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ABSTRACT

The aim of this paper is to model trading decisions of financial investors based on a sentiment index. For this purpose, we analyze a dynamical
model, which includes the sentiment index in the agents’ trading behavior. We consider the setup of a discrete dynamical system, assuming
that in financial markets, transactions take place between two groups of fundamentalists that differ in their perception of fundamental value.
This assumption is motivated by a degree of uncertainty about the true fundamental value. The proportion of fundamentalists in the two
groups is assumed to depend on the sentiment index. The sentiment index used is related to the risk asymmetry index, enabling us to consider
both the variance and the asymmetry of the prediction error between the two groups of fundamentalists. We identify the equilibria of the
model and conduct a numerical analysis in order to capture stylized facts documented empirically in the financial literature.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011636

Financial markets play a central role in the economy. An under-
standing of financial mechanisms, such as stock price forma-
tion, is fundamental for policy-makers, regulators, and investors.
Moreover, empirical studies have shown that returns in financial
markets show some regularities, in particular, asymmetry, excess
of kurtosis, and volatility clustering. Heterogeneous agent mod-
els (HAMs) are able to replicate these stylized facts. A number of
empirical studies have shown that investor sentiment plays a sig-
nificant role in asset pricing (see, e.g., Jawadi et al., 2018). In order
to investigate the role of investor sentiment in asset pricing, we
combine two strands of literature: the theoretical HAM models
and the empirical literature on investor sentiment and financial
returns. To this end, we examine a financial market with two
groups of traders that are homogeneous in their trading strategy,
but heterogeneous in their beliefs about the fundamental value
of the asset. This assumption is implicitly motivated by a degree
of uncertainty about the true fundamental value as considered in
He and Zheng (2016). In particular, by allowing traders to switch,
this means that all fundamentalists not only use the same senti-
ment index for switching but also realize the two different funda-
mental values explicitly. However, unlike previous studies (e.g.,
Naimzada and Pireddu, 2015), we assume that all agents take into
consideration the same sentiment index in forming their expec-
tations. As a proxy for the sentiment index, we adopt the Risk
Asymmetry Index (RAX) introduced by Elyasiani et al. (2018).

The RAX index aims to capture risk asymmetry in the market, i.e.,
the higher volatility of negative returns, compared to the volatil-
ity of positive returns. We examine the joint role of heterogeneity
and non-linearity (introduced by the sentiment index) in finan-
cial markets.
Our contribution to the literature is twofold. First, we intro-
duce for the first time a new sentiment index relying on the
work of Elyasiani et al. (2018), taking into consideration the
difference between the market price and the two fundamental
prices, representing the sentiment of the market. Thanks to the
sentiment index, traders modify their expectations about funda-
mental value and consequently they switch to the strategy that
they believe to be performing better. Second, by using the sen-
timent index, we model theoretically the empirical evidence on
the fact that periods of declining prices (fear scenario) have a
greater impact on volatility than periods of rising prices (greed
scenario).
Our analysis confirms the findings of Elyasiani et al. (2018), that
is, that the RAX index has the advantage of signaling the pre-
vailing market sentiment. In particular, it is a sentiment index
of fear in the sense that it is able to signal downturn moves to
investors that can modify their strategies in order to avoid huge
losses. Moreover, we find that a period of stability in the market
is possible only when the proportion of one type of trader is very
small.
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I. INTRODUCTION

Many theoretical and empirical studies have analyzed asset
price dynamics in financial markets in order to explain stylized
facts of stock returns, such as asymmetry, excess of kurtosis, and
volatility clustering. An important role in this sense is played by
models with heterogeneous agents (see Chiarella et al., 2002, 2009;
Gaunersdorfer, 2000, among others). Models with heterogeneous
agents exhibit good performance in capturing market behavior and
in the replication of econometric properties and stylized facts of
financial time series (see, for example, Franke and Westerhoff, 2016;
He and Le, 2007). Moreover, it is well known that models involving
heterogeneous agents allow for considerable flexibility in investor
behavior because they have the opportunity to switch between dif-
ferent trading rules according to certain fitness measures Brock
and Hommes (1998). Our work is closely related to the nonlin-
ear dynamic approach that views a financial market as a result of
the nonlinear interaction of heterogeneous investors with differ-
ent expectations that are characterized by the expectation feedback
mechanism. Heterogeneous agent models are characterized by sub-
stantial simplifications at the modeling level (few belief-types, sim-
plified interaction structures, and reduced number of parameters)
that make them amenable to analysis mostly within the theoreti-
cal framework of nonlinear dynamical systems (see Dieci and He,
2018; He et al., 2019 for a survey). The majority of models with
heterogeneous agents consider two types of traders: fundamental-
ists and chartists. Fundamentalists are aware of market fundamen-
tals and they believe in reversion to the mean, while chartists are
considered as a source of instability in the model because, with
their speculative behavior, they destabilize the market leading to
intricate scenarios. As a result, these studies consider heterogene-
ity both in the expectations of agents and their trading decision
rules.

This work contributes to the literature on heterogeneous agent
models in finance. Unlike most heterogeneous financial market
models, we consider two groups of fundamentalists, instead of fun-
damentalists and chartists. A key assumption is that both groups
of fundamentalists have different beliefs on the fundamental value
of the risky asset. This assumption is motivated by a degree of
uncertainty about the true fundamental value as considered in
He and Zheng (2016). In particular, by allowing traders to switch,
this means that all the fundamentalists not only use the same
sentiment index for switching but also realize the two different
fundamental values explicitly.

In the financial literature, investors’ preferences are assumed
to be increasing in odd moments and decreasing in even moments
(see, e.g., Kraus and Litzenberger, 1976). The normality assumption
about returns, which focus only on the first two moments, mean and
variance, and overlooks the empirical evidence about the distribu-
tion of stock returns which are found to be negatively skewed. In
other words, extreme and negative events are more probable than
positive ones, in contrast with the assumption of a normal distri-
bution that assigns the same probability to positive and negative
returns (see, e.g., Elyasiani et al., 2020; Sasaki, 2016). In fact, asset
volatility can be broken down into good and bad volatility, account-
ing for the fact that investors like positive spikes in returns while they
dislike negative ones (Elyasiani et al., 2017). Based on this line of rea-
soning, some studies have analyzed the role of investor sentiment in

stock price formation, suggesting that investor sentiment is one of
the main determinants of asymmetry in stock returns (Jawadi et al.,
2018; Verma and Soydemir, 2009).

The aim of our paper is to highlight the role of a sentiment
index in the market with heterogeneous agents. As a proxy for the
sentiment index, we adopt the Risk Asymmetry Index (RAX) intro-
duced by Elyasiani et al. (2018), The RAX index aims to capture the
risk asymmetry in the market, i.e., the higher volatility of negative
returns, compared to the volatility of positive returns. We exam-
ine the joint role of heterogeneity and non-linearity (introduced by
the sentiment index) in financial markets. We model an endoge-
nous switching mechanism between traders relying on the sentiment
index, which is considered as a benchmark index for all agents. We
consider two groups of fundamentalists that adopt the same trading
rule but heterogeneous beliefs about fundamental value. In this way,
we implicitly introduce a degree of uncertainty about the true fun-
damental value [which in He and Zheng (2016) is modeled directly
in the utility function].

There are a few studies that consider only fundamentalists in
asset pricing models. In particular, Naimzada and Ricchiuti (2008)
analyze a financial market with two fundamentalists acting as gurus.
Traders followed one of the two fundamentalists, by relying on a
fitness measure that involves the distance between the fundamental
value and the current price. They found that complex dynamics arise
when market maker and agents overreact to price misalignment.
However, this model does not consider market sentiment: funda-
mentalists take trading decisions by looking at the distance between
the fundamental price and the current price. On the other hand,
we assume that all the agents in the market take trading decisions
by looking at the same sentiment index. Second, unlike Naimzada
and Ricchiuti (2008), we do not consider any kind of imitation,
in the sense that in the market there are only two types of agents
and no other trader is allowed to enter in the market. The intro-
duction of a sentiment index is the innovative aspect of our model,
and it is the main reason that leads us to consider only one group
of traders. In this way, we can analyze the effect of the sentiment
index on the complex scenarios without the destabilization in the
market introduced by chartists. Another study considering only fun-
damentalists is that of Kaltwasser (2010). The author analyzes a
heterogeneous agent model of the FOREX market, building on the
model of Alfarano et al. (2008), considering only fundamentalists.
Unlike our study, the author considers the FOREX market and relies
on a probabilistic approach, focusing mainly on numerical results.
On the other hand, we adopt a qualitative analysis, both analyti-
cally and numerically. Moreover, we extend our model by including
stochastic shocks to the demand of both fundamentalists. In this
way, we show that our model is capable of matching the stylized facts
observed in financial markets.

Our contribution to the literature is twofold. First, for the first
time, we introduce a new sentiment index relying on the work of
Elyasiani et al. (2018), which takes into consideration the difference
between the market price and the two fundamental prices, repre-
senting market sentiment. Thanks to the sentiment index, traders
modify their expectations about fundamental value and conse-
quently they switch to the strategy that they believe to be performing
better. Second, by using the sentiment index, we model theoretically
the empirical evidence on the fact that periods of declining prices
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(fear scenario) have a greater impact on volatility than periods of
rising prices (greed scenario). Instead, following literature on non-
linear dynamics to financial markets, we focus on the role of our
model to replicate these stylized facts from a mathematical and a
numerical point of view (see Dieci and He, 2018; He et al., 2019).

Our analysis confirms the findings of Elyasiani et al. (2018),
that is, the RAX index has the advantage of signaling prevailing mar-
ket sentiment. In particular, it is a sentiment index of fear in the
sense that it is able to signal downturn moves to investors that can
modify their strategies in order to avoid huge losses. Moreover, we
find that a period of stability in the market is possible only when the
fraction of one type of trader is very low.

The paper proceeds as follows. In Sec. II, we describe the model
setup. Section III focuses on the study of fixed points and their sta-
bility analysis. Section IV analyzes the economic implications of our
model with a bifurcation analysis and a global analysis. In Sec. V,
we extend the deterministic model introducing stochastic shock to
the fundamental demand of both types of trader and we carry out an
in-depth statistical analysis comparing our results with those of the
S&P500 index. Section VI concludes our work.

II. THE MODEL

We outline a financial market model, which describes price
dynamics in the presence of traders with different beliefs about fun-
damental value. The model includes a market maker who adjusts
the price based on order imbalances and two fundamentalists who
believe in reversion to the mean (i.e., they expect the price to return
to the fundamental value F). As a result, fundamentalists place
orders to buy when the price is below F because in this case, they
believe that the market is undervalued; they place orders to sell
when the price is above F because they believe that the market is
overvalued.

Our model incorporates two types of fundamentalists: in par-
ticular, we assume that type-2 fundamentalists (f2) underestimate
the fundamental value with respect to type-1 fundamentalists (f1),
i.e., F2 < F1. This implies that when the price (Pt) is lower than F2,
type-2 fundamentalists overestimate the price less than type-1 fun-
damentalists. On the other hand, when price Pt is higher than F1,
type-2 fundamentalists underestimate the price Pt more than type-1
fundamentalists. We assume that both types of fundamentalist have
the same excess demand function,

D
f1
t = λ(F1 − Pt), (1)

D
f2
t = λ(F2 − Pt), (2)

where D
fi
t is the excess demand function for type-i fundamental-

ists; i = 1, 2, λ is a positive parameter and indicates how aggres-
sively the fundamentalist reacts to the distance of the price to the
corresponding fundamental value (F1, F2).

Within this framework, when the price is below F2 type-2
fundamentalists buy less than type-1 fundamentalists. When the
price is above F1, type-2 fundamentalists sell more than type-1
fundamentalists.

Depending on the price, we can distinguish the following fear
or greed predominance regions (see Fig. 1):

(a) Pt > F1 > F2, in this case, both fundamentalists sell, and type-
2 fundamentalists sell more than type-1 (fear predominance
region).

(b) F2 < Pt < F1, type-2 fundamentalists sell, whereas type-1 fun-
damentalists buy. This is similar to the bull and bear regime
described in Day and Huang (1990) or Tramontana et al. (2009)
(fear and greed mixed predominance region).

(c) Pt < F2 < F1, both types of fundamentalists buy, but type-2
fundamentalists buy less than type-1 fundamentalists (greed
predominance region).

The stock market is characterized by the presence of a mar-
ket maker that sets the stock price Pt+1 according to total excess
demand,

Pt+1 = Pt + (w1D
f1
t + w2D

f2
t ), (3)

where wi is the proportion of fundamentalists of type i, i = 1, 2 and
w1 + w2 = 1.

We consider a fixed number (we assume that a trader can only
trade one unit at a time) of traders equal to 2N, ni is the number of
fundamentalists of type i = 1, 2,

n1 + n2 = 2N. (4)

Therefore,

w1 =
n1

2N
and w2 =

n2

2N
. (5)

We assume that the number of type-1 and type-2 fundamental-
ists varies according to the following market sentiment index:

ηt =
(F1 − Pt)

2 − (F2 − Pt)
2

(F1 − Pt)
2 + (F2 − Pt)

2
. (6)

The sentiment index measures in relative terms the distance
between the price Pt and the two fundamental prices, F1 and F2.

P
t

t

Greed

Fear and Greed

Fear

sentiment index

FIG. 1. Fear and greed predominance regions.
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FIG. 2. Coexistence of attractors for parameters n2 = 0.5, F1 = 3.44, F2 = 1.36, λ = 1.3, and N = 0.5. In (a) and (b) (greed scenario), an i.c. P0 = 1.5 generates a
trajectory converging to the fixed point P∗

1 . In (c) and (d) (fear scenario), for P0 = 3, the trajectory converges to the fixed point P∗
2 .

In particular, the numerator measures how close the price is to the
fundamental value F1 and subtracts how close the price is to the fun-
damental value F2. This difference is normalized by the sum of the
two distances (the denominator). In this way, the sentiment index is
bounded in the interval [−1, 1] (see Fig. 1). In particular, if the price
is close to the fundamental value F1, then the index is negative since
for prices higher than F1 both types of investors sell and for prices
Pt >

F1+F2
2

and lower than F1 type-1 investors buy with a lower
intensity than that which characterizes the selling behavior of type-2
investors, yielding an overall sell signal. In fact, when Pt >

F1+F2
2

,
then the sentiment index is negative. When Pt = F1, then the senti-
ment index reaches its minimum value equal to −1. The sentiment
index is such that if the price is higher than F1 it gradually returns
to zero, since the selling behavior of both types of fundamentalists
determines an oversold market. On the other hand, if the price is
close to the fundamental value F2, then the index is positive since
for prices lower than F2, both types of investors buy and for prices
Pt <

F1+F2
2

and higher than F2, type-1 investors buy with a higher

intensity than that which characterizes the selling behavior of type-2
investors, yielding an overall buy signal. In fact, when Pt <

F1+F2
2

,
then the sentiment index is positive. When Pt = F2, then the sen-
timent index reaches its maximum value equal to 1. The sentiment
index is such that if the price is lower than F2, it gradually returns
to zero, since the buying behavior of both types of fundamentalists
determines an overbought market. Last, if Pt =

F1+F2
2

, the sentiment
index is equal to zero, indicating no buy or sell signal.

The number of type-1 and type-2 fundamentalists varies
according to the sentiment index in the following way (see
(Lux, 1995)):

n1 = n2 − 2Nη. (7)

As a result, the number of type-1 fundamentalists is equal to
the number of type-2 fundamentalists when η = 0. The number of
type-1 fundamentalists is greater than the number of type-2 fun-
damentalists when η < 0. The number of type-1 fundamentalists is
smaller than the number of type-2 fundamentalists when η > 0. The
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FIG. 3. Homoclinic bifurcations scenario. In (a) and (b), two complex attractors merge for n2 = 0.5, F1 = 3.44, F2 = 1.36, λ = 1.79, N = 0.5, and i.c. P0 = 1.5. In (c) and
(d), there is the occurrence of an homoclinic bifurcation for n2 = 0.5, F1 = 3.44, F2 = 1.36, λ = 2.2, N = 0.5, and i.c. P0 = 1.5.

closer the price to the fundamental value F1, the more the propor-
tion of type-1 fundamentalists increases since they performed better
than the other group in forecasting the equilibrium price (and in
the market, we have an overall fear predominance since investors
expect the price to decrease). On the other hand, the closer the price
to the fundamental value F2, the more the proportion of type-2 fun-
damentalists increases since they performed better than the other
group in forecasting the equilibrium price (and in the market, we
have an overall greed predominance since investors expect prices to
increase).

The final map: Based on the above considerations, we obtain
the first order nonlinear discrete dynamical equation, which
describes the price evolution over time. It takes the following form:

Pt+1 = Pt +

{[

n2

2N
−

(F1 − Pt)
2 − (F2 − Pt)

2

(F1 − Pt)
2 + (F2 − Pt)

2

]

λ(F1 − Pt)

+

[

n1

2N
+

(F1 − Pt)
2 − (F2 − Pt)

2

(F1 − Pt)
2 + (F2 − Pt)

2

]

λ(F2 − Pt)

}

. (8)

III. STABILITY ANALYSIS OF EQUILIBRIUM POINTS

In this section, we explore the qualitative properties of Map (8).
We first consider, for the sake of completeness, the case of homoge-
neous fundamentalists, then the more interesting case of heteroge-
neous fundamentalists.

Homogeneous fundamentalists: If both fundamentalists are
of the same type, they have equal beliefs in the fundamental price,
that is, F1 = F2, then the final Map (8) becomes

Pt+1 = Pt +

(

1 −
n1

2N

)

λ(F − Pt) +

( n1

2N

)

λ(F − Pt),

and the fixed point is the fundamental price P∗ = F. In this case, it
turns out that

dPt+1

dPt

= 1 − λ,

and we have a situation in which the market reaches a stable
equilibrium if 0 < λ < 2.

Heterogeneous fundamentalists: We first show the existence
of the fixed points analytically and then we study their local stability
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FIG. 4. Asymmetric mid fixed point. In (a) and (b), the trajectory converges to the fear attractor for n2 = 0.7, F1 = 2.04, F2 = 0.65, λ = 1.8, N = 0.5, and i.c. P0 = 2.
In (c) and (d), the trajectory leads to the greed attractor for n2 = 0.4, F1 = 2.2, F2 = 0.81, λ = 1.8, N = 0.5, and i.c. P0 = 1.2.

by means of graphical analysis. The condition for the existence of the
steady state of the Map (8) is Pt+1 = Pt = P∗. Therefore, we solve the
following equation in the variable P∗:

T(P∗) =

[

n2

2N
−

(F1 − P∗)2 − (F2 − P∗)2

(F1 − P∗)2 + (F2 − P∗)2

]

λ(F1 − P∗)

+

[

(

1 −
n2

2N

)

+
(F1 − P∗)2 − (F2 − P∗)2

(F1 − P∗)2 + (F2 − P∗)2

]

λ(F2 − P∗) = 0.

(9)

The following proposition holds.
Proposition 1. Assume Pt > 0 ∀t and F1 > F2. Then, Map (8)

admits three real fixed points P∗
i with i = 1, 2, 3 given by

P∗
1 = F2, (10)

P∗
2 = F1, (11)

P∗
3 ∈ (F2, F1). (12)

The fixed points belong to the interval [F2, F1].

Proof. In order to compute the fixed points, we have to solve
Eq. (9). It may be seen that the two fundamental prices F1 and F2 are
two of the fixed points of the model. Indeed, if we substitute P∗ = F1

we have

−
n2

2N
λ(F2 − F1) = 0.

Note that, assuming P∗ = F1, we have a situation in which type-1
fundamentalists have performed better than type-2 fundamentalists,
and in this case, all fundamentalists become type 1, which implies
n2
2N

= 0. Therefore, F1 solves Eq. (9) and it is a solution.
A similar argument holds with regard to the second fixed point,

F2. Assuming P∗ = F2, we have that type-2 fundamentalists have
performed better than type-1 fundamentalists, and in this case, all
fundamentalists become type 2, which implies n1

2N
= 0. Therefore,

F2 solves Eq. (9) and it is a solution.
For the existence of the third fixed point in the interval (F2, F1),

we make use of the intermediate value theorem. In particular, con-
sider the midpoint of the segment ¯F2F1, i.e., F1+F2

2
. Now, we take the

midpoints of the two intervals (F2,
F1+F2

2
) and (

F1+F2
2

, F1), namely,
points I1 and I2 and evaluate Eq. (9) in each of the points. Given that
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FIG. 5. The role of parameter λ. Two pictures showing the basins of attraction of Map (8). In (a), n2 = 0.7, F1 = 1.8, F2 = 1, λ = 1.58, and N = 0.5. In (b), we use the
set of parameters n2 = 0.7, F1 = 1.8, F2 = 1, λ = 1.64, and N = 0.5.

T(P(I1)) < 0 and T(P(I2)) > 0 and that the function T(P) is con-
tinuous in the interval (F2, F1), it may be said that in this interval,
there is a solution for Eq. (9) and it is unique. This concludes the
proof. �
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FIG. 6. The role of the difference between F1 and F2. Two pictures showing the bifurcation diagram with respect to n2 in the fear and greed scenario. In (a), parameters
F1 = 2.5, F2 = 2, λ = 2, N = 0.5, and i.c. P0 = 1.5. In (b), parameters F1 = 12, F2 = 10, λ = 2, N = 0.5, and i.c. P0 = 1.5.

Note that in the steady state P∗
2 = F1 (P∗

1 = F2), the share of
type-2 fundamentalists (1) is zero. The presence of both types of fun-
damentalists is possible only in the third steady state P∗

3 . Thanks to
graphical analysis, it will be demonstrated that the steady state P∗

3 is
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FIG. 7. The role of the difference between F1 and F2. A stable two-cycle in (a) greed scenario for n2 = 0.5, F1 = 2, F2 = 1.9, λ = 2, N = 0.5, and i.c. P0 = 1.5; and (b)
fear scenario for n2 = 0.5, F1 = 2, F2 = 1.36, λ = 2, N = 0.5, and i.c. P0 = 1.5.

always unstable since it delimits the basins of attraction of the other
two steady states. For appropriate values of parameters, we find that
it does not coincide with (

F1+F2
2

).
The possible scenarios arising in our model are described in the

following Proposition 2.
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FIG. 8. The three scenarios. Greed scenario (yellow diagram) with parameters
F1 = 2, F2 = 1.9, λ = 1.72, N = 0.5, and i.c. P0 = 1.8. Fear and greed sce-
nario (blue diagram) with parameters F1 = 2, F2 = 1.75, λ = 2, N = 0.5, and
i.c. P0 = 1.8. Fear scenario (red diagram) with parameters F1 = 2, F2 = 1.36,
λ = 1.72, N = 0.5, and i.c. P0 = 1.8.

Proposition 2. Assume F1 6= F2. Let cmin, cmax be the local
minimum and the local maximum of the Map (8); Cmin and
Cmax are their iterates, respectively, that is, Cmin = Pt+1(cmin) and
Cmax = Pt+1(cmax), then there exist two disjoint invariant [A set
I ⊆ R+ is positively (negatively) invariant if Ti(I) ⊆ I (Ti(I) ⊇

I) ∀i ∈ Z+. Moreover, I is invariant when it is both positively
and negatively invariant. Finally, a closed and positively invariant
region is called trapping.] intervals I = [Pt+1(cmin), Pt+1(Cmin)] and
J = [Pt+1(cmax), Pt+1(Cmax)] such that:

1. Fear or Greed scenario: if Pt+1(Cmin) < P∗
3 and Pt+1(Cmax) > P∗

3 ,
then Map (8) has two coexistent attractors, P∗

1 and P∗
2 .

2. Fear and Greed scenario: for Pt+1(Cmin) = Pt+1(Cmax) = P∗
3 the

two attractors merge and a contact bifurcation occurs.

In scenario (1) depicted in Fig. 2, we observe the trajectory of
the price converging to one of the two coexisting attractors, P∗

1 or
P∗

2 , depending on the initial condition P0. Indeed, if we take an ini-
tial condition P0 close to P∗

1 , then the price converges to P∗
1 [Figs. 2(a)

and 2(b), greed scenario]. On the other hand, taking an initial condi-
tion P0 close to P∗

2 , then the price converges to P∗
2 [Fig. 2(c) and 2(d),

fear scenario]. It may be noted that the attractor may be a fixed
point, an n-period cycle, a strange attractor, or the union of two
coexisting attractors. Therefore, in scenario (1), we have a greed or
a fear scenario depending on the initial condition.

In scenario (2) shown in Fig. 3, we have the occurrence of a
homoclinic bifurcation. In particular, in Figs. 3(a) and 3(b) the two
absorbing intervals are merged. In this case, the two chaotic attrac-
tors are transformed into a one-piece chaotic attractor. Figure 3(c)
and 3(d) shows a more chaotic dynamic, with respect to the former,
due to the merging of the two attractors, which now form a q-piece
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chaotic attractor where complex price dynamics arise. Therefore, in
this scenario, we have a recursive flip of the price between fear and
greed regions.

Another important feature of our model is that the fixed point
P∗

3 could be asymmetrically distributed in the interval (F2, F1). In
Fig. 4, we find two trajectories leading to the two coexisting attrac-
tors. This case arises for a different value of the parameter n2 (the
fraction of fundamentalists of type 2). Indeed, when we decrease the
value of n2, the basin of attraction of the fixed point F2 enlarges with
respect to that of the other fixed point F1.

Both the scenarios outlined in Figs. 2 and 4 are related to
the co-existence of multiple equilibria. As stressed by He et al.
(2018), the coexistence of multiple equilibria is the source of inter-
esting dynamics of the price. In fact, in line with these authors,
we identify the coexistence of two local attractors (the fixed points
P∗

1 and P∗
2). Depending on the initial condition, and on the model

parameters, the model may converge to one of the two attrac-
tors. However, unlike He et al. (2018), our model does not exhibit
bistable dynamics, given that we have a multiple equilibria mecha-
nism. As a result, the (He et al., 2018) model is able to characterize
seemingly unrelated or even opposite market phenomena, while
our model is able to characterize one single market phenomenon:

volatility in the fear scenario is greater than volatility in the greed
scenario.

Finally, in Fig. 5, we investigate the role of the reactiv-
ity parameter λ in determining the structure of the basins of
attraction. In particular, in Figs. 5(a) and 5(b), we have two dis-
connected basins of attraction, i.e., the basins of the two fixed
points are located also in regions that do not contain the rela-
tive fixed points (see Abraham et al., 1997). The greater the value
of λ, the more complex the structure of the basins of attrac-
tion.

In Sec. IV, we describe in detail the scenarios analyzed in the
graphical analysis from an economic perspective in order to match
our findings with the stylized facts.

IV. NUMERICAL ANALYSIS

In this section, we shed light on the main insights of our
work. From the stability analysis, we know that the three equi-
libria always exist. From an economic point of view, instead, our
model is able to capture interesting features of financial mar-
kets. In particular, our goal is the introduction of the RAX senti-
ment index introduced by Elyasiani et al. (2018) observing how it
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FIG. 9. Bifurcation diagrams with respect to F1 showing the transition from a two-piece chaotic attractor to a one-piece chaotic attractor for given values of parameters.
In (a), n2 = 0.5, F2 = 1.5, λ = 1.65, N = 0.5, and i.c. P0 = 1.5. In (b), n2 = 0.5, F2 = 1.5, λ = 1.7, N = 0.5, and i.c. P0 = 1.5.
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TABLE I. Summary statistics of returns. The table reports the summary statistics including mean, standard deviation (SD), skewness, kurtosis, minimum and maximum value,

Jarque–Bera test, and statistic of S&P500, SM.

Mean SD Min Max Skewness Kurtosis J–B J–B statistic

S&P500 0.0000 0.0093 −0.0001 0.0000 −0.4976 7.5827 1 2324.90
SM 0.0000 0.1175 −0.0006 0.0005 −0.1493 4.9563 1 1240.10

works as a reference index of market sentiment. Instead of intro-
ducing heterogeneity into the behavioral rules of each group of
agents, we highlight how agents with the same trading behavior
(fundamentalists) influence market sentiment. In this sense, the
RAX index is a sentiment index because it records the prevalent
trend of the market (which we have referred to as fear and greed
predominance).

Another important element of our analysis is the role of the
fundamental values perceived by the two groups of traders. In par-
ticular, the difference in the two fundamental prices matters not only
in a mixed fear and greed scenario Fig. 6 but also in a fear or greed
scenario Fig. 7 thanks to the signal contained in the sentiment index.
Indeed, in Fig. 6(a), it is apparent how the interaction of both types
of fundamentalist leads to complicated dynamics and a period of
volatility of the price. On the other hand, if we look at Fig. 6(b) for
the same level of reaction of traders, we see an amplification of price
volatility when the distance between the two fundamental prices
increases. Moreover, in both cases, when the fraction of fundamen-
talists of type i, with i = 1, 2, is sufficiently lower than the proportion
of fundamentalists of type j, with j = 1, 2 and j 6= i, then the market
reaches a stable equilibrium. Considering Fig. 6(a), for n2 ≈ 0.1, the
stable two-cycle scenario disappears and a cascade of flip bifurca-
tion becomes apparent. We note that two different attractors coexist,
implying that the asymptotic dynamic of price can lead to one of the
two attractors depending on the initial condition. At n2 ≈ 0.2, the
two attractors merge into a single attractor generating a homoclinic
bifurcation. In line with (He and Zheng, 2016), we can attribute the

difference between the two fundamental prices to the uncertainty
about the true value of the fundamental. Traders try to guess the
fundamental price, taking into account private information in
addition to the public information given by the sentiment index.
This gives rise to endogenous heterogeneity and switching behavior
on the part of agents.

Based on our analysis, a period of stability is possible when the
proportion of one type of trader is very low (e.g., n2, see Fig. 8),
implying that when the market is mainly populated by one type
of fundamentalist, the level of uncertainty diminishes significantly.
However, also in a period of stability, the difference between the
two fundamental prices determines a higher price volatility in a
fear scenario [Fig. 7(b)] compared to a greed scenario [Fig. 7(a)].
[In the empirical literature (see, e.g., Caloia et al., 2018), the volatil-
ity of negative returns is higher than that of positive returns. This
difference is exacerbated in high volatility periods.]

Our framework is also able to capture the asymmetry in the
return distribution of prices. In this connection, the introduction
of the RAX index has the property of signaling the sentiment pre-
vailing in the market, in order to allow traders to take their final
decision on whether to buy or sell. It is self-evident that investors
prefer positive returns to negative ones, and the literature pro-
vides evidence that the return distribution is negatively asymmetric
which implies in turn many low positive returns and a small num-
ber of large losses. This is captured in our model. In the sentiment
index positive and negative returns are weighted asymmetrically, as
reflected in the behavior of agents that buy and sell on the basis of

FIG. 10. Returns series [panel (a)], Q–Q plot [panel (b)], and the histogram [panel (c)] for S&P500 index for time periods t ∈ [2010, 2020]. The same diagrams for SM are
figured in panels (c)–(e), respectively.
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TABLE II. Power law of returns. For each return series in S&P500 and SM, we

estimate ln P(

∣

∣

∣

rt−r̄

SD

∣

∣

∣
> X) = −ζ ln X + b with ordinary least squares and report ζ ,

the number of observation N, and R2.

S&P500 ln P(
∣

∣

rt−r̄
SD

∣

∣ > X) SM ln P(
∣

∣

rt−r̄
SD

∣

∣ > X)

ζ 2.9074a 2.7087a

(0.2564) (0.1781)
N 46 46
R2 0.8533 0.9117

aSignificant at 1%.

the sentiment index and generate skewness in returns. As a result,
the volatility of prices when the market faces a fear scenario is
greater than the volatility occurring in the greed scenario or in the
mixed fear-and-greed scenario. In Fig. 8, we show the three possi-
ble scenarios of our model. It is evident that, in the fear scenario,
the volatility of the price is much larger than in the other two cases.
These findings confirm that the RAX index is a sentiment index of
fear in the sense that it is able to signal downturn periods to investors
who can modify their strategies in order to avoid huge losses.

Finally, we wish to stress the role of the reactivity parame-
ter λ and heterogeneity (F2 − F1) in determining chaotic dynamics.
This situation is described in Fig. 9 where we note the transi-
tion to more complicated dynamics when both λ and F1 increase.
Figure 9(a) shows the origin of a two-piece chaotic attractor, while
in Fig. 9(b), we see that the two attractors give rise to a homoclinic
bifurcation.

V. STOCHASTIC MODEL

In this section, we explore the statistical properties generated
by our model, showing that it is able to match a rich set of empir-
ically observed stylized facts. The main empirical evidence that we
will deal with in this section will concern non-normality of the
returns, heavy tails, and volatility clustering (see Cont, 2002; He and
Le, 2007; He and Zheng, 2016; Lux and Alfarano, 2016; Lux and
Marchesi, 2006, for example). In particular, we add noise to both
the fundamental demand processes and examine the dynamics of
the model using numerical simulations. Combining the determinis-
tic and stochastic elements, the demand of type-1 fundamentalists

TABLE III. Persistence of ACFs of absolute returns. For each return series in S&P500

and SM, we estimate corr(|r t+q |, |r t | ≃ ζ /qd with nonlinear least squares and report

ζ and d.

S&P500 corr(|rt+q |, |rt |) SM corr(|rt+q |, |rt |)

d 0.3692a 0.2218a

(0.0615) (0.0163)
ζ 0.3360a 0.3219a

N 150 150
R2 0.7359 0.8275

aSignificant at 1%.

is

D
f1
t = λ(F1 − Pt) + ǫ

f1
t , ǫ

f1
t ∼ N(0, (σ )2), (13)

and, similarly, the demand of type-2 fundamentalists is given by

D
f2
t = λ(F2 − Pt) + ǫ

f2
t , ǫ

f2
t ∼ N(0, (σ )2), (14)

where σ is a positive parameter representing the standard devia-
tions of the normal random variables that we assume equal for both
types of fundamentalists. In our analysis, we consider the daily log-
returns (In the simulations, we analyze the most interesting case of
F2 < Pt < F1. Given the initial value of the price Pt, we do not face
non-positive prices.), defined as

rt = ln(Pt) − ln(Pt−1), (15)

focusing on the from normality of their distribution. As a bench-
mark, we consider the daily log-returns of the S&P500 from January
02, 2010 to January 28, 2020. To differentiate the time series gener-
ated from the S&P500 index (S&P500) and the simulated stochastic
model (SM) we add S&P500 and SM in front of the name of
each time series. In all the simulations performed, we consider the
following parameter set: N = 0.5; n2 = 0.5; F1 = 2000; F2 = 1200;
λ = 0.1, P0 = 1500,and σ = 0.09. In Table I, we provide some use-
ful summary statistics for the returns of the S&P500 and the SM and
the diagrams shown in Fig. 10 will help us to interpret these statistics.

Figures 10(a) and 10(d) show that the time series exhibit volatil-
ity clustering, which is characterized by intermittent and large fluc-
tuations. Actually, the heterogeneity regarding the beliefs about the
fundamental price is responsible for producing such patterns. In
Figs. 10(c) and 10(f), we compare the shape of the distribution with
a normal distribution with variance identical to the sample vari-
ance (depicted by the solid line). We note a stronger concentration
around the mean, with a greater probability mass in the tails of the
distribution and thinner shoulders. All these aspects are a typical
deviation from the normal distribution and are to be found in the
empirical literature (see Lux, 1998; Lux and Marchesi, 2006).

In Figs. 10(b) and 10(e), we report the Q–Q plot of the returns
for S&P500 and SM. They display the quantile of the sample data
(returns) vs the theoretical quantiles of the normal distribution. If
the distribution of returns is normal, then the plot appears to be
linear, which is not the case in this instance. Indeed, the tails lay
below and above the 45◦ line implying that their distributions are
fat-tailed, as well [see Figs. 10(b) and 10(e)]. We also analyze the
non-normality of the returns conducting the Jarque–Bera test (see
Table I). In particular, we test the null hypothesis that returns follow
a normal distribution at the 1% significant level. The Jarque–Bera
test rejects the null hypothesis at the 1% significance level (as indi-
cated by the value 1 in the J–B column); in fact, the test statistic, J–B
statistic, is greater than the critical value, which is 5.8461.

Some of the empirical quantitative properties related to returns
include a power-law behavior, long memory, and correlation to
volatility. We intend to demonstrate all these stylized facts with our
model. Lux and Alfarano (2016) review a number of universal power
laws characterizing financial markets. We take into account two of
these in our study. The first concerns the distribution of the returns,
which is characterized by the presence of fat tails. It is found that
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FIG. 11. Volatility clustering and long-range dependence. Panels (a) and (b) plot the ACFs (autocorrelation functions) of returns (blue line), the absolute returns (red line),
and the squared returns (yellow line) for S&P500 and SM, respectively. Panel (c) plots the Lo-modified R/S statistic of the absolute returns.

fat-tailed distributed returns approximately follow an inverse cubic
power law described by

P

(∣

∣

∣

∣

rt − r̄

SD

∣

∣

∣

∣

> X

)

∼ X−ζ , (16)

where ζ ≃ 3 is the Pareto exponent (also called the characteristic
exponent), r̄ and SD are the mean and the standard deviation of the
returns rt, and rt−r̄

SD
is the normalized return. The pertinent literature

converged on the insight of an exponent close to 3.
Following He and Zheng (2016) and Gabaix et al. (2006), we

estimate the characteristic exponent with ordinary least squares
(OLSs) estimating the logarithm of Eq. (16), that is,

ln P(

∣

∣

∣

∣

rt − r̄

SD

∣

∣

∣

∣

> X) = −ζ ln X + b. (17)

As shown in Table II, for both S&P500 and SM, the value of the
characteristic exponent, ζ , is close to 3, confirming the findings of
the empirical literature.

The second power law relates to the concept of volatility clus-
tering. We can see how persistent the volatility is by estimating the
following power component in the ACFs of absolute returns (see
Cont, 2002; He and Zheng, 2016)

corr(|rt| ,
∣

∣rt+q

∣

∣) ≃
ζ

qd
, (18)

where q is the number of lags, ζ is a parameter capturing the
ACF of absolute returns with lag one, and d is the power expo-
nent capturing the decay of the ACFs. We estimated Eq. (18) with
non-linear least squares and the results of each model are shown in
Table III. As we can see, our estimates are in line with the empiri-
cal evidence, which postulates a value of d in the interval [0.2 0.4].
Figures 11(a) and 11(b) plot the series of sample autocorrelation of
the log-returns, absolute returns, and squared returns of the sim-
ulated data and of the S&P500. Both the stochastic and empirical

series of absolute and squared returns are characterized by autocor-
relation persistent up to more than 60 lags, in line with empirical
findings observed in financial time series.

Finally, we complete the current analysis by testing the hypoth-
esis of long-range dependence in the volatility measured by the
time series of |rt|. To this end, we compute the Lo-modified range
over standard deviation or R/S statistic (also called re-scaled range)
(see Lo, 1991). In Fig. 11(c), we show the R/S statistic for lags rang-
ing from 1 to 100, and it is possible to see that we reject the null
hypothesis of no long-range dependence when the number is not
particularly large, i.e., q ≤ 30. Indeed, for these values of the lags,
the Lo-modified R/S statistic for S&P500 and SM all fall out of the
95% critical interval [0.809, 1.862] suggesting the presence of long
memory in absolute return series.

VI. CONCLUSIONS

The aim of the paper is to model trading decisions of finan-
cial investors based on a sentiment index introduced by Elyasiani
et al. (2018). We consider two groups of fundamentalists with
heterogeneous beliefs about the fundamental value and we model
an endogenous switching mechanism between the two groups of
traders, relying on the sentiment index. The sentiment index is con-
sidered as a benchmark index for all agents. Depending on the value
of the price, one group of agents is more aggressive than the other in
buying or selling. The main finding of our work is that the introduc-
tion of the sentiment index allows the model to generate complex
price dynamics. The model is able to distinguish a fear scenario, a
greed scenario, or a mixed fear and greed one. The difference in the
two fundamental prices perceived, thanks to the sentiment index,
matters in all three scenarios.

In particular, when the proportion of the two groups of funda-
mentalists is similar, we observe sudden changes from fear to greed
scenarios and vice versa. Based on our analysis, a stability period is
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possible when the proportion of one type of trader is very low. How-
ever, also in a stable period, the difference in the two fundamental
prices determines greater uncertainty in the fear compared to the
greed scenario.

Moreover, we observe a higher uncertainty, proxied by the
range of prices attained, in a fear than in a greed scenario. As a
result, our paper casts light on investor sentiment as one of the main
drivers of asymmetry in stock returns (Jawadi et al., 2018; Verma
and Soydemir, 2009).

Finally, we note the transition to more complicated dynam-
ics when the reactivity to price changes of each group of traders
increases.

The model is able to match many empirically observed stylized
facts such as non-normality of the returns, heavy tails, and volatility
clustering.

It is possible to extend our work in several ways. First, we could
introduce chartists or other types of noisy traders in order to model
speculative agent behavior. Second, we could increase the hetero-
geneity in trading decisions by assuming that each group of agents
behaves according to a different sentiment index.
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APPENDIX: TWO ALTERNATIVE FORMULATIONS OF

THE PRICE PROCESS

In this appendix, we show two equivalent representations of the
price process (8), Model 1 and Model 2.

Model 1
Based on Eqs. (4), (5), and (7), we have

{

w1 + w2 = 1,
w1 − w2 = −η,

(A1)

leading to

w1 =
1 − η

2
, w2 =

1 + η

2
. (A2)

Consequently, Eq. (8) results

Pt+1 = Pt +
1 − η

2
λ(F1 − Pt) +

1 + η

2
λ(F2 − Pt). (A3)

With this formulation the model rests on the three parameters, λ,
F1, and F2.

Model 2
Note that Eq. (A3) can be expressed in terms of n1 and n2,

which is the representation we have used in the paper. In this case,
we have

n1 + n2 = 2N. (A4)

Moreover, it is

η =
n2 − n1

2N
. (A5)

Combining (A4) and (A5), we obtain

n1 = n2 − 2Nη, (A6)

which is equivalent to (7).
From (A4), we have n2 = 2N − n1; substituting in (A6), we

have

n1 = N(1 − η), n2 = N(1 + η). (A7)

In order to normalize the total population to 1, we divide by 2N
obtaining

w1 =
n1

2N
=

1 − η

2
, w2 =

n2

2N
=

1 + η

2
, (A8)

and this shows the equivalence between (A2) and (5).
However, we wish to stress the role of the switching mechanism

between fractions n1 and n2. For this purpose, we consider an alter-
native formulation of the fractions. By using Eq. (A8), system (A1)
is the following:

{

n1
2N

+
n2
2N

= 1,
n1 − n2 = −2Nη,

(A9)

which leads to
{

w1 =
n2
2N

− η,

w2 =
n1
2N

+ η,
(A10)

using the fractions expressed in (A10) and the expression for the
sentiment index η in Eq. (6), we obtain the price process (8),

Pt+1 = Pt +

{[

n2

2N
−

(F1 − Pt)
2 − (F2 − Pt)

2

(F1 − Pt)
2 + (F2 − Pt)

2

]

λ(F1 − Pt)

+

[

n1

2N
+

(F1 − Pt)
2 − (F2 − Pt)

2

(F1 − Pt)
2 + (F2 − Pt)

2

]

λ(F2 − Pt)

}

, (A11)

which is equivalent to (A3).
By recalling Eq. (A4), the representation (A11) relies on five

parameters, i.e., λ, F1, F2, n1, and n2. In this paper, we used Model
2 since it allows us to explicitly tune the amounts of the two funda-
mentalists n1 and n2. Model 1, which relies on only three parameters,
is more suitable in financial models that have to be calibrated.
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