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ABSTRACT 11 

The sustainability of buildings during their life cycle could be promoted by optimizing their facility 12 

management. In this sense, data-driven approaches could support the improvement of building operation 13 

and maintenance (O&M), since they can exploit collected data to provide useful correlations to assess the 14 

sustainability performance depending on the surrounding constraints. Universities are among the most 15 

relevant and large organizations, generally hosted in multi-story buildings, that could take advantage of such 16 

data to improve the sustainable goals of class occupancy and timetable. Herein, a high level of classroom 17 

occupancy is the main goal for class timetabling, while its effect on other O&M performances is generally 18 

overlooked. In the literature, class timetabling effects on universities O&M, and especially on elevators’ 19 

maintenance tasks, have not yet been addressed in depth. For the first time, this work then adopts a data-20 

driven approach to jointly optimize class scheduling and corrective maintenance actions required on 21 

elevators in university buildings. Indeed, elevators’ use is strongly influenced by scheduling-dependent 22 

occupants’ movement, thus being one of the main components of the total maintenance costs, and 23 

meaningly affecting safety performances. A 15 months-long experimental campaign on a university campus 24 

daily hosting up to 7000 occupants was performed to correlate occupants’ presence/movement with the 25 

number of corrective actions on elevators. The data-driven correlation was then integrated with an open-26 

source timetabling software to assess the impact of alternative timetables (affecting occupants’ movement 27 

and occupancy levels) on expected maintenance needs. According to the results, the optimized timetable 28 

can reduce current elevator maintenance needs by 65%, while the classroom occupancy performance is just 29 

reduced by 7%, thus still leading to sustainable building use. The proposed optimization approach allows 30 

facility managers to implement a university class timetabling which achieves higher maintenance cost 31 
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Management of University Buildings Based on Occupancy Data. Journal of Construction 
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savings, thus moving towards more sustainable management of building scheduling and maintenance 32 

performances in a joint manner.  33 

Keywords 34 

building maintenance; building sustainability; maintenance request; elevator; timetabling; facility 35 

management 36 

 37 

PRACTICAL APPLICATIONS 38 

Sustainable management of university buildings should take into account the optimization of maintenance 39 

tasks, due to their impacts on time, costs, workforce, and business continuity needs. Such maintenance needs 40 

are strongly related to class occupancy and timetable, which imply users’ flows and activities, especially in 41 

complex and multi-storey buildings. Elevators are strongly influenced by scheduling-dependent occupants 42 

movement, thus being one of the main components of the total maintenance costs, and meaningly affecting 43 

safety performances. Data-driven approaches can reduce uncertainties on unpredictable faults depending 44 

on scheduling. Data collected by Computer Maintenance Management Systems on end-users’ requests can 45 

thus be used to provide correlations between occupancy and maintenance needs, in view of their 46 

implementation in Building Automation and Performance Systems. Such correlations can (a) support facility 47 

managers in predicting critical conditions implying corrective actions, (b) inform decision-makers on how to 48 

better define facility management contracts, since they can estimate additional efforts based on building use, 49 

and thus (c) improve the maintenance sustainability by allowing decision-makers adopting optimized classes 50 

occupancy (when correlations are implemented, for instance, in simulation tools). The proposed approach 51 

to timetable optimization could be also extended to other scheduling-based activities (e.g. offices, congress 52 

and cultural centres, large medical offices, recreative buildings, other administrative buildings open to the 53 

public, mixed-use buildings, and ideally, large and long-term construction sites), and systems or components 54 

with which users can deeply interact depending on scheduled tasks (e.g. lighting systems, ductless air 55 

conditioning devices, safety handles, pavings).  56 

 57 

2. INTRODUCTION 58 

The optimization of operation and maintenance (O&M) tasks during the building life cycle can significantly 59 

improve the sustainability of buildings, and should be based on a joint understanding of the interactions 60 

between the different building components, systems, management procedures, facility managers, technical 61 

staff and users acting within the built environment (Almeida et al. 2020; Bortolini and Forcada 2020; Chiang 62 



et al. 2016; Gilani et al. 2022; Gunay et al. 2019; Jafari et al. 2019). Regardless of the specific context (e.g. 63 

modern versus historical buildings), such sustainability issues should encompass several impacts, mainly 64 

relating to (Bortolini and Forcada 2020; Cruz Rios et al. 2021; Li et al. 2021; Maslesa and Jensen 2019; 65 

Massafra et al. 2022; Peng et al. 2020; Stazi et al. 2017): (1) environmental issues, which are widely connected 66 

to building operation (e.g. energy consumptions) as well as on circular economy concepts, in view of reuse 67 

and adaptation of buildings and their components; (2) economic issues, since O&M costs can reach up to 68 

75% of the initial construction costs; (3) whole management tasks, since faults or inadequate operation 69 

conditions, and related maintenance needs and activities, can compromise the building business continuity; 70 

(4) occupant safety, health, comfort, productivity, and, from a general standpoint, satisfaction, which are 71 

generally connected with all the aforementioned management issues, in view of the paramount role of end-72 

users in affecting the building status over the time. 73 

In this wider picture, large, multi-storey public buildings are relevant scenarios since they are characterized 74 

by a significant number of hosted users, who interact with the building components, equipment, layouts, and 75 

construction technologies (Almeida et al. 2020; Gunay et al. 2019; Stazi et al. 2017). Utilities, supplies, their 76 

operation and related maintenance interventions on building components and equipment are then strictly 77 

related to the presence and movement of the occupants, and not only to the features of the buildings 78 

themselves. Occupancy scheduling and activities timetabling are hence paramount factors affecting O&M 79 

needs (Lindahl et al. 2019; Ward et al. 2019). 80 

Universities are exemplary buildings in this context, considering the different scheduled activities and daily 81 

high number of occupants, affecting both operation (e.g. energy uses) and maintenance performance, impact 82 

and costs (D’Orazio et al. 2022; Lindahl et al. 2018; Mokhtari and Jahangir 2021; Palis and Saidin Misnan 2018; 83 

Razali et al. 2020; Sun et al. 2021). Technical systems, such as elevators and mechanical stairs, are necessary 84 

to ensure the movement between different floors, depending on classes timetable and activities schedules 85 

(Vermuyten et al. 2016), and so their continuous use strongly impacts O&M performances, especially for 86 

universities hosted in large multi-storey buildings  (Lang et al. 2016; Li et al. 2014; Niu et al. 2021; Olander 87 

and Eves 2011; Zubair and Zhang 2020). For instance, considering operation tasks, the continuous use of 88 

elevators implies high energy use, which can reach 25%-40% of the total energy consumption in a building 89 



(Tukia et al. 2016; Zubair and Zhang 2020). At the same time, elevators are critical building systems, requiring 90 

frequent, and often very expensive, maintenance interventions, also considering safety reasons (Dzulkifli et 91 

al. 2021; Niu et al. 2021). 92 

While previous works tried to evaluate how university management could affect operation needs thanks to 93 

data-driven approaches, maintenance issues seem to be limitedly investigated (D’Orazio et al. 2022; Gunay 94 

et al. 2019; Hong et al. 2022; Ma et al. 2020; Song et al. 2017). In a general way, sustainable maintenance 95 

activities should first balance planned interventions as the best ways to avoid business continuity 96 

interruptions and ensure adequate user satisfaction (Dzulkifli et al. 2021; Ibbs and Terveer 1984; Ma et al. 97 

2021). Such actions are generally included in facility management contracts, which have been introduced in 98 

O&M in view of the complexities of current building technologies, systems and uses (D’Orazio et al. 2022; 99 

Sourav Das Adhikari et al. 2019). Nevertheless, unpredictable faults could still occur, including when 100 

variations in the building use can occur, also in view of the building schedule. The required time and efforts 101 

to supply related corrective maintenance actions could imply relevant needs for the facility managers and 102 

the contractors, mainly in terms of economic and workforce sustainability and one of the fundamental topics 103 

in this sense is the needed improvement of the coherence between the services delivered by the facility 104 

management contractors and the “demand organization” needs (Dzulkifli et al. 2021). A set of other 105 

preventive maintenance actions could be combined with planned activities to reduce the impact of corrective 106 

needs. The building use conditions, also in terms of scheduling and users’ behaviours, could be then 107 

compared to their effects on components and equipment faults and problems, according to a predictive (or 108 

even a “condition-based”) perspective in building maintenance (D’Orazio et al. 2022; Gunay et al. 2019). 109 

The tools used by corporate facility management, exploiting building digitalization, i.e. databases (e.g. those 110 

relating to Computerized Maintenance Management Systems - CMMS), could actively support these steps 111 

(Johannes et al. 2021). In fact, they can collect inputs to support data-driven maintenance planning which 112 

can contribute to informed, optimized and, thus, more sustainable strategies for building maintenance (Ma 113 

et al. 2020). Faults on building systems and components, including elevators, are generally collected by the 114 

building managers mainly thanks to occupants’ reports (e.g. text messages, e-mails), commonly called “work 115 

orders” (WOs) (Bortolini and Forcada 2020; D’Orazio et al. 2022).  116 



Faults reported in WOs can be detected during occupant permanence in the building and hence correlated 117 

with activities scheduling, thus also being a benchmark for building maintenance performance (Dutta et al. 118 

2021; Marocco and Garofolo 2021). Given the aforementioned context of universities, these data could be 119 

ideally used to improve the sustainability of class occupancy and timetable. Nevertheless, the majority of 120 

current approaches to create university class timetables usually includes only didactic constraints, to avoid 121 

lessons overlapping, to ensure the highest occupancy of classrooms (this is usually the main Key Performance 122 

Indicator (KPIs) (Vermuyten et al. 2016)), and to reduce perturbations (Lindahl et al. 2019). Several algorithms 123 

were proposed to optimize university class timetables (Gülcü and Akkan 2020; Song et al. 2018), but efforts 124 

to introduce other types of constraints were limitedly performed, mainly focusing on energy-saving goals 125 

(Song et al. 2017; Sun et al. 2021), or to solve overcrowding problems (Vermuyten et al. 2016). In this context, 126 

to the authors’ knowledge, class timetabling effects on building O&M, and especially on elevators’ 127 

maintenance tasks, have not yet been addressed in depth. 128 

In view of the above, this work adopts a data-driven approach to jointly optimize class scheduling and 129 

corrective maintenance actions required on elevators in university buildings. The combined performance 130 

optimization is founded on the development of a correlation model between occupants’ movement with the 131 

number of elevators’ maintenance actions. A 15 months-long campaign on a university campus is performed 132 

to this end by taking advantage of: (1) a survey on students’ presence and preferences concerning the use of 133 

elevators, and (2) the collection of WOs on elevator faults by end-users. Then, correlations are integrated 134 

with opensource timetabling software (Fahmy et al. 2014), based on genetic algorithms, to jointly check the 135 

impact of alternative timetables on two key performance indicators: (1) the expected number of 136 

maintenance requests, which should be ideally minimized; and (2) the occupancy level, which assesses the 137 

management sustainability and reliability of the timetables. Such alternative timetables consider different 138 

resulting student movement scenarios in view of alternative classroom use rules, thus moving towards 139 

sustainability improvement in the maintenance context. 140 

 141 

2. PHASES AND METHODS 142 

2.1. Phases  143 



Figure 1 shows the general methodological framework applied to the case-study, the Engineering Faculty of 144 

Università Politecnica delle Marche (Ancona, Italy – introduced in Section 2.1.1), based on the following three 145 

steps, further detailed in the next sections: 146 

1. the expected elevators’ use by students was assessed by collecting and analyzing data from: (a) 147 

technical drawings and datasheets about the building layout, components and systems, as well as 148 

elevators’ technical features and use; (b) timetables and questionnaires to students, which provided 149 

information on the mean number of students daily attending classes and their habits in terms of 150 

elevator use. This task has been completed at the beginning of the research, thus between January 151 

2018 and March 2018. Methods are detailed in Section 2.2.1; 152 

2. collection and analysis of data on elevators’ WOs were performed, to derive the number of WO for 153 

each elevator and users’ perceptions. This task started in January 2018 and ended in March 2019, 154 

thus consisting of a 15 months-long monitoring period. Methods are detailed in Section 2.2.2; 155 

3. experimental-based correlations between maintenance WOs and elevators’ use were derived and 156 

implemented as additional constraints in a class timetabling software. Four scenarios were then 157 

compared, characterized by different constraints about admissible students’ movements between 158 

classrooms. Maintenance performance (in terms of WOs number) and classrooms use (in terms of 159 

occupancy criteria) were adopted as KPIs to evaluate the effects of constraints due to such four 160 

scenarios. An overview of economic issues was also performed. This task has been completed after 161 

the monitoring period. Methods are detailed in Section 2.2.3. 162 

2.1.1. The university campus case-study 163 

The main campus of Università Politecnica delle Marche, located in Ancona (Italy), hosts the Faculties of 164 

Engineering, Science and Agriculture and is composed of several multi-story buildings (total gross floor area 165 

of about 67000 m2). The current study focused on the Engineering Faculty buildings (Figure 2). Buildings block 166 

A hosts 41 classrooms, laboratories, offices, libraries, study rooms and services, which are arranged into ten 167 

buildings (identified by colours and codes in Figure 2), nine of them physically interconnected in a large multi-168 

storey complex. Given the ground slope, buildings are displaced on twelve floors, but classrooms are 169 



arranged on five levels. Buildings block B, named BAS and hosting classrooms and services, has 3 levels and 170 

its 7 classrooms are arranged on 2 floors. All the buildings have an inter-floor height of 5m. 171 

The Engineering Faculty hosts 7 degrees and 8 master-degree courses, giving rise to about 450 different 172 

classes for a year. The students’ presences have a cyclic trend in view of the organization of Faculty didactic 173 

activities, which entail: A) two-class cycles (October-December; March-May), during which the weekly class 174 

timetable is repeated for about 13 weeks, involving the same mean number of attending students; and B) 175 

two exams periods (June-August; January-February) when the students’ number depends on daily exams for 176 

each course. The students’ number is higher in class cycle periods than in exams period. The enrolled students 177 

are about 7000, and about 4500 daily attend classes and activities. Lessons are arranged into 1-hour-based 178 

time slots, starting at 8.30 and ending at 18.30, from Monday to Friday (lunch break: 12.30 to 14.30). A 15 179 

minutes-delay in starting a class after the previous one is adopted.  180 

Supplementary material S1 provides the plans of building blocks A and B, identifying classrooms, paths 181 

network between classrooms and to the elevators/staircases, and buildings entrances.  182 

Table 1 provides information on the 15 elevators operating in the buildings in terms of: elevator identification 183 

code; the building where it is placed; the total number of served floors; the number of floors hosting 184 

classrooms; additional comments on the elevator features and use. Buildings block A includes 13 elevators 185 

(A1 to A13) and BAS entails 2 elevators (A1M, A2M). All the elevators have the same speed (about 1 m/s) and 186 

a maximum car capacity of 11 people, except A3 (5 people). The elevators are regularly maintained. In the 187 

whole campus, the median number of floors served by the elevators, and serving classrooms, is equal to 3.5 188 

(mode 4), according to not normal data in Table 1. Floors with classrooms are generally placed between the 189 

ground floor and the 4th floor, even if the buildings may have more floors. 190 

Table 1 also provides notes on elevators’ use by students during the monitoring period (section 2.2.1). 191 

Students declared a very limited use of A1M and A2M, because of their distance from the main entrance, 192 

and of A13, connecting classrooms and a secondary exit. A1 and A2 allow the connection of each floor of the 193 

principal building in building-block A and are hence subject to the greatest workload considering the use of 194 

classrooms. A4, A5 and A12 are internal to departments, not used by students, and therefore undergo limited 195 

workloads. A11 was not working during the monitoring periods due to construction works in the area.  196 



2.2. Methods 197 

2.2.1. Data collection and analysis on building layout, occupants’ movements and elevators’ use 198 

At the beginning of the research (January 2018), entrances, corridors, classrooms, elevators, and staircases 199 

used by students were identified by the technical drawings of the University technical office. Each classroom 200 

was classified in terms of position and number of seats. Each elevator was characterized by: capacity 201 

(maximum number of people hosted in the car); mean speed (m/s); run length (vertical distance between 202 

departure and arrival floors, in m). Staircases that can be alternatively used by students were characterized 203 

by the same corresponding vertical distance. No variations to these elements occurred during the research. 204 

The main indicator for elevator use assumed is the potential Daily Elevator Use (DEU), which expresses the 205 

distance covered daily by runs of each elevator (m). Figure 3 resumes the DEU calculation according to these 206 

variables and the related adopted methods. The DEU essentially depends on the occupants’ movement and 207 

on the elevator features (Olander and Eves 2011) and thus, in detail, on: the adopted timetable and the 208 

number of students attending daily lessons (step 1 in Figure 3); the analysis of students’ movement 209 

depending on the path configuration (which is hence based on the layout of the building (step 2 in Figure 3), 210 

on the elevator car capacity and run length (step 3 in Figure 3); and on the students’ declared preferences 211 

regarding the use of stairs and elevators (step 4 in Figure 3).  212 

Concerning step 1 in Figure 3, data about the class number for each course, course duration during the 213 

academic year, number of students per class, and class timing (daily and weekly) were first organized. The 214 

number of students attending courses was based on: (a) the number of seats in the classrooms, depending 215 

on the timetable; (b) the number of effectively enrolled students for each class in two consecutive academic 216 

years before the Covid-19 pandemic (2018 and 2019). Moreover, for each classroom, the Occupancy Ratio 217 

(OR) was calculated as the ratio between the total occupied hours (by classes) and the maximum number of 218 

available hours in the classroom. OR represents the occupancy level (in a range of 0-100%) and should be 219 

maximized. 220 

Then, the analysis of students’ movement between classrooms was carried out according to the following 221 

movement assumptions and by organizing the paths network organized in the open-source software Peklo 222 



(https://sourceforge.vnet/projects/peklo/) (Figure 4). The assumptions about students’ movements concern 223 

the path selection and the movement timing to complete steps 2, 3 and 4 in Figure 3.  224 

The path selection criteria (step 2 in Figure 3) considers students while moving from the starting point A to 225 

the arrival point B. Figure 4A shows a schematized example of this task, considering that A and B are two 226 

classrooms (but the same concept can be extended for students’ movement from or towards a building 227 

entrance. Each student, moving from A to B, selects the shortest path, that is the one with the minimum 228 

geometrical length (in meters) between the possible selectable ones (Lang et al. 2016) thus using a “static” 229 

minimum-cost flow problem. In detail, the length of the path was calculated as the sum of corridor lengths 230 

and vertical distances (staircase, elevators). The shortest path is marked in green colour in Figure 4A, while 231 

the alternative one is marked in red and it was not considered in the rest of the students’ movement analysis.  232 

The movement timing depends on these paths and on the elevators’ capacity (step 3 in Figure 3). The 233 

calculation was based on the assumption that all the students moved at the same time, without significant 234 

flow reduction both along stairs and corridors as the maximum density is up to about 2.5 pp/m2 (Banerjee et 235 

al. 2018). Students’ speed has been assumed equal to 1 m/s (Bosina and Weidmann 2017). Furthermore, the 236 

movement timing was then affected by the elevators’ overload, which depends on the maximum car capacity 237 

(Table 1). According to a conservative approach to elevator use, when the car is full, students, who choose 238 

to use the elevator, spend time waiting for the free car. As a result, the students’ overall travel time is the 239 

sum of the walking time, the eventual waiting time for a free car, and the elevator travel time. The total time 240 

should be ≤ 15 minutes, that is the time lag between two classes. In this work, the elevator call button is 241 

pushed before the elevator run, thus each calling and the related use contemporarily contributes to the 242 

increment of the run length and to the users’ transportation between two floors. The students who cannot 243 

use the elevator because the travel time is > 15 minutes are assumed to directly use the stairs. The maximum 244 

walking distance in 15 minutes is 900m, which is significantly higher than the length of the effective paths 245 

(the maximum path is about 250m long). To verify the timing assumption, in-situ verifications were carried 246 

out during a survey, confirming no overcrowding conditions and that the maximum movement time between 247 

two classrooms was smaller than the time lag between two classes, also in the case of people waiting for the 248 

use of free elevators.  249 



Following these assumptions, and due to the complexity of multiple paths connecting two classrooms, the 250 

network of the paths was organized through Peklo, as shown in the excerpt of Figure 4. Peklo is a graph editor 251 

which allows graphically creating and visualizing complex graphs (defining arches and nodes and, if needed, 252 

their weights), and also comparing different algorithms for solving graph-theoretic problems, including 253 

shortest path assessment. In the Peklo network shown in Figure 4B, classrooms (black dots), elevators (green 254 

dots) and staircases (red dots) were considered nodes in the overall path network (identified by numeric 255 

codes), and thus linked by connection lines.  256 

Finally, the elevators’ use by students depending on their preferences (step 4 in Figure 3) was assessed by 257 

questionnaires administered to a significant occupants’ sample (about 10% of students daily attending the 258 

campus, i.e. 433 questionnaires), for two weeks and at different hours of the day, in March 2018, during the 259 

lesson periods (so at the maximum building capacity). Each student was asked to define his/her path followed 260 

at that moment, by considering: a) attended a course and usual frequency at classes during the day/week; 261 

b) departure and destination places; c) reasons for displacing (i.e. attending classes, reaching other facilities 262 

as library or coffee, reaching study rooms); d) if staircases and/or elevators were used during their journeys, 263 

and the number of travelled floors; e) if he/she usually used that path to move from departure to destination 264 

places. Questionnaire results allowed defining the percentage of students who choose to use the elevator 265 

while reaching another classroom, depending on the number of travelled floors. 266 

 As the final output (Figure 3), the length of each elevator ride (m) at each class change was calculated for 267 

each elevator, and then the DEU was estimated as the sum of these lengths over the day, by considering the 268 

aforementioned elevator capacity and speed, and the tolerated delay to attend a class (15 minutes). The DEU 269 

was calculated in reference to three scenarios in terms of students’ usage: 270 

· critical: the total number of students is defined by the number of seats. DEU corresponds to the 271 

maximum load on elevators due to the maximum number of possible occupants; 272 

· nominal: the students’ number is equal to the number of students enrolled in each course. DEU 273 

corresponds to the maximum load on the elevators caused by the enrolled number of students (less 274 

than in the critical scenario); 275 



· effective: the students’ number is equal to the percentage of questionnaires-based presences. DEU 276 

is scaled by the mean percentage of students that declared to prefer the use of elevators instead of 277 

stairs (less than in the critical and effective scenarios).  278 

2W-DEU (m) was defined as DEU for the number of days with lessons in two weeks, to compare results 279 

obtained in the questionnaires campaign period. DEU and 2W-DEU were also normalized by the number of 280 

served floors to directly compare data on different elevators based on the same floors’ configuration. 281 

 282 

2.2.2. Data collection and analysis on maintenance work orders  283 

Università Politecnica delle Marche externalizes facility management activities. The external contractor 284 

(ANTAS s.r.l.) grants the full functionality of all plants and building components, managing all O&M activities. 285 

End-users’ maintenance requests following faults events are collected and managed continuously, translated 286 

into Work Orders (WOs) and finally interventions are performed. Hence a database of WOs due to faults in 287 

the building components and equipment is available. The database includes the end-user's maintenance 288 

request, the technical category (i.e elevator, fire, etc…), and the date of the intervention.  Figure 5 shows the 289 

WOs production and management flow.  290 

Since each WO begins with reporting of anomalies or faults by non-technician personnel (e.g. student, 291 

teacher, staff members), WOs data consist both of numerical and unstructured textual data (via e-mail) 292 

including personal perceptions, thus requiring both data and text mining analysis tools (Bortolini and Forcada 293 

2020; D’Orazio et al. 2022). The WO analysis was carried out for an overall monitoring period of 15 months 294 

(from January 2018 to March 2019), in collaboration with the facility management contractor of the 295 

University, to derive the mean number of weekly faults for each of the 15 elevators of the Engineering faculty. 296 

2166 WOs were collected during this period, and 101 WOs were due to elevator faults (4.6%). 297 

Numerical data were processed through the statistics language “R” rel. 4.0 (Williams 2011). Textual data (in 298 

the Italian language) were analyzed through “R” rel. 4.0, by using the Text Mining TM (https://cran.r-299 

project.org/package=tm) and Quanteda (https://cran.r-project.org/package=quanteda) packages. These 300 

packages allow automatic analysis of users’ requests to detect the frequency of relevant terms within the 301 

textual data (e.g. types and causes of faults; elevator components involved; position of the elevator and its 302 



identification within the buildings). The use of text mining techniques avoids long-lasting and timing 303 

consuming tasks on manual analysis of WOs, which can be composed of many sentences and phrases. 304 

Moreover, text mining can be employed in larger datasets according to the adopted data-driven approach 305 

(Bortolini and Forcada 2020; D’Orazio et al. 2022). 306 

 307 

2.2.3. Correlation analysis between occupants’ movement and elevators’ maintenance, and impact 308 

assessment on classes timetable 309 

Correlation analysis has been performed on the students’ movement data and the number of elevators’ 310 

faults. In particular, an algorithm to estimate the expected elevator two-week WOs depending on the 2W-311 

DEU (m) was developed, using data on the class timetable and considering the different occupancy scenarios. 312 

The two weeks-scaling was used to obtain a consistent WOs number in the questionnaire period.  313 

The algorithm adopts a regression model based on the logistic function, which is an S-shaped model. This is 314 

widely adopted by models representing the interaction between human behaviours and building systems, 315 

including elevators (Li et al. 2014; Stazi et al. 2017). In our application, it represents growth processes 316 

depending on three main assumptions. The lower limit considers no WOs because the elevator is not used. 317 

WOs number grows when elevator use increases, but a non-linear trend can be assumed according to the 318 

aforementioned studies. The upper limit is a physical limit since elevator overloads can imply a maximum 319 

travelled path length per day depending on the elevator speed and capacity. According to Section 2.2.2, this 320 

logic also relies on the fact that the button is pushed before the elevator run, thus each elevator travel implies 321 

that the DEU increases since users are can move to another floor. This conservative assumption is adopted 322 

to stress the users’ interactions with the elevators since it was not possible to carry out an experimental 323 

campaign to detect the number of callings without elevators’ use. Elevators not or limitedly used by students 324 

were excluded from the fitting process. The reliability of the logistic function-based algorithm has been tested 325 

by using "Curve data fitting" module of Matlab R2019b and applying the "nonlinear least squares" method. 326 

Finally, the algorithm was applied in combination with the timetabling opensource software FET (ver.5.48, 327 

https://lalescu.ro/liviu/fet/), used by several high schools and universities (Fahmy et al. 2014). FET adopt 328 

genetic algorithms to find the optimal solution, releasing progressively adopted constraints. FET considers 329 



space and time constraints, due to teachers, classes, activities, and buildings, in order to: (1) allocate the 330 

occupants in the classrooms avoiding overlapping and holes in the timetable; and (2) reach the highest 331 

occupation level of the classrooms. 332 

For each semester, a list of teachers (231), subjects (413), classes (53), classrooms (41) and available devices 333 

in each classroom has been realized. Then, specific constraints between teachers, subjects, and classes, were 334 

introduced to create the initial dataset. Spatial constraints related to students’ movement in each scenario 335 

were defined by associating groups of students only to a specific group of classrooms. In addition, typical 336 

space and time constraints were maintained, i.e.: the number of classroom seats must be greater than the 337 

related students’ group dimension; no lesson overlapping for students and teachers; break for lunch; a 338 

maximum number of days intercurrent between the same course class). 339 

In addition to these constraints, an additional one was considered, related to students’ movement between 340 

classrooms, thus originating four alternative scenarios: 341 

· Scenario A: keeping students inside classrooms located on the same floor level; 342 

· Scenario B: keeping students inside classrooms located within the same campus building; 343 

· Scenario C: keeping students within two specific building-blocks (buildings-blocks A and B);  344 

· Scenario D: equal to Scenario C, with an additional limitation on students’ movements between the 345 

floors. 346 

Scenario C is quite similar to the timetable in use during the academic year 2018/19, thus it was assumed as 347 

the reference scenario. 348 

The building performances in the four alternative timetable scenarios were compared in terms of the 349 

following KPIs: (1) expected WOs, depending on 2W-DEU, to assess maintenance issues; and (2) OR for the 350 

whole campus, to assess the timetable sustainability regarding the hosted activities. The best timetables 351 

should combine low expected WOs while maintaining a similar OR to the current situation (i.e. the reference 352 

Scenario C). Finally, an overview of economic needs in significant scenarios has been performed by 353 

considering the current standard expenditures of the building owner for elevator WOs, based on historical 354 

data. 355 

 356 



3. RESULTS 357 

3.1. Current use of the buildings in terms of classrooms occupancy and elevators load 358 

The classroom dimension at the Engineering Faculty varies from 35 to 344 seats (median: 93). Outliers are 359 

given by the biggest classrooms hosting more than 200 seats (Figure 6).  360 

Figure 7 shows the distribution of the students’ groups dimension for the 443 different classes delivered in 361 

the academic year 2018/19. As expected, the students’ group distribution fits with the classroom distribution, 362 

also considering that larger students’ groups were subdivided into two sub-groups, hosted in different 363 

classrooms at the same time. Figure 8 shows the classrooms OR distribution in terms of the probability 364 

density function. The OR values range from 40% to 90% (median: 68%; mode: 72%). 365 

Figure 9 resumes the main results from the 433 questionnaires on the use of stairs (light grey) and elevators 366 

(black), depending on the vertical distance between starting and arrival floors (moving downstairs or 367 

upstairs). Students generally preferred to use the stairs, but the percentage of occupants using the elevators 368 

increases with the increase of the number of travelled floors, especially while moving upstairs (i.e. 20% for 369 

two floors, that is 10m; 30% for three floors, that is 15m). In addition, students generally used elevators to 370 

move between floors to attend lessons (61%), reach other facilities (10%), or reach study rooms during time 371 

breaks (29%). 372 

Finally, students usually follow the same path, so certain elevators are burdened, i.e. A1 and A2 because of 373 

the high number of interconnected floors (maximum expected load), and A3 and A10 because of the high 374 

number of nearby classrooms.    375 

Table 2 shows the elevators use scenarios, expressed as 2W-DEU and normalized 2W-DEU (by the served 376 

floors number), depending on “critical”, “nominal” and “effective” classroom occupancy scenarios (defined 377 

in section 2.2.1). Table 2 excludes the elevators according to Table 1 assumptions. 378 

3.2. Data and text analysis of maintenance work orders 379 

Figure 10 shows the monthly distribution of WOs concerning elevators during the monitoring period. WOs 380 

peaks correspond to starting months of classes (March, October) and other activities after holidays (January, 381 

September). Table 2 also reports the WOs number for the elevators, which increases with the assumed 382 

elevator use. 383 



The textual analysis of e-mails on elevators WOs are performed by considering only words mentioned more 384 

than 10 times. Results show that more than the 40% of terms only referred to general data such as the 385 

general type of faults (“blocked”, “stopped”), the “elevator” identification “code” or the place and ”floor” 386 

where the fault happened. This kind of outcome can be essentially due to the fact that communications are 387 

sent by non-specialised users. In fact, “elevators” is the most common word, having a frequency equal to 388 

11%. A lower frequency, between 1% and 9% relates to general words such as “blocked”, “floor”, “stopped”, 389 

“doors”, “cabin”, “fault”, or to the identification “code” of the elevator. On the contrary, details on the type 390 

of damage or the elevator part (“cabin”, “car”) involved in the fault are more limitedly provided, using not 391 

exhaustive information. In these cases, such kind of details is mixed with personal perceptions (e.g. “it seems 392 

that…”, “my impression is…”). The most cited elevators (2% to 4%) are A1, A2 and A3, as expected (compare 393 

to Table 2), since they are the most used. 394 

3.3. Correlation between occupants’ presence and movement and maintenance work orders 395 

Data on 2W-DEU (m) were correlated with the WOs number during the same monitoring time period for the 396 

elevators included in Table 2. 2W-DEU refers to the “effective” normalised occupancy scenario in terms of 397 

presences (Effective_N, in Table 2) which allows:  A) reproducing the most realistic conditions in terms of the 398 

number of students and elevator use preferences, according to the “effective” scenario; and B) comparing 399 

data of each elevator according to ideal equality in floors configuration, thanks to the normalization 400 

procedure. 401 

Considering that a WO of a specific day is not related to the elevator use during the same day but to the use 402 

during the previous weeks, we analysed data in an aggregated form, that is the total WOs produced during 403 

the monitored 15 months and the elevator rides in the same period. 404 

Equation 1 shows the correlation according to the logistic regression model, which general rules are 405 

described in Section 2.2.3.   406 � =  (���)(���∗���∗�)  [1] 407 

In Equation 1, x is two-week WOs (-) and y is the 2W-DEU (m) according to Effective_N  in Table 2. The pairs 408 

used for the regression model assessment are the experimental ones. The model is hence characterized by: 409 



A) the lower limit, which corresponds to non-maintenance requests in case the elevator is not used by 410 

occupants; and B) the upper limit, that is due to the maximum 2W-DEU of each elevator depending on its 411 

speed. a, b, c, k, and q are typical regression model constraints based on the fitting process and they can 412 

express the shaping of the regression model depending on the experimental pairs. Results for the whole x-y 413 

input pairs (mean model) show the following fitting statistics: SSE: 4.136e+06; R-square: 0.90; Adjusted R-414 

square: 0.80; RMSE: 491.5. Fit uncertainties are mainly related to the starting point of the curve slope 415 

associated with the adopted logistic function. Thus, we derived maximum and minimum regression models 416 

on the data envelope, alternatively excluding upper and lower points over the mean model slope (Figure 11).  417 

The coefficients of the three models are reported in Table 3, while pairs and model data are provided in 418 

Supplementary material S2 by MATLAB file.  419 

 Equation 2 allows estimating the number of two-week WOs (x) depending on 2W-DEU (y) according to 420 

Equation 1 approach, and considering the model coefficients described in Table 3: 421 � =  −(��) ∗ �� �(−� + ���� )/��  [2] 422 

Equation 2 can be used by facility managers to estimate maintenance needs in the considered building 423 

context. 424 

3.4. Impact of timetable scenarios on maintenance and occupancy performances 425 

Table 4 shows the expected 2W-DEU (m) in the four alternative timetable scenarios, based on the mean 426 

model of Equation 2. Limiting the students’ movement between floors (A, B, D) has a positive impact on 2W-427 

DEU, especially on the elevators connecting the greatest number of floors and the building-block A entrance 428 

(A1, A2).  429 

Table 5 compares the expected two-week WOs, according to the three models of Table 3 based on Equation 430 

2, and also offers the expected rounded-up yearly number of WOs (in parenthesis). Scenario C, which is 431 

similar to the current timetable, is the worst scenario. Considering this KPI, the expected WOs are more than 432 

twice greater than for Scenario A (limiting students’ movement between floors), regardless of the considered 433 

model. Scenario B (limiting movement between building blocks) significantly limits the elevator use, with a 434 

difference in WOs of about 10% with respect to Scenario A. Finally, Scenario D is the best case, reducing the 435 



maintenance needs by up to 65% with respect to Scenario C, thanking the movement limitation between 436 

different floors of the same building. 437 

Similarly, concerning the occupancy KPI, Table 6 shows how limiting the students’ movement has a strong 438 

impact on the OR of the classrooms (especially in Scenario D), as it prevents using “time holes” in the 439 

timetable by other students’ groups. Therefore, OR decreases. 440 

Figure 12 focuses on the joint analysis of the occupancy and maintenance KPIs and resumes OR-WOs number 441 

pairs (considering the mean model descried by the parameters in Table 3 and by the two-week WOs 442 

estimated in Table 5) for each timetable scenario. Scenario C, assumed as the reference, is characterized by 443 

the highest occupancy ratio and expected two-week WOs. Introducing movement constraints means 444 

obtaining a reduction of maintenance needs, but OR is only slightly affected. Although Scenario B is 445 

characterized by more relaxed constraints with respect to Scenario A, the results are quite similar in both 446 

these scenarios, having OR reduced only to a 3÷4%, with negligible effects on buildings sustainability. 447 

Scenario D, characterized by the strongest constraints, has the lowest OR, but the value is only 7% smaller 448 

than in Scenario C. Meanwhile, WOs are reduced by about 50% in Scenarios A and B, and up to 78% in 449 

Scenario C. The reduction of the number of WOs in the different scenarios may also affect the maintenance 450 

costs (Yanbin et al. 2020; Zhang and Zubair 2022). Università Politecnica delle Marche spent about 3000 451 

€/elevator in the last three years period (i.e. 2020-2022) for ordinary maintenance and 3 elevators required 452 

extraordinary maintenance for a cost of about 45.000 € in the same period. Considering the 15 elevators in 453 

the analysed buildings, strong attention to occupancy data can reduce maintenance costs by 15000 €/year 454 

in A and B scenarios and by 23.400 €/year in Scenario C. 455 

 456 

4. DISCUSSION 457 

This work defines a data-driven correlation analysis between buildings occupancy (depending on hosted 458 

activities) and maintenance issues (focusing on elevators), useful to assess building O&M performances 459 

under different scheduling arrangements, and so to support decision-makers in defining sustainable class 460 

occupancy strategies. 461 



The results obtained on the investigated case-study, a university campus, show the potential of this approach 462 

for optimizing O&M in relation to the organization of activities and occupants’ movement in complex 463 

buildings. Alternative class timetabling scenarios, depending on imposed limitations to the students’ 464 

movement, were tested in terms of two main KPIs: the occupancy ratio, which is a measure of the occupancy 465 

performance since it defines “how much” the building is used with respect to its maximum capabilities; and 466 

the expected number of maintenance WOs for the elevators system, which represents the maintenance 467 

performance. In the analysed case, the best timetabling scenario provides a small OR reduction (from 3 to 468 

7%) while entailing a drastic reduction of maintenance needs (until 7 times) with respect to the current 469 

reference timetable. 470 

The study suggests the following main findings: 471 

1. the proposed data-driven approach ensures significant correlations between the supposed building 472 

use and the maintenance needs, although some simplifications have been made (i.e. using a static 473 

model for occupants’ movement and elevators’ use based on the shortest path principle, and 474 

assuming the elevators’ use based on the in-situ survey) (Lang et al. 2016). Indeed, such results seem 475 

to encourage the possibility to use a quick-to-apply but robust modelling approach to be included in 476 

BPS tools to provide preliminary and expeditious assessments of building O&M performances;  477 

2. concerning the occupants’ interactions with the elevators, although monitoring activities were 478 

performed for a limited duration and by involving about 10% of occupants, results seem to be 479 

sufficiently reliable since they confirm that the probability to use the elevator increases with the 480 

number of the travelled floors, especially for moving upstairs (Li et al. 2014; Olander and Eves 2011); 481 

3. maintenance performances are confirmed as influenced by hosted students’ number and cyclic 482 

buildings use for teaching activities, since WOs essentially increase at re-opening and re-starting of 483 

building use by students. Thus, sustainable planned maintenance activities should concentrate on 484 

preventive actions during the holiday periods, to improve the users’ satisfaction when activities 485 

restart (Abdul Lateef et al. 2011; Errandonea et al. 2020; Gunay et al. 2019). 486 

In view of these observations, future efforts to overcome current study limitations could be aimed at: 487 



1. modelling occupants’ movement according to the dynamic simulation of students’ flows, thus 488 

supplying facility managers with WOs estimation depending on occupants’ behaviour and use 489 

dynamics, also according to microscopic and probabilistic standpoints (Dong et al. 2018); 490 

2. overcoming size effects on results, by extending the survey at different times of the year, and 491 

additionally increasing the students’ sample dimension. Group effects on elevator use should be also 492 

investigated, to overcome the consideration of users as single-moving individuals. This action will 493 

support the improvements suggested in the previous point; 494 

3. according to the previous point, extending the WOs collection to a longer period, along with the 495 

occupants’ movement analysis. This will increase the accuracy of data analysis, especially if the 496 

facility managers will be supported in the inclusion of real-time monitoring data on building use 497 

conditions to highlight differences at both short and long periods (e.g. on annual timetabling 498 

variations); 499 

4. including additional elements, related to elevators’ use and components stress, within the 500 

correlation model. For instance, this work assumes that an elevator call corresponds to a travel. This 501 

conservative assumption stresses the users’ interactions with the elevators, since it was not possible 502 

to carry out an experimental campaign to detect the number of callings without elevators’ use. 503 

Nevertheless, future works should move towards the analysis of such occupants’ behaviour which 504 

can increase the impact of mechanical work with electrical work and useless trips, as well as they can 505 

provide WOs assessment in respect to the number of floor stops, which can be additional stressors 506 

for the equipment.  507 

In view of these perspectives, according to automation and data analytics-based perspectives in O&M (Dong 508 

et al. 2018; Gunay et al. 2019; Ward et al. 2019; Xu et al. 2019), integrated and real-time monitoring systems 509 

to trace elevator use could supply more reliable data for WOs estimation, but complexities for their 510 

installation in existing buildings exist.  511 

A future greater implication of the research approach will be pursued by moving towards other building 512 

performances impacting the whole building sustainability during the life cycle. Such issues could be related 513 

not only to maintenance, as in the aims of this work, but also to operation (Tukia et al. 2016; Zubair and 514 



Zhang 2020). In this sense, the maintenance of building systems could be combined with performances 515 

relating to their operation as well as to the whole building activities organization depending on scheduling 516 

(e.g. relation with occupants’ comfort and satisfaction; indoor environmental quality; resources and staff 517 

allocation; building automation-related issues; energy consumptions).  The timetabling effects on this aspect 518 

will be modelled on experimental-based data, using the same framework proposed by this work. Secondly, 519 

external stressors at both long and short periods, such as pandemics (D’Orazio et al. 2022), can imply 520 

different occupants’ loads and movement, and so different O&M performances of elevators and other 521 

building systems. These topics could be deepened in order to reach an additional optimization of the O&M 522 

depending on the contextual conditions of building use. Finally, further studies could also investigate the 523 

applicability of the proposed empirical-based algorithm coefficients to other university buildings, such as 524 

other building uses. 525 

5. CONCLUSIONS 526 

The sustainability of buildings depends on the interactions between the physical environment, the decision-527 

makers’ choices on its management, and the occupant behaviours, presence and movement. In this overall 528 

context, maintenance tasks are one of the fundamental aspects to be considered, since possible faults and 529 

problems to components and systems impact on the economic, workforce, business continuity, and 530 

satisfaction sustainability aspects. At the same time, maintenance needs strongly depend on the way the 531 

building is used, according to the managed scheduling. In the literature, the effects of university class 532 

timetabling on O&M have not been fully addressed. 533 

This work hence adopts a data-driven approach to jointly optimize class scheduling and corrective 534 

maintenance actions required on elevators. In particular, it analyses the correlation between the classroom 535 

schedule arrangement of a university and the corrective maintenance actions needed on the elevators, 536 

thanks to experimental data collected during a 15 months-long campaign, to evaluate how the class timetable 537 

can affect building sustainability performances in terms of occupancy and maintenance.  538 

The proposed approach matches text/data analysis on maintenance requests and a survey on students’ 539 

behaviours to derive an experimental-based correlation that relates students’ movement with maintenance 540 

work orders. Correlations were combined with university timetabling software to assess the impact of 541 



organization constraints on building occupancy and maintenance needs as Key Performance Indicators. 542 

Results point out that it is possible to reorganize the timetable to limit occupants’ movement by reducing 543 

elevator maintenance needs and guaranteeing proper classroom occupancy. 544 

Although this work just relies on data relating to faults in the elevator systems, the novel approach and its 545 

application results provide evidence of the impact that the sustainable management of occupants’ flows 546 

would have just on one of the components of maintenance performances. Thus, such an approach could be 547 

extended to other issues in O&M of large multi-story buildings, characterized by complex uses, and to other 548 

building components. Firstly, it could be directly used to move towards the optimization of operation costs, 549 

as one of the crucial parts of sustainability for facility managers, by assessing the correlation between energy 550 

consumption and occupants’ flows due to the timetabling. 551 

Secondly, the proposed data-driven approach could be extended to other kinds of building systems in the 552 

general O&M field. In fact, decision-makers could consider the same methodological approach for the other 553 

building systems and components (e.g. HVAC, lighting) with which occupants can directly interact, thus 554 

pursuing advantages for general building management and resource allocation strategies.  555 

To this end, integrated simulation tools could apply the behavioural drivers to O&M performances and needs 556 

by correlating occupants’ movements and actions in a predictive manner. Probabilistic-aware approaches 557 

should be preferred in terms of users’ number, behavioural patterns and fault occurrence. Building 558 

automation systems can support the specific algorithm and model development, as well as their validation, 559 

by means of data from real-time monitoring of occupants’ presence and maintenance requests. Indeed, a 560 

correct selection of the building use constraints will allow evaluating if and how the costs due to 561 

timetabling/building activities management strategies and maintenance needs can be balanced out. 562 

6. Supplementary materials 563 

Supplementary materials can be found online in ASCE Library (www.ascelibary.org). In particular, they 564 

include: the plans of building blocks A and B from the case study (identifying classrooms, paths network 565 

between classrooms and to the elevators/staircases, and buildings entrances), in the Supplementary material 566 

S1; MATLAB file on Section 3.3 model, in the Supplementary material S2. 567 



7. Data availability statement 568 

Some or all data, models, or code that support the findings of this study are available from the corresponding 569 

author upon reasonable request. In particular, supplementary materials have been included to report data 570 

on the case study and on the correlation model. 571 
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 683 

9. TABLES 684 

Table 1 List of elevators and their main features. 685 

Elevator Building Served floors 
number  

Number of floors 
hosting classrooms Comments 

A1 Tower 10 3  
A2 Tower 10 3  
A3 1 4 4 Capacity: 5 people; connects 

classrooms with library and coffee 
A4 1bis 2 - Not used by students 
A5 3A 3 - Not used by students 
A6 3A 3 3  
A7 3B 4 4  
A8 3B 4 4  
A9 PMS 4 4 Limitedly used by students 

A10 4 4 4  
A11 5 4 4 Stopped due to works 
A12 5 4 - Not used by students 
A13 5 3 2 Limitedly used by students 
A1M BAS 2 2 Limitedly used by students 
A2M BAS 2 2 Limitedly used by students 

 686 

Table 2 2W-DEU (m) for the three occupancy scenarios defined in Section 2.2.1 and experimental WOs 687 
number. For each scenario, data are expressed in raw and normalized (*_N) forms, and refer to the 688 

elevators included in the WOs analysis depending on their effective use. 689 
 
Elevator 

 
Building 

2W-DEU (m) WOs 
Number Nominal Nominal_N Critical Critical_N Effective Effective_N 

A1 Tower 13170 16590 21798 31800 2180 2745 15 
A2 Tower 13170 16590 21798 31800 2180 2745 8 
A3 1 15020 15020 20280 20280 2730 2730 11 
A6 3A 5880 5880 8302 8300 1200 1200 4 
A7 3B 3890 4590 6427 7540 820 860 2 
A8 3B 2980 4250 4375 6420 570 600 4 
A10 4 11070 11070 18229 18220 2040 2040 8 



 690 

Table 3 Coefficients of the three logistic regression-based models according to equation 1 691 
Parameters Minimum model  Mean model Maximum model 

a -61.41 -19.97 -3.45 
b 17.75 19.78 16.84 
c 0.02 0.01 0.00 
k 7.68 14.67 3.49 
q 0.34 0.52 0.18 

 692 

Table 4 2W-DEU (m) in the four timetable scenarios 693 

Elevators 
2W-DEU for each scenario (m) 

A B C D 
A1 10 0 580 0 
A2 10 0 580 0 
A3 50 470 850 20 
A6 0 340 1450 0 
A7 460 310 890 430 
A8 580 480 800 580 
A10 670 200 410 0 
Total 1780 1800 5560 1030 

 694 

Table 5 Expected two weeks (and yearly, in parentheses) WOs, according to the three models in Table 3, 695 
under the timetable scenarios. 696 

Expected two 
weeks WOs 

Scenarios 
A B C D 

Minimum 0.25 (7) 0.28 (8) 0.47 (13) 0.15 (4) 
Mean 0.34 (9) 0.33 (9) 0.69 (18) 0.15 (4) 
Maximum 0.66 (18) 0.77 (21) 1.14 (30) 0.4 (11) 

 697 

Table 6 Expected classroom occupancy under the timetable scenarios. 698 

Classrooms expected occupancy  
Scenarios 
A B C D 

Effective allocated lessons (hours) 1842 1850 1908 1794 
Maximum allocable lessons 
(hours) 2400 2400 2400 2400 
OR (%) 76.7% 77.1% 79.5% 74.7% 

 699 

10. FIGURE CAPTIONS 700 

Figure 1 Research framework including the three main phases of the work and the related referenced 701 
sections in the paper. Specific tools used in each phase are marked within the dashed boxes for each step. 702 
  703 



Figure 2 Plan of the campus hosting the Engineering Faculty of Università Politecnica delle Marche, located 704 
in Ancona (Italy),  including the main building blocks A and B. The ten buildings included in this study are 705 
identified by different colours and codes. 706 
 707 
Figure 3 Calculation steps for Daily Elevator Use (DEU) assessment. 708 
 709 

Figure 4 Analysis of students’ movement within the buildings: a) example scheme of shortest path (in green) 710 
evaluation while moving from A to B (alternative paths in red), depending on corridors (dashed lines) and 711 
elevators/staircases; b) excerpt of the Peklo paths network, showing classrooms (black dots), elevators 712 
(green dots) and staircases (red dots) associated with identification codes. 713 
 714 

Figure 5 WO production and management flow. 715 
 716 
Figure 6 Distribution of the classrooms dimension in terms of seat number. 717 
 718 
Figure 7 Distribution of students’ groups dimension. 719 
 720 
Figure 8 Distribution of classrooms’ occupancy ratio. 721 
 722 
Figure 9 Questionnaires-based use of stairs (light grey) and elevators (black) in percentage terms. The 723 
difference between levels is shown by the number of levels and vertical distance, for moving upstairs 724 
(positive) and downstairs (negative). 725 
 726 
Figure 10 Monthly WOs trend concerning elevators at Engineering Faculty (monitoring period). 727 
 728 
Figure 11 Curves representing the obtained mean (black), maximum (red) minimum (blue) models, defined 729 
according to Equation 1 and Table 3. 730 
 731 
Figure 12 Expected two-weeks WO versus Occupancy Ratio OR in the four alternative timetabling scenarios. 732 
 733 
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