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Abstract

A fixed-effects logit model that accounts for feedback effects of the dependent

variable on the covariates is proposed. The model is formulated by including

leads of the predetermined covariates among the regressors and it is proved to

satisfy certain theoretical properties under some regularity conditions on the

distribution of the covariates. Estimation is based on the Conditional Maxi-

mum Likelihood (cml) method for the static logit model and the Pseudo-cml

(pcml) method for the corresponding dynamic formulation. Both methods have

good finite-sample properties even when the required regularity conditions are

not satisfied. An application is provided about female labor supply where we

jointly account for the predetermined number of children and husbands’ in-

come. Differently from previous studies, it emerges that female employment

history does not affect future fertility choices and the husband’s earnings, as no

evidence of feedback effects is found.
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1. Introduction

A wide range of empirical microeconomic applications requires the estima-

tion of binary, and possibly dynamic, panel data models. One popular approach

relies on conditional inference methods for logit models for binary panel data

(Andersen, 1970; Chamberlain, 1980). In particular, Conditional Maximum5

Likelihood (cml) may be applied to estimate the fixed-effects logit model be-

cause this model admits sufficient statistics for the individual unobserved hetero-

geneity parameters, when these are time invariant. Although sufficient statistics

can only be derived in very special cases for the dynamic logit model, the esti-

mation methods proposed by Honoré and Kyriazidou (2000) and Bartolucci and10

Nigro (2012) are still of cml type and, therefore, follow a fixed-effects approach.

One drawback of the cml method for panel logit models is that it assumes

strict exogeneity of the covariates, conditional on unobserved heterogeneity,

which is required for consistent estimation of the regression parameters. How-

ever, this assumption is likely to be violated because there may be feedback15

effects from the outcome variable on the future values of the covariates, in

which case covariates are said to be predetermined. While in linear models

the mainstream approach to overcome this problem is based on instrumental

variables (Anderson and Hsiao, 1981; Arellano and Bond, 1991; Arellano and

Bover, 1995; Blundell and Bond, 1998) and testing procedures have been devel-20

oped for heterogeneous panels (Emirmahmutoglu and Kose, 2011; Dumitrescu

and Hurlin, 2012), considerably fewer results are available for nonlinear binary

panel data models with predetermined covariates. This is particularly true with

short binary panel data, where no general solution is yet available despite their

relevance in microeconomic applications.25

So far, the literature on fixed-effects nonlinear panel data models has focused

on bias, score, or likelihood corrections aimed at mitigating the inconsistency

of the Maximum Likelihood (ml) estimator that arises from the incidental pa-

rameters problem (Neyman and Scott, 1948). This approach, however, gives

rise to corrected ml estimators that perform well with many time periods, say30
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at least eight, in finite samples. Notable contributions are those described in

Carro (2007), who derived a score correction, Bartolucci et al. (2016), who

instead proposed correcting the log-likelihood, and Hahn and Newey (2004),

who put forward panel-jackknife and analytical bias corrections later extended

by Fernandez-Val (2009) and Hahn and Kuersteiner (2011) to dynamic binary35

choice models. Among these, Fernandez-Val (2009) explicitly considered prede-

termined explanatory variables, other than the lagged dependent variable, but

the finite-sample properties of the proposed correction are only provided with

strictly exogenous covariates.

A different strand of literature has also considered short panel data. Honoré40

and Lewbel (2002) proposed a semiparametric estimator for the parameters of

a binary choice model with predetermined covariates. However, they provided

identification conditions when there is a further regressor that is continuous,

strictly exogenous, and independent of the individual specific effects. These re-

quirements are often difficult to be fulfilled in practice. Arellano and Carrasco45

(2003) considered semiparametric random-effects models where covariates are

allowed to be predetermined and correlated with the individual specific effects;

they proposed a Generalized Method of Moments (gmm) estimator involving the

probability distribution of the predetermined covariates (sample cell frequen-

cies for discrete covariates or nonparametric smoothed estimates for continuous50

covariates) that can, however, be difficult to employ with many explanatory

variables. A different approach is taken by Wooldridge (2000), who proposed

to specify a joint model for the response variable and the predetermined co-

variates; the model parameters are estimated by a correlated random-effects

approach (Mundlak, 1978; Chamberlain, 1984), so as to account for the depen-55

dence between strictly exogenous explanatory variables and individual unob-

served effects, combined with a preliminary version of the Wooldridge (2005)’s

solution to the initial conditions problem. Although this is a natural strategy, it

requires distributional assumptions on the individual unobserved heterogeneity;

moreover, it is computationally demanding when the number of predetermined60

covariates is large.
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A strategy similar to that developed by Wooldridge (2000) is adopted by

Mosconi and Seri (2006), who adopted ml-based tests for the presence of feed-

back effects in binary bivariate time-series. They based the estimation and

testing strategy on the definition of Granger causality (Granger, 1969), which65

is typical of the time-series literature, as adapted to the nonlinear panel data

setting by Chamberlain (1982) and Florens and Mouchart (1982). While attrac-

tive, Mosconi and Seri’s approach does not account for individual time-invariant

unobserved heterogeneity and is better suited for quite long panels, whereas ap-

plications, such as those focused on intertemporal choices in the labor market,70

poverty traps, and persistence in unemployment, often rely on short time-series

and a large number of cross-sectional units resulting from rotated surveys. Fur-

thermore, dealing properly with time-invariant unobserved heterogeneity is cru-

cial for the attainability of the estimation results, since individual-specific effects

are often correlated with the covariates of interest. For instance, in dynamic75

binary choice models, the focus is often on properly detecting the causal effects

of past events of the phenomenon of interest, namely the true state dependence,

as opposed to the persistence generated by permanent individual unobserved

heterogeneity (Heckman, 1981).

In this paper, we propose a logit model formulation for a (dynamic) binary80

fixed T -panel data model that takes into account general forms of feedback

effect from the the outcome variable on the future values of the covariates. The

logit model parameters can be consistently estimated by the cml method, so

as to avoid any parametric assumption on the subject-specific time-invariant

unobserved heterogeneity, which is also allowed to be freely correlated with the85

covariates.

One advantage of our formulation is that it does not require the specifica-

tion of a joint parametric model for the outcome and predetermined explanatory

variables, although as specified in the following, our main result holds exactly

under certain regularity conditions on the distribution of such covariates. In90

fact, the starting point to build the proposed model is the definition of strict

exogeneity (Sims, 1972), violations of which correspond to the presence of feed-
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back effects, as stated in terms of conditional independence by Chamberlain

(1982) for nonlinear models. The strict exogeneity assumption for nonlinear

models requires the specification of the probability distribution of the binary95

dependent variable at each time occasion (yt) conditional on past, present, and

future values of the covariates (x). If the conditioning set includes the lagged

dependent variable (yt−1), then the assumption represents a modification of

the Sims’ strict exogeneity condition, which is proved to be equivalent to the

Granger’s noncausality condition for nonlinear models (Chamberlain, 1982).100

The proposed model also allows for the inclusion of even a large number of

predetermined covariates. Under the logit model, it amounts to augmenting the

linear index function with a linear combination of the leads of the predetermined

covariates, along with the lags of the binary dependent variable if violations of

noncausality are considered. We analytically prove that this augmented linear105

index function corresponds to the logit for the conditional distribution of yt

given the covariates and future values of x, under the assumption that the

distribution of the predetermined covariates belongs to the exponential family

with dispersion parameters (Barndorff-Nielsen, 1978). The conditional means of

these covariates may depend on individual fixed effects. In the other cases, we110

assume a linear approximation that proves to be effective, while allowing us to

maintain a simple approach. As a consequence, any estimation approach giving

rise to a consistent estimator of the parameters of the logit model with strictly

exogenous covariates can also be applied to obtain a consistent estimator of the

parameters of the proposed logit model.115

We study the finite-sample performance of the fixed-effects estimator for the

proposed model by means of an extensive simulation study. Specifically, we

use the standard cml method for the modified logit model when we investigate

violations from strict exogeneity, whereas we rely on the Pseudo-cml (pcml)

estimator proposed by Bartolucci and Nigro (2012) for the estimation of the120

modified dynamic logit model under departures from noncausality. We show

that these estimators have good finite-sample properties, even when the required

conditions on the distribution of the predetermined covariate are not satisfied,
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with the exception of the dynamic logit model for very short panels, such as

with T = 4.125

Finally, we consider an empirical application where we investigate the ef-

fect of the presence of young children in the family on female labor supply,

based on a sample drawn form the Michigan Panel Study of Income Dynamics

(psid). This example has been extensively considered in the literature on feed-

back effects because of the potential effect that labor force participation exerts130

on future fertility decisions (see, among others, Chamberlain, 1984; Carrasco,

2001; Arellano and Carrasco, 2003; Mosconi and Seri, 2006). In contrast with

some of the results available in the literature, we find no evidence of feedback

effects relatively to fertility choices and husband’s income. This suggests that

relying on a flexible fixed-effects approach, where individual effects are freely135

allowed to depend on both predetermined and strictly exogenous covariates,

without imposing any functional form for this correlation, might help avoiding

confusion between a simple misspecification of the unobserved heterogeneity and

the presence of feedback effects.

The remainder of the paper is organized as follows. Section 2 introduces140

some preliminary definitions and notation and Section 3 illustrates the proposed

model formulation. Section 4 briefly recalls the cml and pcml estimators for

the proposed model, Section 5 outlines the simulation study focusing on its

results, and Section 6 reports the estimation results for female labor supply

with predetermined fertility decisions. Finally, in Section 7 we provide some145

major conclusions.

2. Preliminaries

In the following, we first review the definitions of strict exogeneity and non-

causality for nonlinear models. Then we illustrate the notation and recall the

assumptions underlying the logit models considered for the proposed formula-150

tion.
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2.1. Definitions

Consider panel data for a sample of n units observed at T occasions through a

single explanatory variable xit and binary response yit, with i = 1, . . . , n and t =

1, . . . , T , where the response variable is affected by a time-constant unobservable155

intercept ci. Also let xi,t1:t2 = (xit1 , . . . , xit2)′ and yi,t1:t2 = (yit1 , . . . , yit2)′

denote the column vectors with elements referred to the period from the t1-th

to the t2-th occasion, so that xi = xi,1:T and yi = yi,1:T are referred to the

entire period of observation for sample unit i. Note that here we consider only

one covariate to keep the illustration simple, but all definitions and results below160

naturally extend to the case of more covariates per time occasion.

In this framework, and as illustrated by Chamberlain (1982), assuming that

the economic life of every individual begins at time t = 1, Sims’ definition of

strict exogeneity is:

Definition. s - x is strictly exogenous with respect to y, given c, if yit is inde-

pendent of xi,t+1:T conditional on ci and xi,1:t, for all i and t, that is,

p(yit|ci,xi) = p(yit|ci,xi,1:t), i = 1, . . . , n, t = 1, . . . , T. (1)

Therefore, accommodating violations of s amounts to including leads of the165

covariates in the regression specification.

If a dynamic model is considered, that is, lags of the dependent variables

enter the conditioning set, the above definition becomes a modification of Sims’

strict exogeneity assumption, denoted by Chamberlain (1982) as s’:

Definition. s’ - x is strictly exogenous with respect to y, given c and the past

responses, if yit is independent of xi,t+1:T conditional on ci, xi,1:t, and yi,1:t−1,

for all i and t, that is,

p(yit|ci,xi,yi,1:t−1) = p(yit|ci,xi,1:t,yi,1:t−1), (2)

for i = 1, . . . , n and t = 1, . . . , T − 1, where yi,t−1 disappears from the condi-170

tioning argument for t = 1.
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Furthermore, Chamberlain (1982) showed that s’ is equivalent to Granger non-

causality, conditional on the unobserved heterogeneity, which is defined as fol-

lows:

Definition. g - The response (y) does not cause the covariate (x) conditional

on the time-fixed effect (c) if xi,t+1 is conditionally independent of yi,1:t, given

ci and xi,1:t, for all i and t, that is,

p(xi,t+1|ci,xi,1:t,yi,1:t) = p(xi,t+1|ci,xi,1:t), (3)

for i = 1, . . . , n and t = 1, . . . , T − 1 We provide a proof of equivalence between175

g and s’ in Appendix Appendix A. This proof is related to that provided in

Chamberlain (1982).

It is worth noting that accommodating departures from g would require the

knowledge and formulation of the model for each time-specific covariate given

the the previous covariates and responses. Furthermore, apart from the case180

T = 2, property s’ is stronger than s. Then, being equivalent to s’, g implies s,

but in general s does not imply g. In fact, s is expressed avoiding to condition

on the previous responses. Also the proof of this result is provided in Appendix

Appendix A.

2.2. Logit models185

Consider the general case in which, for i = 1, . . . , n and t = 1, . . . , T , we

observe a binary response variable yit and a vector of k covariates denoted by xit.

Then, we extend the previous notation by introducingXi,t1:t2 = (xit1 , . . . ,xit2),

with Xi = Xi,1:T being the matrix of the covariates for all time occasions. Let

us also define the individual matrix W it that, in the following, will be equal to190

Xi for the static binary choice model, whereas it will also include yi,1:t−1 if a

dynamic formulation is considered.

The static formulation of a (dynamic) binary choice model assumes that, for
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all i and t, the binary response yit has conditional distribution

p(yit|ci,W it) = p(yit|ci,wit), (4)

with dependence either on the present values of the explanatory variables, when

wit = xit, or also on the first lag of the dependent variable, when wit =

(x′it, yi,t−1)′ because a dynamic binary choice model is considered. The latter195

corresponds to a first-order Markov model for yit. The above conditioning set

can be easily enlarged to include further lags of xit (and yit).

Adopting a logit formulation for the conditional probability implies that

p(yit|ci,wit) =
exp [yit (ci +w′itα)]

1 + exp (ci +w′itα)
, (5)

where the individual-specific intercepts ci are often considered as nuisance pa-

rameters, and α is a vector collecting the parameters of interest. Within the

framework of the static logit model, we let α = β, where β is the vector of200

regression parameters for the covariates xit. If, instead, a dynamic logit model

is considered (see Hsiao, 2015, ch. 7, for a review), we let α = (β′, γ)′, where γ

measures the true state dependence (Heckman, 1981).

It is useful to distinguish the formulation of the conditional distribution

of the overall vector of responses for the static logit model from that for the

dynamic logit model. In the first case, we have

p(yi|ci,Xi) =

exp

(
yi+ci +

T∑
t=1

yitx
′
itβ

)
T∏

t=1
[1 + exp (ci + x′itβ)]

, (6)

with yi+ =
∑T

t=2 yit being the total score, whereas for the dynamic logit model,
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the conditional distribution becomes

p(yi,2:T |ci,Xi, yi1) =

exp

[
yi+ci +

T∑
t=2

yit (x′itβ + yi,t−1γ)

]
T∏

t=2
[1 + exp (ci + x′itβ + yi,t−1γ)]

, (7)

where the initial observation yi1 is considered as given. Fixed-effects formula-

tions have the advantage of not requiring any modeling of the initial observations205

of the sample (Hsiao, 2015). In fact, the so-called “initial conditions” problem

only arises within random-effects models, where an endogeneity issue is posed

by the correlation of the lagged dependent variable with the unobserved effects.

Expression (4) embeds assumptions s and s’, according to whether a static

or dynamic binary choice model is considered, by excluding leads of xit from210

the probability conditioning set. Therefore, it rules out feedbacks from the

response variable to future covariates. The absence of these feedback effects is

often a hardly tenable assumption, as when the covariates of interest depend on

individual choices. If the covariates are predetermined, as opposed to strictly

exogenous, estimation of the model parameters of interest can be severely biased215

when it is based on eliminating or approximating ci with quantities depending

on the entire observed history of covariates (Mundlak, 1978; Chamberlain, 1984;

Wooldridge, 2005).

3. Proposed model formulation

As stated in Section 2, dealing with violations of s and s’ amounts to propos-

ing a generalization of the static or dynamic binary choice model based on as-

sumption (4). In order to derive the proposed model, which is a binary choice

with feedback effects, we specify the probability of yit conditional on the indi-

vidual intercept and on W it as

p(yit|ci,W it) = p(yit|ci,wit,xi,t+1), (8)
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retaining the assumption that previous covariates and responses before yi,t−1220

do not affect yit. Note that, differently from (4), the conditioning set at the rhs

of (8) includes the first-order leads of xit, therefore accommodating violations

of s and s’. The formulation can easily be extended to include an arbitrary

number H of leads collected in Xi,t+1:t+H , with H ≤ T − 2 for the static and

H ≤ T−3 for the dynamic binary choice model, so that we maintain at least two225

observations, which is necessary for identification (see Section 4). However, we

do not explicitly consider the extension to an arbitrary number of leads because,

while being rather obvious, it strongly complicates the exposition. In this regard

note that Chamberlain (1984) reported an empirical example where the linear

index function of a logit model corresponds to the lhs of s in (1), where all the230

available lags and leads of xit are used. However, this specification is valid only

when t = 1 is the beginning of the subject’s economic life. We do not make the

same assumption here.

At this point, it is worth to stress that if we are in presence of violations of s

and s’, any estimation approach that requires strict exogeneity of the covariates

will produce an inconsistent estimator of the parameters of the following logit

model:

p(yit|ci,wit) =
exp [yit(ci +w′itϑ)]

1 + exp(ci +w′itϑ)
. (9)

This model neglects feedback effects even though covariates are predetermined,

as per expression (8). Here ϑ collects the parameters of interest: within the235

static framework, ϑ = µ, where µ is the vector of regression parameters, oth-

erwise ϑ = (µ′, δ)′, where δ represents the true state dependence. If instead

s or s’ hold as in (4), then ϑ = α and (5) is the same as (9). As already

mentioned in Section 1, Wooldridge (2000) proposed to set up a multivariate

model for (9) and the predetermined covariates. On the contrary, the formula-240

tion proposed below has the advantage of not requiring specification of a joint

parametric model for the outcome and predetermined explanatory variables. It

is also worth recalling that estimation approaches not requiring strict exogeneity

for consistency typically suffer from other sources of bias. We are referring to
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the ml estimator when it is used to estimate a random-effects model in presence245

of violations of the distributional assumptions or to a fixed-effects model with

unobserved heterogeneity due to the incidental parameters problem.

The proposed formulation of a specific model for (8) and consequent identifi-

cation of its parameters require further assumptions that lead to the formulation

here proposed. In particular, we rely on the logit formulation

p(yit|di,wit,xi,t+1) =
exp

[
yit
(
di +w′itϑ+ x′i,t+1ν

)]
1 + exp

(
di +w′itϑ+ x′i,t+1ν

) . (10)

Here the individual effect is denoted by di, as a result of the identifying assump-

tions that will be made below. Following the suggestion in Wooldridge (2010,

Sec. 15.8.2), a test for strict exogeneity and/or noncausality can be derived by250

specifying a model of this type. In fact, the null hypothesis H0 : ν = 0, where

0 is a column vector of zeros of suitable dimension, corresponds to condition

s or s’, according to whether a static or dynamic formulation is considered.

Therefore, under H0, the proposed model corresponds to the static or dynamic

logit model, with ϑ = α and di = ci .255

We show that under a particular but very relevant case, the formulation in

(10) represents a logit model with feedback effects. The justification is based

on the following arguments. First of all, denote the conditional density of the

distribution of the covariate vector xi,t+1 as

f(xi,t+1|ξi,Xi,1:t,yi,1:t) = f(xi,t+1|ξi,xit, yit), t = 1, . . . , T − 1, (11)

where ξi is a column vector of time-fixed effects and the presence of yit in

the conditioning set allows for feedback effects. Equation (11) also depicts the

conditional independence of xi,t+1 from xi1, . . . ,xi,t−1 and yi1, . . . , yi,t−1 given

xit, yit, which can however be relaxed by including more lags of xit and yit.

Then the logit for the distribution yit conditional on ci, ξi, wit, and xi,t+1

is

log
p(yit = 1|ci, ξi,wit,xi,t+1)

p(yit = 0|ci, ξi,wit,xi,t+1)
= log

f(yit = 1,xi,t+1|ci, ξi,wit)

f(yit = 0,xi,t+1|ci, ξi,wit)

12



= log
p(yit = 1|ci,wit)f(xi,t+1|ξi,xit, yit = 1)

p(yit = 0|ci,wit)f(xi,t+1|ξi,xit, yit = 0)
, (12)

where the presence of time-fixed effects in the conditioning sets for yit and

xit derives from equations (8) and (11). Furthermore, we assume that the

probability of yit conditional on ci and wit has the logit formulation in (9), so

that the above expression becomes

log
p(yit = 1|ci, ξi,wit,xi,t+1)

p(yit = 0|ci, ξi,wit,xi,t+1)
= ci +w′itϑ+ log

f(xi,t+1|ξi,xit, yit = 1)

f(xi,t+1|ξi,xit, yit = 0)
.

The main point now is how to deal with the components involving the ratio

between the conditional density of xi,t+1 for yit = 0 and yit = 1. Suppose

that the conditional distribution of xi,t+1 belongs to the exponential family

formulated as

f(xi,t+1|ξi,xit, yit = z) =
exp[x′i,t+1(ξi + ηz)]h(xi,t+1;σ)

K(ξi + ηz;σ)
, (13)

with t = 1, . . . , T − 1 and z = 0, 1, where h(xi,t+1) is an arbitrary strictly260

positive function, possibly depending on suitable dispersion parameters σ, and

K(·) is the normalizing constant. Note that this structure also covers the case

of xi,t+1 depending on time-fixed effects through ξi. The following result may

be simply proved.

Theorem 1. Assumptions (9) and (13) imply that

log
p(yit = 1|ci, ξi,wit,xi,t+1)

p(yit = 0|ci, ξi,wit,xi,t+1)
= log

p(yit = 1|di,wit,xi,t+1)

p(yit = 0|di,wit,xi,t+1)

= di +w′itϑ+ x′i,t+1ν,

where di = ci + logK(ξi +η1;σ)− logK(ξi +η0;σ) and ν = η1−η0, and then265

model (10) holds.

Corollary 1. Under the conditions of Theorem 1, any estimation approach

giving rise to a consistent estimator of the parameters of the logit model (5),

13



when s or s’ hold, can also be applied to obtain a consistent estimator of the

parameters of the proposed logit model (10) and then of (9) in case of violations270

of s or s’.

Corollary 1 simply states that, if Theorem 1 is verified, the parameters of model

(9) can be consistently estimated even if s or s’ do not hold by implementing

a strategy based on an estimator that requires strict exogeneity of covariates

applied to model (10). Consider for instance the cml approach, which produces275

a consistent estimator of β in (5) if s holds. On the contrary, the cml esti-

mator will not be consistent for ϑ = µ in (9) because of the violations of s, if

we exclude the leads of the covariates. A consistent cml estimator for µ can

instead be obtained if the model specification includes the future values of the

predetermined covariates as in (10), provided that (13) holds.280

Two cases satisfying (13) are for continuous covariates having multivariate

normal distribution with common variance-covariance matrix and for binary

covariates with distribution based on a logit parametrization. More precisely,

in the first case we suppose that

xi,t+1|ci,xit, yit = z ∼ N(ζi + µz,Σ);

then (13) holds with ξi = Σ−1ζi and ηz = Σ−1µz, z = 0, 1, where the upper

(lower) triangular part of Σ goes in ψ. In the second case, we suppose that

given ξi, Xit, and yit = z, the elements of xi,t+1 are conditionally independent,

with the j-th element having a Bernoulli distribution with success probability

exp(ξij + ηzj)

1 + exp(ξij + ηzj)
, j = 1, . . . , k,

where k is the number of covariates.

There may be several situations where (13) does not hold. In these cases,

we anyway assume a linear approximation for the ratio between the conditional

density of xi,t+1 for yit = 0 and yit = 1 in (12), which is the most natural

solution to maintain an acceptable level of simplicity. Two examples are in-285
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vestigated by simulation in Section 5, in which the predetermined covariate is

allowed to depend on a time-varying explanatory variable and is generated ac-

cording to a probit model. The results of these simulation exercises suggest that

the specification of the log-odds ratio described in Theorem 1 provides a good

approximation in presence of these violations.290

Another common situation of violation (13) in empirical applications is due

to the presence of some persistence characterizing the predetermined covariate,

which deserves a special mention. In fact, there are several components that can

give rise to a time dependence in xi,t+1, some of which can be handled within

the set of hypotheses considered. Specifically, the presence of time-invariant295

unobserved heterogeneity and feedback effects is explicitly taken into account

in (13), whereas time-varying explanatory variables can be included in the model

for xi,t+1 considering expression (12) as a linear approximation.

The presence of true state dependence, instead, cannot be easily accounted

for by the proposed approach, as it causes an identification problem in (12).300

This case corresponds to xi,t+1 following an autoregressive process. For in-

stance if xi,t+1 follows an AR(1) process, then K(·) in Theorem 1 will include

xit, which will then be part of the unobserved effect di. This gives rise to an

endogeneity problem due to relevant omitted variables, which makes the cml

and pcml estimators for the proposed model inconsistent and with a nonneg-305

ligible finite-sample bias, thereby preventing us from considering the proposed

linear approximation as effective. As a matter of fact, the proposed approach

in this case still represents a viable tool only for testing s and s’ (simulation

results are available upon request from the Authors). This problem, however,

is substantially downsized if we consider the conceptually similar case of error310

terms following an autoregressive process, which is likely to occur in practice.

We illustrate the finite-sample results for AR(1) errors in the model for xi,t+1 in

Section 5, which are in line with those of the scenarios where Theorem 1 holds.

For the following developments, it is convenient to derive the conditional

distribution of the entire vector of responses, which holds under the extended315

logit formulation (10). It is also useful to separate the static from the dynamic
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logit model, so as to clarify the differences in the time occasions used and

treatment of initial conditions.

The conditional distribution of the overall vector of responses under the

static logit model directly compares with (6). For all i, the distribution at issue

is

p(yi,1:T−1|di,Xi, yiT ) =

exp

[
yi+di +

T−1∑
t=1

yit
(
x′itµ+ x′i,t+1ν

)]
T−1∏
t=1

[
1 + exp

(
di + x′itµ+ x′i,t+1ν

)] , (14)

where yi+ =
T−1∑
t=1

yit. In particular, model (14) reduces to the static logit (6)

under the null hypothesis of strict exogeneity, namely H0 : ν = 0, if the corre-

sponding probability is conditional on yiT and with different individual inter-

cepts. Moreover, the overall vector of responses for the dynamic logit model is

related to (7) and has distribution

p(yi,2:T−1|di,Xi, yi1, yiT ) =

exp

[
y∗i+di +

T−1∑
t=2

yit
(
x′itµ+ x′i,t+1ν + yi,t−1δ

)]
T−1∏
t=2

[
1 + exp

(
di + x′itµ+ x′i,t+1ν + yi,t−1δ

)] ,

(15)

where y∗i+ =
T−1∑
t=2

yit. Model (15) reduces to the dynamic logit (7) under H0 :

ν = 0 and the same conditions expressed above.320

4. Estimation

In this section, we illustrate the cml and the pcml estimators for the pro-

posed models.

4.1. CML estimator

Conditional inference for the static logit model is based on the conditional

likelihood given the total scores, which are suitable sufficient statistics for the in-

cidental parameters (Chamberlain, 1980). In general, the parameters of the pro-

posed models can be estimated pursuing either a fixed-effects or a (correlated)
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random-effects strategy (Mundlak, 1978; Chamberlain, 1984; Wooldridge, 2005).

The latter, however, only allows the unobserved heterogeneity to be correlated

with strictly exogenous covariates, while requiring the predetermined covariates

in xit to be independent of di. As this assumption may often be hardly ten-

able, we focus on fixed-effects estimation approaches. The probability in (14),

conditional on yi+, becomes

p(yi,1:T−1|yi+,Xi, yiT ) =

exp

[
T−1∑
t=1

yit
(
x′itµ+ x′i,t+1ν

)]
∑

z1:T−1

exp

[
T−1∑
t=1

zt
(
x′itµ+ x′i,t+1ν

)] , (16)

which no longer depends on di and where the sum at the denominator is ex-325

tended to all possible response configurations z1:T−1 = (z1, . . . , zT−1)′ such

that z+ = yi+, where z+ =
T−1∑
t=1

zt. The parameter vector φ = (µ′,ν′)′ is es-

timated by maximizing, through a Newton-Raphson algorithm, the conditional

log-likelihood corresponding to (16), which can be written as

`(φ) =
∑
i

1{0 < yit < T − 1}`i(φ),

`i(φ) = log p(yi,1:T−1|yi+,Xi, yiT ).

The resulting vector φ̂ = (µ̂′, ν̂′)′ is the cml estimate. Expressions for the score330

vector and information matrix can be derived using the standard theory on the

regular exponential family (Barndorff-Nielsen, 1978) and are implemented in

package cquad (Bartolucci and Pigini, 2017), available in R and Stata, that we

suggest for the application of the estimation method.

Under mild regularity conditions, concerning essentially the structure of the335

covariate matrix so as to avoid problems of singularity, the CML estimator is

consistent as n grows to infinity with fixed T . Moreover, it has an asymptotic

Normal distribution with variance-covariance matrix that may estimated in the

usual way on the basis of the Hessian of `(φ). From this matrix it is also possible

to obtain standard errors for the parameter estimates. An illustration of these340
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properties may be found in textbooks such as Hsiao (2015).

4.2. PCML estimator

If a dynamic logit model is considered, sufficient statistics for the individual

intercepts can only be derived in absence of covariates with T = 3 (Chamber-

lain, 1985). In presence of covariates, a weighted conditional log-likelihood may345

be used for inference, although the estimator is consistent only under certain

regularity conditions on the distribution of the covariates and the rate of con-

vergence is slower than
√
n (Honoré and Kyriazidou, 2000). These shortcomings

have been overcome by Bartolucci and Nigro (2012), who proposed to approx-

imate the dynamic logit by a Quadratic Exponential (qe) model (Cox, 1972;350

Bartolucci and Nigro, 2010), which admits sufficient statistics for the incidental

parameters and has the same interpretation as the dynamic logit model in terms

of log-odds ratio. Bartolucci and Nigro (2012) also proposed to adopt a pcml

estimator for the model parameters. This estimator is consistent in absence

of true state dependence and has a negligible bias in case of even strong state355

dependence.

The approximating model used in Bartolucci and Nigro (2012), and here

adapted for (15), is derived by taking a linearization of the log-probability of

the latter, that is,

log p(yi,2:T−1|di,Xi, yi1, yiT ) = y∗i+di +

T−1∑
t=2

yit
(
x′itµ+ x′i,t+1ν + yi,t−1δ

)
−

T−1∑
t=2

log
[
1 + exp

(
di + x′itµ+ x′i,t+1ν + yi,t−1δ

)]
. (17)

The term that is nonlinear in the parameters is approximated by a first-order360
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Taylor series expansion around di = d̄i, µ = µ̄, ν = ν̄, and δ = 0, leading to

T−1∑
t=2

log
[
1 + exp

(
di + x′itµ+ x′i,t+1ν + yi,t−1δ

)]
≈

T−1∑
t=2

log
[
1 + exp

(
d̄i + x′itµ̄+ x′i,t+1ν̄

)]
+

T−1∑
t=2

qit
[
di − d̄i + x′it (µ− µ̄) + x′i,t+1 (ν − ν̄)

]
+

T−1∑
t=2

qityi,t−1δ, (18)

where

qit =
exp

(
d̄i + x′itµ̄+ x′i,t+1ν̄

)
1 + exp

(
d̄i + x′itµ̄+ x′i,t+1ν̄

) .
Since only the last sum in (18) depends on yi,2:T−1, we can substitute this sum

in (17) and obtain the approximation of the joint probability (15) that gives the

qe model

p†(yi,2:T−1|di,Xi, yi1, yiT )

=

exp

[
y∗i+di +

T−1∑
t=2

yit
(
x′itµ+ x′i,t+1ν

)
+

T−1∑
t=2

(yit − qit)yi,t−1δ

]
∑

z2:T−1

exp

[
z∗+di +

T−1∑
t=2

zt
(
x′itµ+ x′i,t+1ν

)
+

T−1∑
t=2

(zt − qit)ztδ
] . (19)

The sum at the denominator of the previous expression ranges over all possible365

binary vectors z2:T−1 = (z2, . . . , zT−1)
′
, with z∗+ =

T−1∑
t=2

zt and z1 = yi1.

The joint probability in (19) is closely related to the probability of the re-

sponse configuration yi,2:T−1 in the true model. In particular: (i) expressions

(19) and (15) correspond to the same logit model in absence of state depen-

dence; (ii) in both models, yit is conditionally independent of yi,1:t−2 given di,370

Xi, and yi,t−1; (iii) the parameter δ has the same interpretation in terms of

log-odds ratio between the responses yit and yi,t−1. These results can be proved

along the lines of Theorem 1 in Bartolucci and Nigro (2010).

The nice feature of the qe model in (19) is that it admits sufficient statistics

for the incidental parameters di, which are the total scores y∗i+ for i = 1, . . . , n.375

19



Under the approximating model, the probability of yi,2:T−1, conditional on Xi,

yi1, yiT , and y∗i+, is then

p†
(
yi,2:T−1|y∗i+,Xi, yi1, yiT ,

)
=
p†(yi,2:T−1|di,Xi, yi1, yiT )

p†(y∗i+|di,Xi, yi1, yiT )

=

exp

[
T−1∑
t=2

yit
(
x′itµ+ x′i,t+1ν

)
+

T−1∑
t=2

(yit − qit)yi,t−1δ

]
∑

z2:T−1

z∗
+=y∗

i+

exp

[
T−1∑
t=2

zt
(
x′itµ+ x′i,t+1ν

)
+

T−1∑
t=2

(zt − qit)zt−1δ

] , (20)

which no longer depends on di and where the sum at the denominator is ex-

tended to all possible response configurations z2:T−1 such that z∗+ = y∗i+. he

denominator is

p†(y∗i+|di,Xi, yi1, yiT ) =

∑
z2:T−1

z∗
+=y∗

i+

exp

[
z∗+di +

T−1∑
t=2

zt
(
x′itµ+ x′i,t+1ν

)
+

T−1∑
t=2

(zt − qit)ztδ
]

∑
z2:T−1

exp

[
z∗+di +

T−1∑
t=2

zt
(
x′itµ+ x′i,t+1ν

)
+

T−1∑
t=2

(zt − qit)ztδ
] ,

which clarifies that y∗i+di in (19) and z∗+di cancel out.

The formulation of the conditional log-likelihood based on (20) relies on

the fixed quantities qit, which are based on a preliminary estimation of the380

parameters associated with the covariate and the individual effects. Let φ =

(µ′,ν′)′ and θ = (φ′, δ′)′. The estimation approach is based on two-steps:

1. Preliminary estimates of the parameters needed to compute qit are ob-

tained by maximizing the conditional log-likelihood

`(φ̄) =

n∑
i=1

1{0 < yit < T − 2}`i(φ̄),

`i(φ̄) = log

exp

[
T−1∑
t=2

yit
(
x′itµ̄+ x′i,t+1ν̄

)]
∑

z2:T−1

z∗
+=y∗

i+

exp

[
T−1∑
t=2

zt
(
x′itµ̄+ x′i,t+1ν̄

)] ,
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which can be performed by a Newton-Raphson algorithm.385

2. The parameter vector θ is estimated by maximizing the conditional log-

likelihood corresponding to (20), which can be written as

`†(θ|φ̄) =
∑
i

1{0 < yit < T − 2}`†i (θ|φ̄),

`†i (θ|φ̄) = log p†
θ|φ̄(yi,2:T−1|y∗i+,Xi, yi1, yiT ).

The resulting θ̂ is the pcml estimate.

Similarly to the conditional log-likelihood on which the cml estimator is

based, function `†(θ|φ̄) may be maximized by a Newton-Raphson algorithm390

using the score vector and observed information matrix, which are computed on

the basis of the standard theory on the regular exponential family. Moreover, for

the application of the proposed pcml we again suggest to adopt package cquad.

Regarding the asymptotic properties of this estimator we recall that, essentially,

it has the same asymptotic properties of the cml estimator in absence of state395

dependence, whereas with state dependence it converges in probability, as n

grows to infinity with T fixed, to a pseudo-true parameter that is reasonably

close to the true parameter value. The asymptotic normal distribution also

holds when there is state dependence, although the estimation of the variance-

covariance matrix is more complex than for the cml estimator, as it has to400

account for the estimated quantities in step 1.

Following Bartolucci and Nigro (2012), the expression for the variance-

covariance matrix estimator is based on a gmm approach (Hansen, 1982). In

fact, the pcml estimator can be seen as the solution of the system of equations

g(φ̄,θ) =

n∑
i=1

1{0 < y∗i+ < T − 2}gi(φ̄,θ) = 0,

where

gi(φ̄,θ) =

 ∇φ̄`i(φ̄)

∇θ`
†
i (θ|φ̄)

 ,
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with `i(φ̄) and `†i (θ|φ̄) defined in previous steps 1 and 2, respectively. Denoting

the solution to this equation as (φ̃
′
, θ̂
′
)′, the asymptotic variance-covariance

matrix can be estimated by

W (φ̃, θ̂) = H(φ̃, θ̂)−1S(φ̃, θ̂)
[
H(φ̃, θ̂)−1

]′
,

where

S(φ̄,θ) =

n∑
i=1

1{0 < y∗i+ < T − 2}gi(φ̄,θ)gi(φ̄,θ)′,

and

H(φ̄,θ) =

n∑
i=1

1{0 < y∗i+ < T − 2}Hi(φ̄,θ).

In the previous expression, we have that

Hi(φ̄,θ) =

 ∇φ̄φ̄`i(φ̄) O

∇θφ̄`
†
i (θ|φ̄) ∇θθ`†i (θ|φ̄)


is the derivative of gi(φ̄,θ) with respect to (φ̄

′
,θ′)′, with O denoting a matrix

of zeros of suitable dimension. For the computation of the variance-covariance

matrix estimator, analytical expressions are used for ∇φ̄φ̄`i(φ̄) and ∇θθ`†i (θ|φ̄),

which can easily be derived on the basis of the formulations given in steps 1 and405

2, respectively, whereas we rely on numerical differentiation for the evaluation

of ∇θφ̄`
†
i (θ|φ̄).

5. Simulation study

In this section, we describe the design and illustrate the results of the sim-

ulation study of the finite-sample properties of the cml and pcml estimators410

for the proposed model formulations. The study also compares the pcml esti-

mator with the random-effects ml estimator for the joint model for the binary

dependent variable and predetermined covariate, as proposed by Wooldridge

(2000).
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5.1. Simulation design415

The simulation study is based on samples drawn from a logit model with

one explanatory variable xit possibly predetermined, one strictly exogenous vari-

able zit, and individual unobserved heterogeneity. The model for the response

variable assumes that

yit = 1{ci + xitµ− 0.5zit + εit ≥ 0}, i = 1, . . . , n, t = 1, . . . , T, (21)

where the error terms εit follow a logistic distribution with zero mean and

variance equal to π2/3, while the individual specific intercepts ci are allowed to

be correlated with xit and zit.

The strictly exogenous covariate zit is generated as

zit = ξi + vit, i = 1, . . . , n, t = 1, . . . , T,

where vit ∼ N(0, π2/3). Moreover, for i = 1, . . . , n, the explanatory variable

xi1 is obtained from a third-degree polynomial function of ξi + ui1, with ui1 ∼420

N(0, π2/3), whereas for t = 2, . . . , T , it is assumed that

xit = ξi + zitψ + yi,t−1η + uit,

uit = ui,t−1ρ+ ωit,

with ωit ∼ N(0, π2/3) and where parameter η governs the violation of s, stated

in Section 2, and it takes value η = 0 under the assumption of strict exogeneity,

with η 6= 0 otherwise.

For i = 1, . . . , n, the individual intercepts ci and ξi are derived as425

ci =
1

T

4∑
t=1

uit, (22)

ξi = 0.5 ci +
√

0.75 τit,

where τit ∼ N(0, 1). In this way, the generating model admits correlation
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between the covariates and the individual-specific intercepts; it also admits de-

pendence between the unobserved heterogeneity in both processes for y and

x. Notice that the simulation design implicitly assumes that the only source

of contemporaneous endogeneity, namely the reverse causality between xit and430

yit, is completely captured by the correlation between the individual specific

intercepts in the two processes.

In this framework based on generating model (21), different scenarios are

considered; under each of these scenarios, violations of noncausality are exam-

ined by setting η = −1, compared with the same scenarios with η = 0. The435

sample sizes considered are n = 100, 250, 500, 1000 for T = 4, 8, 12 time occa-

sions, with results based on a number of Monte Carlo replications equal to 1, 000.

In the first scenario, which we refer to as Experiment 1, we let µ = 0, ψ = 0,

and ρ = 0 so that, also due to the linear model specification for xit, assumption

(13) is satisfied and the assumptions of Theorem 1 hold. The simulation study440

includes four additional experiments, whose designs are as follows:

• Experiment 2: as Experiment 1 with µ = −1;

• Experiment 3: as Experiment 2 with ψ = 0.5;

• Experiment 4: as Experiment 2 with ρ = 0.25.

Additional scenarios are the following:445

• Experiment 5: as Experiment 2 with a binary predetermined covariate, so

that for i = 1, . . . , n, we have

xit = 1{ξi + ηyi,t−1 + uit ≥ 0}, t = 2, . . . , T,

and p(xit = 1|ξi, yi,t−1) = Φ(ξi + ηyi,t−1);

• Experiment 6: as Experiment 2 with the inclusion of the lagged dependent

variable in (21), so that samples are drawn from the dynamic logit model
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based on assuming that, for i = 1, . . . , n,

yit = 1{ci + µxit − 0.5zit + δyi,t−1 + εit ≥ 0}, t = 2, . . . , T,

where δ = 1 and with initial condition

yi1 = 1{ci − 0.5xi1 − zi1 + εi1 ≥ 0}.

In this setting, violations from noncausality s’ are considered through the fol-

lowing scenarios:

• Experiment 7: as Experiment 6 with ψ = 0.5;

• Experiment 8: as Experiment 6 with ρ = 0.25;450

• Experiment 9: as Experiment 6 with a binary predetermined covariate, as

in Experiment 5.

Experiment 6 is motivated by economic applications in which the parameter

of interest is δ, measuring the state dependence, further to the regression coef-

ficient µ. Moreover, the chosen values for µ, δ, and η are consistent with likely455

situations in practice that are related to the feedback effect of employment on

future child birth when analyzing female labor supply (see Section 6 and also

Mosconi and Seri, 2006, for a related application). In Experiments 6 to 9 the

simulation study is limited to sample sizes 500 and 1000, due to convergence

problem that may arise because of the small number of subjects contributing to460

the log-likelihood with a high degree of state dependence. In Experiments 3-5

and 7-9, assumption (13) does not hold and the model formulated in Theorem 1

is an approximation. More specifically, in Experiments 3-4 and 7-8 the covariate

xit is allowed to depend on a time-varying explanatory variable or to be a func-

tion of an AR(1) error term, whereas in Experiments 5 and 9 the distribution465

of xit does not belong to the exponential family.
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5.2. Simulation results

In this section, we describe the results of our simulation study based on Ex-

periments 1 to 9. Under each of the first five of these scenarios, we investigated

the finite-sample performance of the cml estimator for the proposed formula-470

tion (14) in two cases representing strict exogeneity corresponding to property

s described in Section 2 and its violation: cml1 denotes the cml estimator for

the parameters in (14); cml0 denotes the estimator of (6) under the constraint

ν = 0 and with probability conditioned on yiT . Under Experiments 6 to 9, we

estimated the model parameters by pcml, with pcml0 and pcml1 denoting the475

hypotheses of noncausality corresponding to s’ and its violation.

For each estimator, we report the mean bias, the median bias, the root-

mean square error (rmse), the median absolute error (mae), as in Honoré and

Kyriazidou (2000), and the t-tests at the 5% nominal size for the null hypothesis

of µ, and δ in Experiment 5, being equal to the value set in each scenario. Finally480

we report the t-tests at the 5% nominal size for noncausality, H0 : ν = 0. We

expect cml0 (pcml0) to yield biased estimators when η 6= 0 because, according

to s (s’), the lead of xit is omitted from the model specification. We limit

the discussion to the estimation of µ, and possibly δ, which are likely to be the

parameters of main interest in applications. Results concerning the other model485

parameters are available upon request.

Tables 1 and 2 summarize the simulation results for our benchmark design

with µ = 0 and µ = −1, respectively. With η = 0, that is, in absence of

feedback effects, the mean bias and median bias are always negligible, except

when n = 100 and T = 4, whereas the mae and rmse decrease with both n490

and T for the two models considered. The same considerations hold for cml1

when η = −1, whereas the cml estimators of µ denoted by cml0 is biased and

leads to misleading inference, although this pattern is alleviated for T = 8, 12.

The t-test for H0 : ν = 0 always attains its nominal size and exhibits strong

empirical power in all scenarios with η = −1, provided T is greater than 4 if495

n = 100.

Tables 3, 4, and 5 report the simulation results for two departures from the
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Table 1: Simulation results from Experiment 1: cml estimator, µ = 0, ψ = 0, ρ = 0, normally
distributed covariate

η = 0 η = −1

Mean rmse Median mae t-test t-test Mean rmse Median mae t-test t-test
bias bias H0 : ν = 0 bias bias H0 : ν = 0

Estimation of µ
n = 100, T = 4

cml1 0.001 0.096 0.004 0.063 0.044 0.055 -0.003 0.098 -0.001 0.066 0.056 0.848
cml0 0.000 0.089 0.002 0.059 0.040 0.079 0.118 0.078 0.084 0.159

n = 100, T = 8

cml1 -0.003 0.053 -0.003 0.036 0.061 0.058 -0.004 0.053 -0.005 0.035 0.064 1.000
cml0 -0.002 0.052 -0.004 0.035 0.057 0.037 0.063 0.036 0.043 0.136

n = 100, T = 12

cml1 -0.002 0.038 -0.002 0.027 0.038 0.067 -0.003 0.040 -0.002 0.027 0.053 1.000
cml0 -0.002 0.038 -0.002 0.026 0.039 0.024 0.045 0.025 0.031 0.102

n = 250, T = 4

cml1 0.000 0.060 0.002 0.039 0.051 0.045 0.003 0.057 0.001 0.040 0.048 0.999
cml0 0.000 0.056 0.000 0.037 0.056 0.081 0.097 0.083 0.083 0.342

n = 250, T = 8

cml1 0.002 0.033 0.002 0.023 0.056 0.049 -0.002 0.033 -0.003 0.023 0.056 1.000
cml0 0.002 0.033 0.002 0.023 0.056 0.038 0.049 0.038 0.038 0.236

n = 250, T = 12

cml1 -0.002 0.025 -0.001 0.017 0.048 0.043 -0.003 0.026 -0.004 0.017 0.064 1.000
cml0 -0.002 0.025 -0.002 0.017 0.052 0.023 0.034 0.023 0.025 0.164

n = 500, T = 4

cml1 -0.001 0.041 -0.001 0.027 0.043 0.055 -0.001 0.042 -0.000 0.029 0.049 1.000
cml0 -0.000 0.039 0.001 0.027 0.044 0.078 0.086 0.078 0.078 0.566

n = 500, T = 8

cml1 0.001 0.024 0.001 0.016 0.065 0.037 -0.003 0.022 -0.003 0.015 0.046 1.000
cml0 0.001 0.023 0.000 0.016 0.054 0.037 0.043 0.037 0.037 0.410

n = 500, T = 12

cml1 -0.000 0.018 -0.000 0.012 0.045 0.041 -0.002 0.018 -0.002 0.012 0.063 1.000
cml0 -0.000 0.018 -0.001 0.012 0.047 0.025 0.031 0.025 0.025 0.322

n = 1000, T = 4

cml1 0.001 0.030 0.000 0.020 0.053 0.051 -0.000 0.028 -0.000 0.018 0.052 1.000
cml0 0.001 0.028 0.001 0.018 0.050 0.078 0.082 0.078 0.078 0.860

n = 1000, T = 8

cml1 0.000 0.016 0.000 0.011 0.052 0.051 -0.003 0.017 -0.004 0.012 0.050 1.000
cml0 0.000 0.016 0.001 0.011 0.047 0.037 0.040 0.036 0.036 0.669

n = 1000, T = 12

cml1 -0.000 0.013 -0.000 0.009 0.048 0.045 -0.002 0.013 -0.002 0.008 0.057 1.000
cml0 -0.000 0.013 -0.000 0.009 0.047 0.025 0.027 0.025 0.025 0.550

benchmark design: Table 3 refers to a normally distributed covariate depending

on the time-varying covariate zit, Table 4 concerns the case of time persistence in
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Table 2: Simulation results from Experiment 2: cml estimator, µ = −1, ψ = 0, ρ = 0,
normally distributed covariate

η = 0 η = −1

Mean rmse Median mae t-test t-test Mean rmse Median mae t-test t-test
bias bias H0 : ν = 0 bias bias H0 : ν = 0

Estimation of µ
n = 100, T = 4

cml1 -0.062 0.238 -0.019 0.130 0.048 0.059 -0.093 0.267 -0.057 0.143 0.062 0.601
cml0 -0.045 0.221 -0.008 0.122 0.053 0.030 0.218 0.053 0.147 0.103

n = 100, T = 8

cml1 -0.013 0.094 -0.008 0.064 0.043 0.052 -0.020 0.105 -0.015 0.072 0.064 0.995
cml0 -0.010 0.092 -0.006 0.062 0.042 0.034 0.101 0.035 0.074 0.093

n = 100, T = 12

cml1 -0.010 0.074 -0.007 0.050 0.060 0.062 -0.008 0.078 -0.004 0.052 0.062 1.000
cml0 -0.009 0.073 -0.005 0.051 0.055 0.025 0.078 0.028 0.053 0.095

n = 250, T = 4

cml1 -0.026 0.130 -0.014 0.081 0.053 0.046 -0.025 0.133 -0.012 0.081 0.056 0.952
cml0 -0.021 0.124 -0.008 0.078 0.055 0.074 0.138 0.086 0.107 0.158

n = 250, T = 8

cml1 -0.005 0.060 -0.002 0.041 0.045 0.054 -0.009 0.066 -0.006 0.043 0.054 1.000
cml0 -0.004 0.060 -0.001 0.040 0.047 0.040 0.072 0.041 0.052 0.149

n = 250, T = 12

cml1 -0.004 0.046 -0.003 0.029 0.070 0.061 -0.002 0.046 -0.002 0.032 0.050 1.000
cml0 -0.003 0.046 -0.001 0.029 0.067 0.030 0.052 0.030 0.037 0.124

n = 500, T = 4

cml1 -0.013 0.087 -0.007 0.055 0.043 0.038 -0.019 0.092 -0.016 0.061 0.049 0.999
cml0 -0.010 0.084 -0.004 0.055 0.043 0.081 0.113 0.086 0.088 0.225

n = 500, T = 8

cml1 -0.004 0.043 -0.003 0.029 0.057 0.037 -0.005 0.044 -0.003 0.029 0.054 1.000
cml0 -0.004 0.043 -0.002 0.028 0.054 0.042 0.059 0.044 0.047 0.203

n = 500, T = 12

cml1 -0.003 0.031 -0.002 0.020 0.039 0.055 -0.003 0.033 -0.002 0.022 0.048 1.000
cml0 -0.003 0.031 -0.001 0.020 0.040 0.029 0.042 0.029 0.031 0.158

n = 1000, T = 4

cml1 -0.005 0.061 -0.002 0.039 0.049 0.058 -0.006 0.060 -0.005 0.040 0.038 1.000
cml0 -0.004 0.058 -0.001 0.039 0.038 0.088 0.103 0.090 0.091 0.382

n = 1000, T = 8

cml1 -0.002 0.029 -0.002 0.019 0.045 0.040 -0.002 0.031 -0.002 0.021 0.047 1.000
cml0 -0.002 0.029 -0.003 0.019 0.049 0.046 0.054 0.045 0.045 0.353

n = 1000, T = 12

cml1 -0.001 0.023 -0.001 0.015 0.054 0.063 -0.000 0.023 -0.000 0.015 0.057 1.000
cml0 -0.001 0.023 -0.000 0.015 0.053 0.031 0.038 0.031 0.031 0.295
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xit formulated through AR(1) errors, while Table 5 refers to a binary covariate.500

These scenarios allow us to investigate the properties of the cml estimator

when the assumption formulated by equation (13) does not hold and the model

formulated in Theorem 1 just embeds a linear approximation of this equation.

The results for ψ = 0.5 in Table 3 mirror closely those in Table 2, whereas

the presence of AR(1) errors in the conditional mean for xit does not seem to505

hamper the ability of cml1 to produce consistent estimates of µ. When the

covariate is binary, instead, the bias of the cml1 estimator of µ is almost always

negligible. Regarding efficiency, the rmse and mae are slightly higher for µ,

although they decrease with both n and T (see Table 5).

Table 6 summarizes the simulation results based on the pcml estimator for510

the design where there is state dependence in the response variable, that is δ = 1.

Regarding the estimation of µ, the Table depicts a similar situation depicted by

Table 2, whereas the estimator of δ exhibits a certain bias when T is small. It is

worth recalling that the pcml estimator is consistent only with δ = 0, while it

provides a good approximation of δ when δ 6= 0. Moreover, the performance of515

the pcml estimator may be especially sensitive to the degree of state dependence

in the generated samples. A high value of δ leads to a reduction of the actual

sample size and represents a large deviation from the approximating point δ = 0.

Nevertheless, Bartolucci and Nigro (2012) showed that the bias and root-mean

square error of pcml estimator of δ in the dynamic logit model decrease at a520

rate close to
√
n and as T grows also for δ moving away from 0. Regarding the

static formulation, Experiments 7 to 9 explore the violations of assumption (13).

The results for both µ and δ also suggest that the proposed formulation provides

a good approximation when time-varying covariates enter the conditional mean

of xit or the distribution of xit does not belong to the exponential family (see525

Tables 7 and 9). The estimator pcml1 performs well even when xit has some

persistence formulated through AR(1) distributed errors (see Table 8), even

though the estimator of δ has a nonnegligible bias when T = 4.
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Table 3: Simulation results from Experiment 3: cml estimator, µ = −1, ψ = 0.5, ρ = 0,
normally distributed covariate

η = 0 η = −1

Mean rmse Median mae t-test t-test Mean rmse Median mae t-test t-test
bias bias H0 : ν = 0 bias bias H0 : ν = 0

Estimation of µ
n = 100, T = 4

cml1 -0.076 0.279 -0.040 0.146 0.052 0.050 -0.102 0.302 -0.060 0.158 0.069 0.478
cml0 -0.057 0.259 -0.021 0.136 0.059 0.014 0.232 0.044 0.147 0.102

n = 100, T = 8

cml1 -0.014 0.102 -0.011 0.068 0.044 0.065 -0.015 0.111 -0.007 0.073 0.050 0.970
cml0 -0.010 0.100 -0.008 0.066 0.044 0.030 0.108 0.036 0.076 0.087

n = 100, T = 12

cml1 -0.010 0.078 -0.008 0.054 0.058 0.063 -0.005 0.081 0.001 0.055 0.058 0.997
cml0 -0.008 0.077 -0.005 0.054 0.058 0.022 0.081 0.027 0.057 0.090

n = 250, T = 4

cml1 -0.036 0.149 -0.016 0.091 0.058 0.054 -0.021 0.146 -0.002 0.085 0.075 0.858
cml0 -0.028 0.143 -0.011 0.087 0.057 0.063 0.144 0.076 0.105 0.149

n = 250, T = 8

cml1 -0.006 0.061 -0.003 0.041 0.033 0.052 -0.004 0.067 -0.002 0.044 0.056 1.000
cml0 -0.005 0.060 -0.001 0.041 0.032 0.035 0.073 0.037 0.053 0.121

n = 250, T = 12

cml1 -0.005 0.049 -0.004 0.031 0.063 0.058 -0.001 0.048 0.001 0.034 0.042 1.000
cml0 -0.004 0.049 -0.003 0.032 0.062 0.025 0.053 0.025 0.037 0.092

n = 500, T = 4

cml1 -0.016 0.093 -0.010 0.061 0.048 0.052 -0.011 0.095 -0.006 0.063 0.053 0.988
cml0 -0.012 0.090 -0.005 0.057 0.049 0.069 0.110 0.072 0.081 0.184

n = 500, T = 8

cml1 -0.003 0.045 -0.002 0.030 0.053 0.042 -0.000 0.047 0.003 0.032 0.055 1.000
cml0 -0.002 0.045 -0.000 0.030 0.053 0.038 0.059 0.041 0.045 0.167

n = 500, T = 12

cml1 -0.002 0.033 -0.002 0.021 0.049 0.058 -0.001 0.035 -0.001 0.023 0.056 1.000
cml0 -0.002 0.033 -0.001 0.021 0.049 0.025 0.042 0.025 0.030 0.140

n = 1000, T = 4

cml1 -0.006 0.064 -0.004 0.043 0.037 0.062 -0.003 0.067 0.001 0.046 0.053 1.000
cml0 -0.004 0.062 -0.002 0.042 0.040 0.074 0.096 0.076 0.079 0.278

n = 1000, T = 8

cml1 -0.002 0.031 -0.002 0.021 0.041 0.049 0.003 0.034 0.003 0.022 0.065 1.000
cml0 -0.002 0.031 -0.002 0.020 0.041 0.041 0.052 0.041 0.042 0.275

n = 1000, T = 12

cml1 -0.001 0.024 -0.000 0.017 0.046 0.048 0.003 0.025 0.003 0.017 0.057 1.000
cml0 -0.001 0.024 -0.001 0.017 0.048 0.028 0.037 0.029 0.029 0.240
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Table 4: Simulation results from Experiment 4: cml estimator, µ = −1, ψ = 0, ρ = 0.25,
normally distributed covariate

η = 0 η = −1

Mean rmse Median mae t-test t-test Mean rmse Median mae t-test t-test
bias bias H0 : ν = 0 bias bias H0 : ν = 0

Estimation of µ
n = 100, T = 4

cml1 -0.082 0.242 -0.051 0.127 0.058 0.071 -0.081 0.259 -0.056 0.147 0.052 0.584
cml0 -0.058 0.221 -0.028 0.122 0.059 0.048 0.211 0.073 0.143 0.110

n = 100, T = 8

cml1 -0.012 0.093 -0.001 0.060 0.046 0.051 -0.018 0.101 -0.010 0.067 0.039 0.996
cml0 -0.009 0.091 0.002 0.060 0.049 0.037 0.100 0.043 0.072 0.083

n = 100, T = 12

cml1 -0.006 0.071 -0.003 0.047 0.053 0.053 -0.007 0.077 -0.006 0.049 0.060 1.000
cml0 -0.004 0.070 -0.002 0.048 0.055 0.026 0.078 0.028 0.054 0.091

n = 250, T = 4

cml1 -0.021 0.130 -0.010 0.085 0.046 0.051 -0.030 0.134 -0.020 0.085 0.052 0.950
cml0 -0.016 0.126 -0.005 0.085 0.046 0.082 0.144 0.093 0.110 0.170

n = 250, T = 8

cml1 -0.005 0.060 -0.002 0.040 0.054 0.048 -0.005 0.062 -0.003 0.040 0.050 1.000
cml0 -0.004 0.060 0.001 0.039 0.053 0.043 0.073 0.044 0.054 0.137

n = 250, T = 12

cml1 -0.005 0.046 -0.004 0.030 0.052 0.061 -0.003 0.048 -0.003 0.032 0.058 1.000
cml0 -0.004 0.046 -0.003 0.030 0.054 0.028 0.053 0.029 0.038 0.126

n = 500, T = 4

cml1 -0.008 0.088 0.004 0.058 0.053 0.057 -0.014 0.091 -0.009 0.058 0.054 0.999
cml0 -0.005 0.085 0.002 0.057 0.052 0.091 0.122 0.097 0.099 0.248

n = 500, T = 8

cml1 -0.003 0.041 -0.003 0.027 0.047 0.057 -0.003 0.045 -0.002 0.030 0.062 1.000
cml0 -0.002 0.041 -0.002 0.027 0.050 0.045 0.062 0.046 0.047 0.234

n = 500, T = 12

cml1 -0.002 0.031 -0.001 0.020 0.056 0.054 -0.002 0.034 -0.001 0.023 0.054 1.000
cml0 -0.002 0.031 -0.001 0.021 0.053 0.028 0.043 0.029 0.031 0.170

n = 1000, T = 4

cml1 -0.005 0.059 -0.003 0.041 0.044 0.052 -0.010 0.067 -0.008 0.045 0.057 1.000
cml0 -0.003 0.057 -0.002 0.042 0.041 0.094 0.112 0.096 0.097 0.423

n = 1000, T = 8

cml1 -0.001 0.030 0.000 0.021 0.054 0.040 -0.001 0.030 -0.000 0.021 0.048 1.000
cml0 -0.001 0.030 -0.000 0.021 0.051 0.047 0.055 0.046 0.047 0.384

n = 1000, T = 12

cml1 0.000 0.022 0.001 0.016 0.053 0.052 -0.000 0.022 0.000 0.015 0.043 1.000
cml0 0.000 0.022 0.001 0.015 0.058 0.030 0.037 0.030 0.030 0.288
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Table 5: Simulation results from Experiment 5: cml estimator, µ = −1, ψ = 0, ρ = 0, binary
covariate

η = 0 η = −1

Mean rmse Median mae t-test t-test Mean rmse Median mae t-test t-test
bias bias H0 : ν = 0 bias bias H0 : ν = 0

Estimation of µ
n = 100, T = 4

cml1 -0.047 0.488 -0.011 0.307 0.057 0.054 -0.075 0.478 -0.058 0.298 0.050 0.583
cml0 -0.040 0.450 -0.005 0.291 0.052 0.247 0.484 0.262 0.339 0.123

n = 100, T = 8

cml1 -0.023 0.228 -0.020 0.146 0.049 0.051 -0.018 0.238 -0.017 0.156 0.057 0.987
cml0 -0.022 0.222 -0.018 0.138 0.051 0.126 0.256 0.127 0.177 0.103

n = 100, T = 12

cml1 -0.014 0.169 -0.012 0.114 0.054 0.060 -0.008 0.176 -0.008 0.113 0.057 1.000
cml0 -0.013 0.168 -0.013 0.112 0.058 0.082 0.189 0.083 0.129 0.086

n = 250, T = 4

cml1 -0.019 0.282 -0.017 0.191 0.051 0.039 -0.006 0.277 -0.007 0.187 0.044 0.934
cml0 -0.012 0.261 -0.009 0.174 0.051 0.301 0.391 0.303 0.306 0.226

n = 250, T = 8

cml1 -0.003 0.143 -0.003 0.092 0.055 0.051 -0.010 0.150 -0.005 0.100 0.069 1.000
cml0 -0.001 0.141 0.002 0.092 0.052 0.128 0.192 0.132 0.143 0.177

n = 250, T = 12

cml1 -0.006 0.105 -0.006 0.066 0.044 0.045 -0.010 0.109 -0.008 0.076 0.038 1.000
cml0 -0.006 0.104 -0.007 0.065 0.041 0.078 0.131 0.082 0.095 0.116

n = 500, T = 4

cml1 -0.013 0.188 -0.009 0.121 0.043 0.054 -0.025 0.201 -0.019 0.128 0.061 0.999
cml0 -0.013 0.180 -0.013 0.120 0.044 0.286 0.338 0.292 0.292 0.389

n = 500, T = 8

cml1 -0.001 0.103 -0.002 0.069 0.052 0.046 -0.006 0.100 -0.004 0.072 0.047 1.000
cml0 -0.000 0.102 0.001 0.066 0.055 0.133 0.164 0.135 0.136 0.290

n = 500, T = 12

cml1 -0.003 0.075 -0.003 0.052 0.045 0.039 -0.008 0.081 -0.010 0.052 0.068 1.000
cml0 -0.003 0.075 -0.004 0.053 0.044 0.080 0.112 0.079 0.084 0.181

n = 1000, T = 4

cml1 -0.006 0.133 -0.007 0.090 0.039 0.053 -0.006 0.140 -0.009 0.094 0.041 1.000
cml0 -0.005 0.127 -0.002 0.086 0.050 0.300 0.326 0.295 0.295 0.666

n = 1000, T = 8

cml1 -0.003 0.069 -0.002 0.046 0.041 0.053 -0.007 0.071 -0.003 0.048 0.053 1.000
cml0 -0.003 0.068 -0.001 0.045 0.042 0.130 0.147 0.134 0.134 0.494

n = 1000, T = 12

cml1 -0.002 0.052 0.000 0.036 0.041 0.043 -0.005 0.057 -0.004 0.039 0.066 1.000
cml0 -0.002 0.052 -0.000 0.036 0.039 0.084 0.100 0.083 0.083 0.352
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Table 6: Simulation results from Experiment 6: dynamic logit model, pcml estimator, µ = −1,
δ = 1, ψ = 0, ρ = 0, normally distributed covariate

η = 0 η = −1

Mean rmse Median mae t-test t-test Mean rmse Median mae t-test t-test
bias bias H0 : ν = 0 bias bias H0 : ν = 0

Estimation of µ
n = 500, T = 4

pcml1 -0.012 0.186 0.013 0.116 0.056 0.063 -0.024 0.210 0.002 0.132 0.062 0.529
pcml0 -0.013 0.169 0.000 0.105 0.060 0.133 0.216 0.155 0.173 0.214

n = 500, T = 8

pcml1 -0.004 0.050 -0.002 0.034 0.046 0.053 -0.001 0.057 0.002 0.038 0.053 1.000
pcml0 -0.003 0.049 -0.001 0.033 0.047 0.024 0.059 0.025 0.042 0.092

n = 500, T = 12

pcml1 -0.003 0.035 -0.002 0.024 0.039 0.062 -0.002 0.040 -0.003 0.028 0.045 1.000
pcml0 -0.002 0.035 -0.001 0.024 0.039 -0.001 0.038 -0.001 0.027 0.041

n = 1000, T = 4

pcml1 0.021 0.116 0.029 0.078 0.059 0.057 0.024 0.133 0.034 0.093 0.078 0.824
pcml0 0.010 0.107 0.018 0.076 0.056 0.163 0.197 0.174 0.175 0.380

n = 1000, T = 8

pcml1 -0.003 0.036 -0.002 0.023 0.056 0.056 0.004 0.040 0.006 0.029 0.053 1.000
pcml0 -0.002 0.036 -0.002 0.023 0.058 0.027 0.046 0.030 0.033 0.128

n = 1000, T = 12

pcml1 -0.001 0.025 -0.001 0.017 0.053 0.065 0.002 0.027 0.001 0.019 0.049 1.000
pcml0 -0.000 0.025 -0.000 0.017 0.054 0.003 0.025 0.002 0.018 0.044

Estimation of δ
n = 500, T = 4

pcml1 0.143 0.590 0.108 0.365 0.056 0.063 0.092 0.599 0.082 0.412 0.044 0.529
pcml0 0.129 0.571 0.109 0.363 0.055 0.188 0.590 0.161 0.385 0.048

n = 500, T = 8

pcml1 0.013 0.128 0.010 0.087 0.047 0.053 0.004 0.155 0.005 0.103 0.064 1.000
pcml0 0.013 0.128 0.010 0.085 0.050 -0.126 0.191 -0.125 0.138 0.166

n = 500, T = 12

pcml1 0.006 0.090 0.007 0.062 0.051 0.062 -0.001 0.096 -0.004 0.067 0.036 1.000
pcml0 0.006 0.089 0.006 0.063 0.049 -0.069 0.116 -0.070 0.084 0.101

n = 1000, T = 4

pcml1 0.086 0.386 0.064 0.247 0.057 0.057 0.074 0.404 0.062 0.275 0.054 0.824
pcml0 0.083 0.383 0.059 0.243 0.054 0.168 0.415 0.155 0.275 0.063

n = 1000, T = 8

pcml1 0.013 0.094 0.008 0.066 0.057 0.056 0.009 0.102 0.009 0.068 0.049 1.000
pcml0 0.013 0.094 0.009 0.066 0.057 -0.120 0.154 -0.120 0.122 0.247

n = 1000, T = 12

pcml1 0.002 0.063 0.005 0.043 0.047 0.065 0.002 0.071 0.005 0.048 0.049 1.000
pcml0 0.002 0.063 0.004 0.043 0.045 -0.066 0.095 -0.063 0.067 0.173
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Table 7: Simulation results from Experiment 7: dynamic logit model, pcml estimator, µ = −1,
δ = 1, ψ = 0.5, ρ = 0, normally distributed covariate

η = 0 η = −1

Mean rmse Median mae t-test t-test Mean rmse Median mae t-test t-test
bias bias H0 : ν = 0 bias bias H0 : ν = 0

Estimation of µ
n = 500, T = 4

pcml1 -0.072 0.263 -0.038 0.141 0.056 0.070 -0.012 0.252 0.017 0.159 0.084 0.328
pcml0 -0.063 0.242 -0.031 0.134 0.059 0.118 0.245 0.145 0.184 0.201

n = 500, T = 8

pcml1 -0.004 0.053 -0.002 0.035 0.043 0.055 0.004 0.062 0.009 0.039 0.064 1.000
pcml0 -0.003 0.053 -0.002 0.034 0.042 0.025 0.063 0.027 0.045 0.096

n = 500, T = 12

pcml1 -0.002 0.037 -0.001 0.025 0.047 0.065 -0.001 0.039 -0.001 0.026 0.045 1.000
pcml0 -0.001 0.037 -0.001 0.025 0.047 0.002 0.038 0.003 0.025 0.044

n = 1000, T = 4

pcml1 -0.011 0.138 0.005 0.085 0.046 0.062 0.035 0.168 0.046 0.111 0.095 0.613
pcml0 -0.008 0.129 0.008 0.085 0.046 0.149 0.204 0.160 0.165 0.285

n = 1000, T = 8

pcml1 -0.005 0.037 -0.005 0.025 0.036 0.077 0.004 0.040 0.006 0.028 0.044 1.000
pcml0 -0.005 0.037 -0.004 0.025 0.037 0.024 0.045 0.027 0.033 0.088

n = 1000, T = 12

pcml1 -0.002 0.026 -0.001 0.017 0.035 0.107 0.002 0.029 0.002 0.020 0.053 1.000
pcml0 -0.001 0.026 -0.001 0.017 0.035 0.005 0.028 0.005 0.019 0.055

Estimation of δ
n = 500, T = 4

pcml1 0.461 0.940 0.382 0.570 0.066 0.070 0.513 1.028 0.447 0.619 0.078 0.328
pcml0 0.446 0.910 0.386 0.565 0.071 0.534 0.999 0.454 0.605 0.077

n = 500, T = 8

pcml1 0.011 0.139 0.010 0.089 0.047 0.055 0.050 0.165 0.048 0.104 0.065 1.000
pcml0 0.013 0.138 0.011 0.090 0.048 -0.054 0.160 -0.058 0.113 0.069

n = 500, T = 12

pcml1 0.002 0.096 0.002 0.064 0.047 0.065 0.026 0.107 0.022 0.070 0.055 1.000
pcml0 0.002 0.096 0.003 0.064 0.050 -0.023 0.103 -0.024 0.070 0.064

n = 1000, T = 4

pcml1 0.392 0.664 0.388 0.446 0.088 0.062 0.459 0.724 0.437 0.489 0.100 0.613
pcml0 0.391 0.657 0.377 0.444 0.092 0.498 0.742 0.481 0.517 0.120

n = 1000, T = 8

pcml1 0.004 0.103 0.005 0.068 0.053 0.077 0.053 0.118 0.051 0.077 0.072 1.000
pcml0 0.006 0.102 0.007 0.067 0.058 -0.050 0.112 -0.053 0.074 0.064

n = 1000, T = 12

pcml1 0.003 0.066 0.002 0.044 0.043 0.107 0.019 0.076 0.019 0.053 0.055 1.000
pcml0 0.003 0.066 0.002 0.045 0.040 -0.028 0.077 -0.029 0.056 0.069
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Table 8: Simulation results from Experiment 8: dynamic logit model, pcml estimator, µ = −1,
δ = 1, ψ = 0, ρ = 0.25, normally distributed covariate

η = 0 η = −1

Mean rmse Median mae t-test t-test Mean rmse Median mae t-test t-test
bias bias H0 : ν = 0 bias bias H0 : ν = 0

Estimation of µ
n = 500, T = 4

pcml1 -0.037 0.183 -0.016 0.113 0.049 0.065 -0.040 0.224 -0.015 0.135 0.057 0.490
pcml0 -0.026 0.168 -0.007 0.109 0.047 0.097 0.204 0.117 0.153 0.157

n = 500, T = 8

pcml1 -0.005 0.049 -0.005 0.033 0.043 0.062 -0.004 0.057 -0.000 0.038 0.052 1.000
pcml0 -0.004 0.049 -0.004 0.033 0.042 0.019 0.056 0.022 0.039 0.079

n = 500, T = 12

pcml1 -0.002 0.035 -0.000 0.023 0.062 0.072 -0.002 0.038 -0.002 0.026 0.050 1.000
pcml0 -0.001 0.035 0.000 0.023 0.060 -0.000 0.037 -0.001 0.025 0.051

n = 1000, T = 4

pcml1 -0.006 0.123 0.001 0.079 0.058 0.055 0.014 0.142 0.027 0.100 0.059 0.817
pcml0 -0.004 0.115 0.006 0.078 0.053 0.138 0.183 0.145 0.154 0.312

n = 1000, T = 8

pcml1 -0.004 0.037 -0.003 0.025 0.050 0.088 0.002 0.038 0.002 0.026 0.044 1.000
pcml0 -0.003 0.036 -0.002 0.025 0.051 0.024 0.043 0.024 0.031 0.108

n = 1000, T = 12

pcml1 -0.002 0.024 -0.002 0.016 0.048 0.112 0.003 0.028 0.004 0.020 0.055 1.000
pcml0 -0.001 0.024 -0.001 0.016 0.047 0.003 0.027 0.004 0.018 0.059

Estimation of δ
n = 500, T = 4

pcml1 0.486 0.881 0.417 0.535 0.090 0.065 0.430 0.907 0.386 0.559 0.073 0.490
pcml0 0.474 0.857 0.417 0.513 0.090 0.433 0.885 0.394 0.552 0.081

n = 500, T = 8

pcml1 0.012 0.131 0.010 0.087 0.048 0.062 0.020 0.145 0.024 0.102 0.039 1.000
pcml0 0.013 0.131 0.010 0.086 0.050 -0.089 0.162 -0.085 0.108 0.094

n = 500, T = 12

pcml1 0.004 0.091 0.001 0.060 0.053 0.072 0.008 0.099 0.010 0.067 0.044 1.000
pcml0 0.004 0.091 0.001 0.060 0.053 -0.046 0.105 -0.044 0.071 0.071

n = 1000, T = 4

pcml1 0.394 0.620 0.360 0.392 0.108 0.055 0.366 0.635 0.368 0.442 0.093 0.817
pcml0 0.395 0.617 0.362 0.400 0.111 0.387 0.637 0.391 0.447 0.104

n = 1000, T = 8

pcml1 0.014 0.092 0.010 0.060 0.052 0.088 0.016 0.106 0.017 0.070 0.057 1.000
pcml0 0.015 0.092 0.012 0.061 0.050 -0.091 0.135 -0.091 0.098 0.145

n = 1000, T = 12

pcml1 0.003 0.062 0.003 0.042 0.049 0.112 0.007 0.073 0.010 0.050 0.068 1.000
pcml0 0.003 0.062 0.003 0.042 0.048 -0.045 0.084 -0.045 0.058 0.100
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Table 9: Simulation results from Experiment 9: dynamic logit model, pcml estimator, µ = −1,
δ = 1, ψ = 0, ρ = 0, binary covariate

η = 0 η = −1

Mean rmse Median mae t-test t-test Mean rmse Median mae t-test t-test
bias bias H0 : ν = 0 bias bias H0 : ν = 0

Estimation of µ
n = 500, T = 4

pcml1 -0.061 0.384 -0.037 0.244 0.058 0.048 0.011 0.411 0.023 0.271 0.059 0.584
pcml0 -0.046 0.341 -0.029 0.216 0.058 0.418 0.535 0.430 0.436 0.269

n = 500, T = 8

pcml1 -0.007 0.115 -0.004 0.080 0.046 0.058 0.010 0.119 0.010 0.076 0.046 1.000
pcml0 -0.007 0.114 -0.004 0.081 0.047 0.051 0.123 0.049 0.081 0.073

n = 500, T = 12

pcml1 -0.003 0.079 -0.003 0.054 0.039 0.078 0.006 0.082 0.007 0.053 0.035 1.000
pcml0 -0.001 0.080 -0.000 0.055 0.042 -0.036 0.087 -0.036 0.059 0.059

n = 1000, T = 4

pcml1 -0.018 0.258 -0.017 0.178 0.039 0.034 0.036 0.277 0.052 0.188 0.051 0.892
pcml0 -0.018 0.226 -0.011 0.160 0.041 0.433 0.487 0.439 0.439 0.509

n = 1000, T = 8

pcml1 -0.010 0.082 -0.007 0.055 0.058 0.077 0.007 0.087 0.009 0.057 0.053 1.000
pcml0 -0.010 0.082 -0.006 0.055 0.057 0.047 0.094 0.045 0.064 0.097

n = 1000, T = 12

pcml1 -0.003 0.058 -0.004 0.040 0.049 0.112 0.006 0.062 0.006 0.043 0.045 1.000
pcml0 -0.001 0.058 -0.001 0.039 0.050 -0.036 0.068 -0.036 0.047 0.100

Estimation of δ
n = 500, T = 4

pcml1 0.320 0.606 0.316 0.405 0.079 0.048 0.307 0.592 0.318 0.409 0.075 0.584
pcml0 0.311 0.595 0.310 0.395 0.076 0.359 0.609 0.363 0.434 0.092

n = 500, T = 8

pcml1 0.009 0.113 0.007 0.075 0.046 0.058 -0.002 0.116 -0.003 0.085 0.045 1.000
pcml0 0.008 0.112 0.008 0.075 0.046 0.004 0.112 0.004 0.081 0.051

n = 500, T = 12

pcml1 0.002 0.081 0.004 0.054 0.062 0.078 -0.004 0.082 -0.003 0.054 0.053 1.000
pcml0 0.001 0.081 0.003 0.053 0.061 0.004 0.079 0.007 0.054 0.046

n = 1000, T = 4

pcml1 0.280 0.454 0.278 0.310 0.115 0.034 0.294 0.462 0.303 0.329 0.118 0.892
pcml0 0.276 0.449 0.271 0.312 0.113 0.350 0.495 0.352 0.369 0.146

n = 1000, T = 8

pcml1 0.001 0.079 -0.000 0.052 0.046 0.077 -0.002 0.082 -0.003 0.053 0.053 1.000
pcml0 0.001 0.079 -0.002 0.052 0.046 0.004 0.078 0.004 0.051 0.053

n = 1000, T = 12

pcml1 0.002 0.057 0.003 0.038 0.055 0.112 -0.009 0.061 -0.012 0.042 0.069 1.000
pcml0 0.002 0.057 0.002 0.038 0.057 -0.001 0.058 -0.006 0.040 0.064
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5.3. Comparison with alternative estimators

As already discussed in Section 1, the proposed approach represents a com-530

peting alternative to the Wooldridge (2000)’s method in two main respects: first,

dealing with feedback amounts to simply adding leads of the predetermined co-

variates to the linear index rather than specifying a comprehensive joint model,

which has to be specified and implemented on a case-wise basis; secondly, unob-

served heterogeneity is treated nonparametrically and is allowed to be correlated535

with the predetermined covariates, as opposed to the correlated random-effects

approach, adopted by Wooldridge, where individual specific effects can only be

functions of strictly exogenous covariates.

More in detail, following a Mundlak (1978)-type approach, a specification

for the individual effects is assumed in Wooldridge (2000), which is based on540

ci = yi1$1 + xi1$2 + si$3 + c∗i ,

c∗i ∼ N(0, σ2
c ),

ξi = λci,

for i = 1, . . . , n, where si = (1/T )
∑T

t=1 zit. The model parameters ψ =

(θ′,$′, σc, λ)′, where $ = ($1, $2, $3)′, are estimated by maximizing the

log-likelihood function

`(ψ) =

n∑
i=1

log

∫
T∏

t=1

p(yit|xit, zit, ci)f(xit|yi,t−1, zit, ci)
1

σc
φ

(
c∗i
σc

)
dc∗i

where yit and xit are assumed to follow the same design as in Experiment 5,

which includes state dependence, f(xit|yi,t−1, zit, ci) is the density of xit condi-

tional on yi,t−1, zit, and ci, and φ(·) is the standard normal density function.

We propose a comparison of the performance of the pcml estimator for

model (15) with the random-effects ml estimator illustrated above. This com-545

parison is based on two scenarios. In the first one, the individual intercepts

are generated as standard normal random variables independent of both the
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strictly exogenous and the predetermined covariate. In the second one, the in-

dividual effects are generated as in (22) and are therefore correlated with the

predetermined covariate. In this case, the assumption for the Mundlak-type cor-550

rection imposed by Wooldridge (2000) is violated. These last two experiments

are denoted as Experiment 10 and Experiment 11, respectively.

Tables 10 and 11 summarize the results of the additional simulation study

based on Experiments 10 and 11, which is limited to the scenarios with µ = −1,

δ = 1, ψ = 0, and η = 0,−1. In Experiment 10, the biases for µ and δ obtained555

by pcml and ml and the rmse and mae attain the same order of magnitude

with T = 8, 12. In Experiment 11, the bias for µ obtained by ml is somewhat

larger than the one obtained by pcml with η = 0, whereas, with η = −1, the

magnitude of the bias of the ml and pcml estimators are overall rather similar.

Regarding δ, the bias of the ml estimator is higher with η = 0, while it decreases560

as T grows when η = −1.

6. Empirical application

We apply the proposed formulation to the problem of estimating the labor

supply of married women as a function of young children in the family, where

the presence of children can be predetermined because past labor market partic-565

ipation events may affect present fertility decisions. Our application is closely

related to the analyses performed in the literature on feedback effects (Cham-

berlain, 1984; Carrasco, 2001; Arellano and Carrasco, 2003; Mosconi and Seri,

2006; Michaud and Tatsiramos, 2011).

The empirical analysis is based on a sample drawn from the psid, that con-570

sists of n = 1, 908 married women between 19 and 59 years of age in 1980,

followed for T = 7 time occasions, from 1979 to 1985. We specify logit mod-

els for the probability of being employed at time t, conditional on the lagged

employment status, as well as the number of children of a certain age in the

family, namely the number of kids between 0 and 2 years old, between 3 and575

5, and between 6 and 17. We also include the husband’s income, the woman’s
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Table 10: Simulation results from Experiment 10: pcml and ml estimators, µ = −1, δ = 1,
ψ = 0, normally distributed covariate, independent individual effects.

η = 0 η = −1

Mean rmse Median mae t-test t-test Mean rmse Median mae t-test t-test
bias bias H0 : ν = 0 bias bias H0 : ν = 0

Estimation of µ
n = 500, T = 4

pcml -0.046 0.202 -0.026 0.118 0.050 0.060 -0.032 0.240 0.000 0.141 0.058 0.500
ml -0.008 0.084 -0.011 0.053 0.993 -0.001 0.092 -0.006 0.056 0.998

n = 500, T = 8

pcml -0.004 0.051 -0.000 0.032 0.056 0.070 0.001 0.059 0.002 0.039 0.055 1.000
ml 0.003 0.069 -0.006 0.027 1.000 0.016 0.086 -0.004 0.036 1.000

n = 500, T = 12

pcml -0.003 0.035 -0.002 0.024 0.050 0.071 0.001 0.040 0.000 0.026 0.061 1.000
ml -0.009 0.039 -0.011 0.023 0.999 -0.004 0.054 -0.011 0.024 0.999

n = 1000, T = 4

pcml -0.015 0.129 -0.008 0.081 0.047 0.045 0.010 0.146 0.022 0.098 0.060 0.814
ml -0.006 0.069 -0.013 0.036 0.997 -0.009 0.058 -0.007 0.037 0.997

n = 1000, T = 8

pcml -0.002 0.036 -0.002 0.024 0.052 0.081 0.003 0.040 0.005 0.029 0.046 1.000
ml -0.005 0.040 -0.007 0.019 0.999 -0.002 0.055 -0.010 0.022 1.000

n = 1000, T = 12

pcml -0.001 0.025 -0.000 0.017 0.051 0.106 0.002 0.027 0.001 0.019 0.044 1.000
ml -0.009 0.032 -0.011 0.017 1.000 -0.009 0.038 -0.011 0.018 0.999

Estimation of δ
n = 500, T = 4

pcml 0.331 0.759 0.330 0.483 0.045 0.060 0.372 0.873 0.351 0.572 0.062 0.500
ml -0.053 0.210 -0.053 0.151 0.949 -0.094 0.261 -0.088 0.164 0.922

n = 500, T = 8

pcml 0.006 0.139 0.001 0.096 0.056 0.070 -0.011 0.151 -0.015 0.098 0.052 1.000
ml 0.004 0.109 0.006 0.075 0.988 -0.054 0.112 -0.052 0.077 0.994

n = 500, T = 12

pcml 0.003 0.093 0.003 0.065 0.050 0.071 -0.003 0.101 -0.001 0.073 0.041 1.000
ml 0.050 0.092 0.050 0.062 0.997 -0.015 0.081 -0.011 0.057 0.994

n = 1000, T = 4

pcml 0.026 0.293 0.024 0.187 0.047 0.054 0.325 0.598 0.345 0.421 0.079 0.814
ml -0.077 0.152 -0.078 0.107 0.966 -0.104 0.195 -0.106 0.135 0.975

n = 1000, T = 8

pcml 0.340 0.594 0.302 0.385 0.106 0.045 -0.011 0.104 -0.014 0.069 0.049 1.000
ml -0.047 0.160 -0.051 0.114 0.974 -0.051 0.122 -0.057 0.065 0.997

n = 1000, T = 12

pcml -0.001 0.025 -0.000 0.017 0.051 0.106 -0.006 0.075 -0.006 0.049 0.062 1.000
ml -0.009 0.032 -0.011 0.017 1.000 -0.015 0.058 -0.015 0.039 0.997
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Table 11: Simulation results from Experiment 11: pcml and ml estimators, µ = −1, δ = 1,
ψ = 0, normally distributed covariate, individual effects generated as in (22).

η = 0 η = −1

Mean rmse Median mae t-test t-test Mean rmse Median mae t-test t-test
bias bias H0 : ν = 0 bias bias H0 : ν = 0

Estimation of µ
n = 500, T = 4

pcml 0.008 0.184 0.028 0.125 0.034 0.045 -0.009 0.277 0.016 0.182 0.056 0.991
ml -0.029 0.078 -0.027 0.050 0.992 -0.023 0.095 -0.024 0.054 0.973

n = 500, T = 8

pcml -0.007 0.062 -0.008 0.041 0.049 0.054 0.023 0.085 0.026 0.058 0.062 1.000
ml -0.034 0.060 -0.036 0.040 0.998 -0.015 0.092 -0.031 0.041 0.990

n = 500, T = 12

pcml -0.001 0.045 0.000 0.029 0.055 0.063 0.015 0.061 0.016 0.041 0.070 1.000
ml -0.031 0.050 -0.031 0.035 1.000 -0.009 0.095 -0.028 0.039 0.995

n = 1000, T = 4

pcml 0.028 0.130 0.038 0.090 0.051 0.054 0.030 0.189 0.042 0.132 0.073 1.000
ml -0.014 0.093 -0.027 0.041 1.000 -0.016 0.071 -0.019 0.037 0.994

n = 1000, T = 8

pcml -0.003 0.046 -0.002 0.032 0.054 0.062 0.025 0.062 0.028 0.045 0.076 1.000
ml -0.032 0.046 -0.032 0.033 1.000 -0.009 0.090 -0.026 0.032 0.999

n = 1000, T = 12

pcml -0.002 0.032 -0.001 0.022 0.051 0.068 0.016 0.042 0.015 0.029 0.058 1.000
ml -0.031 0.040 -0.031 0.032 1.000 -0.027 0.046 -0.027 0.029 0.999

Estimation of δ
n = 500, T = 4

pcml 0.043 0.430 0.022 0.290 0.054 0.045 0.065 0.571 0.062 0.379 0.056 0.991
ml -0.080 0.206 -0.088 0.149 0.947 -0.162 0.301 -0.168 0.211 0.903

n = 500, T = 8

pcml 0.002 0.121 0.007 0.085 0.055 0.054 -0.027 0.158 -0.028 0.106 0.056 1.000
ml 0.064 0.109 0.066 0.080 0.995 -0.034 0.114 -0.038 0.081 0.987

n = 500, T = 12

pcml 0.003 0.085 0.008 0.057 0.056 0.063 -0.017 0.110 -0.014 0.072 0.052 1.000
ml 0.124 0.142 0.126 0.126 0.999 0.022 0.090 0.016 0.057 0.995

n = 1000, T = 4

pcml 0.026 0.293 0.024 0.187 0.047 0.054 0.045 0.371 0.043 0.253 0.042 1.000
ml -0.077 0.152 -0.078 0.107 0.966 -0.145 0.229 -0.145 0.164 0.965

n = 1000, T = 8

pcml 0.009 0.083 0.008 0.056 0.051 0.062 -0.029 0.116 -0.029 0.079 0.061 1.000
ml 0.077 0.098 0.078 0.078 0.996 -0.028 0.088 -0.031 0.058 0.997

n = 1000, T = 12

pcml 0.002 0.059 0.002 0.039 0.058 0.068 -0.015 0.077 -0.013 0.052 0.049 1.000
ml 0.124 0.133 0.124 0.124 0.999 0.018 0.061 0.018 0.040 0.998
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age, and time fixed-effects. Another relevant covariate is the level of education

but it exhibits no time variation in the sample considered. It is therefore not

included as its effect on the response probability is not identified.

We specify a static logit model for female labor supply as in (6), which rules580

out feedback effects, and as the proposed formulation in (14), which admits

violations of s. Similarly, we also specify a dynamic logit model under non-

causality as in (7) and a model that allows for violations of s’ as in (15). In

order to allow for departures from strict exogeneity and noncausality, we con-

sider in both models the number of kids between 0 and 2 years old, 3 and 5, and585

between 6 and 17 in the family and the husband’s income as predetermined. We

estimate the two static logit models by cml and the two dynamic logit mod-

els by pcml. It is worth noticing that, for this case, the strategy proposed by

Wooldridge (2000) illustrated in Section 5.3 would require the specification of

a five-equation model, where the parameters of the main equation are jointly590

estimated along with those in the four equations specified for the predetermined

covariates.

Table 12 reports the estimation results for the static logit model, along with

the estimates of the average partial effects. It emerges that the only predeter-

mined variable seems to be that related to the presence of children between 3595

and 5 years old in the household. The associated coefficient is slightly smaller

when we allow for violations of the strict exogeneity assumption and the corre-

sponding average partial effects becomes not statistically significant.

Consistently with related empirical results on female labor supply, the results

reported in Table 13 show that labor force participation is highly persistent,600

as the estimate of the state dependent parameter is close to 1.5 whit both

pcml0 and pcml1, meaning that women employed in t − 1 have a probability

of working in t that is, on average, 10 percentage points higher than for women

not working in t − 1. With this specification, the effects of the number of

children and husband’s income is no longer statistically significant and so are605

the corresponding partial effects. In addition, none of the leads included in the

model specification seem to capture departures form noncausality.
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Table 12: Female labor force participation: logit model

Model parameters Average partial effects

cml0 cml1 cml0 cml1

# Children 0-2t -1.074∗∗∗ -0.952∗∗∗ -0.075∗∗∗ -0.066∗∗

(0.137) (0.138) (0.028) (0.028)

# Children 3-5t -0.750∗∗∗ -0.655∗∗∗ -0.052∗ -0.046
(0.148) (0.151) (0.030) (0.031)

# Children 6-17t -0.217 -0.282∗∗ -0.015 -0.020
(0.136) (0.144) (0.028) (0.030)

Husband incomet -0.019∗∗∗ -0.021∗∗∗ -0.001 -0.001
(0.006) (0.006) (0.001) (0.001)

Aget 0.328 -0.043 -0.045 0.055
(1.390) (1.458) (0.068) (0.071)

Age squaredt -0.138 -0.107
(0.192) (0.199)

# Children 0-2t+1 -0.230
(0.157)

# Children 3-5t+1 -0.290∗∗

(0.152)

# Children 6-17t+1 0.078
(0.133)

Husband incomet+1 0.005
(0.005)

Notes: standard errors in square brackets. ∗∗∗ p-value < 0.01, ∗∗ p-value < 0.05, ∗ p-value <

0.10. Estimates are based on T = 6 time occasions for each woman. Source: PSID 1979-1985.

7. Conclusions

We propose a novel model formulation for binary logit panel data models

that accounts for feedback effects from the the outcome variable on the future610

values of the covariates. Our proposal is particularly well suited for short pan-

els with a large number of cross-section units, typically provided by rotated

or strongly unbalanced continuous surveys, often employed in microeconomic

applications. Within this setting, the proposed formulation lends itself to a

fixed-effects estimation approach based on conditional inference.615

The proposed model formulation yields two main advantages compared to

the few available alternatives: (i) it does not require the specification of a para-

metric model for the predetermined explanatory variables; (ii) it has a simple

formulation and, in practice, it allows us to include a large number of predeter-
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Table 13: Female labor force participation: dynamic logit model

Model parameters Average partial effects

cml0 cml1 cml0 cml1

Employedt−1 1.475∗∗∗ 1.468∗∗∗ 0.107∗∗∗ 0.106∗∗∗

(0.149) (0.151) (0.032) (0.032)

# Children 0-2t -0.718∗∗∗ -0.707∗∗∗ -0.046 -0.045
(0.165) (0.176) (0.031) (0.033)

# Children 3-5t -0.486∗∗∗ -0.476∗∗∗ -0.031 -0.030
(0.164) (0.180) (0.031) (0.035)

# Children 6-17t -0.167 -0.261 -0.011 -0.017
(0.141) (0.166) (0.027) (0.032)

Husband incomet -0.014∗∗ -0.016∗∗ -0.001 -0.001
(0.007) (0.007) (0.001) (0.001)

Aget 1.783 1.245 0.014 0.008
(1.560) (1.617) (0.068) (0.071)

Age squaredt -0.224 -0.161
(0.209) (0.215)

# Children 0-2t+1 0.024
(0.201)

# Children 3-5t+1 0.009
(0.190)

# Children 6-17t+1 0.202
(0.173)

Husband incomet+1 0.006
(0.005)

Notes: standard errors in square brackets. ∗∗∗ p-value < 0.01, ∗∗ p-value < 0.05, ∗ p-value <

0.10. Estimates are based on T = 5 time occasions for each woman. Source: PSID 1979-1985.
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mined covariates, either discrete or continuous.620

From our simulation results, it emerges that the cml and pcml estimators

have good finite-sample performance when applied to the proposed models in

presence of substantial departures from noncausality. Also the finite-sample

bias of the estimators is negligible even when the conditions for the exact logit

model formulation proposed in this paper are violated. Furthermore, we show625

that an alternative correlated random-effects estimator has comparable finite-

sample properties for T ≥ 8, while the pcml outperforms the ml estimator one

with a reduced number of time periods.

Finally, the logit model here proposed is fairly easy to estimate using avail-

able software. The cml and pcml estimators of the proposed models can be630

implemented using the package cquad (Bartolucci and Pigini, 2017).
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Appendix A. Proof of the equivalence theorem

Theorem 2. g and s’ are equivalent conditions.

Proof. g may be reformulated as

p(xi,t+1, ci,xi,1:t,yi,1:t)

p(ci,xi,1:t,yi,1:t)
=
p(xi,t+1, ci,xi,1:t)

p(ci,xi,1:t)
, t = 1, . . . , T − 1,

for all i. Exchanging the denominator at lhs with the numerator at rhs, the

previous equality becomes

p(yi,1:t|ci,xi,1:t+1) = p(yi,1:t|ci,xi,1:t), t = 1, . . . , T − 1,

which, by marginalization, implies that

p(yi,1:s|ci,xi,1:t+1) = p(yi,1:s|ci,xi,1:t), t = 1, . . . , T − 1, s = 1, . . . , t.

Therefore, we have

p(yis|ci,xi,1:t+1,yi,1:s−1) = p(yis|ci,xi,1:t,yi,1:s−1), t = 1, . . . , T−1, s = 1, . . . , t.

Finally, by recursively using the previous expression for a fixed s and for t from

T − 1 to s we obtain condition s’ as defined in (2). Similarly, s’ implies that

p(xi,t+1:T |ci,xi,1:t,yi,1:t) = p(xi,t+1:T |ci,xi,1:t,yi,1:t−1), t = 1, . . . , T − 1,

for all i and implies

p(xi,s+1|ci,xi,1:s,yi,1:t) = p(xi,s+1|ci,xi,1:s,yi,1:t−1), t = 1, . . . , T−1, s = 1, . . . , T−1,

which, in turn, leads to condition (3) and then g. 2

Theorem 3. g implies s.725
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Proof. Proceeding as in the proof of Theorem 2, g implies that

p(yis|ci,xi,1:t+1) = p(yis|ci,xi,1:t), t = 1, . . . , T − 1, s = 1, . . . , t.

By recursively using the previous expression for a fixed s and for t from T − 1

to s, we obtain condition (1). 2
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