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Abstract—In this study, a motion intention detection (MID) problem from surface electromyographic (sEMG) signals,
involving upper limb, was faced through a pattern recognition approach. Linear discriminant analysis (LDA) and multinomial
logistic regression (MLR), were used to tackle a multi-class classification for eight healthy subjects. The sEMG signals were
segmented with a window centered on movement onset. Different feature sets, engaging time (TD) and frequency (FD)
domain, were used to fit the models. Moreover, principal component analysis (PCA) was employed to reduce the whole
TD+FD space. In this case, both models performed satisfyingly, reaching mean accuracy of 88.8% (LDA) and 91.8%
(MLR). Finally, a heuristic method is proposed to evaluate feature importance. The results here presented support the use
of PRC to solve motion intention detection problems, highlighting the possibility to integrate FD features to the commonly
used TD ones, as in other myoelectric pattern recognition problems, e.g. hand gesture recognition.

Index Terms—motion intention detection, upper limb, pattern recognition, electromyography (EMG), feature importance.

I. INTRODUCTION

The analysis of surface electromyography (sEMG) plays a
fundamental role in kinesiology and represents a valuable information
source in controlling neuroprosthetics, triggering assistive devices,
or interacting in virtual rehabilitation environments [1]–[3]. This
is supported by the high number of works reporting an increasing
use of sEMG-based control interfaces, due to an enhancement in
the processing techniques that renders the extraction and the use of
information fast and reliable [4]. However, the quality and amount
of information can differ depending on the degree of complexity that
the system, charged with supervising the human-machine interaction,
has to handle. As an example, an end-effector rehabilitation robot
may require only the muscles onset instant of contraction to deliver
assistance when the upper limb motion path is predefined [5]. On the
other hand, more refined information from sEMG signals is required
when the robot would predict the patient motion intention in terms
of direction and final configuration of the arm [6].

The latter problem was commonly faced through machine learning
techniques. Indeed, both pattern recognition (classification-based)
and proportional (regression-based) control architectures used sEMG
derived information, either to predict which class of movement the
subject was going to perform or to forecast the evolution of kinematics
variables such as shoulder, elbow and wrist angles [6], [7]. However,
it should be noted that the patient’s degree of impairment can impact
on the choice of the assistive control solution. In some cases, they
could be weak in certain degrees of freedom (DoF), hence finding
the initial trigger of the movement too challenging. In the worst
case, patients could not be able to perform a complete path with the
upper limb, thus making the kinematic data not suitable for training
regression-based architectures [8], [9]. Hence, pattern recognition
control (PRC) remains still appealing for eliciting assistive devices
for the upper limb such as end-effector robots or exoskeletons [4],
[8], [10], [11].
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In this context, shoulder motion intention detection (MID) has
been relatively less studied under the PRC paradigm. A reason for
this could lie on the intrinsic complexity of the shoulder joint,
which encompasses a high number of DoF to be decoded [12],
[13]. Moreover, in different studies involving the upper limb, PRC
architectures were trained using features extracted from static sEMG
activation segments (i.e. during isometric muscle contraction) [10],
[11], [13]. However, in MID problems a reasonable choice is
to consider signal epochs with a time window centered on the
movement onset [6], thus capturing a dynamic condition, where
the muscles involved in the movement work synergistically and
are not fully contracted. This represents a challenge for the PCR
scheme development, since transient data tend to be less suited for
classification problems, as in hand gesture recognition [14].

Shoulder movements classification was already faced, but consid-
ering only sEMG in the static phase of muscle contraction, while
the dynamic phase was not explored [13]. In this study, an eight-
class shoulder MID problem was treated under the PRC paradigm,
only considering the transient phase of myoelectric activity, as it
commonly happens in rehabilitation robotics [4], [6], [8].

Hence, the main goal is to assess how EMG feature in time and
frequency domain perform over a relatively large-class of shoulder
movements. Linear discriminant analysis (LDA) and multinomial
logistic regression (MLR) were used as classifiers, since they are
widely employed in the practice.

II. METHODS

A. Dataset presentation and signals segmentation

For this study data from a public available dataset were used
[15]. Eight healthy subjects (four males and four females) aged 25
± 1.8 years were instrumented with eight sEMG probes (sampling
frequency 1 kHz) placed over the following muscles: clavicular
and sternal heads of pectoralis major, serratus anterior, trapezius
descendent, trapezius transversalis, trapezius ascendent, infraspinatus,



and latissimus dorsi [13]. Each subject performed eight different upper
limb movements mainly involving the shoulder joint in two DoF:
shoulder flexion by 45◦, 90◦, 110◦ (FL1, FL2, and FL3 respectively);
shoulder hyperextension (HY) by −30◦; shoulder abduction by 45◦

and 90◦ (AB1 and AB2); shoulder elevation by 45◦ and 90◦ in a
45◦ externally rotated plane (EL1 and EL2). Each movement was
repeated 10 times.

sEMG signals for all muscles were filtered between 30 and 450 Hz
with a fourth order zero-phase band-pass filter [1], [4], [8]. Then, they
were segmented for each subject and for each movement repetition
by selecting those signal epochs that fall within a MID window of
300 ms, centered on the movement onset, i.e. 150 ms before and
after the beginning of movement (Fig. 1) [4], [6]. Thus, a total of 10
(repetitions) × 8 (channels) × 8 (subjects) sEMG trials were available
for segmentation, feature extraction and model training.

Fig. 1. Example of sEMG signal windowing. The first six seconds of
shoulder angle (gray dashed line) and trapezius descendent sEMG
signal (blue trace) for subject 1 are reported. Both time-series were
range-normalized for a better visualization. The MID window of 300
ms (pale pink box) is centered on the onset of the movement and it
highlights the signal epoch taken in this case.

B. Feature extraction and classification

sEMG epochs were sub-segmented into sliding windows of 150
ms with an overlap of 75% (corresponding to a time increment of
37.5 ms) in order to increase the PRC decision density, reducing the
global architecture delay [16], [17]. Then, 14 time-domain (TD) and
10 frequency-domain (FD) features were computed on the sliding
window for each channel and normalized to have zero mean and
unitary variance. Such features were the same proposed in [17],
with exception made for the sample entropy, which was replaced
by permutation entropy (PermEn) and fuzzy entropy (FuzEn) [2].
Concerning the TD features, note that the auto-regressive (AR)
coefficients and EMG histogram (HIST) consist respectively of 4 and
10 values. Thus, a total of 26 different TD features were considered.
A single feature vector, using either TD and FD features, had a
dimension of < = (26 + 10) × 8 = 288. For the features not directly
mentioned above, the same abbreviations reported in [17] were used.

As already mentioned, two models were considered to tackle the
eight-class MID classification problem: LDA and MLR. The latter
had an L2-regularization term with � = 1. Both of them are widely
accepted in hand gesture recognition [17], [18] and, in particular,
LDA was also employed in upper limb MID problems [8], [10].

Within-subject classification accuracy was evaluated for both
classifiers by a five-fold validation method, using four different feature
sets. In the first and second case, the classifiers were fit employing
TD and FD features and their average accuracy was statistically
compared by t-test. Principal component analysis (PCA), retaining
95% of explained variance (PCA95), was applied to the whole feature
set (TD+FD) to assess how a common feature reduction technique
can impact on both LDA and MLR classifiers [19]. Therefore, a
statistical comparison between PCA95 and TD+FD accuracies was
performed (t-test). For each comparison significance was set at 5%.

C. Feature importance

Considering the PCA95 feature set, it was interesting to evaluate
which features from the TD+FD were more important in defining
the PCA components as the new basis to express feature vectors.

By definition, such components form an orthonormal reference
frame of the input space. In this case, considering the TD+FD
feature set as the initial input space, each PCA component had 288
coordinates: these can be seen as the projection of that component on
the original feature axes. The higher the value of such projection, the
more is the original feature important to determine the PCA component
under consideration. Then, if PCA components altogether have little
projection on one of the original feature axis, then this one would
be considered less important than other axes for which the overall
projection is higher.

To define the latter concept, it is reasonable to consider the absolute
value of all PCA components, and then make their vector sum. In fact,
taking the modulus allows to highlight coordinates with either positive
or negative projections, preventing such quantities from canceling
out. Therefore, the outcome of these operations is a single vector
containing the overall projections. In order to assign to the latter an
importance score, each of them is divided by the total sum of all
overall projections. This would allow to quantify feature importance
as percentage. This heuristic can be better understood in the example
shown in Fig. 2.

Considering that the models were trained using a within-subject
scheme, feature importances are computed on the PCA95 set for
each subject, and then averaged over them. This would yield a vector
of dimension 1× 288 containing feature importances over the whole
dataset. Observe that, if every feature exhibited the same importance,
the elements of such vector would be identical, having a value of
100/288 = 0.347%. Therefore, it seems reasonable to use such value
as an importance threshold )imp, to evaluate whether they are more
(> )imp) or less (≤ )imp) relevant.

III. RESULTS

Table 1 reports the mean accuracies over subjects for LDA and
MLR classifiers: both provided good classification results except for
LDA in TD+FD case, which presented a low accuracy score with
a relatively high variance of 12.9%. However, comparing the two
classifiers within the same feature set, MLR slightly overcomes LDA.
Globally, the better condition was obtained using PCA95 feature set,
which raised LDA’s mean accuracy to 88.8%, significantly higher
than the TD+FD feature set.

Regarding feature importances computed as described in Section
II-C, they were averaged over channels in order to obtain mean



Fig. 2. Assume that {û1, û2, û3 } are the PCA components of the
new reference frame $ − *1*2*3, starting from the initial reference
frame $ − -. / (each axis underlines a feature). In this case, the
angles between the original and new reference axes are respectively:
\1 = 45◦, \2 = 5.06◦ and \3 = 45.25◦. As such, PCA components
with respect to the initial reference frame are û1 = (0.71, 0.06, −0.70),
û2 = (0, 0.99, 0.09) and û3 = (0.71, −0.06, −0.70). Applying the
heuristic described in Section II-C, the overall projection vector is
(0.35, 0.28, 0.37). From this outcome, . has the least importance in
defining PCA components. This is quite intuitive, since 2 out of 3
components project mainly on - and / axes, making these latter two
the more relevant features.

TABLE 1. Table reports the within-subject accuracy in percentage
averaged among the eight subjects. † symbol indicates p<0.01.

Classifier
Feature Domain

TD FD TD+FD PCA95

LDA 86.9 ± 4.9 82.7 ± 5.0 63.8† ± 12.9 88.8† ± 3.3

MLR 91.8 ± 3.0 87.0 ± 5.3 93.0 ± 3.1 91.8 ± 3.4

feature importances on the core 36 features from the TD+FD set
(Fig. 3).

Fig. 3. Feature importance, averaged over channels, for TD (in blue)
and FD (in green) features.

IV. DISCUSSION

In this study, a MID problem involving shoulder muscle contractions
was assessed through two pattern recognition models commonly

employed in myolectric control applications. As it happens in
rehabilitation robotics, the design of MID pattern recognition
architectures should avail of features vectors extracted from short
sEMG signal epochs, which best capture the characteristics of the
movement onset [4], [6]. This aspect differs from what was done in
other myoelectric PRC schemes, i.e prosthetic control, where models
were trained using steady-state sEMG signals [14], [17]. Indeed, MID
PRC architectures mirror the necessity of recognizing the intention
of the patient, dealing with sEMG transients in muscle contraction
rather than steady-state signals from a reached static pose at the end
of the movement [4], [6].

Albeit the use of the aforementioned feature sets on transient data
might negatively impact on the classification accuracy [13], [14], both
LDA and MLR classifiers reported good within-subject accuracies,
encouraging the use of such models for solving MID problems [4], [6],
[8], [10]. The poor performance observed for LDA using the TD+FD
feature set could be explained by a condition where the dimension
of the feature space was comparable with the number of training
samples, affecting the sample covariance matrix estimation required
for the LDA decision boundary computation [20]. This allows to
better appreciate the role of PCA95 in boosting the accuracy score
for LDA. In fact, the dimensionality reduction permitted to depart
from the critical condition mentioned before, improving the well-
posedness of the covariance matrix. The latter was supported also
by the significantly higher accuracy of the PCA95 over the TD+FD
feature set (Table 1).

It is worth noticing that the classifiers here employed represent a
common choice when dealing with myoelectric control, in particular
for real-time and practical applications, since they are fast to train
and offer robust performances also with a limited amount of data
[8], [21]. Note that assessing which is the best classifier for this kind
of problem is beyond the aim of this study and it would require a
fair comparison between a high number of PRC architecture, based
on machine learning and deep learning approaches [6], [10], [22].

The problem here analyzed took into account 8 different classes of
upper limb movements, and part of them shared the same shoulder
DoF. As an example, shoulder flexion was performed for three
different final configurations, namely FL1, FL2 and FL3, which
were classified with good accuracy although they imply the same
class of movements. This suggests that the sEMG epochs windowed
at the beginning of the movement contained enough information to
discriminate between similar movements. Nevertheless, an opportune
selection of the muscles involved in a specific motor task plays a key
role [4], [6]. In fact, the subject’s motion intention could be viewed as
a particular synergistic muscle activation pattern that would emerge
only with an adequate number of sEMG probes related to precise
muscles. This inevitably poses the attention to the subtle aspect of
the experiment design, data collection, and PRC model selection.
Furthermore, it should be stressed out that the instant of movement
onset is not trivial to be identified in real-time applications [1], while
it is easy to pinpoint in post-processing, through kinematic data
related to the joints involved in the movement.

Regarding the feature sets employed, TD and FD features separately
performed well on both LDA and MLR, although the TD+FD set did
not produce a consistent increase in classification accuracy (Table 1).
This aligns with the trend observed in literature that prefers the use of
TD features for MID, since they are simple and fast to compute [4],
[6], [10]. However, by means of the heuristic introduced to compute



feature importance, it is possible to see that relevant features came
evenly from both TD and FD sets (see Fig. 3). This is confirmed also
by the absence of significant differences between TD and FD accuracy
for both classifiers (Table 1). In particular, regarding the 10-bins EMG
histogram, the relevance of this feature strengthens existing literature
[6], encouraging its use and development in future works. Moreover,
even if the size of the FD feature space is smaller compared to TD,
features like Median Frequency (FD), Frequency Ratio (FR) and
Power Spectrum Ratio (PSR) overcame the importance threshold,
hence capturing important information that contributed to obtain good
classification performances when using the PCA95 feature set. In
addition, the use of PCA did not provide a significant loss of accuracy
with respect to TD+FD set (Table 1), with the major advantage of
a reduced feature space dimensionality [19].

Eventually, an aspect of interest would be exploring feature
sets suitable for achieving a good inter-subject operability of PRC
models for MID. This could be investigated through deep learning
approaches, since they demonstrated high classification performances
in myoelectric gesture recognition [23]. However, additional studies
are needed to gain insights about using neural network (NN)
architectures, such as recurrent or long-short memory NN [22],
due to the limited amount of data available during the transient EMG
epochs for MID problems.

V. CONCLUSION

In this study the problem of shoulder MID through sEMG data and
PRC was faced considering a large number of shoulder movements.
The classifiers employed presented good performances in terms
of classification accuracy. Moreover, they are particular suitable
for application purposes since they are fast and with a limited
computational burden, as demonstrated in myoelectric control.

Another important aspect pointed out in the work is the investigation
of both TD and FD sEMG features for MID. The use of different
domains features for training PRC architectures was commonly faced
in hand gesture recognition but not accounted in the field of upper-limb
MID, where only TD features were considered. This suggests that
approaches used for predicting hand movements can be transferred
in the field of MID when one has to deal with transient EMG signal
epochs.
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