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Abstract

The aim of the paper is to understand the price dynamics generated by the

interaction of traders relying on heterogeneous expectations in an asset pric-

ing model. In the present work we propose a financial market populated by

three types of agents – fundamentalists, chartists and imitators. The latter

submit buying/selling orders according to different trading rules using a 2D

Piecewise Linear (PWL) discontinuous map. Our contribution to the exist-

ing financial literature is twofold. First, we perform an analytical study of

the model involving a 2D PWL discontinuous map, where mainly numerical

results are provided by researchers, besides few exceptions. In particular,

we investigate the bifurcations showed by the model and the large variety of

dynamical behavior produced. Finally, we provide numerical simulations in

order to highlight the interaction between traders with heterogeneous expec-

tations that can lead to intricate bull and bear price dynamics.
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1. Introduction

In the standard finance literature investors are homogeneous and per-

fectly rational (see for example the pioneering works of Friedman (1953),

Muth (1961), Lucas (1972)). More precisely, the representative agent has

rational expectations about future variables and is able to solve the expec-

tation feedback system. Models with a representative and perfect rational

agent converge toward the unique stable equilibrium in the long run and every

deviation from the equilibrium is only temporary. As stressed by Hommes

(2013), models with a perfect rational agent fit into a linear view of a pre-

dictable economy. Moreover, in most nonlinear market equilibrium models it

is not possible to compute the rational expectation equilibrium, even if the

agent knew all equilibrium equations.

Empirical evidence, instead, establishes that traders are heterogeneous

and boundedly rational in real life (see for example Chiarella et al. (2009),

Hommes (2013), Caiani et al. (2016), Colasante et al. (2017)). This point

of view aims at explaining the stylized facts (such as volatility clustering,

fat tails of returns, bubbles and crashes) observed in financial markets. Pio-

neering works on heterogeneous interacting traders in financial markets are

for example Day and Huang (1990) and De Grauwe et al. (1995), Brock

and Hommes (1998), where different traders, endowed by several behavioral

rules, trade in the market. Heterogeneity and bounded rationality introduce

non-linearity in the model which is a further element explaining complicated
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dynamics of prices in the market. Indeed, non-linearity is linked to the frac-

tions of agents trading in the market which are updated at each time (see

Hommes (2013) for a survey). A huge amount of deterministic and non-

linear works in the heterogeneous agents framework have been proposed.

For example, Naimzada and Ricchiuti (2009, 2008) analyze a model with a

switching mechanism and they show that complex dynamics can arise even

if fundamentalist agents generate different fundamental values. Westerhoff

(2004) and Chiarella et al. (2005) show that technical traders can switch be-

tween several financial markets. Further, Agliari et al. (2018) develop a stock

market model in which participation depends upon an attractivenes measure

related to the market activity and the fundamental value of the market.

The authors show how the participation mechanism amplifies the occurrence

of booms and busts dynamics. Others recent works of deterministic models

with heterogeneous agents are, for example, those of Ter Ellen and Verschoor

(2018), Hommes and LeBaron (2018) and Polach and Kukacka (2019).

Differently from previous works, our map is two-dimensional, discontin-

uous, triangular and characterized by two linear branches. We remember

that discontinuous maps belong to the more general class of piecewise lin-

ear (PWL) maps, which can be subdivided into two groups: continuous and

discontinuous. The former have been deeply analyzed and we have a great

knowledge of this kind of maps. Some important works in this field are

Zhusubaliyev et al. (2001), Sushko et al. (2006), Di Bernardo et al. (2008),

Sushko and Gardini (2010), Avrutin et al. (2014). About the latter, there

are only partial results, mainly in the one dimensional case (see, for example,

Sushko and Gardini (2006), Gardini et al. (2010), Gardini and Tramontana
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(2011), Tramontana et al. (2012), Tramontana and Westerhoff (2013), Sushko

et al. (2015), Panchuk et al. (2018), Gu and Guo (2019)).

As we will see, in our model the analytical form of the map is due to the

introduction of agents which act as imitators. In fact, this type of agents

follows the more successful strategy at each time and this new mechanism

yields a PWL discontinuous system. Notice that PWL maps allow to consider

several peculiarity of economic and financial models since they enlarge the

possible final dynamics. For example, they are characterized by a much richer

class of bifurcation phenomena, i.e. the border collision bifurcations (BCB)

(term introduced by Nusse and Yorke (1992), Nusse and Yorke (1995)) be-

yond the standard bifurcations. A border collision bifurcation can be defined

as any contact between an invariant set and the border separating different

regions of definition (see Avrutin et al. (2014)). A peculiarity of this kind

of bifurcation is to show the sharp transition to chaos with respect to the

standard one and from an economic point of view this yields more unex-

plored scenarios. An interesting application of these maps could be related

to the research field focusing on different states or regimes of the market in

a deterministic setting. To this purpose, Chiarella et al. (2012) arguments

that price level and volatility tend to move together with different market

states, during boom and bust periods, by considering a simple heterogeneous

agent model (HAM) with Markov chain regime-dependent expectations. The

paper of Ang and Bekaert (2002) finds empirical evidence that stock returns

follow a complicated process with multiple regimes, while Guidolin and Tim-

mermann (2007a) and Guidolin and Timmermann (2007b) show that asset

returns switch among four states and investor’s behavior varies with such
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states. There are only few papers analyzing different states of the market

as proposed by previous authors (Manzan and Westerhoff (2007) and Huang

et al. (2010), for example). To this regard, we would like to cite, in par-

ticular, Gallegati et al. (2011) and Huang and Zheng (2012) which resume

the contribution of Kindleberger (2005), where series of typical patters of

speculative bubbles and crashes in the world history are listed. This last

paper is able to identify a general pattern followed by most of these bubbles

and crashes. Moreover, Rosser (2000) groups the different crises documented

by Kindleberger (2005) in three different types according to their depth and

length. It is possible to classify them as sudden crisis, smooth crisis, and

disturbing crisis. It is important to stress the fact that not only a switching

from bull to bear regions (and vice versa) of the market is possible, but also

that the price could either stay in the same regime or escape from one regime

to another.

To sum up, in this work we study the price dynamics of a financial mar-

ket with heterogeneous interacting agents. The model includes an imitation

component i.e., beyond fundamentalists and chartists, we consider imitators’

traders. Our assumption produces a two dimensional piecewise linear dis-

continuous map, which allows us to widen the analysis of financial markets

since it includes a larger variety of bifurcation phenomena and, then, new

economic scenarios have to be investigated (as we will see in Section 4).

The contribution of the paper to the existing literature is twofold. From

an analytical point of view, we analyze the local properties of the system

and we focus on the study of the two-cycle. Moreover, we demonstrate that,

when it exists, the two-cycle is symmetric with respect to the bisector and
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this result simplifies the study. The analytical results are important since two

dimensional PWL discontinuous maps which have been studied by an analyt-

ical point of view are not much. Secondly, we deeply investigate the economic

scenarios arising in our model by numerical simulations, following the work

of Nusse and Yorke (1992). To this purpose, we analyze the consequences

of different trading reaction of agents finding that chartists play a predomi-

nant role in increasing instability in the market, while imitators amplify this

effect. Moreover, we investigate the occurrence of the center bifurcation, a

kind of bifurcation which typically occurs in the case of discontinuous maps,

and its economic implications.

The paper is organized as follows. In Section 2, we develop the model. In

Section 3, we study some analytical properties of the system (such as fixed

points, their local stability and periodic points). In Section 4, we carry out

numerical simulations in order to support the analytical results and to show

how complexity is exhibited by our model, as a consequence of movements

in the parameters of interest. Section 5 concludes.

2. The model

We propose a financial market populated by three types of agents (funda-

mentalists, chartists and imitators) using a two dimensional piecewise linear

discontinuous triangular map and the dynamic equation of price as in Day

and Huang (1990). The model includes a market maker who adjusts the price

basing on order imbalances, chartists or technical traders who bet on the per-

sistence of bull and bear markets (i.e. markets where prices are overvalued

or undervalued, respectively), two types of fundamentalists who believe in
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mean reversion (i.e. they expect prices return towards fundamental values).

The market maker adjusts the price at time (t+ 1) following this rule:

Pt+1 = Pt + a(Df
t +Dc

t + nDi
t) (1)

where a > 0 is a parameter used to adjust the price. We assume a = 1.

The demand of the chartists is:

DC
t := c(Pt − Pt−1) (2)

with c > 0.

Now, summing and subtracting the fundamental value, we obtain:

Dc
t = c(xt − xt−1) (3)

where xt = Pt − F .

Differently from Tramontana (2013) who introduce a non-linear trading

rule for chartists, we assume a simple linear forecasting rule for them. We

remember that we are using a PWL discontinuous model set up then in the

model there is not non-linearity elements. Chartists have not information

about the fundamental price so it is obvious for them to consider the price

at time (t − 1). Chartists are not sophisticated traders and they decide to

submit buying order if the deviation of price at time (t − 1) with respect

to t is greater than zero; in this case they believe on the persistence of bull

market. Otherwise, if Pt − Pt−1 < 0, chartists submit selling orders because

they believe in the persistence of bear market.

The parameter c is a positive reaction parameter. Chartists submit buying

orders when prices are above the fundamental value, while they submit selling
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order when prices are below the fundamental value.

The demand of fundamentalists is:

Df
t := f(F − Pt) (4)

with f > 0.

Remembering the deviation from the fundamental value (xt = Pt − F ) and

substituting it into the demand function of fundamentalists we arrive to:

Df
t = −fxt (5)

Therefore, fundamentalists submit buying order when prices are below F

since in this case they believe that the market is undervalued; while they

submit selling orders when prices are above F because they believe that the

market is overvalued. We consider the same demand function of Tramontana

(2013) for fundamentalists, and f (as for chartists) represents a positive

reaction parameter.

The other new ingredient that we introduce in the model is the demand

function of imitators. We follow the same approach as in Tramontana (2013)

(though we consider a linear demand function for chartists): we use a simple

forecasting rule which is known in the economic literature but it has not been

applied in the framework we propose. Imitators use a very simple heuristic

rule to form their expectations, in fact they look only at Pt and Pt−1: if

Pt is closer than Pt−1 to the fundamental value, then they conclude that

fundamentalists’ strategy has been successful and they imitate them at time

(t+ 1).
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Hence, the demand function of imitators is given by:

Di
t =

i(F − Pt) + µ1 if |F − Pt| ≥ |F − Pt−1|

−i(F − Pt) + µ2 if |F − Pt| < |F − Pt−1|
(6)

Considering xt = Pt − F , we obtain:

Di
t =

−ixt + µ1 if |xt| ≥ |xt−1|

ixt + µ2 if |xt| < |xt−1|
(7)

where, differently from Tramontana (2013), we introduce the parameters µ1

and µ2 which represent the costs of imitation, that is the costs to imitate the

best strategy. Moreover, these parameters are allowed to assume negative

values meaning that imitators are able to freely acquire relevant information

about the strategy to imitate. Then, the more these parameters are negative

the simpler is acquiring information for imitators. Now we have to distinguish

different possible scenarios which can appear when these three kinds of agents

interact. We start by considering imitators. We obtain two different systems:

System 1

If {xt ≥ |xt−1|} ∪ {xt ≤ −|xt−1|} then:


Df
t = −fxt

Dc
t = c(xt − xt−1)

Di
t = −ixt + µ1

System 2

If {−|xt−1| < xt < |xt−1|} then:

9




Df
t = −fxt

Dc
t = c(xt − xt−1)

Di
t = ixt + µ2

We put together the different demand functions into the price equation, so

that we can obtain the complete model involving imitators. The price equa-

tion written in terms of deviation from the fundamental value we introduced

before is:

xt+1 = xt + (Df
t +Dc

t + nDi
t) (8)

where

Dc
t = Dc

t (xt−1, xt)

Df
t = Df

t (xt)

Di
t = Di

t(xt)

therefore

xt+1 = xt + (Df
t (xt) +Dc

t (xt−1, xt) + nDi
t(xt)) (9)

As in Tramontana and Westerhoff (2013) we focus on the role of imi-

tators, in other terms we assume that the number of fundamentalists and

chartists are both normalized to one, that is fundamentalists and chartists

are presented in the market in equal number (both normalized to one). Dif-

ferently, the number of imitators (n) is not fixed. For example, a value of

the parameter n equal to 2 means that imitators are twice the number of
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fundamentalists or chartists, that is a half of the total number of traders.

Therefore, according to the previous considerations, we assume n ∈ (0,+∞)

which implies that there are not constraints for agents participation trading.

3. The dynamical system

Basing on the previous analytical equations, we get our final dynamical

system. Equation (9) defines a second-order difference equation, since it is

characterized by a time delay (price of tomorrow depends on yesterday and

today). Hence, by introducing the state variable yt = xt−1, we obtain the

following two-dimensional dynamical system:xt+1 = xt + (Df
t (xt +Dc

t (xt, yt) + nDi
t(xt))

yt+1 = xt

We study the complete model with the presence of imitators, as a conse-

quence it is defined by the map T = T1 ∪ T2, where:

T1 :

xt+1 = f1(xt, yt) = (1− f + c− ni)xt − cyt + nµ1 if |xt| ≥ |yt|

yt+1 = g1(xt) = xt

(10)

T2 :

xt+1 = f2(xt, yt) = (1− f + c+ ni)xt − cyt + nµ2 if |xt| < |yt|

yt+1 = g2(xt) = xt

(11)

with f, c, n, i, µ1, µ2 > 0.
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Our map is two dimensional, piecewise linear and discontinuous,1 describ-

ing the evolution of prices (expressed by deviations from the fundamental).

It is composed by two maps, T1 defined in the region R1 = {(xt, yt) : − |xt| ≤

yt ≤ |xt|} and T2 defined in R2 = {(xt, yt) : yt > |xt|} ∪ {(xt, yt) : yt <

− |xt|}. Hence, the border which separates the state space into two regions

is Γ = {(xt, yt) : yt = xt} ∪ {(xt, yt) : yt = −xt}.

Moreover, the second component of the map Ti (i = 1, 2) does not depend

on yt hence Ti has a triangular form (about triangular maps see Gardini and

Mira (1993), Kolyada (1992), Kolyada and Sharkovsky (1991)). In what

follow we study the fixed points and we carry out the local stability analysis

of systems T1 and T2.

3.1. Fixed points and local stability analysis

The following proposition defines the fixed points owned by the system.

Proposition 1. Map T admits a real fixed point for any range of the param-

eter values, defined by E? =
(
nµ1
f+ni

, nµ1
f+ni

)
. Moreover, if f 6= ni then map T

admits a virtual fixed point given by E0 =
(
−nµ2
ni−f ,

−nµ2
ni−f

)
.

Proof. The equilibrium points (or steady states) of map T are the solutions

of the algebraic system T1(x, y) = (x, y) if and only if (x, y) ∈ R1 and of

T2(x, y) = (x, y) if and only if (x, y) ∈ R2. After simple algebra we obtain

E? and E0.

1Notice that the presence of imitators in the model is responsible for the discontinuity

of the final map, as explained in the previous section.
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Notice that for f 6= ni the system T2(x, y) = (x, y) admits the unique

solution E0 which does not belong to the region R2, such a fixed point is

called virtual steady state.

Moreover, both the fixed points belong to the border Γ for any choice

of the parameter values. Given this fact, the local stability analysis of the

steady state E? depends on both the linear maps T1 and T2.

Let us firstly consider T1, the Jacobian matrix is defined as follows:

J1 =

1− f + c− ni −c

1 0

 (12)

whose trace and determinant are τ1 = 1 + c− f −ni and δ1 = c, respectively.

Hence, we can prove the following proposition on the stability of the linear

map T1.

Proposition 2. By looking at map T1, two possibilities arise:

1. Let (1 + c − f − ni)2 − 4c < 0 then the steady state of T1 is a focus:

attracting for c < 1, otherwise (for c > 1) it is an unstable focus.

2. Let (1 + c − f − ni)2 − 4c > 0 then the steady state of T1 is a node:

attracting for c > f+ni
2
− 1 and c < 1, otherwise for c < f+ni

2
− 1 it is

a saddle point.

Proof. According to the well-known triangle of stability in the plane (τ, δ)

(see Medio and Lines (2001)), we obtain that if τ 21 ≥ 4δ1 then eigenvalues

are real (a repeated real eigenvalues for τ 21 = 4δ1). For τ 21 > 4δ1 the fixed

point is a node, while if τ 21 < 4δ1 the fixed point is a focus. Moreover, it is

13



attracting when the following conditions hold:2c >
f+ni
2
− 1

c < 1
.

Then the proposition is proved.

Thus, under the assumption (1 + c− f − ni)2 − 4c < 0 the fixed point loses

stability for c = 1 when the pair of complex conjugate eigenvalues crosses

the unit circle, giving rise to a center bifurcation.3 This kind of bifurcation

typically occurs in the families of two-dimensional piecewise linear maps. We

refer to Sushko and Gardini (2008) for a detailed description of similarities

and differences from the corresponding Neimark-Sacker smooth bifurcation.

Differently, when (1 + c − f − ni)2 − 4c > 0, the fixed point loses stability

since a real eigenvalue crosses −1.

Following the same steps, it is possible to attain to the stability conditions

for the linear map T2. Even if T2 has not equilibrium points in the region of

definition R2, its eigenvalues are important in understanding the dynamics

around the steady state E? since it belongs to the border Γ separating the

regions R1 and R2.

In this case the Jacobian matrix is defined by:

J2 =

1− f + c+ ni −c

1 0

 (13)

2Notice that this system requires f + ni < 4, otherwise it would be an empty set.
3Although previous conditions are not sufficient for the existence of the associated

bifurcations (especially in our case in which the fixed point belongs to the border), their

combination with numerical simulations becomes strong evidence, as we will see in the

next section.
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whose trace and determinant are τ2 = 1 + c− f +ni and δ2 = c, respectively.

Consequently, the following proposition holds:

Proposition 3. By looking at map T2, the following conditions hold:

1. Let (1 + c − f + ni)2 − 4c < 0 then the steady state of T2 is a focus:

attracting for c < 1, otherwise (for c > 1) it is an unstable focus.

2. Let (1 + c − f + ni)2 − 4c > 0 then the steady state of T2 is a node:

attracting for c > f−ni
2
−1 and f−ni > 0, a saddle point for c < f−ni

2
−1

or f − ni < 0.

Proof. Following the same steps of the proof of Proposition 2, one can obtain

the result.

Thanks to Propositions 2 and 3, it is possible to understand some im-

portant properties of the whole system T = T1 ∪ T2. More precisely, given

the fact that both the maps are linear, when the fixed point is stable for T1

and T2 (i.e. if c < 1 and c > f−ni
2
− 1 and f − ni > 0) both the maps are

contracting.

In the case of an unstable node for T1 and T2, i.e.:

f − ni > 0

c < f−ni
2

(1 + c− f − ni)2 − 4c > 0

(1 + c− f + ni)2 − 4c > 0

or


f − ni < 0

c < f+ni
2

(1 + c− f − ni)2 − 4c > 0

we have divergent dynamics.
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Differently, when the equilibrium point is an unstable focus, i.e.:
c > 1

(1 + c− f − ni)2 − 4c < 0

(1 + c− f + ni)2 − 4c < 0

we can have even bounded dynamics.

Since we are interested in the origin of complicated dynamics, we would

like to study the focus for T1, the following proposition better investigates

this case.4

Proposition 4. If f < ni and c ∈ (c?1, c
?
2) with c?1,2 = (1+f+ni)±2

√
f + ni,

then the steady state is a focus for T1 and a saddle for T2.

Proof. Define f(c) = (1 + c− f −ni)2− 4c and g(c) = (1 + c− f +ni)2− 4c.

Both functions f and g have a unique minimum point given by cf = f+1+ni

and cg = f + 1 − ni, respectively. Hence, the condition g(cg) > 0 (which is

verified for f > ni) guarantees (1 + c − f + ni)2 − 4c > 0 ∀c, so that the

steady state of T2 is a node. Notice that, according to Proposition 3, it is a

saddle point being f − ni < 0.

Differently, f(cf ) is always negative. Since f(0) > 0 and limc→+∞ f(c) >

0 then c?1 > 0 and c?2 > 0 do exist such that f(c?1) = f(c?2) = 0. By solving

f(c) = 0 we obtain c?1,2 = (1+f+ni)±2
√
f + ni. As a consequence, f(c) < 0

for c ∈ (c?1, c
?
2) and the fixed point of T1 is a focus.

4See Sushko and Gardini (2006) for further details on the role of the maps T1 and T2

in the analysis of System T .
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Figure 1: Bifurcation diagram with respect to c for f = 0.3, n = 0.7, i = 0.8, µ1 = 0.8,

µ2 = 0.5 and i.c. x0 = 0.3, y0 = 0.5

Studying the map T numerically we get interesting bifurcation diagrams.

In Figure 1 we plot the bifurcation diagram of x with respect to c ∈ (c?1, c
?
2)

when the hypothesis of Proposition 4 holds, showing complexity for c > 1

when the focus of T1 loses stability.

3.2. Periodic points

Given the stability analysis of the previous section, we would like to

analyse periodic points which arise for some parameter values, in particular

we focus on investigating the occurrence of a 2−cycle.

We firstly consider its localization on the plane, according to the following

proposition.

Proposition 5. When a two-cycle c2 = {(x1, y1), (x2, y2)} exists, its points

are symmetric with respect to the line {y = x} ⊂ Γ.
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Proof. Trivially, a two-cycle c2 = {(x1, y1), (x2, y2)} is such thatT (x1, y1) = (x2, y2)

T (x2, y2) = (x1, y1)
.

This means that y2 = x1

y1 = x2
.

Hence, when the 2−period cycle is inside the region R = R1 ∪ R2, we

have that: (x1, y1) ∈ R1(respectively R2)⇔ (x2, y2) ∈ R2(respectively R1).

As a consequence, we can suppose (x1, y1) ∈ R1 in order to obtain condi-

tions under which the 2−cycle has to exist, as proved in the following result.

Proposition 6. Let k1 = 1−f+c−ni and k2 = 1−f+c+ni. For (1+c)2−

k1k2 6= 0, k2µ1−k1µ2+(1+c)(µ2−µ1) 6= 0 and k2µ1+k1µ2+(1+c)(µ2+µ1) 6= 0

system T admits a cycle of period two defined as c2 = {(x1, y1), (x2, y2)} with:

x1 = k2nµ1+(1+c)nµ2
(1+c)2−k1k2

y1 = x2
and

x2 = k1nµ2+(1+c)nµ1
(1+c)2−k1k2

y2 = x1
.

Proof. According to Proposition 5 we can suppose (x1, y1) ∈ R1 and (x2, y2) ∈

R2 consequently:

(x1, y1) = T2(x2, y2)

(x2, y2) = T1(x1, y1)
that is

x1 = k2x2 − cx1 + nµ2

x2 = k1x1 − cx2 + nµ1
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which admits a unique solution for (1 + c)2 − k1k2 6= 0. In this case, the

solution is x1 = k2nµ1+(1+c)nµ2
(1+c)2−k1k2

y1 = x2
and

x2 = k1nµ2+(1+c)nµ1
(1+c)2−k1k2

y2 = x1
.

Condition k2µ1 + k1µ2 + (1 + c)(µ2 + µ1) 6= 0 guarantees x1 6= −x2 in

order to exclude the case in which c2 belongs to the line {y = −x} ⊂ R1.
5

Similarly, if k2µ1 − k1µ2 + (1 + c)(µ2 − µ1) 6= 0 then c2 does not belong to

the line {y = x}.

Thanks to Proposition 6, it is possible to obtain conditions under which

the points of c2 collides with the border Γ. In other words, c2 is a border

crossing periodic point since it crosses the border for some parameter values.

Conditions under which the contact of the periodic point with Γ arises are

defined in the following result.

Corollary 1. Let k1 = 1−f+c−ni, k2 = 1−f+c+ni and (1+c)2−k1k2 6= 0,

then the points of the 2−cycle collide with the border Γ for k2µ1−k1µ2 +(1+

c)(µ2 − µ1) = 0 or k2µ1 + k1µ2 + (1 + c)(µ2 + µ1) = 0.

Proof. This result directly comes from Proposition 6.

Notice that, even though the equilibrium point lies on the border for any

choice of the parameters, the system is able to generate border-collision bi-

furcations due to some periodic orbit. In the next section we investigate the

non-smooth bifurcations, particularly the border-collision bifurcation phe-

nomena.

5In this case both the points of the cycle belong to R1 and the periodic point can be

obtained by applying T1.
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4. Numerical analysis and border-collision phenomena

In this section we mainly explore the border-collision bifurcations which

occur when a trajectory collides with the boundary separating regions in

which the system changes its definition. This kind of bifurcations has been

explored for piecewise smooth maps that are continuous across the border

(Banerjee et al. (2000), Zhusubaliyev et al. (2001), Di Bernardo et al. (2008),

Avrutin et al. (2016)). Differently, our map is piecewise discontinuous. Only

in recent years piecewise smooth maps which are discontinuous on the border

have been applied to explain bifurcations in Economics and Finance (Huang

et al. (2010), Tramontana et al. (2010), Tramontana et al. (2011), Tramon-

tana and Westerhoff (2016), Gu (2017)), and the theory for understanding

such phenomena is not completely available yet.

In order to describe, qualitatively, the different scenarios which can occur, we

follow Nusse and Yorke (1992) and we make use of the terminology according

to which a period p attractor is an attracting periodic orbit of period p.

In order to perform the numerical analysis, we take into account three

cases that are, in our opinion, economically interesting. Indeed, we are fo-

cusing on the role of the costs of imitation (µ1 and µ2) and the bifurcation

diagrams we have generated are linked to this assumption, in detail we take

as reference parameter the cost of imitation µ1. Further, in our simulations

we have considered what occurs when fundamentalists are more aggressive

than chartists and vice versa and what is the role played by imitators in both

cases. In Figure 2 panel A, the bifurcation diagram with respect to µ1 shows

the occurrence of a border collision bifurcation from a period 3 to a 1-piece
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Figure 2: In Panel A the bifurcation diagram with respect to µ1 is represented for f = 1.45,

c = 0.27, n = 1, i = 0.975, µ2 = 0.4401 and i.c. x0 = −0.5, y0 = 2. Panel B shows the

attractor in the (x,y) plane for µ1 = 0.6 while other parameter values as in Panel A. Panel

C is the trajectory in the plane with parameter values as in Panel A and µ1 = 0.65.

chaotic attractor for6 µ1
∼= 0.59. In panel B, the chaotic strange attractor is

plotted for µ1 = 0.6. Notice that this economic example describes the situa-

tion in which fundamentalists are more aggressive than chartists (f = 1.45,

c = 0.27) while the number of imitators are equal to that of fundamen-

talists and chartists and they are enough active (and more aggressive than

chartists) in the market. Although fundamentalists are the most aggressive

in the market, instability prevails when the cost faced by imitators to imitate

fundamentalists is too high.

Another interesting situation is represented in Figure 3 panel A in which

the bifurcation diagram with respect to µ1 shows a border collision bifurca-

6Notice that in our model prices xt can be negative since they are expressed as devia-

tions from the fundamental value.

21



tion from a 2-cycle to a q-piece chaotic attractor for µ1
∼= 0.16. We underline

that, according to the parameter values considered in this numerical simula-

tion, the analytical condition of Corollary 1 is verified (i.e. µ1 = −(k1+1+c)µ2
k2+1+c

,

with k1,2 = 1−f+c∓ni) and the points of the 2−cycle collide with the border

Γ, as proved in the previous section. In order to better investigate what hap-

pens after this bifurcation, panel B shows the attractor for µ1 = 0.5. Notice

that now chartists are more aggressive than fundamentalists and imitators

are the most responsive in the market (i = 2.1). An interesting element

of this scenario is the cost of imitation (µ1 or µ2). More precisely, in this

simulation we leave these parameters to take all real values. The purpose

is to consider that a positive value of µi, i = 1, 2 means a positive cost to

imitate the best strategy (fundamentalist or chartists’ strategy), while a neg-

ative value of the parameter µi means that imitators dispose of all relevant

information to take their decision or differently, the market subsumes these

information and imitators are able to obtain them easily. Looking at Figure

3, imitators follow indifferently both chartists and fundamentalists until they

can replicate their strategy freely (represented by a negative value of µ1,2)

or with very low costs, otherwise they trade randomly causing a period of

higher instability in the market. The last scenario is described7 in Figure

4, which seems to be characterized by a border collision bifurcation from a

2-cycle to a q-cycle. In the market after a period of stability represented by

7We stress the fact that the periodic cycles represented in the diagram could be of the

higher order depending on the precision of the simulation. In fact, the points which appear

in the figure become lines if we increase the precision. Nevertheless, we prefer to present

this diagram for its major clearness.
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the stable 2-cycle, a period of uncertainty is born. In this period the market

faces different degree of imitation due to the higher costs sustained by imi-

tators to follow fundamentalists causing the existence of several level of price.

Finally, we conclude the paragraph with a novelty in the financial market

literature, that is the center bifurcation occurring in our model. This kind

of bifurcation has been studied by Sushko et al. (2003) and Sushko and Gar-

dini (2008), and it is a peculiarity of piecewise maps. The center bifurcation

is associated to points having complex eigenvalues, in particular describing

the transition of a fixed point to an unstable focus and the appearance of

an attracting closed invariant curve. There is a certain similarity with the

Neimark-Sacker bifurcation associated to the smooth maps, but in the piece-

wise linear maps the periodicity regions may be classified with respect to the

rotation numbers and the boundaries of these periodicity regions are border

collision bifurcations instead of saddle-node bifurcation curves (see Sushko

and Gardini (2008) for a detailed analysis). About our model, we propose

the attractors on the plane (x, y). In particular, Figures 5 and 6 show what

happens at the bifurcation value8 c = 1 and immediately after the center

bifurcation, respectively. It stresses the predominant role of chartists with

respect to the other two agents presented in the market in order to gener-

ate complicated dynamics, while imitators amplify the consequences of the

chartists’ trading strategies. Most fully, both panels (b) of Figures (5) and

(6) show the trajectories associated to the respectively attractors. In these

8We remember that the parameter c represents the reaction of chartists.
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Figure 3: In Panel A the bifurcation diagram with respect to µ1 is represented for f = 0.4,

c = 0.95, n = 0.38, i = 2.1, µ2 = −0.3 and i.c. x0 = 0.5, y0 = 0.8. Panel B shows the

attractor in the (x,y) plane for µ1 = 0.5 while other parameter values as in Panel A. Panel

C is the trajectory in the plane with parameter values as in Panel A and µ1 = 0.4.

panels we can observe the occurrence of market regimes. In detail, in Figure

(5) we observe a cyclical dynamic of price but inside this kind of behaviour

we can observe price micro-oscillations before and after the large one. These

small oscillations, although of short period, represent specific regimes of the

market where the price stays inside two resistances. Moreover, from both

Panels (b) of Figures (5) and (6) we can note that oscillations are more

pronounced in the bull regime (increasing price trend) than in the bear one

(decreasing price trend). We leave the analytical treatment of this kind of

bifurcation for a further research, but in our opinion it was important to

remark the economic meaning described by this scenario.
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Figure 4: On the left, bifurcation diagram with respect to µ1 for f = 0.337, c = 0.1953,

n = 0.2, i = 0.3005, µ2 = 0.4 and i.c. x0 = −0.5, y0 = 0.3. On the right, trajectory in the

plane with the same parameter values of bifurcation diagram and µ1 = 1.5.

Figure 5: In Panel(a) the attractor in the plane (x, y) is represented when c = 1, f = 0.4,

n = 0.7, i = 0.8, µ1 = 0.8, µ2 = 0.5 and i.c. x0 = 0.25, y0 = 0.24. Panel(b) shows the

trajectory in the plane with the same parameter values of Panel(a) and c = 1.
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Figure 6: In Panel(a) the attractor in the plane (x, y) is represented when c = 1.05,

f = 0.4, n = 0.7, i = 0.8, µ1 = 0.8, µ2 = 0.5 and i.c. x0 = 0.25, y0 = 0.24. Panel(b) shows

the trajectory in the plane with the same parameter values of Panel(a) and c = 1.1.

5. Conclusions

In this paper we studied the dynamics of a financial market populated

by three different kinds of agents: fundamentalists, chartists, and imitators.

Our contribution is aimed at applying the theory of discontinuous maps to

financial markets. Most fully, as we have stressed in the previous sections,

a peculiarity of these kind of maps is the occurrence of the border colli-

sion bifurcations which lead to a sharp transition to chaos generating new

interesting economic scenarios. In the first part of the work a full analyti-

cal treatment of the model has been provided. We also focus on the study

of the two-cycle demonstrating that when it exists it is always symmetric

with respect to the bisector. The second part of the paper concerns with

numerical simulations. We find that there is a coexistence of prices that sud-

denly arise when a border collision bifurcation appears. Coexistence of prices

means that agents face a large list of prices and they are not able to decide
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which is the best one for them. In our model, imitators are the agents who

should do the difference in the market because, following fundamentalists or

chartists, they give rise to a majority and, consequently, they impact on the

market dynamics in a bull or bear direction. Without a defined trend in

the market, agents lose confidence in their beliefs (trading rules) and they

start to trade almost randomly. Simulation results show that the relative

degree of aggressiveness of fundamentalists and chartists, through affecting

the information costs for imitators, affects the stability of the market, from

a stable market characterized by a fixed point to a more complex scenario.

Finally, our model is able to show the occurrence of the center bifurcation, a

kind of bifurcation typical for discontinuous maps. We have focused on the

economic meaning of this bifurcation leaving the analytical part for further

developments. In detail, when a center bifurcation occurs in our model the

price faces different regimes where it remains for a short period between two

resistances (that is two bounds). Moreover we have seen that these regimes

are more pronounced in the case of bull dynamics than in the bear ones.
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