 
analysis are reported. 

A. Indirect estimation of breathing rate 

The distribution of measurement differences between 
estimated BR (from ECG data coming from Zephyr 
BioHarness 3.0 and Samsung Galaxy Watch3, respectively) 
are reported in Fig. 2 (top and bottom, respectively). A mean 
difference of approximately 0 bpm was obtained for both the 
sensors, with a standard deviation describing their dispersion 
about the mean difference equal to 3 bpm in both the cases. 
Instances are more centred on the mean value in the case of 
Zephyr BioHarness 3.0, resulting in a more sharpened 
distribution. 

Considering the Bland-Altman plot (Fig. 3 top and bottom 
for Zephyr BioHarness 3.0 and Samsung Galaxy Watch3, 
respectively), it is possible to observe that the agreement 
between estimated and reference BR values is quite good. 

 

 

Fig. 3 Bland-Altman plot related to Zephyr Bioharness 3.0 (top, confidence 

interval at 95% of the level of agreement: [-5, 5] bpm) and Samsung 

Galaxy Watch3 (bottom, confidence interval at 95% of the level of 

agreement: [-7, 7] bpm). 

 

 

 

Fig. 2 Distribution of the measurement differences between the BR 

estimated through Zephyr BioHarness 3.0 ECG (top) and Samsung Galaxy 
Watch3 (bottom), respectively, and the reference values obtained through 

the respiratory signal provided by Zephyr BioHarness 3.0 (mean value: 0 

bpm; standard deviation: 3 bpm – for both the sensors). 

 



Indeed, the bias is almost null and the confidence interval 
results to be narrow, acceptable for monitoring purposes.  

Finally, the Pearson’s correlation coefficient was 
estimated at 0.77 and 0.63 for Zephyr BioHarness 3.0 and 
Samsung Galaxy Watch3, respectively, indicating a moderate 
and strong correlation with the reference BR values. The 
related scatter plots are reported in Fig. 4 (top and bottom for 
Zephyr BioHarness 3.0 and Samsung Galaxy Watch3, 
respectively). 

B. Uncertainty analysis 

In relation to the uncertainty analysis, the results are 
reported in Table I. It is possible to observe that the input 
uncertainty of 0.017 s reflected into an uncertainty of 1 bpm 
on the output (i.e. estimated BR) for Zephyr BioHarness 3.0. 
Concerning Samsung Galaxy Watch3, the input uncertainty of 
0.042 s caused an uncertainty of 2 bpm on the estimated BR. 
Therefore, the expanded uncertainty (coverage factor k=2) on 
the estimated BR is equal to ±2 bpm and ±4 bpm for Zephyr 
BioHarness 3.0 and Samsung Galaxy Watch3, respectively. 
The probability distribution of the estimated BR obtained with 
the Monte Carlo simulation related to the two wearable 
sensors is reported in Fig. 5 (top and bottom, respectively). 
Both the distributions are centred around 22 bpm, which was 
the value of BR predicted on the original signal. When 
perturbing 100 (random) trials, the probability distributions 
(Fig. 6 – values are centred around o, since the mean value for 
each trial was removed and only the uncertainty was taken into 
account) were characterized by a u(y) of 3 bpm and 4 bpm for 
Zephyr BioHarness 3.0 and Samsung Galaxy Watch3, 
respectively.  

 

TABLE I.  RESULTS FROM MONTE CARLO SIMULATION 

Wearable sensor Perturbed trials u(x) u(y) 

Zephyr BioHarness 
3.0 

1 (106 iterations) ±17 ms ±1 bpm 

100 (104 iterations) ±17 ms ±3 bpm 

Samsung Galaxy 

Wacth3 

1 (106 iterations) ±42 ms ±2 bpm 

100 (104 iterations) ±42 ms ±4 bpm 

IV. DISCUSSION 

The indirect estimation of BR through the proposed 
method resulted to be equally accurate and precise with the 
two tested wearable sensors; the almost null mean residual 
(observable both in the measurement differences distribution, 
Fig. 2, and in the Bland-Altman plots, Fig. 3) means that 
measurement accuracy is high, with an acceptable statistical 
confidence. The measurement differences were rounded up to 
the unit, however the cardiac belt provided less dispersed 
residuals, as it can be inferred from the narrower confidence 
interval at 95%; indeed, 95% of the measurement differences 
is expected to fall in the confidence intervals of [-5, 5] bpm 
and [-7, 7] bpm for Zephyr BioHarness 3.0. and Samsung 
Galaxy Watch3, respectively. This is confirmed through the 
uncertainty analysis performed according to the Monte Carlo 
simulation method. In fact, considering just a (random 
selected) trial, the output uncertainty is actually doubled for 
the smartwatch with respect to the cardiac belt, accounting for 
a higher sensor uncertainty on the electrocardiographic 

 

 

Fig. 4 Correlation between the BR estimated through Zephyr BioHarness 

3.0 ECG (top) and Samsung Galaxy Watch3 (bottom), respectively. 

 

 

 

Fig. 5 Probability distributions of the estimated BR for Zephyr Bioharness 
3.0 (top) and Samsung Galaxy Watch3 (bottom) when data from a unique 

(random) trial were perturbed (Gaussian distribution, σ=0.017 s and 

σ=0.042 s, respectively, on the tachogram used as input to the algorithm 

for the indirect estimation of BR) - 106 iterations in total. 

 



activity assessment. On the other hand, perturbing 100 trials 
acquired on different subjects, the output expanded 
uncertainty (k=2) resulted to be equal to ±6 bpm and ±8 bpm 
for Zephyr BioHarness 3.0 and Samsung Galaxy Watch3, 
respectively. This means that physiological variability plays a 
relevant role in the estimation of BR from ECG data, given 
that the uncertainty triples for the cardiac belt and doubles for 
the smartwatch. Hence, an increase of 2 bpm in the value of 
u(y) can be attributed to physiological variability 
characterizing the test population.  

V. CONCLUSIONS 

In this work the authors exploited the ECG data measured 
by means of two wearable sensors, namely Zephyr 
BioHarness 3.0 and Samsung Galaxy Watch3, to indirectly 
estimate the average BR from 30-s ECG signals. 
Measurement accuracy and precision were evaluated 
analysing the distribution of the measurement differences 
between estimated and reference BR values; hence, an 
uncertainty analysis was performed through the Monte Carlo 
simulation method, also considering the physiological 
variability intrinsic of the test population. 

The results showed that the indirect estimation of BR 
exploiting the ECG signals measured by means of wearable 
sensors provide accurate results. An almost null mean 
measurement difference was obtained for both Zephyr 
BioHarness 3.0 and Samsung Galaxy Watch3. Hence, it can 
be stated that the accuracy of the estimated BR is optimal and 
the results are in agreement with the reference values 

(confirmed by the Bland-Altman plot, showing zero bias and 
a narrow 95% confidence interval for both the sensors). 

Since the application of wearable sensors is constantly 
growing also in medicine related fields, the evaluation of 
measurement accuracy and uncertainty is extremely relevant. 
In this work the authors performed an uncertainty analysis 
through a Monte Carlo simulation, to express measurement 
uncertainty according to the GUM. It resulted that an 
uncertainty of ±1 bpm and of ±2.5 bpm considered for Zephyr 
BioHarness 3.0 and Samsung Galaxy Watch3, respectively, 
causes an uncertainty of ±1 bpm and ±2 bpm, respectively, in 
the indirect estimation of BR when a single trial is perturbed. 
However, when more trials are perturbed, both the u(y) values 
increase of 2 bpm. Thus, physiological variability carries 
substantial weight in the output uncertainty. 

In future, it would be interesting to optimize the whole 
measurement chain; the sensor hardware surely plays a 
relevant role, but also the measurement procedures have their 
own weight on the outcome. Among the sources of 
uncertainty, it is worthy to mention the sensor-skin contact 
and the subjective interferences that can alter the results (e.g. 
little movements due to the post-activity fatigue, impeding the 
subject to remain still). Also, different inputs to the BR 
estimation algorithm could be considered, such as the effect 
of diverse filtering techniques and options (e.g. filter order, 
types, and cut-off frequencies). Finally, also a deeper analysis 
of the reference sensor could be of interest, to investigate the 
sources of its intrinsic inaccuracy at the beginning of the 
acquisition. 
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