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This paper investigates the information content of volatility indices for the purpose
of predicting the future direction of the stock market. To this end, different machine
learning methods are applied. The dataset used consists of stock index returns and
volatility indices of the US stock market from January 2011 until July 2022. The
predictive performance of the resulting models is evaluated on the basis of three
evaluation metrics: accuracy, the area under the ROC curve, and the F-measure. The
results indicate that machine learning models outperform the classical least squares
linear regression model in predicting the direction of S&P 500 returns. Among the models
examined, random forests and bagging attain the highest predictive performance based
on all the evaluation metrics adopted.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Stock market prediction has always been an important
ssue in the financial literature (Elyasiani et al., 2017; Giot,
005; Gonzalez-Perez, 2015; Lubnau & Todorova, 2015;
ubbaniy et al., 2014). In recent decades, the quantity
nd quality of the information available to researchers
ave increased dramatically. In particular, implied volatil-
ty indices are essential for asset pricing and risk man-
gement. They contain information embedded in option
rices that reflect investor opinion about future under-
ying asset trends. Moreover, new and efficient decision-
aking algorithms, including machine learning methods,
ave become increasingly common in the literature and
he markets.
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This paper contributes to the literature on the predic-
tion of stock returns by using multiple forward-looking
volatility indicators, which may carry conflicting informa-
tion on future returns. For this purpose, we rely on several
machine learning methods that are able to analyze large-
scale models and select the relevant variables. It has been
shown that the flexible nature of these data-driven meth-
ods allows them to deal with various aspects of prediction
problems (Gu et al., 2020). Moreover, machine learning
methods focus on making predictions as accurately as
possible (Athey & Imbens, 2019).

There is strong evidence that volatility indices pro-
vide useful information about current and future stock
returns. In this context, Giot (2005) argues that high im-
plied volatility levels indicate oversold markets and could
be viewed as short- to medium-term buy signals. Zhu
(2013) investigates the US stock and bond returns using
a distribution-based framework, finding evidence that
the VIX helps to forecast the distribution of US stock
returns. Gonzalez-Perez (2015) provides a comprehensive
literature review on forecasting volatility models. Other
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studies highlighting the importance of volatility indices
as indicators of future stock returns include Elyasiani
et al. (2017), Lubnau and Todorova (2015), Rubbaniy et al.
(2014), among others. There is a substantial amount of
research dealing with the investigation of the forecasting
power of volatility indices. For this purpose, Muzzioli et al.
(2018) test the forecasting power of volatility indices ob-
tained through fuzzy regression on future realized volatil-
ity. The authors find that the improvements in volatility
forecasting achieved by fuzzy regression methods with
respect to standard methods are robust to different test
procedures.

Most papers dealing with the use of volatility indices
or predicting stock returns make use of linear regression
see, e.g., Elyasiani et al., 2017; Rubbaniy et al., 2014)
r quantile regression (Ma & Pohlman, 2008). Further-
ore, while the role of implied volatility indices has
een widely examined using traditional methods, only a
imited number of reports combine volatility indices and
achine learning methods. To the best of our knowledge,
nly Rosillo et al. (2014) have analyzed the impact of the
hicago Board Options Exchange (CBOE) Volatility Index
VIX) on the weekly directional movement of the S&P 500
sing machine learning methods. However, these authors
onsider only support vector machines and include only
he VIX and some technical indicators in their study. In
his paper, by contrast, we rely on various applicable risk
ndices and we apply a plethora of different machine
earning methods.

As in Gu et al. (2020), our goal is to describe the excess
eturn on an asset as an additive prediction error model.
or this purpose, we consider two types of methods:
lassification and regression methods. In the first case, the
rediction focuses directly on the direction of the S&P 500
tock market movements over the next 30 days (i.e., rise
r fall), and the target variable is binary. Hence, this is a
tandard two-class classification problem, and we analyze
t with linear discriminant analysis (LDA) and logistic
egression. In the second case, the response variable is
ontinuous, and the focus is on forecasting the S&P 500
eturns over the next 30 days. We explore this problem
ith shrinkage methods: ridge regression and lasso re-
ression. Additionally, we employ ensemble methods for
oth classification and regression. In particular, we con-
ider bagging, random forests (RF), and gradient boosting
GB). Finally, in order to compare classification methods
ith regression methods, we transform the results of the
ontinuous output variable into a binary variable (i.e., rise
r fall) to identify the model that achieves the best predic-
ive performance in terms of accuracy (or its complement,
he test error rate), the area under the curve (AUC), and
he F-measure.

The remainder of the paper is organized as follows.
n Section 2, we describe the dataset used. In Section 3,
e outline the empirical setting: in Section 3.1, we de-
cribe the general approach applied to investigate the
orecasting power of the different models proposed; and
n Sections Section 3.2, 3.3, and 3.4, we give a detailed
eview of the methods applied. In Section 4, we list
he performance measures used to compare the models.
n Section 5, we discuss the feature selection process.
inally, in Section 6 we discuss the results, and we draw
onclusions in the last section.
870
2. Data

The dataset used in this paper is extracted from the
Bloomberg database, covering the period from January
2011 until July 2022 (3040 daily observations).

We use the expected volatility on different time hori-
zons. VIX is the CBOE volatility index computed based
on the bid and ask prices of a cross-section of S&P 500
options1 estimating the expected 30-day volatility of S&P
500 stock returns, VIX9D is the CBOE S&P 500 9-Day
Volatility Index and estimates the expected nine-day
volatility of S&P 500 stock returns. VIX3M is the CBOE
3-Month Volatility Index, which was designed to be a
constant measure of three-month implied volatility of the
S&P 500 Index options.2 VIX6M represents the CBOE S&P
500 6-Month Volatility Index and is an estimate of the ex-
pected six-month volatility of the S&P 500 Index. It is cal-
culated using the well-known VIX methodology applied
to SPX options expiring six to nine months in the future.

Moreover, we use the CBOE VVIX Index, representing
the volatility of volatility in the sense that it measures the
expected volatility of the 30-day forward price of VIX. This
forward price is the price of a hypothetical VIX futures
contract that expires in the next 30 days. The CBOE SKEW
Index estimates the skewness of S&P 500 returns at a 30-
day horizon. Similar to the VIX, the S&P 500 skewness is
calculated from the prices of S&P 500 out-of-the-money
options. SKEW typically ranges from 100 to 150. Values
above the threshold of 100 tend to point to negative
risk-neutral skewness and a distribution skewed to the
left (i.e., negative returns are expected more often than
positive returns). Values below 100 indicate a positive
risk-neutral skewness and a distribution skewed to the
right (i.e., positive returns are expected more often than
negative returns).

RVOL refers to realized volatility in the past 30 days
nd is computed as the standard deviation of daily S&P
00 log returns using a rolling window of 30 calendar
ays (see Muzzioli et al., 2018). The CBOE NASDAQ-100
olatility Index VXN is a crucial measure of market ex-
ectations of near-term volatility conveyed by NASDAQ-
00 Index (NDX) option prices. It measures market ex-
ectations of 30-day volatility implicit in the prices of
ear-term NASDAQ-100 options. The NASDAQ-100 lists
ompanies at the forefront of innovation such as Alphabet,
mgen, Apple, Facebook, Intel, Microsoft, Starbucks, and
esla.
We also use two indices based on commodities. The

BOE Gold ETF Volatility Index GVZ (Gold VIX) measures
arket expectations of 30-day volatility of gold prices by
pplying the VIX methodology to options on SPDR Gold
hares (Ticker – GLD). The CBOE Crude Oil ETF Volatility
ndex OVX (Oil VIX) measures market expectations of
0-day volatility of crude oil prices by applying the VIX
ethodology to the United States Oil Fund. PUTCALL is the

atio of all put options and call options on the S&P 500
ndex purchased on any given day.

1 More details can be found at www.cboe.com.
2 On September 18, 2017, the ticker symbol for the CBOE 3-Month

Volatility Index was changed from VXV to VIX3M.

http://www.cboe.com
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Table 1
Summary statistics.
Statistic N Mean St. Dev. Skewness Kurtosis ρ1 ρ2 ρ3 ADF JB statistic

VIX 3,040 18.147 7.301 2.501 11.230 0.967∗∗∗ 0.946∗∗∗ 0.922∗∗∗
−5.437∗∗∗ 19173

VIX9D 3,040 17.518 8.717 3.273 19.476 0.940∗∗∗ 0.909∗∗∗ 0.873∗∗∗
−6.499∗∗∗ 53550

VIX3M 3,040 20.055 6.536 1.945 6.847 0.982∗∗∗ 0.969∗∗∗ 0.952∗∗∗
−4.586∗∗∗ 7867

VIX6M 3,040 21.477 5.858 1.364 2.496 0.987∗∗∗ 0.978∗∗∗ 0.966∗∗∗
−3.710∗∗∗ 1735

VVIX 3,040 96.649 16.817 1.144 2.814 0.948∗∗∗ 0.901∗∗∗ 0.860∗∗∗
−6.584∗∗∗ 1669

SKEW 3,040 128.946 9.660 0.765 0.288 0.932∗∗∗ 0.896∗∗∗ 0.869∗∗∗
−5.348∗∗∗ 308

VXN 3,040 20.886 7.478 1.798 5.577 0.973∗∗∗ 0.954∗∗∗ 0.934∗∗∗
−4.862∗∗∗ 5587

GVZ 3,040 17.111 4.921 1.281 3.123 0.978∗∗∗ 0.956∗∗∗ 0.936∗∗∗
−4.378∗∗∗ 2075

OVX 3,040 37.367 18.799 5.023 44.177 0.967∗∗∗ 0.932∗∗∗ 0.910∗∗∗
−5.140∗∗∗ 260369

PUTCALL 3,040 12.063 0.273 0.264 0.077 0.523∗∗∗ 0.449∗∗∗ 0.429∗∗∗
−7.795∗∗∗ 35

RVOL 3,040 14.324 9.818 3.939 24.526 0.993∗∗∗ 0.985∗∗∗ 0.972∗∗∗
−7.459∗∗∗ 84181

Returns30 3,040 0.008 0.045 −1.969 12.207 0.939∗∗∗ 0.893∗∗∗ 0.833∗∗∗
−10.816∗∗∗ 20871
Fig. 1. Time series of S&P 500 30-day log returns.
Regarding the choice of variables, we rely on market
risk indicators that are extensively used in the financial
literature, proving that they have a significant role in pre-
dicting stock market returns. There is strong evidence that
volatility indices provide useful information about current
and future stock returns. In this respect, Giot (2005),
Rubbaniy et al. (2014) examine the predictive power of
the VIX and the CBOE NASDAQ-100 volatility index (VXN)
on the underlying index returns. Mora-Valencia et al.
(2021) find that the Skew Index (SKEW) reveals salient
information for expected financial downturns. Regarding
the role of the CBOE Crude Oil Volatility Index (OVX), Kang
et al. (2015) find that oil price shocks drive the contempo-
raneous stock market return and volatility relationship in
the US market. Moreover, Dutta et al. (2021) underline the
crucial role of the OVX in asset pricing and risk analysis
and its capability in forecasting crude oil returns. Gok-
menoglu and Fazlollahi (2015) use the GVZ and OVX
to find evidence that volatility in one market can affect
the price index of another market. Finally, Simon and
Wiggins III (2001) investigate the predictive power of
the VIX and PUTCALL on the S&P 500 futures contracts
obtaining statistically and economically significant fore-
casting power. Unlike previous studies, we consider all
the above-mentioned indices along with implied volatility
at different forecast horizons and the volatility of the
VIX index and realized volatility in a machine learning

framework.

871
The response variable of all models developed in our
analysis is the S&P 500 return in the next 30 days. It
is computed at time t , referring to a window of t +

30 days (Returns30). Fig. 1 shows the time series of the
Returns30 variable. It may be seen that the returns fluc-
tuate around the zero mean value and display volatil-
ity clustering (i.e., consecutive significant volatility peri-
ods alternating with several successive periods of limited
volatility).

The summary statistics of the variables are reported
in Table 1. Based on the Jarque–Bera test (JB statistic),
we can reject the null hypothesis that returns and the 11
predictive variables are normal. A test for skewness and
kurtosis reveals that Returns30 is skewed to the left (or
negatively skewed), meaning that the left tail of the prob-
ability density function is longer than the right tail, and
the majority of the values are situated to the right of the
mean. All other indices are positively skewed. Moreover,
VIX, VIX9D, VIX3M, VXN, GVZ, OVX, RVOL, and Returns30
are leptokurtic (i.e., their distribution is characterized by
fat tails compared to the normal distribution). At the same
time, all other variables are platykurtic (i.e., they have
fatter middles or fewer extreme values). The reported
autocorrelations of order 1 (ρ1), of order 2 (ρ2), and of
order 3 (ρ3) show that all variables are highly persistent.
We also investigate the stationarity of all the time series
by employing the augmented Dickey–Fuller (ADF) unit-
root test. We conclude that all the series are stationary,
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Table 2
Correlation matrix.

VIX VVIX SKEW GVZ OVX PUTCALL VIX9D VIX3M VIX6M VXN RVOL Returns30

VIX 1 0.708 −0.130 0.658 0.706 0.389 0.972 0.972 0.923 0.958 0.833 0.227
VVIX 0.708 1 0.274 0.291 0.539 0.406 0.685 0.713 0.681 0.728 0.497 0.140
SKEW −0.130 0.274 1 −0.236 −0.064 0.178 −0.188 −0.059 −0.024 −0.065 −0.237 −0.083
GVZ 0.658 0.291 −0.236 1 0.463 0.233 0.619 0.675 0.674 0.549 0.561 0.206
OVX 0.706 0.539 −0.064 0.463 1 0.270 0.664 0.711 0.668 0.672 0.740 0.175
PUTCALL 0.389 0.406 0.178 0.233 0.270 1 0.323 0.441 0.467 0.412 0.235 0.039
VIX9D 0.972 0.685 −0.188 0.619 0.664 0.323 1 0.906 0.834 0.912 0.802 0.218
VIX3M 0.972 0.713 −0.059 0.675 0.711 0.441 0.906 1 0.984 0.954 0.798 0.221
VIX6M 0.923 0.681 −0.024 0.674 0.668 0.467 0.834 0.984 1 0.916 0.734 0.204
VXN 0.958 0.728 −0.065 0.549 0.672 0.412 0.912 0.954 0.916 1 0.780 0.184
RVOL 0.833 0.497 −0.237 0.561 0.740 0.235 0.802 0.798 0.734 0.780 1 0.178
Returns30 0.227 0.140 −0.083 0.206 0.175 0.039 0.218 0.221 0.204 0.184 0.178 1
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since we can reject the presence of a unit root at the 1%
level.

Before applying machine learning methods, standard-
zation is needed (see James et al., 2013). This is necessary
ecause we are using methods involving distances in the
oss function (in particular, lasso and ridge regression), re-
ulting in estimates that are dependent on the scale of the
redictive variables. After standardization, all variables
ave a mean of 0 and standard deviation of 1, whereas all
he other statistics reported in Table 1 remain the same.

Table 2 shows the correlations between all predictive
ariables and the response variable. It may be seen that
he majority of variables are moderately correlated with
he response variable. However, as expected, the correla-
ion between volatility indices at different time horizons
VIX, VIX9D, VIX3M, VIX6M, and VXN) is high.

. Empirical setting

This section explores the usefulness of machine learn-
ng methods to analyze the potential of different risk
ndices to forecast market returns. In our analysis, we
onsider forecasting the stock index returns by using var-
ous risk indices in two settings: classification and re-
ression. We use logistic regression, linear discriminant
nalysis, random forests, bagging, and gradient boosting
or the classification problem, whereas we rely on lasso
egression, ridge regression, random forests, bagging, and
radient boosting for the regression problem.
To keep our approach as general as possible, we first

escribe the method in its general form (Section 3.1),
nd then we describe the characteristics of classification
ethods (Section 3.2), regression methods (Section 3.3),
nd ensemble methods (Section 3.4).

.1. General approach

Following Gu et al. (2020), we aim to describe the
xcess return of an asset as an additive prediction error
odel:

t = Et−1(rt ) + ϵt , (1)

where
∗
Et−1(rt ) = g (z t−1) . (2)

872
Here, rt is the S&P 500 stock return at time t , defined
as

rt = ln(xt+30/xt ) , (3)

here xt (resp. xt+30) is the S&P 500 stock price at time t
resp. t+30). Our objective is to apply a machine learning
ethod in order to find a function g∗(z t−1) expressed

n terms of the predictive variables z t−1, maximizing the
ut-of-sample explanatory power for the realized return
t at time t . The function g∗(z t−1) represents the condi-
ional expectation of rt and is a flexible function of the
redictors z t−1.
Two cases are considered. In the first case, we frame

he problem as a classification problem, and our goal is
o predict whether the market is bearish (i.e., returns are
egative) or bullish (i.e., returns are positive) in the next
0 days. As a result, our response variable is binary. In the
econd case, we frame the problem as a regression prob-
em and our goal is to predict the value of the S&P 500
eturns at a 30-day maturity. Then, in order to compare
he results of the classification and regression methods,
e transform the results of the continuous variable into
binary variable (i.e., the returns are either positive or
egative).
To avoid overfitting, we rely on a set of hyperpa-

ameters (also known as tuning parameters) to maxi-
ize model performance. Following the most common
pproach in the literature (see, for example, Bergmeir &
enítez, 2012; Tashman, 2000), we set the tuning param-
ters based on walk-forward validation using a rolling
indow (Swanson & White, 1997). In this case, point

orecasts (Returns30), which refer to the estimated re-
urn in the next 30 days, are performed by sequentially
oving ahead a fixed window of 2128 observations for

he training set (representing 70% of the entire dataset).
his means that at each iteration, we drop the oldest
bservation and include the latest one, rebuild the model,
nd obtain a new point forecast for Returns30 in the
ext 30 days. Note that we avoid the problem of forward
ooking (i.e., any overlapping between the training set and
he testing set) by considering for any t in the test set,
s last training data point the point xt−30. Following this
rocedure, we obtain 883 forecasts and test errors. (In
rder to compute the last return we need at least 30 days,
o the last 29 days of the sample are dropped.) The walk-
orward validation test error is computed by averaging
he test errors.
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Table 3
Machine learning methods implemented in our work with the set of hyperparameters used for tuning.
Models R-packages Tuning parameters Values of the tuning parameters

Classification
Logistic regression MASS No tuning parameters –
LDA MASS No tuning parameters –
Regression
Lasso regression glmnet λ (α = 1) λ ∈ [10−4, 102

]

Ridge regression glmnet λ (α = 0) λ ∈ [10−4, 102
]

Ensemble methods
Random Forest randomForest mtry, ntree mtry =

√
6, ntree = 500

Bagging randomForest mtry, ntree mtry = 6, ntree = 500

Gradient Boosting

ntree ∈ [50, 150]
caret ntree, shrinkage, shrinkage ∈ [0.01, 0.1]

interaction.depth, n.minobsinnode interaction.depth ∈ {1, 2, 3}
n.minobsinnode ∈ [5, 10]

Note: This table reports the R functions used for model estimation and the details for the tuning parameter values
used. In particular, for logistic regression and LDA, we use the MASS R package, and there are no parameters to
tune. Lasso regression and ridge regression are performed using the glmnet R package with the α argument indicating
what type of model is fit. In particular, if α = 1, then lasso regression is used; if α = 0, then ridge regression
is used. The λ argument corresponds to the grid of tuning parameters. Regarding random forests and bagging, we
use the randomForest R package. The tuning parameters are the number of predictors considered at each split of the
tree (mtry) and the number of trees (ntree). Finally, gradient boosting is applied using the caret R package with the
gbm (stochastic gradient boosting) method. It has four tuning parameters: the number of trees (ntree), the shrinkage
parameter (shrinkage) controlling the rate at which gradient boosting learns, the interaction depth (interaction.depth)
controlling the interaction order, and the number of splits in each tree (n.minobsinnode) controlling the complexity of
the boosted ensemble.
A
h

s
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w
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o
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The open-source software package R is used to run our
machine learning methods. Table 3 provides the R func-
tions used for model estimation and the details concern-
ing the tuning parameter values used. In the following, we
provide an overview of the two problems.

3.2. Classification methods

We aim to learn a binary probabilistic classifier on
the basis of a training dataset of couples (xt , yt ), t =

1, . . . , T , where xt is a feature vector with label yt ∈ {0, 1}
epresenting a negative (0) or positive (1) S&P 500 stock
eturn. Then Pr(y = 1|x) represents the probability that
he market will be bullish given x, while Pr(y = 0|x)
epresents the probability that it will be bearish given x.

We apply two methods: logistic regression and lin-
ar discriminant analysis. Logistic regression models the
robability p(x) = Pr(y = 1|x) using the logistic function:

(x) =
exβ

1 + exβ
, (4)

where β is a vector of model parameters. Simple algebraic
anipulations lead to

p(x)
1 − p(x)

= exβ , (5)

called the odds, taking values in [0, ∞[. Taking the natural
logarithm of both sides of (5), we find the log-odds or logit
given by

ln
(

p(x)
1 − p(x)

)
= xβ . (6)

Hence, the relationship between the predictive variables
and the log-odds is linear. The model parameters β are
obtained using maximum likelihood estimation, i.e., by
873
maximizing the log-likelihood function:

ℓ(β) =

T∑
t=1

yt ln p(xt ) + (1 − yt ) ln(1 − p(xt )) . (7)

new feature vector x is assigned the class label with the
ighest probability.
Linear discriminant analysis (LDA) is based on the as-

umption that the feature vectors of class k are drawn
rom a multivariate normal distribution N(µk,Σ ), with
mean µk and covariance matrix Σ , which is assumed to
the same for all classes. In LDA, the class probabilities are
given by

Pr(y = k|x) =
γkfk(x)∑2
t=1 γt ft (x)

, (8)

here fk is the density function of the normal distribution,
nd γk is the prior probability that a randomly chosen
bservation belongs to the kth class. In order to apply LDA,
e need to estimate the parameters γk, µk and Σ on the
asis of the training set:

γ̂k = Nk/N,where Nk is the number of

observations in class k (9)

ˆ k =
1
Nk

∑
yt=k

xt (10)

Σ̂ =

2∑
k=1

∑
yt=k

(xt − µ̂k)(xt − µ̂k)
T/(N − 2) (11)

A new observation x is assigned the class label with the
highest probability, which is determined by the linear
discriminant function taking the highest value:

δk(xt ) = xTΣ−1µ −
1
µTΣ−1µ + ln γk . (12)
t k 2 k k
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3.3. Regression methods

The first two regression methods considered, i.e., ridge
egression and lasso regression, fall into the category of
hrinkage methods. Both methods allow us to fit a model
nvolving all of the predictive variables, while ensuring
hat the estimated coefficients are constrained or reduced
owards zero. These methods add a penalty term to the
oss function to perform regularization, and are therefore
lso called penalized methods. The penalty functions of
idge regression and lasso regression have the advantage
f reducing the variance. In the case of lasso regression,
ome of the coefficients may be estimated to be precisely
ero.
In order to provide a description of ridge regression

nd lasso regression, we start from the baseline model of
inear regression. We approximate the conditional expec-
ation with a linear form:

(z t−1; θ) = z t − 1′θ . (13)

he traditional method for estimating the parameters is
rdinary least squares (OLS), resulting in the following
bjective function:

(θ) =
1
T

T∑
t=1

(rt − g(z t−1; θ))2 . (14)

Minimizing L(θ) yields the OLS estimator.
Instead of directly optimizing (14), a penalty term is

dded to the objective function to penalize the complexity
f the model:

(θ; ρ) = L(θ) + φ(θ; ρ) . (15)

e consider the following functional form of φ(θ; ρ):

(θ; ρ) = ρ∥θ∥p , (16)

here ∥θ∥p =
∑T

t=1|θt |
p

denotes the lp -norm of a
ector; lasso regression corresponds to p = 1, and ridge
egression to p = 2. The positive tuning parameter ρ is
sed to control the relative impact of the penalty term.
f ρ = 0, then the penalty term (16) has no impact and
he OLS estimates are recovered. If ρ → ∞, then the
oefficient estimates approach zero.
There is an important difference between these two

ethods: while lasso regression leads to solutions with
number of regression coefficients that are exactly equal
o zero, in ridge regression all regression coefficients gen-
rally differ from zero. In this respect, we argue that lasso
egression yields sparse models, referring to models that
nvolve only a subset of the variables, while ridge regres-
ion is a shrinkage method that prevents coefficients from
ecoming excessively large in magnitude.

.4. Ensemble methods

Ensemble methods aim to combine multiple weak
lassifiers to produce a robust model. They belong to
he class of decision tree methods because the predictor
pace is segmented into several simple regions that can be
ummarized in a tree. These methods can be applied both
o classification and regression problems. In our work,
874
we consider three types of ensemble methods: bagging,
random forests, and gradient boosting.

Bagging (Breiman, 1996) aggregates the predictions
produced by models trained on different training sets.
Given that only one training set is available, we boot-
strap samples to generate different models, resulting in
a number of predictions that are subsequently combined
by majority vote (in classification) or by averaging the
predictions (in regression). The test error is obtained from
the bootstrapping procedure, considering the observa-
tions that are not considered in the fitting of the model,
i.e., the out-of-bag (OOB) observations.

Random forests (Breiman, 2001) is a variant of bagging,
relying on the same bootstrapping procedure to gener-
ate samples from the original dataset. However, at each
splitting step, we only use a random subsample M of
all features of size P (usually M =

√
P). If M = P ,

then bagging is recovered. The final output is obtained by
averaging the outputs of all B trees:

ĝ(z t−1; d, B) =
1
B

B∑
b=1

ĝb(z t−1; θ̂b, d) , (17)

here d is the number of splits in each tree, controlling
he complexity of the model.

Gradient boosting (Freund, 1995; Schapire, 1990) is
variant of both bagging and random forests. Unlike

hese methods, gradient boosting does not involve boot-
trapping. Instead, it allows each tree to grow by using
nformation from previously grown trees. In this respect,
he trees grow sequentially; indeed, boosting is a method
hat learns slowly (James et al., 2013). It consists of fitting
decision tree using the residuals as response variable.
his new decision tree is then added into the fitted func-
ion to update the residuals. The residual forecast is added
o the total with a shrinkage weight of λ. This parameter
ontrols the rate at which gradient boosting learns. This
rocedure is iterated B times, corresponding to the num-
er of trees. At each new step b, the tree is fitted to the
esiduals from the model with b − 1 trees and then used
o update the model (ĝb). The final model output is given
y

ˆB(z t−1; B, λ, d) =

B∑
b=1

λf̂b(z t−1) , (18)

ith tuning parameters B (the number of trees), λ (the
hrinkage parameter), and d (the number of splits in each
ree, controlling the complexity).

. Performance measures

To assess the predictive performance of our models,
e rely on three metrics: accuracy (ACC), the area under
he receiver operating characteristic curve (AUC), and the
-measure. The prediction accuracy is based on the con-
usion matrix shown in Table 4 and is calculated from its
iagonal elements:

ccuracy =
TP + TN

. (19)

TP + FP + TN + FN
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Table 4
Confusion matrix.

Predicted

Positive Negative

Actual Positive True positive (TP) False negative (FN)
Negative False positive F(P) True negative (TN)

From the accuracy, we can obtain the classification error
rate:

Classification error = 1 − Accuracy =
FP + FN

TP + FP + TN + FN
.

(20)

The second measure we use is the AUC, a ranking-
ased measure of classification performance. Its value
an be interpreted as the probability that a classifier can
istinguish a randomly chosen positive example from a
andomly chosen negative example. In contrast to many
lternative performance measures, AUC is invariant to
elative class distributions and class-specific error costs
see Airola et al., 2011; Berge & Jordà, 2011). AUC values
ange from 0.5, for a classifier with no predictive value, to
, for a perfect classifier.
In line with Airola et al. (2011), we define the AUC

sing the following formula:

UC = A(S, fZ ) =
1

|S+||S−|

∑
xi∈S+

∑
xj∈S−

H(fZ (xi) − fZ (xj)) ,

(21)

where H is the Heaviside step function (H(a) = 1 if
a > 0, H(a) = 1/2 if a = 0, and H(a) = 0 if
a < 0), fZ is a prediction function returned by a learning
algorithm based on a fixed training set Z , and S is a set
of examples, with S+ and S− denoting the positive and
egative examples in S, respectively.
Finally, the F-measure (also called F1-score or F-score)

s given by

=
2 ∗ TP

2 ∗ TP + FP + FN
. (22)

his performance measure combines two other well-
nown measures: precision and recall. Precision (also
nown as the true positive rate) represents the ratio
f correctly classified positive returns over the total of
lassified positive returns:

recision =
TP

TP + FP
. (23)

Recall (also known as sensitivity or the true negative rate)
is the ratio of positive returns classified as positive to the
actual number of positive returns:

Recall =
TP

TP + FN
. (24)

he F-measure is defined as the harmonic mean of pre-
ision and recall, and attains values between 0 (zero pre-
ision and recall) and 1 (indicating perfect precision and
ecall).
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5. Feature selection

Although correlation does not imply causation, we
need to avoid the problem of multicollinearity in our
analysis. To overcome multicollinearity and select rep-
resentative features for prediction, we use lasso regres-
sion. Lasso regression performs both parameter shrinkage
and variable selection, generating more stable and inter-
pretable predictions for models with a large number of
variables (Rapach et al., 2013).

To explore the input variables that explain most of
the variability in the dataset and improve model inter-
pretability, we use the variable importance plot, which
displays the importance score for each of the explanatory
variables. For lasso regression, the importance score is the
absolute value of the estimated coefficient, ranked from
highest to lowest. The higher the importance score, the
greater the importance of the variable. Fig. 2 shows the
importance scores of all variables for the lasso regres-
sion model. The variables with a zero importance score
are VIX9D, VIX3M, and VIX6M. In order to highlight the
differences with the traditional methods, and given that
we use the linear regression method as a benchmark for
comparison, we computed the variance inflation factors
(VIFs)3 for each variable, considering two linear regres-
sion models: LR1 and LR2 (see Tables 5 and 6). LR1 is the
linear regression model including all the input variables,
while LR2 is the linear regression model excluding the
variables with a zero importance score. Table 5 shows that
after feature selection, except for VIX and VXN, all the
variables exhibit a VIF lower than 10. From the estimates
shown in Table 6, in both models, VIX, SKEW, VXN, PUT-
CALL, and RVOL are statistically significant in explaining
the returns in the next 30 days. As a result, taking into
account the above considerations, we conclude that the
best set of input variables excludes the three variables
VIX3M, VIX9D, and VIX6M.

6. Discussion of the results

In this section, we assess the forecasting performance
of the various machine learning models developed in this
study (Section 6.1) and test the statistical significance of
the differences in performance (Section 6.2).

6.1. Forecasting performance

This section is devoted to the comparison of the perfor-
mance of the various machine learning models developed
in this study. The metrics used for comparison are accu-
racy, the area under the ROC curve, and the F-measure.
Given that these metrics concern classification models, we
need to discretize the response variable of the regression
models. For this purpose, we transform the continuous
output variable into a binary variable (i.e., the returns are

3 The variance inflation factor for variable j is defined as 1
1−R2j

,

where R2
j is the coefficient of multiple correlation between variable j

and the other variables. As stated in the literature, a value greater than
10 indicates the presence of multicollinearity (see Cottrell & Lucchetti,
2021; Neter et al., 1990).
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Fig. 2. Variable importance of the lasso regression model.
Table 5
Multicollinearity. Variance inflation factors for the two models considered (LR1 and LR2).

VIX VVIX SKEW GVZ OVX PUTCALL VXN RVOL VIX9D VIX6M VIX3M

LR1 149.966 3.126 1.61 2.675 2.609 1.394 17.495 4.863 40.845 104.862 289.587
LR2 22.613 3.106 1.483 2.267 2.397 1.312 14.459 4.256

Note: This table reports the VIFs of the regression models LR1 and LR2. In particular, LR1 is the linear regression model without feature selection,
while LR2 is the linear regression model excluding features with a zero lasso importance score.
either positive or negative). Moreover, in order to high-
light the advantage of feature selection in our analysis, we
show the performance results of each machine learning
model before and after feature selection, i.e., either con-
sidering all 11 variables (see Tables 7 and 8), or excluding
VIX9D, VIX3M, and VIX6M (see Tables 9 and 10).

We highlight that we have checked the value of adding
everal extra lagged variables of the VIX indicators. In
articular, we performed the analysis including the lagged
alues of the VIXt , VIX9Dt , VIX3Mt , and VIX6Mt indices,
.e., VIXt−1, VIX9Dt−1, VIX3Mt−1, and VIX6Mt−1. Finally,
e checked the contribution of adding finite differences of
he same variables, e.g., ∆VIXt =VIXt−VIXt−1. However,
he analysis involving these extra variables did not result
n further improvements.

Apart from linear regression, in our work, we compare
even methods in total: logistic regression, linear discrim-
nant analysis (LDA), ridge regression, lasso regression,
andom forests, bagging, and gradient boosting. The en-
emble methods were employed in both the classification
nd regression settings.
Tables 7–10 present the comparison of the machine

earning models in terms of their accuracy (ACC), area
876
under the curve (AUC), and F-measure (F) before and
after feature selection. In order to benchmark the machine
learning models with traditional ones, in Tables 8 and 10,
we also report the performance of classical linear regres-
sion, which remains the most widely used approach in the
financial literature to analyze the potential of risk indices
for predicting future market returns (see Elyasiani et al.,
2017; Giot, 2005; Gonzalez-Perez, 2015, among others).
In addition, it should be noted that for the majority of
months the S&P 500 index went up. For this reason, we
also checked for the accuracy of a naive model that simply
forecasts the index to always go up. This model obtained
an accuracy of 0.3816, demonstrating that all our models
outperform a simple naive forecast of this type.

Our results confirm that machine learning models out-
perform a classical linear regression model at predicting
future stock returns. Before feature selection (see Table 8)
all the machine learning models outperform the linear
regression model in terms of accuracy and the F-measure.
After feature selection (see Table 10) only the ridge and
lasso regression models perform worse than the linear
regression model.
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Table 6
Linear regression models without and with feature selection.

Dependent variable:

Returns30
LR1 LR2
(1) (2)

VIX 0.753∗∗∗ 0.605∗∗∗

(0.246) (0.095)

VIX9D −0.489∗∗∗

(0.129)

VIX3M 1.703∗∗∗

(0.339)

VIX6M −1.141∗∗∗

(0.203)

VVIX 0.015 −0.009
(0.036) (0.035)

SKEW −0.062∗∗
−0.040∗

(0.025) (0.024)

VXN −0.571∗∗∗
−0.307∗∗∗

(0.083) (0.075)

GVZ 0.016 0.027
(0.032) (0.030)

OVX 0.021 0.045
(0.032) (0.031)

PUTCALL −0.046∗
−0.045∗∗

(0.023) (0.023)

RVOL −0.173∗∗∗
−0.116∗∗∗

(0.045) (0.042)

Constant 0.012 0.018
(0.020) (0.020)

Observations 2,128 2,128
R2 0.091 0.084
Adjusted R2 0.087 0.081
Residual Std. Error 0.914 (df = 2116) 0.914 (df = 2119)
F Statistic 19.372∗∗∗ (df = 11; 2116) 24.315∗∗∗ (df = 8; 2119)

Note: This table reports the estimated coefficients of the regression models LR1 and LR2.
In particular, LR1 is the linear regression model without feature selection, while LR2 is
the linear regression model excluding features with a zero lasso importance score, i.e.,
VIX9D, VIX3M, and VIX6M. Significance at the 1% level is denoted by ∗∗∗ , at the 5% level
by ∗∗ , and at the 10% level by ∗ . Standard errors are shown in parentheses.
Considering accuracy as a performance measure, all
the models obtain a better performance after feature se-
lection. After feature selection, bagging significantly out-
performs all the other machine learning methods in the
classification setting (Table 9), while random forests does
the same in the regression setting (Table 10). Ridge re-
gression performs the worst in the regression setting,
whereas logistic regression and LDA attain the lowest
accuracy in the classification setting. According to the
AUC measure, all the models perform better after feature
selection. After feature selection, in both the classification
and regression settings, random forests achieves the high-
est AUC. Finally, considering the F-measure, after feature
selection, bagging reaches the highest value (0.8845) in
877
the classification setting, while random forests reaches
the highest value (0.8592) in the regression setting.

Predicting the direction of stock market returns is of
interest for investors, and for this purpose, many studies
have addressed this problem. Looking at the results of
Tables 9 and 10, ensemble methods in the classification
setting outperform those in the regression setting. Also,
the best classification models have proven to be bag-
ging and random forests. Finally, we are also able to
provide further useful comments supporting our results.
First, looking at forecasting performance, according to our
results one should opt for classification models and thus
focus on the directional predictability of stock returns. In
addition, this preference is also supported by empirical
evidence. Indeed, a number of more empirical studies
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Table 7
Accuracy, area under the curve, and F-measure before feature selection
for classification models.
ML method ACC AUC F

Logistic regression 0.6049 0.5766 0.7244
LDA 0.6178 0.5782 0.7310
Random forest classification 0.8063 0.8424 0.8732
Bagging classification 0.8181 0.8484 0.8798
Gradient boosting classification 0.7066 0.6933 0.8180

ACC = accuracy, AUC = area under the curve, F = F-measure.

Table 8
Accuracy, area under the curve, and F-measure before feature selection
for regression models.
ML method ACC AUC F

Linear regression 0.5775 0.5678 0.6809
Random forest regression 0.7336 0.8083 0.7912
Bagging regression 0.7300 0.8007 0.7874
Gradient boosting regression 0.6491 0.6891 0.7239
Ridge regression 0.5850 0.5580 0.6948
Lasso regression 0.5881 0.5633 0.7012

ACC = accuracy, AUC = area under the curve, F = F-measure.

Table 9
Accuracy, area under the curve, and F-measure after feature selection
for classification models.
ML method ACC AUC F

Logistic regression 0.6776 0.6365 0.8076
LDA 0.6776 0.6365 0.8076
Random forest classification 0.8239 0.8495 0.8828
Bagging classification 0.8275 0.8493 0.8845
Gradient boosting classification 0.7113 0.7187 0.8215

ACC = accuracy, AUC = area under the curve, F = F-measure.

Table 10
Accuracy, area under the curve, and F-measure after feature selection
for regression models.
ML method ACC AUC F

Linear regression 0.6373 0.6042 0.7614
Random forest regression 0.8003 0.8412 0.8592
Bagging regression 0.7958 0.8370 0.8500
Gradient boosting regression 0.6854 0.6999 0.7694
Ridge regression 0.6080 0.5595 0.7212
Lasso regression 0.6178 0.5800 0.7465

ACC = accuracy, AUC = area under the curve, F = measure F.

tress that the directional predictability of stock returns
s useful in market timing decisions (Nyberg & Pönkä,
016; Pesaran & Timmermann, 2002). Moreover, other
tudies show the superiority of classification models over
egression models at forecasting the sign of the returns
see, for example, Nyberg, 2011).

.2. Statistical significance of the differences in forecasting
erformance of the proposed models

To assess whether the differences in forecasting per-
ormance are significant from a statistical point of view,
e compare the predictive accuracy of the forecasts after

eature selection by computing the Diebold and Mariano
878
Table 11
Diebold and Mariano tests for classification models: pairwise
comparisons (MSE).

Logistic reg LDA RF Bag GB

Logistic reg 0.755 5.25∗∗∗ 5.33∗∗∗ 2.42∗

LDA 5.22∗∗∗ 5.33∗∗∗ 2.35∗∗

RF class 0.58 −5.99∗∗∗

Bag class −5.63∗∗∗

test statistic (DM) using the mean squared error (MSE):

MSE =
1
T

T∑
t=1

(ŷt − yt )2 , (25)

where yt = {0, 1} represents a negative (0) or positive (1)
S&P 500 stock return, and ŷt = Pr(yt = 1|xt ) is the prob-
ability that the market will be bullish given xt . The DM
statistic is as follows (for more information, see Diebold
& Mariano, 1995):

DM =
d̄12√
2π f̂d(0)

T

∼ N(0, 1) , (26)

where d̄12 =
1
T

∑T
t=1 d12t , with d12t representing the time-

t loss differential between forecasts 1 and 2, i.e., d12t =

L(e1t ) − L(e2t ), and e1t , e2t the associated forecast errors.
f̂d(0) is a consistent estimate of the spectral density of the
loss differential at frequency 0, given by

f̂d(0) =
1
2π

(
γ̂d(0) + 2

h−1∑
k=1

γ̂d(k)
)

(27)

where γ̂d(0) is the variance and γ̂d(k) is the autocovari-
nce of the loss differential at lag k. Note that formula (26)
ccounts for serial correlation for h-step-ahead forecasts.
hen, the DM test statistic under the null hypothesis of
qual predictive accuracy is a standard normal distribu-
ion.

The pairwise comparisons are reported in Tables 11
nd 12 for classification and regression models after fea-
ure selection, respectively. Note that a positive (resp.
egative) t-statistic indicates that the row model pro-
uced a larger (resp. smaller) average loss than the col-
mn model. Comparing the performance of the classifi-
ation models (reported in Table 11), we can see that
andom forests (RF) and bagging are the best (indistin-
uishable) classification models. Logistic regression is not
istinguishable from LDA. Among the regression models
hown in Table 12, random forests and bagging are again
he best and indistinguishable. Linear regression is better
han lasso regression and ridge regression, which perform
qually well. Linear regression performs worse than ran-
om forests, bagging, and gradient boosting. Overall, the
M test confirms the superiority of random forests and
agging over all other considered models.

. Conclusions

The goal of this study was to explore the predictability
f the direction of stock index returns in the next 30
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Table 12
Diebold and Mariano tests for regression models: pairwise comparisons
(MSE).

Linear reg RF Bag GB reg Ridge reg Lasso reg

Linear reg 2.97∗∗∗ 3.01∗∗∗ 1.94∗
−1.69∗

−2.12∗∗

RF reg 3.20 −9.40∗∗∗
−3.38∗∗∗

−3.40∗∗∗

Bag reg −8.91∗∗∗
−3.40∗∗∗

−3.41∗∗∗

GB reg −2.38∗∗
−2.44∗∗

Ridge reg −0.492

days on the basis of implied volatility indices. To this end,
we contrasted standard statistical methods with machine
learning methods. In general, we distinguished between
two types of methods: regression methods and classifi-
cation methods. In the case of regression, the response
variable is continuous and we forecasted the S&P 500
returns in the next 30 days, while in the case of classi-
fication, the response variable is binary and we predicted
whether the market is likely to be bearish (i.e., the returns
are negative) or bullish (i.e., the returns are positive). In
order to compare in both regression and classification
settings, we also transformed the continuous regression
outcomes into binary ones. We set the tuning parameters
based on walk-forward validation using a rolling window
of 2128 observations, thus generating 883 forecasts. We
evaluated our results on the basis of three well-known
measures: accuracy, the area under the curve, and the F-
measure. We underlined the role of each method in our
work, describing its characteristics. Moreover, we justified
the use of our predictive variables on the basis of their
extensive use in the relevant empirical finance analyses
(see, e.g., Giot, 2005).

To overcome possible multicollinearity, we carried out
eature selection using lasso regression. As a result, we
liminated three input variables from our analysis:
IX3M, VIX9D, and VIX6M. Overall, the results show that
andom forests and bagging achieve the best performance.
oreover, random forests and bagging perform the best
hen applying feature selection and classification models
re used. The differences in forecasting performance after
eature selection are significant from a statistical point of
iew. At the same time, we found that the performances
f logistic regression and LDA (in the classification set-
ing), and ridge regression and lasso regression (in the
egression setting), are not statistically different.
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