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Machine learning to probe modal interaction in dynamic atomic force microscopy
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Modal interactions are pervasive effects that commonly emerge in nanomechanical systems. The
coupling of vibrating modes can be leveraged in many ways, including to enhance sensing or to
disclose complex phenomenologies. In this work we show how machine learning and data-driven ap-
proaches could be used to capture intermodal coupling. We employ a quasi-recurrent neural network
(QRNN) for identifying mode coupling and verify its applicability on experimental data obtained
from tapping mode atomic force microscopy (AFM). Hidden units of the QRNN are monitored to
trace fingerprints of modes activation and to quantify their contributions over the global distortion
of orbits in the phase space. To demonstrate the broad applicability of the method, the trained
model is re-applied over different experiments and on diverse materials. Over a range of tip-sample
configurations, dynamic AFM possesses features general enough to be seized by the QRNN and it is
not required an ad-hoc re-training for the identification of interacting modes. Our study opens up a
route for utilizing established machine learning techniques for rapid recognition of nonlinear complex
effect such as internal resonances in nanotechnology. The QRNN analysis is meant to assist AFM
sensing operations when exploiting modal interaction to enhance the signal-to-noise ratio of higher
harmonics and provide high resolution compositional contrast in multi-frequency AFM applications.

I. INTRODUCTION

Nanomechanical systems lie in a playground where the
linear behavior is an exception [1, 2]. Nonlinearities give
rise to interesting phenomena which have the potential to
be valorized into innovative nanomechanical sensors and
novel detection schemes [3–6]. Engineering of nonlinear-
ities specifically find applications in detection of weak
forces [7, 8], employed in signal amplification and noise-
squeezing effect [9, 10], phase-sensitive mechanical am-
plifiers to leverage the sensitivity in mass measurement
[11, 12].

The study of nonlinear dynamics at the nanoscale
has recently grabbed attention within the realm of dy-
namic atomic force microscopy (AFM) [13, 14]. Dynamic
AFM is a non-destructive, nanoscale technique utilised
for characterizing synthetic and biological matter. In this
technique, a force-sensing resonant microcantilever with
a sharp tip at its free end (Fig. 1(a)) probes the topogra-
phy and other nanomechanical properties of the sample
surface [15]. The highly nonlinear nature of tip-sample
interaction emanates coupling between vibrational modes
even if in far apart frequency range [16, 17] that thrive
due to internal resonances, a condition where the ratio
between two or more resonance frequencies of the can-
tilever is a rational number [18]. Higher modes of vibra-
tion intervene in the oscillatory behaviour of the AFM
microcantilever. The resulting complex motion could be
exploited for enhancing the sensitivity and accuracy of
AFM characterization techniques [14, 19, 20]. Neverthe-
less, to date only a handful of studies have actually looked
into nonlinear phenomena of AFM and to undiscovered
improvements in tapping operational mode. Since the

standard feedback-control loop of the AFM controller
works upon a homodyne detection scheme, it automat-
ically masks all the higher order spectral components.
Circumventing the issue means to bypass the controller
and to collect the raw deflection signal directly from the
AFM photo-detector. A field-programmable gated array
(FPGA) is capable of this, and it retrieves all the sig-
natures indicative of the rich nonlinear interplay within
the tip and the sample, even allowing to reconstruct the
actual instantaneous interaction force [21].

However, in order to determine higher vibrational com-
ponents in the time and frequency domain, the signal
must be collected at very high frame rate for relatively
long duration in order to minimize spectral leakage with
the use of suitable windowing methods. This means to
collect millions of data points which is an enormous or-
deal in the data handling and post processing. Moreover,
a simple inspection of mode coupling is challenging since
the higher order modes have smaller amplitudes and are
often buried under the noise floor. It is clear that, in
such conditions, new detection schemes based on nonlin-
ear modes coupling lose practical applicability. Here, it
is where machine learning (ML) techniques may provide
overwhelming benefits.

ML-augmented approaches have revolutionized the
analysis and the understanding of complex data, recog-
nizing patterns, and developing classifications based on
multimodal datasets in various situations otherwise inex-
plicable [22]. Recently, sparse identification methods and
symbolic regression have made giant strides in their pre-
dictive capabilities to identify and extract the governing
dynamics of a system beyond the attractor where they
are sampled and constructed [23–26].
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ML-techniques come as an inspiration to support the
development of nonlinear-based new methodologies for
tapping mode AFM. In detail, approaches based on neu-
ral networks are of interest because of their ability to dis-
till physical knowledge from time series [27–29]. Among
different variants, the quasi-recurrent neural network
(QRNN) is found particularly effective to interpret com-
plex nonlinear behaviours [30, 31]. Of major importance,
hidden states of a QRNN are promptly accessible and
they incorporate information on how the network pro-
cesses the input data [32]. In this work, we make use of a
QRNN to analyse and predict occurrence of modal cou-
pling in dynamic AFM. Our data-driven approach aims,
after a preliminary full training, to work with limited
amount of data, i.e. a few portions of single acquisition
of oscillation as input. For this reason it can be eas-
ily integrated into the traditional controllers with minor
modifications and without data buffering. The QRNN
performs the complete characterization of the AFM dy-
namics and it grasps the effective activation of higher
modes of vibration.

To show the application of QRNN in dynamic AFM,
we first use it over synthetic datasets mimicking the tip-
sample interaction in tapping AFM. Numerical simula-
tions allow to promote the well-known typical internal
resonances encountered in experiments. Indeed, dynamic
AFM finds harmonics of its first excited resonant mode
clashing with higher modes of vibration. It must be
remarked that rectangular cantilevers used in the ex-
periment, often see the ratio between the higher vibra-
tional and the fundamental mode close to integer fac-

tors. Therefore, by tuning the nonlinear resonance fre-
quency, the microcantilever undergoes internal resonance
with activation of higher modes of vibration. The re-
sulting mode coupling enhances the signal-to-noise ratio
(SNR) of specific harmonics that are close to the inter-
acting eigenmodes [14]. This enhancement in SNR can
be harnessed to improve the nanoscale characterization
techniques in multifrequency AFM (MF-AFM) as well as
obtaining high resolution images of soft polymeric sam-
ples and biological materials using higher harmonics.
By making use of our preliminary knowledge on the ex-

pected modes, we examine the hidden layers of the neu-
ral networks. While detuning the excitation frequency,
higher modes arise and the neural network units activate
accordingly. Our goal is to determine if and how the in-
terpretation of the hidden layer is employable as a filter
to determine the dynamical status of the system.
Next, we apply the technique on experimental data

in the presence of strong and weak tapping forces. We
use the same trained network for the experimental data
on different materials namely, silicon and mica. Despite
dissimilar conditions in the tip-sample interaction, the
dynamical response possesses common dynamical signa-
tures over which the QRNN can be learnt. This per-
mits us to recognize he same underlying nonlinear effects
in conditions outside the training dataset. In terms of
applicability, the QRNN greatly eases the signal inter-
pretation in a variety of experiments, avoiding the need
to collect the entire time trace. In a wider perspective,
this approach is applicable to different nanomechanical
systems and it could serve as an interpreter of complex
nonlinear dynamics.

II. RESULTS

A. Data-driven methodology

The concept of the developed identification method-
ology is illustrated in Fig. 1. We begin by training the
QRNN with time domain data containing all the dynam-
ical features necessary to untangle the underlying physics
of interaction. The time series data can be either syn-
thetic data coming from simulations, experimental data
or a mixed ensemble of both types of data. Furthermore,
the time series data is divided into a training data set and
a validation data set. The algorithm is trained using only
the training data set and once the training is completed
the recurrent network is validated against an augmented
data set containing both the training data as well as the
unseen validation data set (prediction box in Fig. 1(b)).
This allows for correcting any overfitting on the training
data set and it further permits to check the accuracy of
the prediction on data previously not seen by the algo-
rithm. The QRNN implements convolutional layers that
elaborate the data forward in time while recurrent rela-

tions are applied in the pooling layers (see Appendix A 2
for details). Pooling functions activate neurons regard-
less past outputs of other neurons. This structure avoids
deep coupling interaction between neurons and it permits
the interpretation of the network. Finally, we analyse the
hidden layers of the network that successfully captures
the dynamics of the system, (Fig. 1(c)). In particular,
we look for activation of hidden units in connection with
nonlinear dynamical features in order to ascertain the
influence of higher modes of vibration. It is worth men-
tioning that the training is computationally cumbersome
and would benefit from reducing the dimension of the
training data set such that it contains a majority of the
nonlinear features in the prediction phase. Nevertheless,
the main advantage of a thorough training is that once
the dynamical features are captured, the network can be
deployed over the testing data set without any additional
operations and the network will still maintain its ability
to predict the previously learned dynamical signatures.
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FIG. 1. Schematic of the identification process. (a) Sensing mechanics of an dynamic AFM system. The photodetector
captures the deviations in raw deflection of the microcantilever interacting with the sample. (b) The state vector channels are
used as inputs in the data-driven identification/prediction algorithm. Details regarding the QRNN algorithm are reported in
appendix A 2. (c) The QRNN estimates the modal interaction in the AFM dynamics. Hidden states in the QRNN layers detect
mode activation; whereas, the color map indicates how strong units are activated.
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FIG. 2. Simulated nonlinear dynamic response in the repulsive region obtained with the three-mode model of Eq.(1). (a)
1st dataset (first raw): y = {0.0024, 0.0026, 0.0031, 0.0041, 0.0063}, K2 = 39.739, K3 = 294. (b) 2nd dataset (second raw):
y = {0.0023, 0.0025, 0.003, 0.004, 0.0062}, K2 = 37.739, K3 = 300. For each dataset three subplots show with a color gradient
the i− th mode contribution qi. Simulation parameters are provided in Supplemental Information SII.1 and SII.2

B. Formulation and numerical results

We begin with a study on synthetic data sets to present
the mechanisms of the proposed data-driven methodol-

ogy. A theoretical model based on a non-smooth and
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nonlinear three-degree of freedom system is used to un-
derstand the nature of the mode coupling in tapping
mode AFM. The AFM cantilever is modelled as a dy-
namical system using linear Euler-Bernoulli beam the-
ory. Next, the cantilever deflection is projected onto its
linear eigenmodes (computed near free air resonance) to
obtain a system of ordinary differential equations via the
Galerkin approach [33]

q̈i +Di (z) q̇i +Kiqi = −Ci − Fts,i (z) +BiΩ
2y sin (Ωτ) .

(1)
Here, qi (i = 1, 2, ...N) are the generalized coordinates of
the AFM modes used to reconstruct the tip displacement

z =
∑N

i qi+y sin(Ωτ). The equation is made dimension-
less with respect to the equilibrium gap width (η∗) and
the fundamental free-vibration frequency (ω0 = 2πf0) of
the cantilever. The amplitude of the dither piezo is given
by y and the dotted quantities represent derivatives with
respect to the re-scaled time τ (τ = ω0 t). We consider
a piecewise model for modal damping Di(z) which ac-
counts for the different dissipation mechanisms i.e when
the tip is not in contact with the sample (Di

att) ver-
sus when it is in contact with the sample (Di

rep) [34].
Furthermore, the coefficients Ki, Ci, and Bi are the
normalized modal stiffness, static deflection, and mode
participation factor, respectively. In Eq. (1), the tip-
sample interaction Fts(z) comprises long range nonlinear
Van der Waals (VdW) and Derjaguin–Muller–Toporov
(DMT) contact forces [34, 35]. The tip-surface interac-
tion is purely attractive when the separation distance z
is larger than the intermolecular distance (a0). Other-
wise, the interaction is governed by the contact mechan-
ics. Non-smoothness of the interaction force provides a
path for energy transfer between different modes of vi-
brations [14, 18].

Finally, the discretized Eq. (1) is truncated to N = 3
and simulated using a pseudo arc-length continuation
technique suited for hybrid dynamical systems [36]. Fig-
ure 2 showcases the sample indentation in the contact
region as a function of the excitation frequency, i.e. how
much the tip penetrates the sample. The response high-
lights a strong hardening effect. As a matter of fact the
sample acts as a physical wall for the impacting tip. The
growth of the amplitude response is constrained leading
to the so-called “amplitude-saturation”. The model pa-
rameters are tweaked to produce 6:1 and 17:1 internal
resonance of the fundamental mode with the second and
third mode of vibration, respectively since these specific

internal resonance are the most commonly observed dy-
namical phenomena in experiments [19, 37, 38].
Figure 2 shows the warping of the frequency response

branch due to modal interactions and can be exploited
for designing effective AFM characterization techniques
[14]. Fundamentally, this phenomenon is related to en-
ergy transfer induced by closeness of the higher modes to
specific higher harmonics such as the 6th and 17th har-
monic of the AFM cantilever [14]. Here, we use color gra-
dients to highlight the contribution of each of the three
modes to the total deflection of the cantilever. Figure 2
shows two data sets with different modes coupling con-
ditions. In Fig. 2(a) the resonance of the second and
third mode are kept well separated; whereas they almost
collide in the simulations of Fig. 2(b).
In the next step, we employ our QRNN algorithm made

up of three layers to capture the dynamics of the AFM
as shown in Figure 3. The implicit details necessary to
replicate the training reported in this article are pro-
vided in Appendix A3. It is interesting to note that our
data-driven approach accurately replicates the complex
non-smooth dynamics of the multi-modal AFM system.
Furthermore, only a few selected sub-orbits highlighted
as dotted black lines in Fig. 2(a) and (d) are used for
training the QRNN framework. This further emphasizes
the importance of having a data set with all the nec-
essary dynamical features during the training stage of
the data-driven modeling. Overlooking a few fundamen-
tal orbits would make the network unable to recognize
features related to the modes activation (for details, see
Supplemental Information SII.3).
The high fidelity reconstruction of the oscillatory orbits

suggests that the network successfully captures the prop-
erties of the system. This is shown in Fig. 3(a) and (d).
It is indeed this excellent agreement in the orbits, with
all the detailed features (Fig. 3(b) and (e) for the 1st/2nd

dataset, respectively), that grants for a subsequent anal-
ysis of the recurrent network. In particular, the hidden
units of the third layer are inspected to recognize pat-
terns arising due to the evolution of the higher modes of
vibration. The selected hidden units are compared to the
mode activation in Fig. 3(c) and (f). These hidden units
react in accordance with the variation in contribution of
higher order modes to the overall cantilever oscillation.
(Supplemental Information SII.4 reports an extended col-
lection of units). The step by step process for analysis
and selection of these hidden units will be detailed out
in Sec. II C.

C. Experimental observation of mode- coupling in
dynamic AFM

In order to identify the influence of higher modes on the
cantilever oscillations, we begin by examining the exper-
imental data obtained with a standard silicon cantilever

on a flat silicon sample (the experimental procedure is
detailed in Appendix A 1). The experimental frequency
response for an excitation amplitude of 0.016V is shown
in Fig. 4(a) and (b), whereas its time evolution in the
phase space is shown in Fig. 4(c). From Fig. 4(a), we
observe that as the excitation frequency increases during
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FIG. 3. Quasi-recurrent neural network prediction and analysis of the AFM nonlinear oscillations simulated with the three-
mode model of Eq. (1). Results in (a)-(c)/(d)-(f) are for the 1st/2nd dataset of Fig. 2, y = 0.0063 and 0.0062, respectively.
Subplots (b) and (e) show direct comparison for a few orbits from (a) and (d). In subplots (a) and (d) the dashed orbits are
those selected for the neural network training. Subplots (c) and (f) show the trend of the higher order generalized coordinates
q2,3 with respect to the excitation frequency. In the same plot selected hidden units evolution are reported to highlight similar
activation paths.

a forward sweep, the resonance curve showcases a strong
bending toward the right side of the resonance (spring
hardening) due to the repulsive forces between the tip
and the sample. This nonlinear behaviour leads to a large
hysteretic region wherein the amplitude depends on the
direction of the sweep.

Furthermore, the amplitude-saturated branch in
Fig. 4(b) highlights a wave-like behaviour with two cur-
vatures. The resulting concave valley, referred to as the
“sweet spot”, is due to the presence of a particular dy-
namical regime that is able to minimize the sample in-
dentation [14]. This sweet spot is a direct consequence of
a 6:1 internal resonance and manifests itself as distortions

in the phase space trajectory of the cantilever. This is
highlighted in Fig. 4(c), where the phase space orbit, ini-
tially circular, slowly warps as the excitation frequency
is swept in the forward direction. The plot shows differ-
ent wave-like regions associated with activation of higher
modes of vibration.

Moreover, in contrast to the previous section, where
the higher modes contribution can be directly accessed
via the analytical model, in experiments the additional
modes activation need to be deduced from the frequency
spectra. This is shown in Fig. 4(d), where the surface
and bar plots track the first three fundamental modes
and their influence in correspondence to specific excita-
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FIG. 4. Experimental nonlinear dynamic response and phase-space trajectories. (a) Experimental frequency-response curve
obtained from the raw mimimum deflection signal of the cantilever; the red and the blue curves represent the forward and
reverse sweeps in the excitation frequency fex. (b) Detailed zoom on the upper branch of (a), in the inset the knee of the
curve in the amplitude saturated region, i.e. “sweet spot” [14]. Colorcode is in accordance with subfigure (c). (c) Phase-space
trajectories for fex ∈ [164.1, 167.1] kHz showing the influence of higher eigenmodes in the cantilever oscillations. Color gradient
is accordingly to subfigure (b). (d) Spectrum analysis of the experimental FFT normalized by the maximum peak value of the
spectrum for different FIexcitation frequencies. Darker colors mean higher amplitude in the frequency response.

tion frequencies. It must be noted that the second mode
activates only near the frequency range of the amplitude-
saturated branch and follows a nearly constant incre-
ment with fex before it drops down when jumping down
from high to low amplitude branch (second bar plot of
Fig. 4(d)). Whereas, the third mode shows a Gaussian-
like behaviour with respect to the excitation frequency
(third bar plot) indicating selective sensitivity over a spe-
cific excitation frequency range. However, repeating the
above process for every pixel during scanning operation
requires significant post-processing and is highly sensitive
to the rate of acquisition since it dictates the resolution of
the frequency domain analysis. Hence, for these reasons
we implement the QRNN-based data-driven technique as
an alternative to retrieve the mode coupling in an easy
and computationally efficient manner.

D. Data-driven based prediction of higher order
mode coupling in experiments

In order to disentangle the effects of higher order
modes, first the experimental data is reshaped into a vec-
tor X that contains the displacement u of the cantilever
and the velocity u̇ obtained numerically by differentia-
tion.

Figure 5 shows the AFM dynamics predicted by the
QRNN in comparison with the actual experimental data.
Estimation is based on one period (1500 points) and
there is no training and cross validation as this applies
only in the training stage. We visualise this predic-
tion of the cantilever dynamics in the u-u̇-fex plane in
Fig. 5(a). QRNN shows remarkably accurate prediction
of the underlying dynamics considering that no mathe-
matical model nor any prior knowledge of the dynamical
system were employed and the prediction purely stems
from from measured experimental data. The network
begins by reconstructing the dynamics starting from the
case of weak tip-sample interaction (Fig. 5(b) and (c))
and works its way up to strong intermodal coupling
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FIG. 5. Quasi-recurrent neural network prediction of the AFM nonlinear oscillations. (a) Evolution of the orbits. Color gradient
from cyan to purple for an increasing excitation frequency fex ∈ [164.1, 169.4]. QRNN prediction (blue line) compared with the
experimental data (red line) in time (subplots (b),(d),(f)) and in the phase-plane (subplots (c),(e),(g)). Black solid lines are the
initial input data (a single oscillation period) for the QRNN which are obtained from the testing data. (b)-(c) Weak interaction
at fex = 164.175kHz, (d)-(e) Medium interaction at fex = 166.976kHz, (f)-(g) Strong interaction at fex = 169.356kHz.

(Fig. 5(f) and (g)) where the presence of higher order
modes warps the phase space trajectories with ripples
appearing on the periphery of the orbit.

Since the dynamics predicted by the QRNN algorithm
matches excellently with that of the experimental data,
we now inspect the characteristics of the network that can
correspond to specific dynamical fingerprints. In partic-
ular, we look for the underlying features of the network
such as the highly activated hidden units of the QRNN
network displaying correlation with activation the modes
in the experimental data as in Fig. 4(d).

Let ctn , with ∥ct∥ ≤ 1 be the value of activation for
the n-th hidden unit in the third NN layer. The hid-
den state for a single layer comprises 352 hidden units.
Their values are tracked for the entire range of excita-
tion frequencies, i.e. ctn = ctn(fex). The condensed
map of Fig. 6(a) gives an overall picture of the evolu-
tion of the ctn activation in the third NN layer. Each
frequency row, from bottom to top, sees the variation of
the unit as a function of time for a period T as illus-
trated for the zoomed frequency fex = 168.23 at the bot-
tom of Fig. 6(a). The visualization of activation values
suggests several recurring patterns in the hidden states.
It is worth analyzing the interesting triggering behaviour
of units with frequencies. We select the layout of highly
activated units leading to motifs as in the spectral trend
of Fig. 4(d). Strong activation of units associated with a
rise of the second mode and third mode of vibration are
reported in Fig. 6(b) and (c), respectively. Further units
possess analogous behaviour of those reported although
they have a lower level of activation.

In the next step we confirm the match found in
Fig. 6(b) and (c) between higher modes and hidden
units evolution by analyzing cantilever’s trajectories.
This is shown in Fig. 7 where three dynamical scenar-

ios are reconstructed, each representing a different de-
gree of strength of intermodal coupling. Figure 7(a)-(c)
shows the predominance of the third mode; whereas, the
Fig. 7(d)-(f) displays a second mode weakly activated;
and finally, Fig. 7(g)-(i) present strong mode interaction
between the first and the second flexural mode. Clas-
sification of the motion can be inferred by the warping
observed in the phase space, large smooth folds are hints
of the second flexural mode (e.g. Fig. 7 (d) and (g))
whereas crumpling is associated with the third mode be-
ing activated (Fig. 7 (a)). This can be verified using
numerical models and doing several FFT targeted for ac-
tivation of higher order modes as reported in [14]. Nev-
ertheless, this correlation can be formalized inspecting
the activated units. The QRNN network advances for-
ward in time, in parallel across multiple time steps and
it builds the correlation of hidden units between different
time steps. This property allows to check the hidden unit
that responds to time feature and which feature repeats
at specific time steps. Indeed, the activation of unit in
time relates with the wrinkles of the orbit and it allows to
determine their activation frequency (last row of Fig. 7).
Such investigation could be of particular help when un-
aware of the actual modes coming into play, the network
hints to generic vibrational components. Those have to
be labelled accordingly to the reconstruction of the sig-
nal. This could be achieved via a signal reconstruction
based on a projection over the manifold of specific units.
Details of this extension are out of the scope of this work
and left for future works.
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FIG. 6. Visualization of the hidden states of the quasi-recurrent neural network (QRNN). (a) Hidden states of all units for
the third layer. Activation is visualized as surface plots where colors denote the activation of each hidden unit. Below, the
zoom for fex = 168.23 kHz with the progress of the unit in time. (b)-(c) The neuron activation of selected individual hidden
units. Average neuron activation value for |ct| grouped by its evolution with respect the excitation frequency.

E. Extension of the QRNN prediction over
additional AFM experiments

The aforepresented approach is generalized over addi-
tional sets of experiments to prove a broader applicability
and to verify its repeatability. We modify the experimen-
tal conditions, that results in different tip-sample inter-
action and, as a byproduct, new mixtures of information
are coded into the AFM cantilever oscillation. In this sec-
tion, we look at the performance of the previously trained
QRNN on two additional experimental data sets .

In the first additional data set we use the same can-
tilever previously used (Fig. 4), however a different exci-
tation amplitude varies the energy of the impact between
tip and sample. In particular, we reduce the voltage ap-
plied at the dither from the 0.016 V of the training data
set to 0.015 V. As a consequence of the reduced excitation
amplitude, the AFM trajectory shows lower distortion.
The orbits showcased in Fig. 8 present less warping than
those in the case of Fig. 4. The indentation depth is also
reduced and the sweet-spot region shrinks as shown in
Fig. 8(a). Irrespective of the change in the interaction en-
ergy, the QRNN excellently reconstructs the phase space
as revealed by the comparison with the experiments in
Fig. 8(b) and (c).

In the second supplemental experiment a standard
TAP190Al-G rectangular cantilever is used to probe a

flat muscovite mica sample. Once again, the QRNNman-
ages to maintain the high fidelity of the reconstruction as
shown in Fig. 9. The excellent agreement of the predic-
tion with respect to the experimental data indicates that
the training of Sec IID was performed over a sufficient
library of tip-sample interaction mechanisms. In other
words, the recurrent network was successful in grasping
all the dynamical features of different experiments with-
out any additional training. Furthermore, in both ad-
ditional experiments (different excitation amplitude and
different material), the same hidden units are still cor-
related with the coupling of modes (see Fig. 8(d) and
Fig. 9(d)). The trend of these hidden units are simi-
lar to that of Fig. 6(b) and (c). The corroboration of
one trained network over different experiments stands as
load-bearing requisite for practically integrate the data-
driven approach with detection schemes based on nonlin-
ear modes coupling.

III. CONCLUSION

In summary, we introduce a data-driven approach to
investigate modal coupling in nanomechanical systems
as alternative to traditional spectral analysis. We ex-
plore the capability of the QRNN to predict intermodal
coupling in tapping mode AFM by using synthetic data
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FIG. 7. Relation of the hidden states of the quasi-recurrent neural network with the emergence of mode coupling for three
excitation frequencies: (a)-(c) fex = 165.576, (d)-(f) fex = 167.536, (g)-(i) fex = 169.356. Evidence of the response is shown in
the phase space (a),(d),(g), time traces (b),(e),(h) and neuron activation (c),(f),(i) for the 36th, 43th and 135th hidden unit.
We remark that the participation of other units are found to be of minor importance and only a few units govern the warping
mechanism of the phase space. A similar observation holds true for other experimental data sets (see section Supplemental
Information SI.1). Both subfigures (f) and (i) report confined regions of activation of the unit 341 (the one associated with the
third mode of vibration). The presence of the third mode, even if minor, it is in agreement with the experimental findings of
Fig. 4(d).

FIG. 8. Quasi-recurrent neural network prediction for the excitation amplitude Aex = 0.015V. (a) Indentation depth compared
with the previous experimental conditions (Aex = 0.016V); (b) Experimental phase-space orbits; (c) Predicted phase-space
orbits; (d) Average neuron activation of selected individual hidden units.

sets obtained from simulating a non-smooth and nonlin-
ear model. We show that the QRNN reconstructs the
nonlinear dynamics of tip-sample interaction with high
fidelity. In addition to the effectiveness of capturing the
underlying dynamics of the system, the QRNN deciphers

individual contribution of higher order modes. It is possi-
ble to reconstruct their variation over different regions of
excitation frequency by analyzing the hidden units of the
network. The insights gathered from the synthetic data
set are used to train a three-layer QRNN to predict the
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FIG. 9. Quasi-recurrent neural network prediction for a TAP190Al-G rectangular cantilever interacting with a flat Muscovite
Mica sample. (a) Frequency response with the sweet spot; (b) Experimental phase-space orbits; (c) Predicted phase-space
orbits; (d) Average neuron activation of selected individual hidden units.

experimental dynamics of a silicon cantilever interacting
with a flat silicon sample. In particular, we studied the
average neurons activation to correlate the response of
the hidden units to dynamical patterns originating from
higher order vibrational modes. Notwithstanding differ-
ent cantilever-sample configurations with specific individ-
ual interaction mechanisms, there exist recurring features
in the evolution of the cantilever orbit. A quasi-recurrent
neural network trained on these fundamental patterns is
able to grab the dynamics on multiple samples and dif-
ferent interaction conditions. This allows for a unique
trained network to be a modal interaction sieve for differ-
ent experimental conditions, e.g. soft/strong tapping or
different tip/sample materials. For a wider applicability,
it is advisable to perform the training with an augmented
dataset with multiple intermixed tip-samples configura-
tions each of which provides individual peculiar features.

Currently there is no universal technique to analyze
mode coupling in dynamic AFM. Many studies incor-
porate multifrequency-AFM techniques to map nanome-
chanical properties of samples, e.g. polymeric, biological
substances. However, only a few look into the oppor-
tunity for enhancing the sensitivity of the higher-order
spectral components. In addition, internal resonance has
been exploited by modifying the geometry of the can-
tilever with notches or holes or by adding a concentrated
mass at specific locations on the cantilever. Our ap-
proach is meant to assist the choice of suitable dynamical
conditions for dynamic AFM only by tuning the nonlin-
ear resonance frequency. In this way the internal res-
onance can be triggered and activate the contribution
of higher modes without needing specialized cantilevers
and advance knowledge of cantilever dynamics. We be-
lieve the proposed data-driven approach can be utilized
to guide the AFM sensing operation, by allowing to en-
hance the SNR of higher harmonics and by extension
improve the accuracy of nanomechanical characteriza-
tion, e.g. high resolution compositional contrast in multi-
frequency AFM applications. Finally, given the general-
ized nature of the proposed methodology, the approach
can be extended to different micro and nanomechanical

systems to understand the hidden nonlinear dynamical
interactions.
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Appendix A: Methods

1. Experimental procedure

The experiments are done using a commercial AFM
system (JPK Nanowizard) and with commercially avail-
able cantilevers and samples.

The experimental data set is obtained by first holding
the cantilever at a precise fixed distance from the sam-
ple while the dither piezo drive frequency is swept for-
ward and backward around the resonance frequency at a
constant excitation amplitude. The resulting cantilever
oscillations are recorded at each frequency step directly
from the photo-detector using an Field Programmable
Gated Array (FPGA) from National Instruments with
sampling frequency of 250 MHz. The operating condi-
tions are comparable with that of the standard amplitude
set-point ratios used during normal scanning operation in
dynamic AFM [14]. The time series cannot be stored syn-
chronously to an external hard drive while sweeping the
excitation frequency due to low data transfer bandwidth
and high-frequency dynamics. Thus data-buffering al-
lows for a complete acquisition while storing the chunks
of time series within the FPGA and intermittently trans-
ferring it to an external hard disk for further analysis.
This represents a major drawback that makes real time
analysis of the cantilever deflection extremely difficult.
On the contrary, buffers are avoidable only by a massive
reduction of each chunk duration length by recording a
portion of each oscillation per each frequency; however
this makes frequency-domain analysis challenging due to
poor resolution.

2. Quasi-recurrent neural networks

Here we briefly summarizes the QRNN process to
maintain the paper self contained. For additional de-
tails we encourage the reader toward the original paper
of Connor et al. [27] and to the Supplemental Information
in Yasuda et al. [30].

The structure of the QRNN with the succession
of the layers is sketch in Fig. 1(b). The time se-
ries vector is X = [x(t1),x(t2) . . .x(tT )] with x(ti) =
[x1(ti), x2(ti) . . . xn(ti)]. The sequence Z ∈ RT×m is
calculated with candidate vectors z(ti) and where m is
the number of hidden units in a layer. By using the
convolutional filter banks Wz,f,o ∈ Rk×n×m with filter
width of k, then Z = tanh (Wz ∗X), F = σ (Wf ∗X),
O = σ (Wo ∗X) are calculated (σ is the sigmoid func-
tion, ∗ denotes a masked convolution along the time se-

quence). Convolutional layer F and O are composed of
f(ti) and o(ti) respectively for the gates required for the
pooling components. The pooling components are ob-
tained with the fo-pooling : ct = ft ⊙ ct−1 + (1− ft)⊙ zt
and ht = ot ⊙ ct where ⊙ is elementwise multiplication.
Element-wise calculation in the pooling functions acti-
vate neurons regardless past outputs of other neurons in
the same pooling layer. Block diagram for the QRNN
is sketched in Fig. 10. This structure resolves the deep
level of coupling interaction and the challenge to extract
meaningful information about the effects of individual
neurons. Thus, hidden states of a QRNN are promptly
interpretable and they incorporate information on how
the network process the input data. Convolutional lay-
ers elaborate data in parallel forward in time whereas
recurrent relations are implemented within the pooling
layers [32].
The network performs rolling cross-validation and pre-

diction as follows. It approximates the underlying dy-
namics by advancing through the time series in steps of
6µs which corresponds to an input chunk of T = 1500
steps. From X ∈ ℜ1500×2 the QRNN estimates the dis-
placement and the velocity for the next 500 steps. Based
on the predicted 500 steps and the last 1000 from the
input data, another 500 time steps are forecasted. The
routine goes on until a suitable prediction is evaluated.

3. Quasi-recurrent neural networks training

We train the QRNN selecting only a few orbits in the
full frequency range (Supplemental Information SII.3).
The QRNN training has been set up with the param-
eters in Table I. Training is optimized by using Adam

Parameter Symbol Value
batch dimension b 25
filter width k 6
epochs e 100
learning rate l 10−3

decay rate d 10

TABLE I. Parameters used in the QRNN.

optimization algorithm. Training loss is in Fig. 11. The
Python code uses the 1.14 gpu version of the ML library
TensorFlow. Additional details regarding the QRNN em-
ployed in this work can be found in [30].
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