
Land Economics • May 2024 • 100 (2): 370–397
DOI:10.3368/le.100.2.060622-0043R1
ISSN 0023-7639; E-ISSN 1543-8325
© 2024 by the Board of Regents of the
University of Wisconsin System

O   � This open access article is distributed under the terms of the CC-BY-NC-ND license (http://creativecommons. 
org/licenses/by-nc-nd/4.0) and is freely available online at: http://le.uwpress.org

S � Supplementary materials are available online at: https://le.uwpress.org/.

370

How Differently Do Farms Respond to  
Agri-environmental Policies? A Probabilistic  
Machine-Learning Approach  O  S

Silvia Coderoni  Assistant Professor, Department of Bioscience and Agro-Food and Environmental 
Technology, Università degli Studi di Teramo, Italy; scoderoni@unite.it

Roberto Esposti  Professor, Department of Economics and Social Sciences, Università Politecnica delle 
Marche, Ancona, Italy; r.esposti@univpm.it

Alessandro Varacca  Assistant Professor, Department of Economics and Social Sciences–DISES, 
Università Cattolica del Sacro Cuore, Piacenza, Italy;mailto: alessandro.varacca@unicatt.it

ABSTRACT  This study evaluates the extent 
to which farmers respond heterogeneously to 
the agri-environmental policies implemented 
in the European Common Agricultural Pol-
icy (CAP). Our identification and estimation 
strategy combines a theory-driven research 
design formalizing all possible sources of 
heterogeneity with a Bayesian additive re-
gression trees algorithm. Results from a 
2015–2018 panel of Italian farms show that 
the responsiveness to these policies may differ 
substantially across farms and farm groups. 
This suggests room for improvement in imple-
menting these policies. We also argue that the 
specific features of the CAP call for a careful 
implementation of these empirical techniques. 
(JEL Q15, Q51)

1. Introduction

The Common Agricultural Policy (CAP) 
represents the primary ordinary policy in-
strument of the European Union, at least in 
terms of budget share. Starting with the 1992 
MacSharry reform, environmental and eco-
logical concerns have increasingly become 
one of the major justifications for maintain-
ing the CAP expenditure. Indeed, environ-
mental policy objectives are likely to be the 
most relevant for European agriculture in the 
coming decades (Coderoni et al. 2021). Given 
the growing concerns about environmental 

and ecological issues and the resulting pol-
icy orientations, researchers are left to won-
der how much farmer behavior has changed 
in response to the new greener CAP and what 
those responses are (Brown et al. 2021). An-
swering these questions is rather challenging, 
mainly because there is no univocal answer 
for the very large heterogeneity typically en-
countered in agriculture.

Since EU farmers are known for their dis-
tinctive diversity (Esposti 2022a), we would 
typically expect equally diverse responses to 
these political shocks. Under this hypothesis, 
both academics and EU stakeholders have long 
advocated for a more targeted and tailored de-
sign of the EU policies (particularly CAP re-
forms; see Erjavec and Erjavec 2015; Ehlers, 
Huber, and Finger 2021). However, such a task 
is challenging without a deeper understanding 
of whether and to what extent the potential re-
cipients of such measures respond differently. 
As most parametric/semiparametric (econo-
metric) approaches to ex post policy evalua-
tion can only produce aggregate (i.e., average) 
responses or represent limited and prespeci-
fied heterogeneity (e.g., Esposti 2017a, 2017b; 
Bertoni et al. 2020; Bartolini et al. 2021), the 
understanding of such heterogeneity has been 
rather limited so far.

Recent improvements in this field involve 
the use of specific causal inference (CI) meth-
ods (Imbens and Rubin 2015) for framing the 
evaluation of a policy as a treatment effect 
discovery problem, which exploits counter-
factual thinking to define the estimands of in-
terest (Uehleke, Petrick, and Hüttel 2022). In 
the rapidly evolving literature, causal machine 
learning (CML) has started to gain attention 
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as a useful extension to the more general CI 
framework, particularly when the objective 
of the evaluation regards highly complex and 
potentially heterogeneous responses to the 
treatment (Storm, Baylis, and Hekelei 2020; 
Stetter, Mennig, and Sauer 2022). Machine 
learning (ML) methods can be particularly 
beneficial when working with large, hetero-
geneous samples characterized by many in-
teracting variables and nonlinear relationships 
but require suitable identifying assumptions 
and targeted technical adjustments (Cher-
nozhukov et al. 2018; Hahn et al. 2018; Athey 
and Imbens 2019). This means that off-the-
shelf ML algorithms (i.e., common ML meth-
ods designed for predictive purposes) may, 
at best, represent one of several components 
in the CML toolbox. Given these premises, 
CML represents a suitable instrument for un-
derstanding how and to what extent the im-
pact of recent CAP environmental policies 
varies across diverse farms. Our work fits in 
the very recent and fast developing empirical 
literature that deals with this issue. In partic-
ular, we aim to disentangle the causal effect 
of two alternative treatment options express-
ing two different implementations of the agri-
environmental policy (AEP) in the 2014–2020 
CAP reform. On the one hand, we consider 
farms that not only fulfill the basic eligibil-
ity conditions to benefit from the whole Di-
rect Payment (DP) but also apply for pillar 2 
agri-environmental measures (AEMs).1 On 
the other hand, we consider farms that choose 
not to comply with the conditional require-
ments (i.e., the so-called conditionality; see 
Section 2), thereby giving up the DP and not 
take up any pillar 2 AEM. We assume that the 
two treatments share the same control group, 
which consists of farms that only comply with 
the necessary environmental requirements to 
access the DP.

We begin by providing a theoretical back-
ground linking the determinants of AEP 
adoption by heterogeneous farmers to their 
production response and then linking it to the 
potential outcomes framework. We exploit 
these conceptual underpinnings to define the 
relevant confounding variables and treatments 
while providing a solid background for the 

1 We consider AEMs as a subset of whole menu of AEPs.

necessary assumptions that characterize our 
identification strategy. The latter is grounded 
in the classical hypotheses that support most 
CI problems, including the stable unit treat-
ment values assumption (SUTVA) that may 
be problematic given the multiple-treatment 
nature of the AEMs. These hypotheses are 
coupled with flexible surface estimation by 
a CML algorithm known as Bayesian causal 
forests (BCF) (Kapelner and Bleich 2016; 
Carnagie, Dorie, and Hill 2019; Hahn, Mur-
ray, and Carvalho 2020). Given their proba-
bilistic nature, BCF can produce approximate 
posterior distributions for estimated hetero-
geneous treatment effects (HTEs), allowing 
the introduction of uncertainty into group 
comparisons or, more generally, when trans-
forming individual-level estimands. This fea-
ture represents a further original contribution 
of this article, as it may provide a useful im-
provement over other comparable ML meth-
ods for which inference is less straightforward 
(Stetter, Mennig, and Sauer 2022).

Our research is closely related with the 
recent analysis presented by Stetter, Men-
nig, and Sauer (2022), as both studies share 
a common objective of assessing the hetero-
geneous response of farmers to AEPs through 
CML techniques. Nonetheless, as elaborated 
above and thoroughly discussed throughout, 
our approach diverges from and extends on 
their work in several fundamental aspects. 
These aspects encompass a more comprehen-
sive delineation of the treatment set, a broader 
conceptualization of farmers’ potentially het-
erogeneous response to APEs, a distinct and 
relatively wider geographical coverage, and 
an investigation of the inherent limitations of 
conventional identification strategies used in 
cross-sectional observational studies.

2. Policy Relevance and 
Methodological Challenges

Over the past few decades, the EU CAP has 
undergone several structural reforms and has 
increasingly emphasized the primary sector’s 
environmental dimension (Commission of 
European Communities 2000). Currently, the 
CAP includes objectives for protecting water, 
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soil, climate and air quality, landscape, and 
biodiversity (European Commission 2020). 
Following the 2014 CAP reform and the cor-
responding 2015–2020 CAP AEP design, 
these objectives are pursued by a diverse mix 
of policy instruments, three of which repre-
sent the subject herein.

The oldest of these three means of inter-
vention (introduced in 1992) consists of the 
AEMs. These are voluntary measures belong-
ing to CAP’s pillar 2, which deliver compen-
satory payments to farmers to cover additional 
costs and forgone income from adopting more 
environmentally friendly practices. In our 
work with AEMs, we refer to two measures 
that, after the 2014 CAP reform, are named 
“measure 10” (agri-environment-climate 
commitments) and “measure 11” (organic 
farming). These measures provide monetary 
incentives for the voluntary adoption of eco
friendly farming techniques.2

Following the 2003 “Agenda 2000” re-
form, a second environmental measure was 
introduced: CAP’s pillar 1 DPs became sub-
ject to the so-called cross-compliance (CC) 
requirements that made these monetary subsi-
dies contingent on several environmental and 
ecological standards. Although these require-
ments are intended to be mandatory, strictu 
sensu, complying with part of them is like sat-
isfying an eligibility condition for first-pillar 
payments, since noncompliance triggers ad-
ministrative penalties up to the revocation of 
the DPs. Therefore, farmers may always give 
up applying for DP entirely, thus also ignoring 
part of the CC requirements.

The third policy instrument was introduced 
with the 2014 CAP reform through the so-
called greening payment (GP). This measure 
represents the green component of the new 
modified DP scheme, in which the financial 

2 Measure 10 supports (among other things) integrated 
production, manure management, increasing soil organic 
matter, sustainable management of extensive grassland, and 
management of buffer strips against nitrates. Measure 11 
supports conversion to and maintenance of organic practices 
and methods. It is worth noticing that Stetter, Mennig, and 
Sauer (2022, 732) do not consider the organic farming mea-
sure “due to [the] distinctly different farming approach com-
pared to conventional farms.” As clarified in Section 4, we 
include this measure in the analysis to compare the results 
obtained on the whole sample.

support now hinges on three mandatory prac-
tices intended to benefit both the environment 
and the climate. Since it builds on and rein-
forces CC, the GP is often regarded as a sort 
of additional (or super-) conditionality.3 As in 
the previous case, noncompliance results in a 
loss of support directly delivered to farmers. 
Therefore, under the 2014–2020 CAP design, 
eligibility for the full DP related to environ-
mentally friendly practices now depends on 
satisfying both CC and GP provisions.

It is worth noting that, in implementing 
such measures, there have been significant 
differences both across and within member 
states. For example, Italy has managed, im-
plemented, and administered AEMs at the 
regional (NUTS-2) level through rural devel-
opment plans (RDPs). Similarly, although CC 
requirements have been enforced following 
the EU conditionality principles, the list of 
commitments applicable at the local level has 
also been left to the regional authorities. These 
include commitments to prevent soil erosion, 
organic matter decline, and soil compaction; 
perform a minimum level of ecosystem main-
tenance; and prevent habitat and landscape 
deterioration (National Rural Network 2010). 
Finally, the GP is defined as a farm-specific, 
yearly, per hectare payment calculated as a 
proportion of a farm’s DP total value. Once 
again, the actual implementation of the GP 
may be differentiated at the regional level.

Therefore, member states enforce and 
oversee these policy instruments acknowl-
edging the existence of cross-country/cross-
regional specificities, allowing for some de-
gree of flexibility in their implementation 
(Guerrero 2021). Nevertheless, the content of 
these intervention tools (i.e., their monetary 
implications and associated requirements) 
remains rigid in comparison to the very di-
verse conditions to which they apply. In fact, 
the same policy menu is offered to very large 
farms and very small units, to extensive live-
stock farming in mountain areas and orchards 
in plain urban areas, and so on. This mismatch 
between highly heterogeneous farms and a 

3 At the member state level, the total amount of GP must 
correspond to 30% of the total DPs. In several EU countries 
(including Italy), this condition is satisfied by automatically 
assigning to eligible farms 30% of total DP as the GP.
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relatively homogeneous policy instrument is 
particularly delicate for Italy, whose primary 
sector mixes very different farming traditions 
and peculiar geographical characteristics 
(Coderoni and Esposti 2018). Such structural 
heterogeneity inevitably translates into be-
havioral heterogeneity in that the response of 
diverse farms to homogeneous policies may 
substantially diverge in terms of the size and 
nature of the response (i.e., the variables in-
volved in the response). Moreover, even when 
farms exhibit analogous structural and behav-
ioral characteristics, the uneven environmen-
tal effects that these policies may generate 
can result from very site-specific agronomic, 
ecological, and biophysical features, such as 
field slopes, soil types, hydrology, and crop 
rotation (e.g., Finn et al. 2009; Ó hUallacháin 
et al. 2016; OECD 2022).

These multiple and complex sources of 
heterogeneity suggest that AEPs should be 
more flexible in targeting diverse farms. Un-
surprisingly, the need for a more tailored de-
sign of the CAP environmental policies has 
frequently been advocated over the past two 
decades (Erjavec and Erjavec 2015; Ehlers, 
Huber, and Finger 2021). In this respect, a 
policy rationalization through better target-
ing of specific farm characteristics might 
help achieve the declared environmental ob-
jectives, either through expenditure savings 
(for the same environmental performance) or 
through improved environmental performance 
(for the same level of expenditure) (Esposti 
2022b). However, improving policy targeting 
and, ideally, tailoring also requires a better un-
derstanding of whether and how the potential 
beneficiaries of such measures respond dif-
ferently. Borrowing from the CI jargon, one 
would wish to identify and estimate HTEs 
(or individual treatment effects) as the natural 
empirical counterpart of this knowledge gap.

Policy evaluation studies addressing the 
impact of agri-environmental policies have 
gained considerable attention in recent years. 
Chabé-Ferret and Subervie (2013), Arata and 
Sckokai (2016), Mennig and Sauer (2020), 
and Bertoni et al. (2020), to name a few re-
cent examples, have applied difference-in-
differences (DID) or matching techniques to 
assess the effects of different AEMs. Sim-
ilarly, Bartolini et al. (2021) estimated the 

impact of AEMs in a multivariate treatment 
setting by adopting a generalized propensity 
score estimation. However, these studies typi-
cally have estimated average treatment effects 
(ATEs) without exploring treatment effect 
heterogeneity, if not by focusing on specific 
farm groups or considering quantile treatment 
effects (Esposti 2017a, 2017b). The main risk 
of working with such aggregate measures is 
that of hiding systematically different unit 
or group-level effects. In other words, what 
holds true on average might not hold true for 
specific clusters and vice versa. This may evi-
dently lead to wrong policy conclusions.

In this respect, ML methods have recently 
proven a helpful toolbox for assessing AEPs. 
For example, Bertoni et al. (2021) used ML 
techniques to simulate the impact of GP 
in terms of land use change, although they 
did not touch on treatment effect heteroge
neity. Among the latest contributions, Stet-
ter, Mennig, and Sauer (2022) represent the 
only study explicitly addressing the hetero-
geneous response of (southeastern German) 
farms to AEMs in terms of environmental per-
formances. We acknowledge that the proper 
identification of such HTEs can be problem-
atic for at least two reasons: (1) using the 
participation to AEMs as a binary treatment 
variable can only proxy for a wide range of 
submeasures from which farmers can choose, 
and (2) measuring environmental perfor-
mances is inherently hard because of the inter-
connected nature of many commonly adopted 
environmental indicators. Although HTEs can 
be particularly helpful for a better targeting of 
AEPs, thus improving their (cost) effective-
ness, these two caveats may complicate their 
empirical tractability.

On the one hand, when policy measures 
are delivered via submeasures among which 
farmers can freely choose (i.e., a multivalued 
treatment), the standard identification strate-
gies for HTEs may fail due to the presence of 
alternative versions of the treatment (Vander-
Weele and Hernán 2013; Lopez and Gutman 
2017). Moreover, the interpretation of the re-
sulting estimand could be misguided because 
the local differences in treatment effects could 
instead be driven by treatment heterogeneity 
(Heiler and Knaus 2022). On the other hand, 
had such disaggregation level been attainable, 

LE100_2_09_Varacca-370-397.indd   373LE100_2_09_Varacca-370-397.indd   373 1/16/2024   1:10:05 PM1/16/2024   1:10:05 PM

lauer
Cross-Out

lauer
Inserted Text
E



Land Economics374� May 2024

it would still be difficult to unambiguously 
link a specific scheme to a single environmen-
tal indicator. As previously mentioned, de-
pending on the farm’s specificity and the treat-
ment, elementary environmental outcomes are 
always interdependent and hard to examine in 
isolation (Chabé-Ferret and Subervie 2013). 
In other words, for any treated unit, treatment 
effects can either differ across multiple indi-
cators or, worse, trigger spillovers such that 
changes in one environmental outcome may 
impact others. Ignoring this output-dependent 
treatment effect heterogeneity (OTH) and fo-
cusing on elementary indicators may lead to 
misleading interpretations of the HTE.

While our interest lies in estimating the 
HTE of both DPs and AEMs in general, we 
also acknowledge and attempt to empirically 
address the two issues discussed above.

3. Theoretical Framework: 
Modeling Farmer Response to 
Agri-environmental Policies

We begin by discussing a simple theoretical 
framework conceptualizing farmer uptake of 
AEPs and providing a behavioral foundation 
for treatment effect heterogeneity. Unlike the 
model presented in Stetter, Mennig, and Sauer 
(2022), where HTEs only result from farm-
specific production technologies, we postulate 
a stylized behavioral mechanism explaining 
how farms respond to different policy option 
and therefore how HTEs may emerge. More-
over, our framework formalizes how treatment 
heterogeneity and OTH can interfere with the 
identification of the HTEs of interest.

Consider a panel of N production units (i.e., 
farms) observed over T time periods. Each 
farm can choose among K alternative AEPs. 
Next assume that farmers are profit maximiz-
ers and, for simplicity, risk neutral. The lat-
ter greatly simplifies the following analytical 
treatment as it allows formulating farmer be-
havior in terms of actual profits (πit,k) rather 
than expected profits.4 In practice, we assume 

4 Since production decisions must be taken ex ante, 
their consequences are evidently subject to some degree 
of uncertainty. Consequently, farmers actually maximize 
E{Π[g(Tit,k,Xi)]} and, more importantly, the condition 

that none of the AEPs considered in this study 
imply a major change in the riskiness of farm-
ing activity.5

We postulate that each farm i ∈ {1,...,N} is 
associated with an aggregated general multi-
input multi-output farm-specific technology 
represented by the feasible production set Fi ⊂ 
M. Given Fi, the (M × 1) vector of netputs yi 
= (y1i,..., yMi)′ is feasible if yi ∈ Fi.

6 This net-
put vector contains both farm-specific outputs 
(with positive signs) and farm-specific inputs’ 
use (with negative signs), possibly including 
nonmarket inputs and outputs. The adjective 
“farm-specific” implies that Fi contains all 
possible sources of heterogeneity in the farm-
er’s production decisions that depend on both 
external and internal factors (Esposti 2022b).7 
We can express the ith farm’s specific features 
with a Q-dimensional vector Zit.

To keep the notation consistent, we refer to 
the set {Tit,1,...,Tit,K} as the treatment set and 
to Tit,k as treatment k. At period t ∈ {0,...,T}, 
any AEP chosen by farmer i, Tit,k, is expected 
to induce specific production choices, yit,k, via 
either output production or input use. There-
fore, treatments can be univocally mapped to 
production choices (Tit,k ↔ yit,k). Notice that 
this argument holds for multiple treatments. 
For example, suppose that the kth treatment 
is delivered through V alternative versions 

E{Π[g(Tit,k,Xi)]} ≥ E{Π[g(Tit,h,Xi)]}, ∀k, h ∈ K, k ≠ h re-
mains valid only if we are willing to assume farmer’s risk 
neutrality. Otherwise, the variance of πit,k and πit,h, and the 
possible impact of Tit,k on them, would also matter.

5 It can be argued that under risk aversion, farmers are 
expected to be more prudent and conservative; therefore, 
ceteris paribus, the participation in the treatment and the 
observed response, Δy should be smaller. At the same time, 
the monetary support granted to participant farmers may 
represent a guaranteed income, making participation in the 
measure a less risky situation. Also notice that under risk 
aversion, risk can be interpreted as an additional source of 
costs and/or forgone income that the AEP is expected to 
compensate. Therefore, as noted in previous studies (Esposti 
2017a, 2017b), it is difficult to model and predict the differ-
ential impact of these support measures between risk-neutral 
and risk-averse farmers.

6 Unlike the other vectors of model variables, the netput 
vector is here indicated with a small letter, yit, to avoid con-
fusion with the conventional notation of potential outcomes, 
Yi(0) and Yi(1) (see Section 5).

7 As will be clarified in Section 4, examples of internal 
factors are the farm size and the farmer’s age and education. 
Examples of external factors are latitude and farm’s location 
in a disadvantaged area.
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(v = 1,...,V) among which the farmers choos-
ing the kth treatment can choose (Vander-
Weele and Hernán 2013). We can then indi-
cate the treatment as Tit,kv. This does not affect 
the overarching structure of our theoretical 
model, as the new set of treatment option can 
be simply rewritten as {Tit,1,...,Tit,k1,...,Tit,kV, 
...,Tit,K}, and it is always possible to express 
(Tit,kv ↔ yit,kv).

We can now express farmer production 
choices as functions of the policy treatments 
themselves, given a farm-specific technology 
Fi as expressed in Zit; that is, yit,k = g(Tit,k, Zit), 
where g(.) is a vector-valued function. In 
addition, if farms are profit maximizers and 
can choose Tit,k, the policy support operates 
like market price changes in orienting pro-
duction decisions (Esposti 2017a, 2017b). 
Consequently, we can generically express 
farms’ individual profit functions as πit,k = 
Π[g(Tit,k, Zit)], where Π(.) is a single-valued 
function.8

This behavioral representation makes clear 
that farmer choice is not driven by yit,k, which 
is the main target of the policy, but by the as-
sociated profit πit,k. Following this logic, each 
observed pair (Tit,k, yit,k) represents the profit-
maximizing combination of each treatment 
and the resulting set of production choices. 
Without assuming any specific functional form 
for the underlying technology or profit func-
tion, an augmented version of the weak axiom 
of profit maximization can be formulated to 
identify the optimal netput vector yit,k (Afriat 
1972; Varian 1984; Chavas and Cox 1995; Es-
posti 2000). This implies that Π[g(Tit,k, Zi)] ≥ 
Π[g(Tit,h, Zit)], ∀k, h ∈ K, k ≠ h. Namely, the 
profit of the ith farmer choosing treatment k at 
time t (πit,k) exceeds the profit that she would 
have achieved had the farmer chosen any 
other alternative Th (πit,h). For a given baseline 

8 Following the conventional terminology of production 
theory, this should be a direct profit function as opposed 
to the more frequently used indirect profit function, where 
profit is a function of only output and input prices. In fact, 
in addition to netput quantities, the direct profit function in-
cludes the respective prices expressed as Π[𝒗′itg(Tit,k, Xi)], 
where 𝒗′it is the (M × 1) vector of netput prices. For non-
market netputs, there are no prices, but these elements in 𝒗′it 
can still be interpreted as shadow prices. Nonetheless, prices 
have been excluded from the present notation under the as-
sumption, maintained that the prices are constant or, more 
precisely, unaffected by the policy regime.

treatment (Tit,0), farm i will choose treatment k 
at time t if Π[yit,k(Tit,k, Zit)] ≥ Π[yit,0(Tit,0, Zit)] 
or, alternatively, Π[Δg(Tit,k, Tit,0, Zit)] ≥ 0, 
where Δg = Δyit,k = yit,k – yit,0. Notice that in 
this conceptual framework, the full treatment 
set might not be feasible for all farms. In fact, 
Zit might bind the choice of the netput vec-
tor yit,k, thereby limiting the choice of Tit,k to 
a subgroup of {Tit,1,...,Tit,K}. This may also 
apply when treatment is delivered through V 
alternative versions: given Zit, not all the sub-
treatments, Tit,k1,...,Tit,kV, may be feasible for 
all farmers choosing the kth treatment.

The main goal of this article is to construct 
and identify an empirical counterpart of Δyit,k 
and determine its distribution across hetero-
geneous farms.9 Assuming that either yit,k 
or yit,0 can be observed, this research ques-
tion can be addressed using the CI analytical 
framework, where Δyit,k indicates the TE of 
interest, and yit,0 represents the counterfactual 
state of yit,k, had the farm not chosen treat-
ment k (Imbens and Rubin 2015). However, 
in the presence of multiple treatment ver-
sions (Tit,k1,...,Tit,kv,...,Tit,kV), Δyit,k may differ 
from Δyit,kv, for some v ∈ V. Not only may 
these two quantities differ but, more impor-
tantly, we may also observe (Δyit,k – Δyjt,k)  
(Δyit,kv – Δyjt,kv) ≠ (Δyit,k𝓋 – Δyjt,k𝓋)for any i, j 
∈ N and any two 𝓋, v ∈ V. Heiler and Knaus 
(2022) show that the above inequality results 
from (Δyit,k – Δyjt,k) being a weighted aver-
age of all the treatment versions Δyit,kv, where 
the weights are proportional to the probability 
that farm i chooses Tit,kv. In other words, in 
presence of multiple treatment versions, we 
would erroneously mistake treatment effect 
heterogeneity for what is, in fact, a diverse 
treatment choice mechanism (i.e., treatment 
heterogeneity).

As introduced in Section 2, when it comes 
to evaluating the effect of a treatment, one 
could focus on one or multiple elements of 
the netput vector yi = (yi,..., ymi,..., yMi)′. How-
ever, since most entries in yi can be highly 

9 The heterogeneity among farms is the core of this the-
oretical framework. With homogeneous farms, we would 
have πit,k = πjt,k = πt, ∀i ≠ j, ∀k and ∀t, so all farmers would 
opt for the same policy, and we would observe only one 
treatment. A policy response would thus be only conjectural 
but not actually observable if not by comparing farms before 
and after the treatment.
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interconnected (i.e., some y’s can be posi-
tively or negatively correlated with one or 
more other y’s), evaluating treatment effects 
though marginal evaluations of these elements 
could make results hard to interpret. For ex-
ample, consider any two positively (or neg-
atively) correlated items ymi, yli ∈ yi. Then, 
for any i, j ∈ N and treatment Tit,k, we will 
have that Δymi,k is also correlated with Δyli,k. 
Therefore, comparing the marginal HTE for 
the two indicators—that is, comparing (Δymi,k 
– Δymj,k) against (Δyli,k – Δylj,k)—can lead to 
misleading conclusions. We previously re-
ferred to this issue as OTH. In Section 4, we 
postulate that OTH can be addressed via di-
mension reduction, where we project a vector 
of correlated environmental indicators yi

e ⊂ yi 
onto a lower-dimensional space through a syn-
thetic environmental performance indicator. 
Nonetheless, it remains possible to empirical 
assess the potential interference of the OTH 
on HTE estimation by comparing the results 
obtained via the lower-dimensional index to 
those obtained on its individual components 
(see Section 6).10

If one can address treatment heterogeneity 
and OTH, then under suitable restrictions on 
the joint distribution of the potential outcomes 
(yit,k, yit,0) and given farm characteristics Zit, 
the identification of Δyit,k can be achieved via 
unconfoundedness (see Section 5) if Zit con-
tains all the relevant variables that influence 
both the treatment choice, Tit,k, and the farm-
er’s production choices (Angrist and Pischke 
2008; Wooldridge 2010, ch. 21; Imbens and 
Rubin 2015, ch. 3).

Following Brown et al. (2021) and Stetter, 
Mennig, and Sauer (2022), we distinguish 
between four sets of farms attributes:11 eco-
nomic factors (i.e., factor endowment), so-
ciodemographic characteristics (of the farm’s 
holder and workforce), environmental (mostly 
geographical) factors, and idiosyncratic char-
acteristics (of the farm’s holder and work-
force, such as ability, knowledge, motivations, 

10 Notice that this assessment applies to both single treat-
ment and multiple-treatments versions.

11 See Zimmerman and Britz (2016), Dessart, Barreiro-
Hurlé, and van Bavel (2019), Brown et al. (2021) for recent 
and extensive reviews of structural and behavioral factors 
underlying farmer’s decisions.

beliefs, and values, as well as unobserved 
environmental features such as agronomic 
characteristics and fertility). To facilitate the 
illustration of our identification strategy, we 
assemble these characteristics into separate 
partitions of Zit, namely, Zit = (Xit, ui), where 
Xit consists of a (P × 1) array. Furthermore, 
we define Xit = (Vit, Si), where Si is a vector 
of observable time-invariant farm characteris-
tics, Vit is a vector of observable time-variant 
farm attributes. ui represents unobservable 
time-invariant farm features. According to 
this categorization, identifying HTEs requires 
two fundamental restrictions: first, Vit must 
be predetermined in that the treatment cannot 
affect yit via Vit; second, ui must not be as-
sociated with both Tit,k and yit, under penalty 
of introducing selection-on-unobservable bias 
(Imbens and Rubin 2015). Although the first 
condition can be satisfied using time-stable 
variables (i.e., Vit ≈ Vi) or lagged values (see 
Section 4), the exogeneity of ui is often as-
sumed and tested via sensitivity analysis.

We maintain this assumption throughout, 
thus only focusing on Xit when discussing 
treatment effect identification. As discussed 
in Sections 4 and 6, however, we also resort to 
suitable robustness checks to test the validity 
of our identification strategy under endoge-
nous ui.

4. Data and Research Design

Observational Dataset

We use information from the Italian Farm Ac-
countancy Data Network (FADN), which rep-
resents the only source of microeconomic ag-
ricultural data that is harmonized at EU level 
and collects physical, structural, economic, 
and financial data on farms in all EU member 
states (European Council 2009). The survey is 
representative of the farms that can be consid-
ered professional and market oriented, due to 
their economic size (that is equal or more than 
€8,000 of standard output). In Italy these cor-
respond to 95% of utilized agricultural area, 
97% of the value of standard production, 92% 
of labor units, and 91% of livestock units. The 
representativeness of the dataset is ensured on 
three dimensions, namely region, economic 
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size, and farm typology. For these reasons, 
the FADN is the most (and only) widely used 
farm-level dataset for, among others, CAP 
evaluations and specifically for the assess-
ments of the AEP impacts (among others, 
Arata and Sckokai 2016; Bartolini et al. 2021; 
Stetter, Mennig, and Sauer 2022).

Our research focuses on the 2014–2020 
programming period of the CAP.12 However, 
unlike Stetter, Mennig, and Sauer (2022), we 
exclude the initial year (2014) for two rea-
sons: first, payments of one of the policies 
under consideration (the GP) only started in 
2015; second, many of the farms observed in 
2014 may still benefit from measures of the 
previous programming period. We thus focus 
on the 2015–2020 period, although we only 
have detailed and validated information until 
2018. Therefore, our initial sample consists 
of a representative collection of Italian com-
mercial farms that produces an unbalanced 
panel consisting of 9,580, 10,135, 10,792, and 
10,386 observations in 2015, 2016, 2017, and 
2018, respectively. Because our analysis does 
not address regime-switching dynamics, we 
only consider farms for which the treatment 
status did not change over the period ana-
lyzed; that is, Tit,k = Ti,k for all i ∈ (1,..., N). 
For this reason, we first extract a balanced 
panel consisting of 5,836 units observed over 
2015–2018 and then drop all entries satisfying 
Tit,k ≠ Tis,k for any s, t ∈ {2015,..., 2018} and 
s ≠ t.13 The resulting dataset consists of 4,001 
farms repeated over four years, for a total of 
16,004 observations. Compared with other re-
lated works (Bertoni et al. 2020; Stetter, Men-
nig, and Sauer 2022), our study provides wide 
coverage of the agricultural sector by focusing 
on the entire national area instead of a single 
region. Furthermore, since the treatments pre-
sented in Section 4 are likely to affect the agri-
environment over several years, our outcome 
variable uses information from the last two 
years in the series to account for potential ac-
cumulation effects (see Section 4 for details).

12 The programming period has been subsequently ex-
tended to 2022, also because of the COVID-19 pandemic. 
Validated data from 2021 and 2022 have still to be released.

13 It is worth noticing that extracting the balanced sam-
ple from the unbalanced one does not imply a relevant loss 
in terms of representativeness of the sample; see Baldoni, 
Coderoni, and Esposti (2021) for a detailed explanation.

Definition of Treatments

As mentioned in Section 2, the 2015–2020 
CAP AEP design is based primarily on two 
main policy instruments that belong to CAP’s 
pillar 1, pillar 2, or both. On the one hand, we 
observe pillar 1 subsidies that are conditional 
on a set of compulsory requirements (i.e., CC 
and the GP) with which farmers must com-
ply to preserve the DP. On the other hand, we 
have voluntary measures aimed at compen-
sating farmers for income losses or increased 
costs resulting from the voluntary adoption 
of more sustainable farming practices (i.e., 
the AEM of pillar 2). Consequently, farms 
are subscribed to—in fact, they voluntarily 
choose—one of three possible policy alter-
natives, which effectively reflect the interplay 
between the two pillars of the CAP: (1) farms 
failing to meet all the CC and GP require-
ments, that is, farms receiving neither pillar 
1 nor pillar 2 payments; (2) farmers receiving 
both pillar 1 (DP and GP) and pillar 2 (AEM) 
payments; and (3) farms complying with the 
CC and GP requirements but not adopting any 
AEM.

Table 1 indicates how the farms in our sam-
ple are distributed across the three policy cat-
egories. The third cohort is the largest group, 
which includes approximately 71% of the ob-
served farms (2,841 units). Using the termi-
nology introduced in Section 3, we consider 
the corresponding policy option as the base-
line treatment, Ti,0, associated with the net-
put vector yit,0. Next, all farms choosing not 
to benefit from pillar 1 and pillar 2 payments 
(i.e., the first cohort, corresponding to approx-
imately 13% of the sample) take up the first 
treatment, Ti,k=1, which implies giving up both 
pillar 1 and pillar 2 resources. We assume that 
this decision follows the behavioral model 
stylized in Section 3, according to which, 
conditional on Xit, Ti,1 produces higher profits 
than Ti,0. Similarly, farms applying for pillar 
2 AEM supports (i.e., the second cohort, cor-
responding to approximately 16% of the sam-
ple) choose treatment Ti,k=2 through the same 
profit-maximizing mechanism. In this respect, 
our work extends the analysis in Stetter, Men-
nig, and Sauer (2022) by distinguishing be-
tween the two different AEPs (i.e., the AEMs 
and the pillar 1 environmental requirements).
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We postulate that treatments Ti,1 and Ti,2 
belong to two nonoverlapping choice sets; in 
other words, we rule out a multiple treatment 
setup by positing treatment Ti,1 as infeasible 
for farms choosing Ti,2 and vice versa. Al-
though this assumption is quite strong, it is 
necessary to identify the treatment effects of 
interest. Given that Ti,1 and Ti,2 represent two 
ends of a rather wide spectrum of policy op-
tions, it is plausible that both treatments may 
appeal to (i.e., are feasible for) farms with 
very distinctive characteristics. Conversely, 
our setup implies that both Ti,1 and Ti,2 are 
feasible alternatives to the baseline treatment 
Ti,0. This presupposes that farms in the control 
group are characterized by features Xit that 
overlap with the characteristic of the units in 
Ti,1 or Ti,2. That is, we can always find compa-
rable farms in either of the two groups in dif-
ferent strata of Xit, that is, 0 < Pr(Ti,k = 1 | Xit 
= xit) < 1. This restriction is also commonly 
known as common support (or positivity), and 
as we discuss in Section 5 and Appendix E, 
it limits extrapolation issues, thus preventing 
unreliable treatment effects.

One caveat in our setup is that unlike Ti,1 
farms choosing Ti,2 may in fact opt for one 
among four treatment versions. As outlined 
in Section 2, Ti,2 aggregates measure 10 and 
11 which in turn can be decomposed in two 
submeasures: agri-environment-climate com-
mitments (10.1); conservation and sustainable 
use and development of genetic resources in 
agriculture (10.2); payment to convert to or-
ganic farming practices and methods (11.1); 
and payment to maintain organic farming 
practices and methods (11.2). While measure 
10.2 only concerns a small share of farms 
(roughly 3% of our sample) and can be thus 
excluded or safely merged into measure 10.1 
(our current choice), submeasures 11.1 and 
11.2 are substantially equivalent in terms of 
farmer behavior, the only difference being the 
amount of support granted. For this reason, we 
de facto consider submeasure 11.1 and 11.2 as 
a unique measure (i.e., measure 11). As put 
forward in Sections 2 and 3, disregarding such 
distinctions may greatly affect the interpreta-
tion of the HTEs via treatment heterogeneity.

It is also worth mentioning that in principle, 
the submeasures could be further disaggregated 
into specific actions (using the RDP jargon). 

Unfortunately, the Italian FADN data do not 
provide enough information on AEM actions. 
In fact, to our knowledge, there are no high-
quality representative datasets that can provide 
more detail on AEMs (e.g., Stetter, Mennig, 
and Sauer 2022, who use the German version 
of our dataset). Had this level of disaggregation 
been observable, it would imply a very large 
number of actions (i.e., treatment versions), 
as evidenced by the 21 RDPs implemented in 
Italy.14 Clearly, expanding the treatment op-
tions well beyond the four submeasures would 
greatly affect the sample size of each subgroup 
and challenge the estimation of any HTE under 
the standard conditions discussed in Section 5 
(Heiler and Knaus 2022). Finally, focusing on 
more specific measures does not necessarily 
imply a more refined outcome variable (see 
Section 4 for further discussion).15

Since organic farming (measure 11) is ho-
mogeneous across the RDPs and involves a 
reasonable number of farms (271), we repeat 
our analysis by redefining treatment T2 as a 
two-versions treatment T2 = (T2o, T2n), where 

14 More specifically, from a survey carried out at national 
level, it emerged that there are 65 different versions of mea-
sure 10 that can be applied at regional programming level, 
corresponding to a total of 100 commitment categories for 
the whole 21 RDPs; see https://www.reterurale.it/flex/cm/
pages/ServeBLOB.php/L/IT/IDPagina/23816.

15 The support for organic farming is exemplary in this 
respect. The nature of the response may vary largely across 
different farming types, even under such a very specific mea-
sure. The same argument applies to CC requirements, where 
each element and constraint becomes applicable to the farm 
depending on the characteristics of the farmland or the agri-
cultural activities carried out.

Table 1
Policy Treatments Set

Treatment 
Agri-environmental 

Policy

Total Farms 
(2015–2018 FADN 
Balanced Sample)

T1 None 512
Control group Only those implied 

by the pillar 1 
direct payments

2,841

T2 Those implied by 
both pillar 1 
direct payments 
and pillar 2 agri-
environmental 
measures

648

Note: FADN = Italian Farm Accountancy Data Network.
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o = organic and n = nonorganic. Given our 
initial definition of the treatments, T2n coin-
cides with measure 10 which, unlike measure 
11, is not entirely homogeneous across RDPs 
and could be exposed to further treatment het-
erogeneity. We therefore estimate the HTE of 
T2 under two different setups: (1) we analyze 
the HTE of participating to AEMs as in Stet-
ter, Mennig, and Sauer (2022); (2) we break 
down the treatment in setup 1 into T2o and T2n 
and obtain the corresponding HTE; and (3) we 
compare the results from setups 1 and 2 and 
discuss their implications for the interpreta-
tion of the HTE of interest (see Section 6).

Outcome Variable

The theoretical framework presented in Sec-
tion 3 expresses the farm response to the treat-
ment as Δyit,k, that is, a vector whose nonzero 
elements represent all of the farmer’s produc-
tion choices associated with the treatment in 
terms of both input and output.16 These ele-
ments may consist of a long list of the farmer’s 
specific production decisions, ranging from 
crop and livestock management practices to 
water and nutrient use (Burton and Schwarz 
2013Guerrero 2021, 11;). One way to reduce 
the dimensionality of Δyit,k consists of identi-
fying and extracting the elementary indicators 
expressing the change in farming practices 
toward extensification or environmentally 
friendly practices. However, as discussed in 
Sections 2 and 3, focusing on elementary indi-
cators might cause ambiguity when interpret-
ing treatment effect heterogeneity because of 
the OTH problem. Given the potential correla-
tion among the components of Δyit,k, one way 
to retain all the information in the netput vector 
while avoiding multiple marginal evaluations 
is to perform dimension reduction (Chipman 
and Gu 2005) to obtain composite dimensional 
indices (Bartolini et al. 2021). This strategy 
not only provides an insulation against OTH 
but also resonates the need for a comprehen-
sive evaluation of complex policy instruments 

16 For elements of yit,k that are only marginally (or not at 
all) affected by the policy treatment under consideration, we 
have Δ yit,k ≈ 0. Therefore, we may restrict the analysis only 
to input and output decisions that are related to the environ-
mental measures, all the rest being orthogonal by assump-
tion.

such as the AEM discussed in Sections 2 and 
4. As also argued by Stetter, Mennig, and 
Sauer (2022, 727), despite the articulation of 
AEMs in specific submeasures, the goal of the 
AEPs remains more general, aiming to im-
prove the overall environmental performance 
of the agricultural sector. Although many stud-
ies have tried to evaluate the effectiveness of 
distinct AEPs with respect to specific policy 
targets (e.g., the impact on biodiversity), the 
integrated assessment of multifaceted goals 
involving, for example, soil and water protec-
tion and the curbing of greenhouse gas (GHG) 
emissions have received relatively little atten-
tion until recently (Hudec et al. 2007; Zhen 
et al. 2022). However, the literature has long 
suggested that the intricate and ecosystemic 
nature of the agri-environment requires that 
any assessment should be based on a compre-
hensive integration of indicators across many 
environmental dimensions (Wascher 2003; 
Purvis et al. 2009).

In this respect, Purvis et al. (2009) propose 
an interesting, harmonized approach to evalu-
ating AEMs: the so-called agri-environmental 
footprint index (AFI). The AFI expresses a 
multidimensional assessment as a univari-
ate index that can be flexibly adapted to di-
verse contexts. We use the AFI framework as 
adapted by Westbury et al. (2011) with the 
FADN data. We refer to this methodology as 
FADN-AFI, as the resulting index uses ele-
mentary information included in the FADN 
dataset. We extend the FADN-AFI to evaluate 
whether and to what extent the implementa-
tion of the CC requirements, GPs, and AEMs 
meet the CAP 2015–2020 environmental 
objectives.17

Table  2 presents the elementary com-
ponents of our FADN-AFI (see Appendix 
Table  B2). The land use diversity indicator 
(the Shannon index) is detailed in Appendix 

17 These goals are related to (1) the mandatory practices 
devised to benefit the environment (soil and biodiversity in 
particular) and climate (with the GP of pillar 1), and (2) the 
new RDP priority areas specifically addressing the environ-
ment and climate change (pillar 2). The latter are aimed at re-
storing, preserving and enhancing ecosystems dependent on 
agriculture and forestry (priority 4) and promoting resource 
efficiency and supporting the shift toward a low-carbon and 
climate-resilient economy in the agriculture, food and for-
estry sectors (priority 5).
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A. Appendix B discusses the definition of a 
farm-level GHG emissions indicator using 
farm-level information. This measure should 
provide a reliable proxy of the contribution of 
a farm’s practices to climate change mitiga-
tion (Dabkiene, Balezentis, and Streimikiene 
2021). The FADN-AFI’s elementary compo-
nents are then standardized to obtain dimen-
sionless z-scores that we eventually aggregate 
using the weights indicated in the last column 
of Table 2 (i.e., giving a positive or negative 
sign for positive or negative environmental 
externalities, respectively).18 The resulting 
FADN-AFI is monotonic in farms’ environ-
mental performance in that higher FADN-AFI 
scores correspond to “better” environmental 
performance. Since the range of the FADN-
AFI is not bounded, the index might be diffi-
cult to interpret per se. However, since HTEs 
are defined through pairwise differences, 
these can easily be understood comparatively. 
Finally, we average the FADN-AFI in 2017–
2018 to provide more stable values for the 
outcome variable.19

Confounding Variables

As discussed in Section 3, the choice of covari-
ates entering the Xit vector becomes crucial for 

18 Following Purvis et al. (2009), all the indicators and 
assessment criteria in the FADN-AFI receive a subjectively 
equal weighting.

19 Averaging only over the last two years reduces the risk 
of integrating out potential accumulation effects by smooth-
ing over a longer period (i.e., the cumulative benefit of envi-
ronmentally friendly practices).

identifying the HTEs of interest. These should 
encompass farm heterogeneity as extensively 
as possible, thereby allowing fair comparisons 
between treated and untreated units. Selecting 
all the relevant confounders such that the as-
sumptions outlined in Section 5 are satisfied 
may follow multiple routes. On the one hand, 
one may construct a very large collection of 
internal farm characteristics and external so-
cioeconomic indicators that might explain 
the individual decision of adopting one of the 
treatments. In this case, we would let ML al-
gorithm choose which feature contributes the 
most to predict farmer behavior through a reg-
ularization mechanism. However, as recently 
outlined by Hünermund, Louw, and Caspi 
(2023), this strategy may lead to severely bi-
ased treatment effects if the covariate set in-
cludes potentially endogenous confounding 
variables. Ultimately, the authors advocate 
that when the goal is conducting CI, research-
ers need to justify the controls they want to 
include and, more importantly, make sure that 
these are exogenous (i.e., pretreatment).

For these reasons, we begin by defining the 
confounders in Si and Vit through an exten-
sive literature review covering several empir-
ical studies addressing farmer participation in 
AEPs and the impact of AEPs on farms’ eco-
nomic and environmental performance. The 
results of this survey are displayed in Table 3, 
where the list of covariates resulting from this 
desk research is classified using the taxonomy 
elaborated by Brown et al. (2021) and dis-
cussed in Section 3. We invite the reader to 
refer to the individual studies for a throughout 

Table 2
Elementary Indicators Used to Assemble the Outcome Variable (FADN-AFI)

Environmental Issue Assessment Criterion Indicator
Measurement 

Unit Weight

Natural resources 
protection

Intensity crop husbandry / 
livestock production

Fertilizer cost of UAA €/ha −1

Crop protection costs UAA €/ha −1
Average number of livestock units LU/ha −1

Energy consumption Energy costs UAA €/ha −1
% UAA irrigated Share −1

Biodiversity and land 
use 

Land use diversity Crop diversity (Shannon diversity) 
index (BIit)

Index (0–1) +1

Provision woodland habitats % total farm area that is woodland Share +1
Climate change 

mitigation 
GHG emissions GHG at farm level kg CO2eq −1

Note: AFI = agri-environmental footprint index; FADN = Italian Farm Accountancy Data Network; UAA = utilized agricultural area.
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explanation of how these regressors are rel-
evant for the research questions. The abun-
dance of controls compiled in this long list 
might suggest some form of preliminary se-
lection to avoid redundancy and achieve a 
more parsimonious set of variables. Never-
theless, unlike most parametric econometric 
tools, forest-based ML algorithms can easily 
accommodate multiple overlapping informa-
tion sources and use them to either create in-
termediate features or discard redundant ones 
through regularization. Therefore, our empiri-
cal analysis makes use of all the covariates in 
Table 3.20

20 This explains the presence of insurance expenditure 
among covariates. This variable might seem contradictory to 
the risk neutrality assumed in deriving the theoretical frame-
work (Section 3). However, it is worth remembering that 
in most cases, farms incur these costs not because of their 
risk aversion but because taking out an insurance contract is 

To satisfy the identifying conditions an-
ticipated in Section 3, the time-varying con-
trols, Vit, must be exogenous with respect to 
the treatment (i.e., predetermined). In theory, 
this would preclude the use of certain direct 
measures of farm physical and economic size, 
such as utilized arable land, profit, revenue, 
costs, and total workforce. To circumvent this 
issue, some authors suggest using covariates 
measured before the introduction of the treat-
ment (for studies assessing AEMs, see, e.g., 
Bertoni et al. 2020; Uehleke, Petrick, and Hüt-
tel 2022; Stetter, Mennig, and Sauer 2022). 
However, this strategy is sometimes infeasi-
ble, as such measurements may not be avail-
able if the policies under investigation were 
introduced several years before the outcome 

mandatory to receive public or private investment support. 
For this reason, this variable was considered in previous 
studies and thus in the present study.

Table 3
Covariates Used in Analysis

Unit of Measure Component Reference

Economic characteristic
  Total arable land ha Vit (1), (2), (3), (4), (6), (7), (8)
  Share of rented land % Vit (2), (3), (4), (7), (8)
  Farm revenue € per ha Vit (4), (7), (8)
  Farm fixed costs € per ha Vit New
  Farm variable costs € per ha Vit (4)
  Fertilizer expenditure € per ha Vit (2), (4), (7)
  Pesticides expenditure € per ha Vit (2), (4), (7)
  Livestock density Units per ha Vit (2), (5), (6), (8)
  Family labor Count Si(*) (2), (3), (4), (8), (9)
  Nonfamily labor Count Vit (2), (3), (4), (9)
  Share of most important crop % Vit (5), (6)
  Share of second most important crop % Vit (5), (6)
  Share of grassland % Vit (4), (7), (8)
  Machinery horsepower Kw per ha Vit (3)
  Machinery value € per ha Vit (3)
  Machinery endowment Units per ha Vit (3)
  Farm specialization Categorical Si (3), (6), (7), (8)
Sociodemographic characteristic
  Farmer’s age Years Si(*) (1), (3), (5), (6), (7), (8), (9)
  Farmer’s gender Categorical Si New
  Farmer’s education Categorical Si(*) (1), (3), (8)
  Experience with previous AEPs Categorical Si (6), (7)
Environmental/geographical characteristic
  Disadvantaged area Categorical Si (5), (7), (8)
  Latitude and longitude Degrees Si (6), (7)
  Average altitude Meters Si (9)

Note: These characteristics are not strictly time invariant, but we assume they are approximately so (Vit ≈ Si) for the period 2015–2018. The 
references are (1) Vanslembrouck, Van Huylenbroeck, and Verbeke (2002); (2) Pufhal and Weiss (2009); (3) Pascucci et al. (2013); (4) Arata 
and Sckokai (2016); (5) Zimmerman and Britz (2016); (6) Bertoni et al. (2020); (7) Uehleke, Petrick, and Hüttel (2022); (8) Wąs et al. 2021; (9) 
Varacca et al. (2023).
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is measured. When this happens, going back 
in time may imply a major loss of observa-
tions. This concern is particularly relevant for 
our application, as the rotating structure of the 
Italian FADN panel shows that 582 farms (ap-
proximately 15% of the sample) included in 
the 2015–2018 dataset are not present in the 
2014 data. Therefore, our choice is to follow 
the strategy of Arata and Sckokai (2016) and 
Pufhal and Weiss (2009), which consists of 
using the first year since the introduction of 
the policy as the pretreatment period (2015, 
in this case).21 Notice that since our outcome 
variable is calculated using the years 2017 
and 2018, Vit contains lagged (by two years) 
elementary components of the FADN-AFI. 
Moreover, since farms usually sign up for par-
ticipating in certain AEMs over several years 
(Bertoni et al. 2020; Uehleke, Petrick, and 
Hüttel 2022), we also include information on 
previous participation to such programs in Vit 
(Chabé-Ferret and Subervie 2013). Appendix 
Tables C1 and C2 report descriptive statistics 
for the outcome variable and all the control 
variables discussed above.

Unobservable Characteristics

The theoretical derivation in Section 3 pro-
vides the behavioral foundation of the farm-
er’s treatment choice and response to the 
treatment. This behavior depends on some ob-
servable characteristics but also on unobserv-
able farm characteristics, ui. The conditional 
independence between any of the treatments 
and the corresponding potential outcomes 
also hinges on the last component of the con-
ditioning vector Zit, namely, the unobservable 
farm characteristics, ui. If these latent features 
influence the choice between Ti,1 and Ti,2 and 
the corresponding potential outcomes, the 
identification of the HTE becomes challeng-
ing because of the violation of unconfounded-
ness. Even though Xit can be extended to col-
lect as many observable farm characteristics 
as possible, this strategy may be insufficient 

21 This requires assuming no anticipation and no instanta-
neous impact of either T1 or T2 on Vit. With no anticipation, 
we refer to the assumption that farmers have not changed 
their characteristics Vit–1 in response to the foreseen imple-
mentation of the policy at time t.

to insulate against selection-on-unobservable. 
Policy conclusions drawn from the HTE esti-
mation could be problematic and even erro-
neous if the relevance of these unobservables 
and their possible association with the observ-
able characteristics are not properly investi-
gated and understood.

In these situations, ML methods (including 
BCFs) can help in identifying automatically 
creating nonlinearities and complex interac-
tions among the variables in Xit, generating 
artificial strata that allow more precise com-
parisons between treated/untreated units and 
their counterfactuals. These “synthetic traits” 
not only greatly expand the initial set of con-
founders but also correlate with the unob-
servable characteristics, thereby making the 
unconfoundedness assumption more credible. 
This argument is also put forward by Stetter, 
Mennig, and Sauer (2022, 738–39, 744), who 
provide a nice example of how this property of 
ML techniques may help to control for farmer 
attitudes toward environmental issues.22 Since 
this is not directly testable, we check the ro-
bustness of the above propositions through 
several sensitivity analysis tests. As illustrated 
in Appendix H, we probe the stability of our 
results in the presence of omitted variable bias 
from unobserved endogenous heterogeneity 
by introducing synthetically generated ui into 
the covariate set. See Section 6 for more de-
tails and caveats of this approach.

5. Methodology

Research on the estimation of HTE has flour-
ished recently, stimulated by an increasing 
interest in the development of ML methods 
able to provide theoretically sound inferences 
in such research settings (Athey and Imbens 
2019; Athey, Tibshirani, and Wager 2019; 
Hahn, Murray, and Carvalho 2020; Knaus, 
Lechner, and Strittmatter 2021, 2022). Recent 
studies have proposed two ways ML can be 
used to estimate HTE. First, off-the-shelf ML 

22 In short, the authors discuss how a construct resulting 
from the interaction between farm type, farm size, farmer’s 
age, farm capital intensity, and proxies for risk behavior is 
conceivably strongly correlated with the unobservable trait, 
thereby contributing to deconfounding the treatment effect.
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algorithms can be tweaked to address some 
of the relevant identification issues of CI di-
rectly (Imai and Ratkovic 2013; Athey and 
Imbens 2016;; Wager and Athey 2018; Hahn, 
Murray, and Carvalho 2020).23 Second, direct 
modifications of the loss functions and data-
splitting techniques can also help address 
one challenging problem of traditional ML 
techniques in causal settings: regularization-
induced confounding (RIC) (Chernozhukov et 
al. 2018, and references therein; Hahn et al. 
2018; Hahn, Murray, and Carvalho 2020; Nie 
and Wager 2021). We broadly refer to all these 
methods as CML.

Among the diverse approaches proposed in 
the literature, BART-based algorithms (Chip-
man, George, and McCulloch 2010; Hill 2011; 
Hill, Linero, and Murray 2020) stand out as 
promising additions to the CML toolbox. 
These methods not only exhibit encouraging 
performance in terms of unbiasedness and 
coverage rates (Carvalho et al. 2019; Dorie et 
al. 2019; Hahn, Murray, and Carvalho 2020; 
Lee, Bargagli-Stoffi, and Dominici 2020) but 
also take advantage of a fully probabilistic 
(i.e., Bayesian) inferential approach, which 
enables the introduction of uncertainty mea-
sures when comparing groups of individuals 
(an aspect that currently limits the extent of 
other comparable ML methods; Stetter, Men-
nig, and Sauer 2022) and facilitates investigat-
ing the extent of overlap between treated and 
untreated groups (see Appendix E for details; 
Hill and Su 2013; Li, Ding, and Mealli 2022). 
The latter is particularly important when it 
comes to treatment T1, as the farms associated 
with this group are likely to exhibit very spe-
cific characteristics (see Appendix E; Esposti 
2017a, 2017b). Both traits hinge on the full 
posterior distributions of, on the one hand, the 
estimated HTE and, on the other hand, the fit-
ted individual-level conditional expectations.

As with many other tree-based methods, 
BART can flexibly fit complex response sur-
faces by creating regularized ensembles of 
shallow Bayesian regression trees (Chipman, 
George, and McCulloch 1998), making it pos-
sible to perform predictive inference using the 
resulting posterior distributions (Chipman, 

23 For an inventory of these methods, see Nie and Wager 
(2021).

George, and McCulloch 2010). This flexibil-
ity is achieved via recursive partitioning of the 
covariate space at the tree level, a procedure 
that is adept at defining nonlinearities and 
interactions between the observed covariates 
without the need to prespecify them (Hill 
2011). However, since the original BART was 
not purposely designed for CI, a naive appli-
cation of such methods for the estimation of 
HTE might potentially introduce RIC. For this 
reason, Hahn, Murray, and Carvalho (2020) 
recently proposed an extension of the original 
algorithm, which they refer to as BCFs.24 In 
addition to exploiting the estimated propen-
sity score (PS) to deal with potential distor-
tions attributable to RIC (see Appendix D), 
the BCF algorithm also provides for a more 
flexible structure that separates the prognostic 
component from the heterogeneous treatment 
effect, thereby enabling direct control over the 
latter to avoid overfitting.

Estimating Treatment Effects via BCF

The estimation of HTEs using the BCF algo-
rithm requires the usual assumptions of un-
confoundedness and SUTVA, which can be 
expressed as follows:

Y Y T |i i i k i( ) ( ) ,, ,0 1 ⊥ X  [1]

where Yi represents the FADN-AFI defined 
in Section 4, Xi indicates the vector of con-
founders defined in Section 4, while Yi(1) 
and Yi(0) indicate potential outcomes for in-
dividuals in a treatment group (Ti,k = 1) or 
control group (Ti,k = 0), respectively (Imbens 
and Rubin 2015, ch. 1). Notice that SUTVA 
implies no hidden variations of the treatment. 
As discussed in Sections 2 and 3, binarized 
multiple-versions treatments can lead to vio-
lations of this assumption unless one imposes 
stringent restrictions on the treatment assign-
ment mechanism. For example, in case any 
individual i with characteristics Xi can only 
choose one of the hidden treatments, SUTVA 
is still a credible assumption (VanderWeele 

24 Notice that although the terminology “causal forests” 
resembles that used in Wager and Athey (2018), BCF differs 
substantially from the frequentist counterpart in their defini-
tion, functioning, and in how inference is performed.
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and Hernán 2013; Lopez and Gutman 2017). 
As previously discussed, we make this as-
sumption for the treatments defined in Section 
4, except for the distinction between organic 
and nonorganic farming. We therefore set k to 
k ∈ {1,2} such that Ti,k = 1 indicates either Ti,1 
= 1 or Ti,2 = 1, while Ti,k = 0 always refers to 
farms in the control group. We discuss the im-
plication for disaggregating Ti,2 into Ti,2o and 
Ti,2n in Section 6. For notational convenience, 
we drop the subscript k. Of these elements, we 
only observe the potential outcome that corre-
sponds to the realized Ti, namely, Yi = TiYi(1) 
+ (1 – Ti)Yi(0). Equation [1] postulates inde-
pendence between the potential outcomes and 
the treatment, conditional on the set of exoge-
nous variables, Xi.

Combining unconfoundedness, SUTVA, 
and overlap (as discussed in Section 4) allows 
the estimation of causal effects via strong ig-
norability; that is, [Yi(t) | Xi = xi] = [Yi | Ti 
= ti, Xi = xi], with ti ∈ {0,1}. The latter im-
plies that the estimand of interest is simply the 
difference between two conditional expecta-
tion functions:

�

� �

( ) [ , ]

[ , ]

( ) ( ),

x X x

X x

x x

i i i i i

i i i i

i i

Y |T

Y |T

� � �
� � �

� �




1

0

1 0  [2]

where τ(xi) is typically referred to as a condi-
tional average treatment effect (CATE). Since 
one can use μT(xi) to impute conditional treat-
ment effects at the individual level, equation 
[2] is sometimes referred to as individualized 
average treatment effect (IATE) (Lechner 
2018; Knaus, Lechner, and Strittmatter 2021, 
2022). This estimand represents the most dis-
aggregated form of HTE.

Often researchers may be interested in 
subgroups or intermediate aggregation levels 
of the exogenous covariates, leading to the 
definition of group average treatment effects 
(GATEs):

� � �( ) ( ) ( ),g x x xX G gi i i | id
i i i

� � �  [3]

where ϕ(.) represents a generic probabil-
ity density of mass function, Gi denotes the 
collection of possible groups, and gi denotes 
one such group. GATEs have recently gained 

considerable attention in the applied literature 
as treatment effect heterogeneity is often bet-
ter understood for subsets of the population 
(Lechner 2018; Lee, Bargagli-Stoffi, and Do-
minici, 2020). ATEs can also be obtained by 
averaging the IATEs over the full distribution 
of Xi:

� �d i i ii
x x xX� �( ) ( )  [4]

To estimate the IATEs (and then the GATEs 
and ATEs), we assume that the data-generating 
process for  follows a stochastic process de-
fined as follows:

Y f Ti i i i� �( , ) ,X �  [5]

where f indicates an arbitrarily complex func-
tion25 and εi represents an additive idiosyn-
cratic error term εi ~  (0,σ2), independently 
distributed.

In this context, [Yi | Ti = ti, Xi = xi] = 
f (xi, ti) therefore, at least in principle, τ(xi) can 
be estimated by the simple difference f (xi, ti 
= 1) – f (xi, ti = 0) = μ1(xi) – μ0(xi), as illus-
trated above. However, as discussed by Kün-
zel et al. (2019) and Nie and Wager (2021), 
training two separate conditional mean func-
tions and taking their difference may produce 
highly unstable estimates. For this reason, 
Hahn, Murray, and Carvalho (2020) proposed 
a slightly different approach, wherein the ex-
pected value of the outcome of interest has 
two components: a prognostic function, 𝓂(xi) 
plus an additive heterogeneous treatment ef-
fect, τ(xi):

[Yi | Ti = ti, Xi = xi] �= f (xi, ti) 

= 𝓂(xi) + τ(xi)ti� [6]

where both 𝓂(.) and τ(.) represent stochas-
tic functions with BART priors, namely, 
𝓂  ~ BART(θ | ̂PS(xi), xi) and τ ~ BART(ϑ | xi), 
and ̂PS(xi) indicates the estimated PS. The two 
vectors θ and ϑ collect the hyperparameters 
regulating the number of trees in the BART 

25 f (Xi, Ti) could be specified.  as a fully parametric func-
tion, although this would inevitably constraint the cross-
farm technological and behavioral heterogeneity. Admitting 
an arbitrarily complex function is thus more consistent with 
the assumption of a farm-specific production set Fi.
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ensembles, their depth, and the splitting rule 
associated with each single tree (see Appen-
dix F for details). As previously mentioned, 
the specification in equation [6] allows reg-
ularizing τ(xi) directly and independently, 
thereby reducing the noisiness of the IATEs 
with respect to the same estimates obtained 
from simple differences in conditional mean 
functions. Furthermore, the additive nature of 
equation [6] ensures that the prior on f (xi, ti) 
is also a BART (Chipman, George, and 
McCulloch 2010; Hill, Linero, and Murphy 
2020). Finally, notice that the model presented 
in equation [6] also appears in Nie and Wager 
(2021), who propose a frequentist approach to 
estimating τ(xi). In contrast to the setup dis-
cussed above, however, the authors propose 
a residuals-on-residuals reparameterization 
of equation [6] which is then used to obtain 
(regularized) consistent estimates of τ(xi) via 
a two-stage optimization procedure.

The full Bayesian model requires the defi-
nition of a likelihood function for the out-
come variable (Gelman et al. 2013; McElreath 
2020). Consistent with equation [5] and Chip-
man, George, and McCullogh (2010), Hill 
(2011), and Hahn, Murray, and Carvalho 
(2020), we employ a normal model for Yi, 
along with a semiconjugate inverse chi square 
prior for its variance:

Yi ~ Normal(𝓂(xi) +τ (xi)ti, σ 2)

𝓂 ~ BART(θ | ̂PS(xi), xi

τ ~ BART(ϑ | xi)

σ 2 ~ Inv χ 2 (ω) � [7]

where ω is set following Chipman, George, 
and McCullogh (2010) (see Appendix F for 
further details). Samples from the posterior 
distribution of τ(xi) are obtained via Mar-
kov chain Monte Carlo sampling, as imple-
mented in the R package bcf. We indicate 
posterior draws from ϕ(τ(xi) | xi, ti, yi,..., yN) as  
{τ s(xi)}

S
s=1, where S indicates the number of 

Markov chain Monte Carlo simulations.

Subgroup Search via Shallow Regression 
Trees

The approximated posterior {τ s(xi)}
S
s=1 is a 

multivariate probability distribution over a 
complex P-dimensional function, and as such, 
it might be difficult to interpret directly. One 
way to compress such information consists of 
obtaining marginal distributions of the IATEs 
for one covariate of interest and plotting them 
against the full range of that variable. A simi-
lar approach was adopted by Stetter, Mennig, 
and Sauer (2022), who used Shapley values 
(Shapley 1953) to identify the marginal con-
tributions of several treatment effect drivers 
and used these indicators to construct partial 
dependence plots. Another sensible approach 
to investigating IATE heterogeneity consists 
of comparing farm subgroups obtained by 
projecting the full posterior distribution onto 
a lower-dimensional covariate space. In this 
respect, we follow the work of Yeager et al. 
(2019), Hahn, Murray, and Carvalho (2020), 
Woody, Carvalho, and Murray (2021) and 
(and partially Lee, Bargagli-Stoffi, and Do-
minici 2020), who suggest eliciting the rel-
vant subgroups by partitioning the IATE 
maximum a posteriori (MAP) estimates, τ̌i = 
S –1∑S

s=1 τ sq(xi), using shallow regression trees 
(CART) (Breiman 1984). Specifically, the 
authors propose to split τ̌i along wi, where 
wi ⊆ xi indicates a vector of policy-relevant 
variables and setting wi ⊂ xi implies using 
domain knowledge to enforce an initial reg-
ularization of the resulting tree. We restrict 
our attention to a subset of simple and under-
standable characteristics that policy makers 
might find helpful to improve the targeting of 
AEMs (see Section 6). Once farm subgroups 
have been identified, GATEs can be obtained 
as weighted averages of the IATEs that fall 
into each cluster. This approach to calculating 
GATEs is also consistent with Lechner (2018) 
in that group-level effects are obtained as con-
vex combinations of the IATEs. In our appli-
cation, however, weighting is automatically 
performed when fitting a tree to τ̌i.

Finally, for some potential effect modera-
tor xp ∈ x, the comparison between pointwise 
estimates (or intervals) computed at different 
levels of xp ignores any potential correlation 
between IATEs along other variables xl, for all 
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p, l ∈ {1,..., P}. In other words, the marginal 
distribution of τ(xp,i) disregards the informa-
tion encoded in the correlation between τ(xl,i) 
and τ(xl,–i) when xl,i and xl,–i are close. This 
might lead to misleading comparisons along 
xp and, consequently, unreliable policy im-
plications. Therefore, once the relevant sub-
groups have been identified, one can obtain 
the full posterior distribution of each pairwise 
difference as: ϕg1,g2

 = ϕ(τi|i∈g1
 – τi|i∈g2

), where 
g1 and g2 indicate any two subsets of τ̌i.

6. Results

IATEs

The two graphs numbered “1” in Figure  1 
display the MAP; that is, the average over the 
S samples from the posterior distribution of 
τ(xi) estimates and corresponding 95% con-
fidence intervals (CrI) of the IATEs over the 
two treatment comparisons. These are ordered 
across the respective samples from the lowest 
to the highest individual value. We start our 
discussion by presenting the results for T2, the 
treatment that is more frequently addressed 
by the literature. First, it is worth noting that 
overall, the modal direction of the responses 
to the treatment (T2) is fully consistent with 
theoretical expectations: adding the AEM to 
the environmental standards implied by the 
CC and the GP (Figure 1a [1]) induces an im-
provement in the FADN-AFI, that is, in the 
farm-level environmental performance. The 
opposite response is observed when the envi-
ronmental standards implied by the CC and 
GP are dropped (i.e., treatment T1) (Figure 1b 
[1]). Whereas in the first case, most estimated 
IATEs exhibit CrI not including zero (black 
dots), the converse applies to the second com-
parison group, for which a large proportion 
of farms have inconclusive individual-level 
TEs (light gray dots). The first graph in Fig-
ure  1b also indicates that some farms might 
even exhibit opposite responses, although the 
corresponding ITAEs appear quite noisy. This 
evidence is presented in greater detail in Ta-
ble 4, which provides descriptive summaries 
of our main results.

The two graphs numbered “2” in Figure 1 
show the IATE’s MAP frequency distribution 

for the two cases. These plots highlight the 
variability of the responses, with few cases 
showing a treatment effect direction that con-
flicts with the expected direction (despite ex-
hibiting CrI including positive and negative 
values). Apart from these rare extreme cases, 
however, our MAP estimates range between 
roughly 0.1 and 1.0 for treatment T2 and be-
tween approximately −3 and 1.5 for treatment 
T1. The nature and determinants of these dif-
ferent patterns can be further investigated by 
estimating GATEs, as addressed in the next 
section.

The irregularity of farms’ responses to the 
treatments is a clear sign of heterogeneity, one 
that would be lost by the mere inspection of 
ATEs (see the two graphs numbered “3” in 
Figure  1). Whereas these latter aggregated 
estimands provide clear indications of policy 
effectiveness (as both show an effect in the ex-
pected direction), the inspection of the IATEs 
tells a different and more subtle story. This is 
especially true for the treatment T1, whereas 
the responses seem more homogeneous when 
studying the treatment effect of implementing 
CC and GP requirements together with AEMs 
(treatment T2).

Finally, for each individualized treatment 
effect, we calculate the posterior probability 
that the corresponding IATE is either greater 
than zero or lower than zero for the T2 and T1, 
respectively. Our results show that when com-
paring farms implementing CC and GP re-
quirements plus AEMs with the control group, 
most of the IATEs’ posterior distributions lie 
above zero. For example, the proportions of 
IATEs with at least 60%, 75%, and 90% pos-
itive posterior are 100%, 88.5%, and 5%, re-
spectively. Conversely, when comparing the 
control group to farms with no adherence to 
CC or GP, the posterior distributions of their 
IATEs are largely negative. In this case, the 
proportions of IATEs with at least 60%, 75%, 
and 90% negative posterior are 83%, 15%, 
and 0%, respectively.

Notice that all the results discussed thus far 
are based on observations satisfying the com-
mon support as defined by rule I in Appendix 
E. Under such a restriction to the range of Xi, 
however, our dataset does not suffer drops. 
The sensitivity of these figures to differ-
ent exclusion rules is discussed in Section 6 
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Figure 1
Estimated Individualized Average Treatment Effects: (a) Treatment Group T2 (Farmers 
Implementing Agri-environmental Measures); (b) Treatment Group T1 (Farmers Not 
Fulfilling Conditionality Restraints or Implementing Agri-environmental Measures)

Note: 1 = point estimates of individualized average treatment effect (median line) ordered from the smallest to 
the largest, with the upper and lower dots representing the posterior 95% CrI endpoints associated with each 
individual MAP point estimate; 2 = distribution of the MAP point estimate displayed in 1; 3 = Monte Carlo 

approximation of the full posterior distribution of average treatment effect defined in equation [4].  
CrI = credible interval; MAP = maximum a posteriori.

Table 4
Individualized Average Treatment Effects Estimates for Model [6]

CrI ATE

Treatment 0 ∉ CrI MAP > 0 MAP < 0 ATE > 0 ATE < 0 ATE Lower Upper

All Observations

(%) (%) (%) (%) (%) (AFI) (AFI) (AFI)
T2 72.3 100 0 100 0 0.55 0.31 0.79
T1 15.3 28.5 71.5 0.5 99.5 −0.42 −0.73 −0.08

Observations with 0 ∉ CrI

T2 1 100 0 100 0 0.61 0.364 0.86
T1 1 0 100 0 100 −0.85 −1.02 −0.46

Note: 0 ∉ CrI = proportion of IATE CrI that do not include zero; MAP > (<) 0 = proportion of IATE with MAP > (<) than zero; ATE > (<) 0 
= posterior probability that ATE (as defined in equation [4]) is > (<) than zero; CrI ATE = 95% CrI for ATE. AFI = agri-environmental footprint 
index; ATE = average treatment effect; CrI = credible interval; MAP = maximum a posteriori.
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(robustness check), in which the selection 
method we used based on the estimated PS is 
also discussed.

GATEs

We partition the posterior distribution of τ(xi) 
using a set of policy-relevant measures wi 
covering the most relevant dimensions of het-
erogeneity, as evidenced by the measures of 
feature importance produced by the BCF. Our 
characterization of wi involves (1) examining 
the variable importance metrics generated as a 
by-product of the fitting model [7],26 and (2) 
choosing the 10 most predictive dimensions 
that policy makers might target to improve 
the effectiveness of AEMs. We fit a CART al-
gorithm to τ̌i using the attributes selected us-
ing the procedure illustrated above: latitude, 
longitude, altitude (geographical location); 
total arable land, share of rented land, reve-
nue (physical or economic size); farm special-
ization (relative importance of the first and 
second crop, farms specialized in livestock, 
crop and livestock farms, farms specialized in 
annual crops, and farm specialized in peren-
nial crops). The results for the two treatments 
are shown in Figures 4 and 5, wherein, for the 
sake of interpretability, we do not allow the 
trees to split more than three times.

When we consider the adoption an AEM 
in addition to CC and GP requirements (treat-
ment T2) (Figure  2b [1]), we find that TE 
heterogeneity is mostly associated with five 
variables: latitude, physical farm size, alti-
tude, crop specialization (share of the second 
crop in the crop mix), and livestock intensity. 
These covariates trace out eight subgroups 
with different levels of treatment effects. 
For example, subgroup g8 exhibits the low-
est treatment effect and consists of farms in 
southern Italy with less than 85 ha arable 
land. On the opposite end of the spectrum, 
we find subgroup g15, which comprises crop-
specialized farms in northern Italy with low 
livestock intensity. One can then obtain the 

26 The importance metric is obtained from a BART that in-
cludes the PS (PS-BART). Unlike the algorithm in equation 
[7], the PS-BART does not distinguish the prognostic from 
the treatment effect component. However, in terms of vari-
able importance, the difference between the two techniques 
is negligible.

full posterior distribution of g15 – g8 with 95% 
CrI between −0.27 and 0.49 (Figure 2b [2]), 
which indicates that the difference between 
the two subgroups is in fact small, if not zero. 
Interestingly, if we repeat this exercise across 
all the leaves defined by the tree in Figure 2b 
[1], no group differences emerge (see Appen-
dix G). These results are consistent with our 
discussion in Section 6 (i.e., our preliminary 
findings suggested limited treatment effect 
heterogeneity for treatment T2).

In the case of treatment T1 (Figure 2a [1]), 
we see that the shallow tree picks up four 
moderating variables: specialization in pe-
rennial crops, latitude, altitude, and livestock 
intensity. In this case, the subgroup with the 
strongest TE is g8, which consists of farms 
specialized in perennial crops in Italy’s south-
most regions. Subgroup g15 includes obser-
vations from farms in the Po Valley that are 
not specialized in perennial crops. The dif-
ference in TE between these subgroups lies 
approximately between −2.2 and −0.41 (95% 
CrI; Figure  2a [2]), indicating the presence 
of treatment effect heterogeneity. Repeating 
this exercise across all the terminals nodes, 
we find that unlike treatment T2, when the 
treatment consists of dropping both CC and 
GP requirements, many groups exhibit diver-
sified responses. These further details are pro-
vided in Appendix G, where we also provide 
a deeper tree to gain further insights into these 
HTEs and a graphic representation of the geo-
graphical distribution of the IATEs.

It is finally worth stressing that although 
our main goal is to explore which observable 
farm characteristics exhibit a greater hetero-
geneity of response, some of these features 
might not be easily addressed by AEPs due 
to cost constraints or infeasibility or because 
they could potentially lead to discriminatory 
outcomes. From a policy perspective, it would 
be more useful to evaluate the level of hetero-
geneity associated with covariates that can be 
targeted more easily and effectively through 
policy measures. Most of the geographical 
features considered in our study, along with 
variables indicating long-term farm produc-
tion specialization, appear particularly suit-
able for this purpose. In this respect, our re-
sults confirm that most of these geographical 
features significantly contribute to the observe 
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heterogeneity of response. Similarly, the pres-
ence of perennial crops, crop specialization, 
and livestock density, all of which relate to 
distinct and consistent farming practices, 
pinpoint to patterns of strong heterogeneity. 
This suggests that AEPs could significantly 
enhance their effectiveness by specifically 
targeting these features. For a more detailed 
discussion on this matter, please refer to Ap-
pendix G.

Robustness Checks

We check the consistency of our results to 
the assumptions formulated in Sections 4 and 
5. Our first robustness check concerns the 
common support condition. As anticipated in 
Section 5 and further detailed in Appendix E, 
we use both the posterior distribution of the 
BART algorithm and a PS-based algorithm to 
investigate common support. Our tests show 

Figure 2
Shallow Regression Tree Fitted to the Maximum a Posteriori (MAP) Individualized Average Treatment Effects: 

(a) Treatment Group T2; (b) Treatment Group T1

Note: 1 = structure of the penalized regression tree; 2 = posterior distribution for the comparison between subgroups 8 and 15.
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that the results presented in Section 6 are 
robust to these different methods to achieve 
overlap (see Appendix Tables H1 and H2).

We perform a battery of tests that largely 
encompass those discussed by Stetter, Men-
nig, and Sauer (2022) in that we reestimate 
our BCF multiple times, each time manipu-
lating different model features. We begin by 
probing unconfoundedness through a recur-
sive procedure in which we fit model [7] af-
ter dropping: (1) the most important feature 
in terms of relative frequency in the forest, 
(2) the three most important features, and (3) 
the five most important features. As detailed 
in Appendix Figures H1–H3), this exercise 
yields the first indication that the BCF in 
equation [7] is fundamentally resilient against 
unobserved heterogeneity as long as this is as-
sociated with the set of observed confounders. 
Put differently, the complex interactions and 
nonlinearities generated by the tree ensemble 
seem to work as additional synthetic controls 
associated with the left-out covariates, thus 
compensating for their absence in the model. 
However, this line of reasoning hinges on the 
(strong) assumption that the most predictive 
features are also associated with both Y and 
Tk. In case this assumption fails, the procedure 
discussed above cannot be interpreted as a ro-
bustness check for unconfoundedness. For this 
reason, we build on these preliminary results 
and devise an additional test targeting endog-
enous unobserved heterogeneity directly. Our 
strategy consists of generating a random vari-
able correlated with both Y and Tk, forming 
the vector Zit as described in Section 3, and 
rerunning the model. As shown in Appendix 
Figure H4, our results do not change substan-
tially, even under a strong imposed association 
between the unobserved variable and (Y, Tk). 
This stability could result from the properties 
of the BART ensemble in that when the for-
est is dense, the marginal contribution of each 
covariate becomes increasingly small (Chip-
man, George, and McCulloch 2010). Alterna-
tively, it could be that the correlation between 
the nonlinear interactions generated by the 
BCF and the new confounder is strong enough 
to prevent distortions in the IATEs. In either 
case, it is worth warning that treatment effect 
estimates might deteriorate quickly when un-
observed heterogeneity is more abundant and 

complex. This test is in fact only restricted to 
a single unobserved factor, which we model 
as linearly associated with Y and Tk (i.e., 
through correlations, which do not necessar-
ily imply a direct effect of the synthetic ui on 
the outcome or the treatment). We thus expect 
that in presence of multiple endogenous latent 
confounders, possibly related to the treatment 
and the outcome (or other elements of Xi in 
a nonlinear fashion, our estimates might tun 
out sensibly different. Although the literature 
offers other methods to perform sensitivity 
analysis with respect to omitted confounders 
(Dorie et al. 2016; VanderWeele and Ding 
2018), we believe that they either do not over-
come the limitations discussed above or they 
remain difficult to implement in HTE estima-
tion. Therefore, despite the promising results 
presented so far, we stress that these only hold 
if several important restrictions are met.

The following robustness check consists of 
creating both a placebo treatment and a pla-
cebo outcome, replacing their observed coun-
terparts in equation [7], and fitting the model 
two more times. If the model is correctly spec-
ified, the IATEs resulting from these “fake” 
variables should be uncorrelated with τ(xi). 
As Appendix Figures H5 and H6 show, the 
new results obtained through placebo treat-
ments and outcomes not only have no correla-
tion with our estimated IATEs but also pro-
duce zero ATE with minimal treatment effect 
heterogeneity.

Finally, we assess the robustness of the esti-
mated IATEs with respect to the OTH problem 
discussed in previous sections. We proceed by 
replacing the FADN-AFI with its elementary 
components and reestimating model [7] as 
discussed. Appendix Figure H7 suggests that 
focusing on marginal indicators produces TEs 
whose individual directions are essentially 
in line with those presented in Section 6. For 
example, implementing AEMs seems to yield 
lower GHGs, higher crop diversity, lower fer-
tilizer expenditure, and more woodland areas. 
Nonetheless, a noteworthy difference emerges 
in terms of treatment effect heterogeneity. 
Whereas adopting the FADN-AFI points to a 
limited diversity across farms, using marginal 
measurements would suggest that treatment 
T2 is environmentally beneficial only when 
the treatment effect is large. For this reason, 
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our results invite to caution when it comes 
to choosing the dependent variable of model 
[7]. Although addressing individual indicators 
may appear more attractive and interpreta-
ble, it is worth stressing that missing out on 
the potential correlation or interdependence 
among them can affect the TE estimates in a 
nontrivial way.

Role of Heterogeneous Treatments

As discussed in Sections 3 and 4, one poten-
tial limitation of our results (as well as other 
works investigating HTE of aggregated treat-
ments) is that part of the estimated treatment 
effect heterogeneity in T2 might be a statistical 
artifact. This would result from the fact that 
T2 is a multiple-versions treatment as it aggre-
gates two distinct measures which admit, in 
turn, several submeasures (see Section 4). As 
introduced in Section 5, the presence of treat-
ment heterogeneity may affect our results by 
violating SUTVA (Heiler and Knaus 2022). 
Since in this case, the resulting interpretation 
of τ(x) would be misleading, we reestimate 
model [7] replacing T2 with the two respec-
tive measures (measure 11 and measure 10) 

and approach the problem from a multiple-
versions treatment perspective as discussed in 
Lopez and Gutman (2017).

To assess the possible bias in HTE estima-
tion due to treatment heterogeneity, we com-
pare the posterior distribution of the IATEs 
presented in Section 6 with the posterior 
density of the IATEs estimated using either 
T2o, τ2o(xi), or T2n, τ2n(xi). Figure 3 shows the 
95% CrI for the differences τ2o(xi) – τ2(xi) and 
τ2n(xi) – τ2(xi), respectively, where τ2(xi) in-
dicates the IATE for individual i under treat-
ment T2. As we can see from these plots, the 
difference between our initial estimates and 
those obtained by substituting T2 with T2o are 
minimal. Indeed, although τ2o(xi) is on aver-
age (black line in the left graph in Figure 3) 
slightly smaller than τ2(xi) for all i ∈ No, where 
No indicates the number of units choosing T2o, 
all the CrI include both positive and negative 
values. At the same time, when focusing on 
T2n, we see that τ2n(xi) – τ2(xi) are on aver-
age higher than zero for all i ∈ Nn, where Nn 
indicates the units choosing T2n. However, 
the CrI once again includes zero for all such 
comparisons, although they are all moderately 
skewed toward positive values. Moreover, as 

Figure 3
Individualized Average Treatment Effects Differentials for the Two Versions of T2

Note: The left graph shows 95% credible intervals for the distribution of τ2o(xi) – τ2(xi) (gray lines) and  
corresponding posterior means (black line); the right graph shows 95% credible intervals for the  

distribution of τ2n(xi) – τ2(xi) (gray lines) and corresponding posterior means (black line).
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mentioned in Section 4, T2n could still en-
tail some degree of treatment heterogeneity, 
which recommends caution when interpreting 
the corresponding estimates. Overall, exam-
ining the two measures separately highlights 
that the posterior distribution of the IATEs 
does not seem to change markedly when the 
aggregated (T2) or the disaggregated (T2o, T2n) 
treatment is considered. This would suggest 
a limited impact of treatment heterogeneity 
on our interpretation of the HTEs discussed 
above. Nonetheless, further research effort re-
mains desirable to better clarify the possible 
role of multiple versions in the correct identi-
fication and estimation of the HTE.

7. Concluding Remarks

Giving the CAP a more explicit environmen-
tal orientation and justification has been at the 
core of all its recent reforms. This necessarily 
means shifting the support from undifferenti-
ated and unconditional payments to more tai-
lored and target measures. The efficiency and 
effectiveness of AEPs in this respect critically 
depend on how farmers respond to these mea-
sures. This response, in turn, largely depends 
on the individual characteristics of supported 
farms. This makes the response itself highly 
heterogeneous and, consequently, suggests 
that there is still room for substantial improve-
ment through better policy targeting.

In this article, we present a CML approach 
to assessing the heterogeneous response 
of farmers to different AEPs implemented 
through the 2015–2020 CAP reform. Build-
ing on the existing literature, this study’s main 
contribution is twofold. First, we explicitly 
conceptualize and investigate the different 
sources of heterogeneity that we expect influ-
ence farms’ environmental performances un-
der such policies. Second, we take advantage 
of the most recent developments in Bayesian 
nonparametrics and conduct the analysis us-
ing a relatively unexplored algorithm called 
Bayesian causal forest. This method allows 
using the posterior distribution of the indi-
vidualized treatment effect (the IATEs) to 
draw inferences about arbitrary transforma-
tions of these highly disaggregated estimands. 
We leverage this property, particularly when 

discussing group-level treatment effects and 
testing the robustness of our results against 
identification assumptions.

More generally, estimating IATEs can 
prove insightful in that some beneficiaries of 
an AEP may exhibit limited or unsatisfactory 
responses, thereby calling for an intensifica-
tion of the support, while others may show re-
sponses that are well beyond the policy target, 
suggesting a reduction of support. Our results 
illustrate how informative the approach can be 
in detecting the extent, nature, and source of 
this heterogeneous response. For instance, we 
demonstrate that contrasting different farm 
subgroups can provide additional information 
on the nature of the heterogeneous response. 
Specifically, we highlighted that the treat-
ment effect from implementing pillar 2 agri-
environmental measures and fulfilling pil-
lar 1 conditionality requirements seems more 
homogeneous than the response to adopting 
none of the above.

The primary policy implication of our re-
sults concerns the need for a better targeting 
of AEPs. In this respect, caution is necessary, 
as not all farm characteristics considered can 
be easily targeted due to practical or polit-
ical constraints. Nonetheless, our analysis 
suggests that significant heterogeneity in 
treatment effects is concentrated in farm sub-
groups that can be feasibly targeted. These 
subgroups often involve geographical fea-
tures and specific production specializations. 
Therefore, delivering some CAP measures 
at a local scale and tailoring them to specific 
production orientations, along with broader 
adoption of results-based payment schemes, 
may represent a sensible initial step toward 
better targeting. The new CAP acknowledges 
greater flexibility for member states through 
the new delivery model, allowing them to ad-
dress the environmental aspects of pillar 1 (the 
reinforced CC and the eco-schemes replacing 
the GP) and the AEMs in pillar 2 more effec-
tively. In principle, this flexibility seems to go 
along with the goal of improved targeting for 
these AEPs.

Although our empirical results provide 
valuable insights, our work also contributes 
to the constructive discussion on the potential 
and limitations of these relatively new pol-
icy assessment methods. How useful is CML 
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and the analysis of heterogeneous treatment 
effects in informing policy improvements re-
lated to the CAP? Our conceptual framework 
and empirical investigation suggest that they 
can be useful. However, as with all emerging 
econometric approaches, several issues re-
quire careful consideration.

Because standard causal ML methods can-
not be used for policy analysis without ad-
ditional identifying restrictions and assump-
tions, selecting appropriate confounders and 
ensuring overlapping/treatment-stable units 
necessitates a solid theoretical understanding 
of treatment selection mechanisms. Devel-
oping these conceptual foundations also fa-
cilitates result interpretation, as the complex 
output of these estimation methods can be 
challenging to put into perspective. Among 
the standard assumptions presented herein, 
unconfoundedness and the stable unit treat-
ment value are often regarded as restrictive. 
Although the former can be corroborated 
via robustness checks and the use of ML al-
gorithms, the latter finds little practical help 
from flexible estimation techniques and thus 
remains debatable. In this respect, specifying 
the correct treatment variable(s) is quintessen-
tial for an unbiased interpretation of the re-
sulting treatment effect, an aspect that is still 
relatively underdiscussed in the literature.

More generally, investigating the effec-
tiveness of CAP’s agri-environmental poli-
cies in a binary-treatment logic may prove 
limiting when the analysis targets heteroge-
neous causal effects. The risk is that the elic-
ited estimates do not entirely reflect farms’ 
heterogeneous responses to a treatment but 
encapsulate the heterogeneity of the treat-
ment itself. Besides the prototypical case of 
multiple-versions treatments (whether hidden 
or observable), problems can also arise when 
a policy measure is not only adopted (i.e., a 
discrete choice) but also exhibits different 
intensity levels in different cohorts of farms. 
In such cases, binary treatments should be 
extended to incorporate dosage information. 
How to define the treatment intensity (i.e., the 
“dose”) of different agri-environmental pol-
icies is an ambitious empirical question that 
we leave to future research.
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