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Abstract 

An overview of extended research recently pursued on unified continuous/reduced-order modeling and 

nonlinear dynamics of thermomechanical composite plates of interest in aerospace, mechanical and civil 

engineering is presented. Reduced models exhibit the fundamental features of geometrical nonlinearity and 

thermomechanical coupling of the underlying continua. The role of multiphysics coupling and the main 

features of nonlinear response obtained with variably refined minimal models is highlighted. Besides 

transverse mechanical excitation and mechanically or thermally-induced buckling, a variety of active thermal 

excitations, of body or boundary nature, are considered. Features of thermal response obtained with variably 

refined thermal assumptions are compared, in view of detecting cheap, yet reliable, models to be used for 

systematic numerical investigations. The effects of two-way thermomechanical coupling on local and global 

nonlinear dynamics are addressed through bifurcation diagrams, phase portraits and planar cross sections of 

4D basins of attraction, highlighting the important role played by the slow transient thermal dynamics solely 

detectable with coupled models in the steady outcome of the swifter mechanical response. Conditions allowing 

to utilize partially coupled models or even the uncoupled mechanical one with prescribed steady temperature 

are discussed. 

 

Keywords: Unified thermomechanical formulation, Composite plates, Continuous modeling, Reduced order 

models, Local and global nonlinear dynamics, Thermomechanical response, Two-/one-way coupling   
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1. Introduction 

 

In connection with the increased importance of multiphysics phenomena in a variety of technological contexts, 

thermomechanical coupling of materials and structures in a nonlinear dynamics environment is a topic of major 

interest in aerospace engineering, but also in civil and mechanical engineering, as well as in micro-electro-

mechanics. Two main alternative formulations of the coupled problem can be pursued, namely (i) one-way 

(i.e., partial) coupling, or (ii) two-way (i.e., full) coupling, although with several possible subcases. 

The one-way coupling approach (from thermal to mechanical) relies on the reasonable assumption that 

thermal dynamics evolves over a much slower time-scale than mechanical dynamics, so that the former affects 

the latter but not vice versa. This means that changes in the mechanical response are produced by a thermal 

environment due to the presence of temperature-dependent coupling terms in the equations of motion, but no 

thermal effects are entailed by the structural motion. In this framework, the coupled problem is solved via two 

main sequential steps:  

(i) assuming the temperature distribution, or calculating it by solving the Fourier heat conduction equation; 

(ii) solving the mechanical equations, possibly with known temperature gradients. 

Actually, in the case of slowly time-varying thermal environment, structural dynamics equations are usually 

modeled with a reference average temperature over a given structural time span. In the dimension reduction 

perspective, reduced order models (ROMs) based on vibration modes of the unheated structure (so called cold 

modes) are constructed, possibly complementing them with selected dual modes suitable to better capture the 

behavior of heated structures [1], or enhancing the reliability of a reference reduced basis through the 

interpolation among bases holding for different temperatures [2]. A slow temperature variation is essential to 

justify model reduction using an adaptive reduction basis, a procedure that does not work well when the 

temperature varies on a time-scale comparable to that of structural dynamics, as recently discussed by Jain and 

Tiso [3]. These authors have proposed a multiple time scales-based approach to solve the temperature-

dependent structural dynamics equations by accounting for the coexisting slow/fast thermo/mechanical 

settings, highlighting the possibility to consistently reduce the equations of motion using a basis that slowly 

adapts to the instantaneous temperature configuration of the structure. 

In the two-way coupling approach (from thermal to mechanical, and from mechanical to thermal), the 

thermal energy equation is coupled with the governing mechanical equations via the presence of additional 

mechanical (strain-rate or velocity) terms, which may be important for catching meaningful effects at both 

material and structure levels, even in a slowly varying temperature environment. 

In this case, analysis is pursued:  

(i) taking the actual thermomechanical interaction into account; 

(ii) dealing at one time with temperature and displacement primary variables. 

Within this framework, meaningful coupling effects have been highlighted in elastic materials under quasi-

static thermal-mechanical loading since Nowinski [4], along with the dynamic effects caused by impact loading 

in inelastic monolithic materials [5-8]. More recently, dynamic effects in thermo-elastic-viscoplastic 

composites have been addressed via a three-dimensional (3D) multiscale approach [9] which combines global 

structural analysis with the generalized method of cells micromechanics theory [10]. For composite elastic 

beams and plates, actual thermomechanical coupling under quasi-static or dynamic loading has been 

considered in several investigations conducted via numerical approaches, including finite elements [11,12] and 

the Carrera Unified Formulation [13,14]. However, aerothermoelasticity is the nearly sole field (also including 

fluid coupling) where the importance of considering two-way dynamic coupling, in certain conditions, in the 

analysis of nonlinear problems (e.g., flutter) of hypersonic vehicles has been highlighted, instead of the 

typically used one-way approach which neglects the mutual coupling between elastic deformation and 

aerodynamic heating [15,16]. This is a matter that also required the development of simplified coupling 

procedures aimed at reducing the computational effort of comprehensive analyses. Analytical techniques have 

been utilized, too, a recent one focusing on the role that impedance metrics can play to characterize the 
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influence of two-way thermomechanical coupling on the nonlinear dynamics of a thermally buckled, 

harmonically excited beam, with also experimental verification, and to forecast extreme dynamics of structures 

operating in combined thermal and mechanical loading environments [17]. In the context of a modeling 

approach accounting for coupling of deformation and temperature fields in the nonlinear dynamics of structural 

members, and using Bubnov-Galerkin and finite difference methods [18], it is also worth mentioning a recent 

study of a plate-beam system for MEMS devices [19], although coupling was neglected in the quasi-static 

formulation considered as numerical experiment. 

 Focusing on the nonlinear dynamics of plates in a steady thermal environment, since the early review paper 

by Lee [20] one-way thermomechanical coupling has been assumed to analyze the influence of temperature 

on typical features of the nonlinear response, using both multi-degree-of-freedom (multi-dof) models and 

ROMs. Shi et al [21] analyzed the nonlinear thermal post-buckling of thin composite plates through a finite 

element formulation in modal coordinates making use of linear buckling mode shapes. Ribeiro [22] 

investigated the nonlinear vibrations of elastic and isotropic plates via a p-version, hierarchical, first-order 

shear deformation finite element, highlighting transitions from periodic to non-periodic motions when varying 

the temperature and the amplitude of transverse mechanical excitation. 

Multi-dof models obtained by an energy approach have been considered in a number of works dealing with 

nonlinear vibrations and/or post-buckling of rectangular plates in thermal environments, using continuation 

and bifurcation analysis of the Lagrange-based ordinary differential equations (ODEs), also with experimental 

verifications. Considering fixed edges, Amabili and Carra [23] analyzed the influence of geometrical 

imperfections on the hardening/softening features of frequency-response curves of isotropic von Kármán 

plates, whereas Amabili and Tajahmadi [24] addressed the temperature effects on post-buckling displacements 

of laminated and isotropic plates with higher order shear deformation. Alijani et al [25] used bifurcation 

diagrams of Poincaré maps and maximum Lyapunov exponent to detect and classify bifurcations and complex 

nonlinear dynamics in a multi-dof model with quadratic and cubic nonlinearities of simply supported FGM 

plates with movable edges, using von Kármán and first-order shear deformation theories.  

Nonlinear oscillations, bifurcations and chaos of FGM plates in a thermal environment (uniform over the 

plate surface and variable along the thickness) have been dealt with also via ROMs obtained by discretizing 

the underlying partial differential equations (PDEs), considering temperature-dependent material properties. 

Using Reddy’s higher-order shear deformation theory and an improved perturbation technique, Huang and 

Shen [26] investigated the nonlinear fundamental frequency and vibration characteristics of a single-dof model, 

showing that the temperature field has a significant effect on the plate nonlinear vibration and dynamic 

response. Yuda and Zhiqiang [27] investigated numerically bifurcation and chaos phenomena in a circular 

plate under one- and two-term transversal excitations in thermal environment via a Duffing type equation, 

highlighting the existence of chaos with the Melnikov method. Based on third-order shear deformation theory, 

Galerkin discretization of PDEs and numerical simulation of the averaged equations provided by different 

asymptotic methods, periodic, quasiperiodic and chaotic motions were seen to occur, under certain conditions, 

in a 1:1 internally resonant two-dof model under parametric and external excitations [28], and in a three-dof 

model with 1:2:4 internal resonance and combined principal parametric and 1/2-subharmonic resonances [29].  

Thermoelastic ROMs of an isotropic circular plate based on nonlinear Mindlin plate theory with one-dof 

and three-dof, have been used by Warminska et al [30] and Manoach et al [31], respectively. They analyzed 

the influence of a uniformly distributed (along plate span and thickness) temperature on the buckling and post-

buckling regular and chaotic oscillations, on mode involvement in resonances, and on  interactions coming 

from thermal and mechanical couplings, with also finite element validation in terms of natural 

frequency/modes and time simulation of transient analysis for selected parameter values. 

However, in general, the case study-dependent nature and the computational costs of numerical 

investigations of finite amplitude vibrations of geometrically nonlinear structures with multi-dof models 

strongly limit the possibility to obtain fundamental insight into thermal-structural interactions via parametric 

studies. Thus, developing reliable ROMs for nonlinear dynamic analyses turns out to be even more important 
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when dealing with two-way thermomechanical coupling. Indeed, two-way coupled reduced models of plates 

employing single-term Galerkin expansions for both the transverse displacement and two thermally-induced 

stress resultants have been used to describe different phenomena. These include thermoelastic damping of the 

response, with the ensuing stabilizing effects [32-35], bifurcation and chaotic dynamics (the latter being 

characterized through fractal dimension and maximum Lyapunov exponent) in isotropic [34] and orthotropic 

[35] plates, the influence of various material parameters on the decay of nonlinear vibration amplitudes [36].  

Overall, low-order models preserving the main features of the underlying continuum formulations get rid 

of the complicatedness generally occurring in the analysis and interpretation of nonlinear phenomena when 

using richer models (e.g., finite elements), also possibly implemented within an effective unified perspective 

[13,37,38]. Thus, they allow easier analyses and deeper understanding of the basic, yet involved, effects of 

coupling on the finite amplitude vibrations of geometrically nonlinear structures. These include, among others, 

the meaningful effects entailed by the transient slow thermal dynamics on the steady fast mechanical response 

recently highlighted for composite plates in both passive [39] and active thermal regime [40,41], and the 

influence of slowly changing thermal loads on the post-buckled and snap-through vibrations of beam-plate 

micro-electro-mechanical devices [17]. 

The present paper is framed in the nonlinear dynamics of thermomechanically coupled composite plates 

addressed via two-way coupled ROMs, and aims at providing an overview both of the continuum and reduced  

analytical formulations ending up to minimal models, and of some fundamental aspects of their dynamical  

response as obtained through a comprehensive nonlinear analysis. It is based on the modeling [42-45] and 

nonlinear dynamics [39-41,46] accomplishments in a number of recent papers that have allowed the authors 

to grasp some fundamental, yet varied and intriguing, nonlinear phenomena which characterize the response 

of thermomechanically coupled plates.  

The topic will be addressed by identifying a number of objectives to be properly attained through a related 

sequence of analytical/numerical investigations. 

1. Formulating the plate thermomechanical problem at the two-dimensional (2D) continuous level in a 

unified way, and developing a consistent and controllable dimension reduction aimed at identifying zero-

dimensional (0D) minimal models suitable for computationally burdensome investigations of the relevant 

nonlinear/complex dynamics. 

2. Characterizing and comparing ROMs in terms of functionality, flexibility, and cheapness, and validating 

models in terms of mechanical and thermal response. 

3. Systematically analyzing nonlinear response of a class of composite plates with a ‘best’-selected minimal 

model via local and global dynamics tools, by considering a variety of thermal excitations in addition to 

mechanical ones; investigating transient and steady coupled response ensuing from the slow/fast evolution 

of thermal/mechanical variables, and evaluating the effects of thermomechanical coupling with also a view 

to possibly using solely one-way coupled models.                            

The paper is organized as follows. Section 2 presents a unified framework for 2D/0D multiphysics 

modeling. Nonlinear models of thermomechanically coupled laminated plates at both continuum and reduced 

order levels, respectively governed by PDEs and ODEs, are presented in Sect. 3. Within the dimension 

reduction perspective necessary to effectively deal with nonlinear dynamics problems, models validation in 

linear dynamics and buckling is presented in Sect. 4, along with the capability of underlying thermal 

assumptions to reliably describe variable response regimes. Section 5 summarizes some main outcomes of a 

systematic investigation of nonlinear dynamics as obtained with a quite refined reference model, by 

distinguishing between different cases of thermal excitation, which include boundary conditions and body 

sources. Section 6 investigates the influence of modeling refinements/simplifications on the extent and features 

of the highlighted thermomechanical coupling. A conclusions section ends the paper. 
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2. A unified framework for 2D/0D multiphysics modeling 

 

Tonti’s diagram [47,48] for the physical theories is used as a suitable framework to implement a unified, 

multiphysics, consistent and controllable formulation of the thermomechanical problem for geometrically 

nonlinear laminated plates undergoing finite amplitude vibrations. In its more general formulation, at either 

continuum (3D, 2D) or reduced-order (0D) level, such modeling framework based on Tonti diagram 

decomposes the fundamental equations of a generic multiphysics theory into three sets of equations, i.e. 

balance, configuration, and phenomenological (Fig. 1(a)). Each of the first two sets links with each other the 

fundamental variables (source and configuration, respectively) and some corresponding expressive variables, 

while the set of phenomenological equations establishes relations among variables of the balance and 

configuration sets.   

In the 2D engineering multiphysics modeling of elastic plates, a similar diagram is obtained starting from 

the basic assumption 3D → 2D 

{3D configuration variables}={shape}×{generalized configuration variables (2D)},   (1)    

that expresses the 3D configuration variables in terms of 2D generalized ones through assumed mathematical 

function shapes, and correspondingly generalizing all equations and variables of Tonti’s decomposition. 

Performing this procedure for the 2D modeling of nonlinear thermomechanical composite plates, the scheme 

in Fig. 1(b) is formulated, where mass force and source energy are fundamental balance variables, 

displacement and temperature are fundamental configuration variables, and the corresponding mechanical and 

thermal expressive variables are recognized, along with the schematic relations among  variables in the 

balance, configuration and phenomenological sets of equations. A configuration approach (blue arrow in Fig. 

1(b)) allows to obtain the fundamental plate model, namely the thermomechanical governing equations directly 

linking the fundamental balance and configuration variables, with the relevant boundary and initial conditions 

to be properly specified. 

After introducing a basic reducing assumption similar to Eq. (1) and allowing to pass from generalized 2D 

configuration variables to correspondingly reduced zero-dimensional (0D) variables, Tonti-like diagrams for 

variably reduced models can be formulated, as it will be shown forward for sample minimal models to be 

possibly considered for nonlinear dynamics investigations.  

    

3. Nonlinear models of thermomechanically coupled laminated plate 

 

3.1 Two-dimensional modeling 

Several nonlinear 2D models of thermomechanically coupled plates can be formulated according to a variety 

of underlying mechanical and thermal assumptions possibly introduced as regards the shape functions in Eq. 

(1), which allow to pass from the 3D to the 2D formulation. In the framework of plate structural theories 

combined with the equivalent single layer approach [49], plate deformation is described by the deformation of 

its reference midplane and the shear-warping of its cross-section, with approximations for the former and the 

latter leading to geometrically nonlinear and shear deformation theories, respectively. In turn, approximations 

for the temperature field distribution along the plate thickness and midplane lead to thermal equations. 

The unified scheme of Fig. 1(b) allows to formulate and compare different continuous models with full 

thermoelastic coupling, which result from different assumptions about the plate mechanical and thermal 

configurations. The resulting models are not equally advantageous. As regards geometrical nonlinearities, 

general models accounting for all of them [50,51] involve significant computational difficulties when aiming 

to obtain minimal discretized models for the analysis of nonlinear vibrations through the procedure generally 

used for classical von Kármán models. On the other hand, von Kármán strains - although involving some 

nonlinear terms - do not account for the change of structural configuration within the curvature-displacement  
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(a)  

(b)  

Fig. 1. (a) General multiphysics modeling framework based on Tonti diagram for physical theories; (b) unified scheme for 

thermomechanical  2D plate. 

relationship, because of considering only linear terms in the curvature expressions. Yet, the neglected 

geometrical nonlinearities may entail non-negligible effects in the nonlinear analysis of composite plates. 

Therefore, in addition to the general and von Kármán types of continuous models, modified models [52,53] 

also accounting for nonlinear terms in the curvature expressions can be considered. They retain the great 

advantage of all von Kármán models as regards performing minimal reductions. Based on a variety of 

kinematical and thermal features, Table 1 shows some possible models going from the most complete one on 

the left, which accounts for fully coupled deformation (GTTC, General Third-order theory with 

Thermomechanical Coupling), to the simplest one on the right accounting for Kirchoff-von Kármán 

deformation (CTC, Classical theory with Thermomechanical Coupling). Overall, as outlined above, they are 

classified as (i) general models, which turn out to be mathematically intractable in a reduced order modeling 

perspective based on kinematic condensation, (ii) classical von Kármán models, mathematically tractable for 

all types of laminates, and (iii) modified, i.e. intermediate, models, mathematically tractable only for 

symmetric laminates. Aiming to obtain minimal order models for different types of laminates, to be possibly 

tackled with asymptotic techniques besides numerical ones, in the following attention will be restricted to the 

TTC (Third-order theory with Thermomechanical Coupling) model, while also considering the CTC one for 

comparison purposes. Note that, from the mechanical viewpoint, the two models take into account (up to third-

order) and neglect shear deformation, respectively, and, from the thermal viewpoint, they consistently assume 

a correspondingly cubic or linear variation of the unknown temperature field along the thickness. 

Consider the laminated rectangular plate in Fig.2, with N layers, thickness h and edge lengths a and b in 

the x- and y-directions, respectively. The reference plane of the plate coincides with the xy plane of an 

orthogonal Cartesian coordinate system. The plate is subject to a time-varying, distributed, transverse 

mechanical excitation, and to a 3D thermal body source due to, e.g., passage of an electric current through the  
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Table 1. Some general, modified, and classical continuous models of composite plates. 

 General Modified Classical (von Kármán deformation) 

Features GTTC GCTC MGFTC MGCTC TTC FTC CTC 

in-plane deformation cubic cubic quadratic quadratic quadratic quadratic quadratic 

flexural and twisting curvatures cubic cubic cubic cubic linear linear linear 

spiral curvatures quadratic quadratic absent absent absent absent absent 

shear deformability cubic absent linear absent cubic linear absent 

temperature along the thickness cubic linear linear linear cubic linear linear 
 

plate, chemical reactions or nuclear fission [54], which is assumed to vary along the thickness with a constant 

(EC) and a linear (EL) contribution.   

Moreover, the plate edges are subject to steady uniform stretching forces of magnitudes𝑝𝑥and 𝑝𝑦in the x- 

and y-directions, respectively. Other mechanical and thermal conditions on the edges, and thermal boundary 

conditions on the plate upper and lower surfaces will be specified forward, along with the elastic and thermal 

properties of the material.  

For the TTC model, the mechanical version of Eq. (1) reads: 

𝑢1 = 𝑢 + 𝑧𝜙1 −
4

3ℎ2
𝑧3(𝜙1 + 𝑤,𝑥),        𝑢2 = 𝑣 + 𝑧𝜙2 −

4

3ℎ2
𝑧3(𝜙2 + 𝑤,𝑦),           𝑢3 = 𝑤 (2) 

where 𝑢1(𝑥, 𝑦, 𝑧, 𝑡), 𝑢2(𝑥, 𝑦, 𝑧, 𝑡) and 𝑢3(𝑥, 𝑦, 𝑧, 𝑡) are the components of the 3D displacement variable along 

the x, y and z directions, while 𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡),𝑤(𝑥, 𝑦, 𝑡) are the displacements of a point located on the 

midplane and 𝜙1(𝑥, 𝑦, 𝑡),𝜙2(𝑥, 𝑦, 𝑡) are the rotations of a transverse normal about the y-and x-axes. The 

latter represent the unknown displacements (independent of z) of the 2D plate model. 

In turn, the thermal version of Eq. (1) reads: 

𝑇 = 𝑇0 + 𝑧𝑇1 + 𝑧2𝑇2 + 𝑧3𝑇3   (3) 

where 𝑇(𝑥, 𝑦, 𝑧, 𝑡) is the 3D temperature field (to be intended as temperature increment with respect to the 

natural state of reference), while 𝑇0(𝑥, 𝑦, 𝑡), 𝑇1(𝑥, 𝑦, 𝑡), 𝑇2(𝑥, 𝑦, 𝑡), 𝑇3(𝑥, 𝑦, 𝑡) are the unknown components of 

the temperature in the 2D model (see Fig. 3(b) forward). The components 𝑇2 and 𝑇3 can be expressed in terms 

of 𝑇0 and 𝑇1 by imposing a variable (pure or mixed) combination of the following thermal boundary conditions 

on the plate upper and lower surfaces:  

 

Fig. 2.  Laminated plate under in-plane (p) and transverse mechanical loads, and body constant (EC) and linear (EL) thermal 

sources distributed along the thickness. 
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𝑞3|𝑧=±ℎ/2 = ±𝐻[𝑇∞ − (𝑇)±ℎ/2] free heat exchange (4) 

𝜕𝑇

𝜕𝑧
|

𝑧=±ℎ/2
= 0 thermal insulation (5) 

𝑇|𝑧=±ℎ/2 = 𝑇∗(𝑥, 𝑦, 𝑡) temperature  prescribed (6) 

𝑞3|𝑧=±ℎ/2 = 𝑞3
∗(𝑥, 𝑦, 𝑡) heat flow prescribed (7) 

where 𝑞3 is the heat flow in z direction, 𝐻 is the boundary conductance, 𝑇∞ is the constant difference between 

the absolute temperature of the surrounding medium and the reference temperature, and 𝑇∗ and 𝑞3
∗ are the 

temperature and heat flow prescribed on the external surfaces, respectively. This results in a temperature 

cubic profile in terms of the sole unknown T0 (membrane) and T1 (bending) temperatures: 

𝑇 = 𝑓𝑎(𝑧)𝑇0 + 𝑓𝑏(𝑧)𝑇1 + 𝑓𝑐(𝑧) (9) 

where  

𝑓𝑎(𝑧) = (𝑟1 + 𝑟2𝑧 + 𝑟3𝑧2 + 𝑟4𝑧3),       𝑓𝑏(𝑧) = (𝑟5 + 𝑟6𝑧 + 𝑟7𝑧2 + 𝑟8𝑧3),  

𝑓𝑐(𝑧) = (𝑟9 + 𝑟10𝑧 + 𝑟11𝑧2 + 𝑟12𝑧3) 
 (10) 

with the coefficients 𝑟𝑖 depending on the kind of imposed conditions. 

For the CTC model, Eqs. (2) and (3) without the nonlinear z-terms hold, and Eq. (9) reduces to  

 𝑇 = 𝑇0 + 𝑧𝑇1                                   (11) 

which allows to prescribe on the plate upper and lower surfaces only the boundary condition (4) of free heat 

exchange.  

A summary of explicit variables/equations entering the unified scheme of Fig. 1(b) is reported in Figs. 3 

and 4, with the yellow-marked parts to be intended as present (absent or given values) in the TTC (CTC) 

model. Specifically, Figure 3 lists the fundamental and expressive, mechanical and thermal, variables in the 

top and bottom light-brown stripes, respectively, with the configuration/balance equations linking them being 

reported in the middle. In Fig. 3(a), 𝜀𝑖𝑗
(0)

 are von Kármán nonlinear membrane strains, 𝜀𝑖𝑗
(1)

 Kirchhoff linear 

bending strains (curvatures), 𝜀𝑖𝑗
(3)

Reddy higher order bending strains, 𝛾𝑖
(0)

Mindlin linear transverse shearing 

strains, and 𝛾𝑖
(2)

Reddy higher order transverse shearing strains. In Fig. 3(c), Fi
(0), (i=1,2,3), and Fi

(1), (i=1,2), 

are 2D force and couple components of the 3D body forces fi (x, y, z, t), (i=1,2,3), along the x, y and z 

directions,𝑁𝑖𝑗are membrane forces, 𝑀𝑖𝑗 bending moments, 𝑃𝑖𝑗higher order bending moments, 𝑄𝑖transverse 

shearing forces, 𝑆𝑖higher order transverse shearing forces, 𝑅𝑖linear momentum variables. In Fig.3(b), 𝑔𝑖
(0)

and  

𝑔𝑖
(1)

are 2D membrane and bending thermal gradients, respectively. In Fig. 3(d), E(0) and E(1) are 2D membrane 

and bending thermal components of the 3D body source energy E(x, y, z, t). In turn, Figure 4 lists the various 

kinds of phenomenological equations (purely monophysics or involving multiphysics coupling), suitably 

arranged.  

Combining configuration, phenomenological and balance equations, the fundamental PDEs governing the 

2D nonlinear dynamics of the thermomechanical laminated plate in terms of the corresponding displacement 

and temperature variables are obtained, for the TTC or CTC model. Even if truncating them to the third-

order, the equations display nonlinear geometrical coupling among nearly all variables, and are very involved 

when a generic laminate is considered. Further analytical details can be found in [42,44]. 
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Fig. 3. Particularization of configuration (a,b) and balance (c,d) equations of the unified scheme of Fig.1 for TTC and CTC 

(yellow-marked parts skipped) models: mechanical (a,c) and thermal (b,d), fundamental (green) and expressive (red) variables. 

 

3.2 Zero-dimensional modeling 

A zero-dimensional reduction of 2D continuous models is performed starting from the basic assumption: 

{generalized configuration variables (2D)}={shape}×{reduced configuration variables (0D)},   (12)    

in which the 0D reduced configuration variables depend only on time t, while the shape functions govern the 

dependence on x and y in the plate reference plane. 

For the TTC model, the general mathematical form of Eq. (12) reads: 
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𝑢(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜓𝑚𝑛
𝑢 (𝑥, 𝑦)𝑈𝑚𝑛(𝑡)

𝑁

𝑛=1

𝑀

𝑚=1

;        𝑣(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜓𝑚𝑛
𝑣 (𝑥, 𝑦)𝑉𝑚𝑛(𝑡)

𝑁

𝑛=1

𝑀

𝑚=1

;      (13a) 

𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜓𝑚𝑛
𝑤 (𝑥, 𝑦)𝑊𝑚𝑛(𝑡)

𝑁

𝑛=1

𝑀

𝑚=1

; (13b) 

𝜙1(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜓𝑚𝑛
𝜙1 (𝑥, 𝑦)𝛷1𝑚𝑛

(𝑡);      

𝑁

𝑛=1

𝑀

𝑚=1

𝜙2(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜓𝑚𝑛
𝜙2 (𝑥, 𝑦)𝛷2𝑚𝑛(𝑡)

𝑁

𝑛=1

𝑀

𝑚=1

; (13c) 

𝑇0(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜓𝑚𝑛
𝑇0 (𝑥, 𝑦)𝑇𝑅0𝑚𝑛

(𝑡);

𝑁

𝑛=1

𝑀

𝑚=1

      𝑇1(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜓𝑚𝑛
𝑇1 (𝑥, 𝑦)𝑇𝑅1𝑚𝑛(𝑡)

𝑁

𝑛=1

𝑀

𝑚=1

 (13d) 

where the generic sets of assumed shape functions  𝜓𝑚𝑛 must satisfy the mechanical and thermal boundary 

conditions on the plate edges, and the sets of unknown components for the reduced configuration variables 

read: 

reduced displacement:                                                                                                                           {𝑈𝑚𝑛 𝑉𝑚𝑛 𝑊𝑚𝑛 𝛷1𝑚𝑛 𝛷2𝑚𝑛} (14a) 

reduced temperature:                                                                                                                             {𝑇𝑅0𝑚𝑛
𝑇𝑅1𝑚𝑛} (14b) 

In the context of a minimal Galerkin discretization, the seven 2D configuration variables 

𝑢, 𝑣, 𝑤,𝜙1, 𝜙2,𝑇0, 𝑇1 may be expressed in terms of seven corresponding time-dependent reduced variables 

𝑈, 𝑉, 𝑊, 𝛷1, 𝛷2, 𝑇𝑅0, 𝑇𝑅1 through only one shape function for each component. Accordingly, if using the TTC 

two-dimensional model, the minimal zero-dimensional ROM for a generic laminate will consist of seven 

temporal ODEs (five mechanical and two thermal) with seven corresponding unknowns. Instead, if using the 

shear-indeformable CTC model, the minimal ROM will have five ODEs (three mechanical and two thermal) 

with five corresponding unknowns.   

It is worth noting that, for the TTC model, a dimensional reduction of the component thermal problem 

has been already performed at the 2D level, based on the sole assumption of cubic temperature distribution 

along the thickness, which has allowed to link the higher-order components 𝑇2 and 𝑇3 to the constant (𝑇0) 

and linear (𝑇1) ones via the thermal boundary conditions prescribed on the upper and lower surfaces. Under 

suitable assumptions and approximations, also the component mechanical problem can be further reduced 

via proper condensation procedures.  

The first kinematic condensation is performed at the 2D level for both TTC and CTC models, and is 

concerned with transforming the formerly fundamental in-plane configuration variables u and v of the 

mechanical problem to slave variables, similar to what is usually carried out in the literature for the purely 

mechanical von Kármán model. This can be accomplished under the following conditions: 

− no coupling terms containing u or v exist in the in-plane mechanical balance equations;  

− the corresponding in-plane inertia forces are negligible (𝐼0𝑢̈ = 𝐼0𝑣̈ = 0); 

− the density of the plate is constant (I1 = 0); 

− the in-plane body forces are eliminated (𝐹1
(0)

=𝐹2
(0)

= 0). 

Note that the second assumption corresponds to considering the frequencies of in-plane vibration much 

higher than the frequency of transverse vibration. 
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  Fig. 4. Particularization of phenomenology equations of the unified scheme of Fig.1 for TTC and CTC (yellow-marked parts 

skipped or given values) models, along with the lamina-based orthotropic laminate quantities (bottom block). 
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If the above conditions are satisfied, and single-mode approximations with proper shape functions are 

taken for the sole mechanical (w, 1, 2) and thermal (T0, T1) 2D variables in Eqs. 13(b,c,d), it is possible to 

solve the in-plane fundamental mechanical equations of the continuous model (looking at them as a linear 

differential system) in terms of the corresponding variables u and v, thus slaving them to the reduced 

components of the other configuration variables in the following implicit form 

𝑢 = 𝑓𝑢(𝑊, 𝛷1, 𝛷2, 𝑇𝑅0, 𝑇𝑅1),      𝑣 = 𝑓𝑣(𝑊, 𝛷1, 𝛷2, 𝑇𝑅0, 𝑇𝑅1) (15) 

where 1  e 2 appear only for the TTC model. Equations (15) take the role of the relevant independent 

approximations (Eqs. 13(a,b)) and also satisfy identically the boundary conditions on the plate edges where 

u and v appear. Thus, the reduced components U  and V (directly associated with u and v) are no more present, 

and a first dimensional reduction of the mechanical problem can be achieved by applying the Galerkin 

method to the remaining fundamental equations of the continuous model, i.e. the three (one) out-of-plane 

mechanical and the two thermal equations of the TTC (CTC) model. Indeed, by neglecting rotational inertia 

in the transverse equation, where a linear viscous term is also inserted (for both TTC and CTC), and 

disregarding inertia and external moments 𝐹1
(1)

and 𝐹2
(1)

 (for TTC) in the shear rotation equations, five (three) 

reduced ODEs can be obtained for the TTC (CTC) model, with three (one) mechanical and two thermal 

unknown reduced components. Analytical details are given in [42,44]. 

For the TTC model, a second kinematic condensation can be suitably performed at the 0D level on the 

two reduced shear rotation equations (thought as a linear algebraic system), if disregarding mechanical 

coupling terms of the type 𝛷1𝑊2 and 𝛷2𝑊2 occurring in them. This allows to slave the shear rotation 

components 1 and 2  to the remaining reduced components in the following implicit form 

𝛷1 = 𝑓𝛷1
(𝑊, 𝑇𝑅0, 𝑇𝑅1),  𝛷2 = 𝑓𝛷2

(𝑊, 𝑇𝑅0, 𝑇𝑅1)     (16) 

which take the role of the relevant independent approximations (Eqs. 13(d,e)) and also satisfy identically the 

boundary conditions on the plate edges where 1  and 2 appear. Thus, also the reduced components 1  and  

2 (directly associated with 1  and 2) are no more present, and a further dimensional reduction of the 

thermomechanical problem is possible. Indeed, Equations (16) are inserted into the transversal equation of 

the reduced model, ending up to a system of three ODEs, one mechanical and two thermal, in the 

corresponding unknown reduced components, as for the CTC model. Analytical details can be found in 

[44,53], where this has been accomplished by considering the following set of single mode approximations 

for the 2D transverse displacement, the shear rotations, and the membrane/bending temperatures:   

𝑤(𝑥, 𝑦, 𝑡) = 𝑊(𝑡) 𝑠𝑖𝑛
𝜋𝑥

𝑎
𝑠𝑖𝑛

𝜋𝑦

𝑏
 (17a) 

𝜙1(𝑥, 𝑦, 𝑡) = 𝛷1(𝑡) 𝑐𝑜𝑠
𝜋𝑥

𝑎
𝑠𝑖𝑛

𝜋𝑦

𝑏
 (17b) 

𝜙2(𝑥, 𝑦, 𝑡) = 𝛷2(𝑡) 𝑠𝑖𝑛
𝜋𝑥

𝑎
𝑐𝑜𝑠

𝜋𝑦

𝑏
 (17c) 

𝑇0(𝑥, 𝑦, 𝑡) = 𝑇𝑅0(𝑡) 𝑠𝑖𝑛
𝜋𝑥

𝑎
𝑠𝑖𝑛

𝜋𝑦

𝑏
 (17d) 

𝑇1(𝑥, 𝑦, 𝑡) = 𝑇𝑅1(𝑡) 𝑠𝑖𝑛
𝜋𝑥

𝑎
𝑠𝑖𝑛

𝜋𝑦

𝑏
 (17e) 

In Eqs. (17a-e), mechanical eigenfunctions of the rectangular plate and dome shape distributions of the 

two unknown thermal variables have been assumed for the shape functions in Eqs. (13b-d), the former and 

latter satisfying simply supported and null (i.e. isothermal) boundary conditions along the plate edges, 

respectively. 
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Overall, the plate thermomechanical problem is reduced to three reduced ODEs in terms of time-dependent 

amplitudes W, 𝑇𝑅0,𝑇𝑅1 for both TTC and CTC models. It is worth noting that a similar reduction can be 

accomplished also for the (richer) modified models in Fig. 2, besides for the classical FTC one, but not for 

the general models therein indicated. 

Different mechanical and thermal boundary conditions can be imposed at the plate edges, and thermal 

conditions in Eqs. (4-7) (or combinations of them) can be assumed on the external surfaces for the TTC 

model, whereas the CTC model can only account for free heat exchange due to the related linear temperature 

assumption along the tickness. If the prescribed thermal quantities on the external surfaces are constant, the 

previous reduction procedure can be performed without making the coefficients 𝑟𝑖 of Eq. (10) explicit, thus 

obtaining the general system 

𝑎11𝑊̈ + 𝑎12𝑊̇ + (𝑎13 + 𝑎14𝑝 + 𝑎15𝑟9 + 𝑎16𝑟11 + (𝑎17𝑟1 + 𝑎18𝑟3)𝑇𝑅0 + (𝑎19𝑟5 + 𝑎110𝑟7)𝑇𝑅1)𝑊 

+ 𝑎111𝑊3 + (𝑎112𝑟2 + 𝑎113𝑟4)𝑇𝑅0 + (𝑎114𝑟6 + 𝑎115𝑟8)𝑇𝑅1 + 𝑎116𝐹3
(0)

= 0 
(18a) 

𝑎21𝑟11 + (𝑎22𝑟1 + 𝑎23𝑟3)𝑇̇𝑅0 + (𝑎24𝑟1 + 𝑎25𝑟3)𝑇𝑅0 + 𝑎26𝑟7𝑇𝑅1 + (𝑎27𝑟5 + 𝑎28𝑟7)𝑇̇𝑅1 +

𝑎29𝑊̇ ⋅ 𝑊 + 𝑎210𝐸(0) = 0  
 (18b) 

𝑎31𝑟12 + (𝑎32𝑟6 + 𝑎33𝑟8)𝑇̇𝑅1 + (𝑎34𝑟6 + 𝑎35𝑟8)𝑇𝑅1 + 𝑎36𝑟4𝑇𝑅0 + (𝑎37𝑟2 + 𝑎38𝑟4)𝑇̇𝑅0 +

𝑎39𝑊̇ + 𝑎310𝐸(1) = 0  
 (18c) 

that for TTC includes all possible boundary conditions (or combinations of them) in Eqs. (4-7). Coefficients 

aij in Eqs. (18) have constant expressions that incorporate the features and physical properties of the considered 

model. The explicit version of the minimal system of ODEs for a specific set of upper/lower thermal conditions 

is obtained by substituting the expressions of the corresponding coefficients ri.  

If, on the other hand, the prescribed thermal quantities on the external surfaces are space/time dependent, 

the variation of the 𝑟𝑖 coefficients from one thermal condition to the other has to be taken into account before 

discretizing the continuous model. Explicit expressions of the three ODEs provided for the TTC model by 

the reduction procedure when considering different combinations of in-plane mechanical and upper/lower 

thermal boundary conditions, with the latter entailing different coupling terms, are given in [41,44,45].  

Of course, from a nonlinear dynamics viewpoint, it is important to note that reducing the transverse 

mechanical problem to a single ODE, as in Eqs. (18(a)), makes sense only if assuming to excite transversally 

(and possibly resonantly) the sole plate mode considered in Eq. 17(a), in the absence of whatever internal 

resonance with other transversal modes.  

To give an example of explicit reduced ODEs, let us consider (i) simply supported, movable, and 

isothermal edges, subject to uniform stretching forces of magnitudes 𝑝𝑥 = 𝑝𝑦 = 𝑝 in x and y direction, and 

(ii) free heat exchange on the upper and lower surfaces, which is the sole case to be possibly addressed with 

the simpler CTC model. The explicit ODEs of the CTC-based minimal ROM are reported in Fig. 5, similar 

to the unified 2D scheme in Fig. 1(b) which highlights the fundamental governing PDEs. The reduced ODEs 

are embedded within the underlying unified 0D scheme, with configuration, phenomenological and balance 

equations/quantities schematically indicated, by also referring to an associated mechanical type body diagram 

of the minimal ROM, with the meaning of the involved symbols reported in the figure caption. It schematizes 

in mechanical terms also the thermal aspects of the problem, and interprets the effects of the multiphysics 

coupling as problem-dependent configuration distortions applied to each component oscillator. The 

coefficients aij in the three ODEs of Fig. 5 are renumbered in a sequentially suitable way with respect to those 

in Eqs. 18. Note that the structure of the three equations also holds for the TTC model (of course if considering 

the same mechanical and thermal boundary conditions), but the expressions of the coefficients aij are different, 

the TTC ones being more involved and incorporating the underlying higher order displacement and 

temperature assumptions.  
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For the TTC model, the reduced modeling framework in Fig. 5 can be suitably used to compare a variety 

of minimal ROMs ensuing from different prescriptions of thermal boundary conditions on the plate external 

surfaces. A number of them will be presented forward, when validating the general reduction procedure in 

mechanical and thermal terms (Sect. 4) and investigating the relevant nonlinear dynamics (Sect. 5). The 

unified framework is also useful for controllably deriving and comparing TTC- or CTC-based ROMs of even 

lower dimension, possibly ensuing from different approximations about the comparative significance of 

membrane and bending thermal dynamics and/or the actual importance of mechanical coupling terms in 

thermal equations. Indeed, the former may allow a further reduction to two reduced ODEs, still working in a 

two-way thermomechanical coupling perspective, while the latter, which also entail a possible one-way 

coupling formulation of the thermomechanical problem, may end up to even a single uncoupled (mechanical) 

ODE with prescribed thermal distortions. The matter will be addressed in Sect. 6.    

 

 “inertiator”, a schematic device governing the effect of mass (𝑎11) ;  

 spring, governing the effect of stiffness (𝑎13
𝑆 ), pre-load inplane (𝑎13

𝑃 ), thermal conductivities and   boundary 

conductances (𝑎22,𝑎32), and thermal ambient distortion (𝑎23); 

 nonlinear spring, governing the effect of additional stiffness due to geometrical nonlinearities (𝑎14); 

 damper, governing the effect of mechanical damping (𝑎12), thermal capacities (𝑎21
𝑇 , 𝑎31), static thermomechanical 

coupling due to geometrical nonlinearities (𝑎21
𝑇𝑀); 

 multiphysics coupling device, governing the effect of thermomechanical couplings (𝑎15,𝑎16,𝑎24,𝑎33); 

 configuration distortion (problem-dipendent or assigned), representing the effect of coupled oscillators      

  (𝛥𝑊 ≡ 𝑊 ⋅ 𝑇𝑅0;𝛥𝑊 ≡ 𝑇𝑅1;𝛥𝑇𝑅0 ≡ 𝑊̇ ⋅ 𝑊;𝛥𝑇𝑅1 ≡ 𝑊̇) and the thermal ambient distortion (𝛥𝑇𝑅0 = 𝑇∞). 
 

Fig. 5. Particularization of the unified scheme of Fig. 1 for 0D CTC-based minimal ROM: ODEs for two-way thermomechanical 

coupling (yellow block), with a corresponding mechanical-type body diagram and meaning of the involved symbols. 

4. Validation of minimal ROMs 
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This section presents a validation of the previously discussed minimal models, aimed at reliably using them 

for a following systematic investigation of the nonlinear dynamics of a class of thermomechanically coupled 

plates. Validation is performed by comparing outcomes provided by the reduced models as regards some 

aspects of mechanical and thermal response with correspondingly available literature results and/or with  

outcomes provided by richer models, i.e. higher-order ROMs and/or finite elements. 

4.1 Linear dynamics and buckling 

Linear models extracted from minimal nonlinear ROMs allow to obtain numerical benchmarks as regards 

linear dynamics. A first comparison with literature results is concerned with natural frequencies [44]. Table 2 

reports frequency values provided by TTC and CTC models for a square isotropic plate with different thickness 

ratios a/h, by either considering thermomechanical formulations or removing the corresponding thermal parts 

(M label in the table). Results are compared with those provided by the Carrera Unified Formulation (CUF) 

handling in a unified manner a large variety of plate theories [13,55], by considering a layer-wise plate with 

fourth-order expansion of displacements and temperature along the thickness (LD4) or a shear-undeformable 

plate (CLT), with (TM lable) or without thermal effects. The agreement between TTC and LD4 values (the 

latter representing the most refined CUF model) is remarkable also for stubby plates, where the more 

constrained shear-undeformable models provide notably higher frequency values. Overall, the effect of 

thermomechanical coupling is very small and can be discarded in free vibration analysis. Anyway, it usually 

provides slightly higher frequencies than pure mechanical models because it acts like a thermal source which 

leads to a larger global stiffness of the plate. TTC* model of the reduced formulation assumes that the 

temperature on the external surfaces equals the external room temperature and allows to reproduce the fourth-

order layer-wise profile obtained with LD4(TM)* [13] in the same external thermal conditions, as shown in 

Fig. 6. Compared to LD4-models (fourth-order expansion of configuration variables), TTC-models (third-

order expansion of configuration variables) show values slightly higher, due to their greater internal constraint. 

A second comparison with literature results is concerned with mechanical and thermal buckling. Table 3 

reports critical buckling loads provided by several models for two thickness ratios of the square isotropic plate. 

As to thermal buckling, either a dome-shaped or a uniform distribution of temperature over the plate upper 

surface is considered (Fig. 7), the former being a good idealization better reproducing experimental data about 

the actual temperature distribution over a hot structural panel even under uniform surface heat flux, due to the 

existence of supporting cooler boundary heat sinks [56]. Buckling values obtained by the CTC model are 

identical to the mechanical and thermal ones provided by the Navier solution [49] and minimum potential 

energy [56], respectively, for the Kirchhoff plate. TTC values are as much lower than CTC ones as the plate 

becomes thicker, due to the higher deformability of the former. Analytical details for both models are available 

in [44]. 

Table 2. Fundamental frequency (Hz) for the isotropic plate, with several models and thickness ratios a/h. (M) ((TM)) means 

thermal part of the model removed (included). LD4 refers to layer-wise plate with fourth-order expansion of displacements and 

temperature along the thickness, CLT refers to Kirchhoff plate. (*) means that the temperature on the external surfaces equals the 

external room temperature. 

 a/h 2 5 10 50 100 

R
O

M
s 

 

TTC 779.56 175.87 47.436 1.9492 0.4877 

TTC* 779.42 175.16 47.211 1.9492 0.4877 

TTC(M)  777.95 175.16 47.211 1.9394 0.4852 

CTC  1219.68 195.15 48.787 1.9515 0.4878 

CTC(M)  1213.56 194.16 48.542 1.9416 0.4854 

C
U

F
 

LD4(TM) [13] 763.03 173.10 47.158 1.9481 0.4875 

LD4(TM)* [13] 765.32 172.88 47.094 1.9454 0.4869 

LD4 [13] 763.94 172.40 46.946 1.9390 0.4852 

CLT(TM) [13] 1031.3 189.87 48.607 1.9596 0.4900 

CLT [13] 1021.5 188.08 48.148 1.9411 0.4854 
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Fig. 6. Temperature profile along the plate thickness: comparison between layer-wise plate with fourth-order expansion of  

temperature along the thickness (LD4(TM)*, black triangles) and the present model based on single-layer approach with third-

order expansion of the temperature along the thickness (TTC*, red line).  

4.2 3D spatiotemporal thermal dynamics   

A major novelty of the accomplished continuum formulation and the ensuing minimal modelling stands in 

complementing the assumed out-of-plane distribution of the mechanical variable with a consistent description 

of the transverse temperature which, depending on the assumptions refinement, allows (or not) to deal with the 

variety of thermal excitations of possible interest in technical applications, mostly as regards prescribable 

boundary conditions. Thus, one more validation step consists of focusing on the sole thermal aspects, and 

comparing the relevant responses provided by TTC and CTC models, in both transient and steady regimes, to 

those obtained by reduced thermal models of higher-order, by analytical solutions, and/or by finite elements. 

This also allows to get a comprehensive and reliable understanding of the spatio-temporal thermal dynamics 

entailed by different excitations. 

Within the criterion of an assumed, unknown, temperature distribution along the thickness, at the base of 

thermomechanical formulation, a suitable richer thermal model is characterized by a polynomial seventh order 

shape of the 3D temperature: 

𝑇(𝑥, 𝑦, 𝑧, 𝑡) = 𝑇0 + 𝑧𝑇1 + 𝑧2𝑇2 + 𝑧3𝑇3 + 𝑧4𝑇4 + 𝑧5𝑇5 + 𝑧6𝑇6 + 𝑧7𝑇7 (19) 

with 2D unknown components Ti (x, y, t), i = 0-7, instead of the third- or first-order shapes (Eqs. (3) and (11)). 

(a)  (b)  

Fig 7. (a) Dome-shaped temperature distribution, (b) uniform temperature distribution. 
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Table 3. Critical buckling mechanical and thermal loads for the isotropic square plate, with several models and thickness ratios. 

 a/h 20 100 

C
u

rr
en

t 

TTC mechanical buckling 16265 kN 131882 N 

CTC mechanical buckling 16494 kN 131956 N 

TTC thermal buckling, dome-shaped profile heating  346.352 K 14.041 K 

TTC thermal buckling, uniform profile heating, 124.774 K 5.058 K 

CTC thermal buckling, dome-shaped profile heating 351.235 K 14.049 K 

CTC thermal buckling, uniform profile heating, 126.533 K 5.061 K 

L
it

er
at

u
re

 mechanical buckling, via Kirchhoff plate-Navier solution  [49] 16494 kN 131956 N 

thermal buckling, dome-shaped profile heating, via Kirchhoff p.- minimum p.energy  

[56] 

351.235 K 14.049 K 

thermal buckling, uniform profile heating, via Kirchhoff p.- minimum p.energy  [56] 126.533 K 5.061 K 
 

 

As for the TTC model, thermal boundary conditions on upper/lower surfaces (Eqs. (4-7)) can be used to express 

two (out of eight) 2D components in terms of the others, and then to expand each of the remaining six 

independent components in terms of one corresponding 0D component 𝑇𝑅𝑖(𝑡), as of Eqs. 17(d,e) for TTC, 

overall ending up to six thermal unknowns of the reduced problem. The ensuing STC (Seventh-order theory 

with Thermomechanical Coupling) ROM is the minimal one for the new thermal sub-problem, which is 

considerably more involved than the TTC one for involving six ODEs instead of two. However, the new, 

richer, minimal ROM is more flexible than the TTC one because of allowing to consider also nonlinear body 

source energy and boundary edge conditions.  

In the sequel, 3D spatio-temporal thermal regimes, both transient and steady, are reconstructed from the 

results of 0D reduced models via a backward procedure, for the three cases of thermal (boundary/body) 

excitations listed in Fig. 8. No mechanical coupling terms are considered in the TTC thermal Eqs. 18(b,c) (and 

in corresponding ones of the other ROMs), since their indirect effects on thermal dynamics are negligible with 

respect to the direct ones produced by the applied thermal loads [46]. Details of all analyses and results can be 

found in [45]. For all cases, elastic and thermal properties of the considered materials are assumed to be 

temperature-independent. 

Case 1 refers to a square isotropic plate with AL2024 material [44], thickness ratio a/h = 20, and a spatially 

constant temperature 𝑇∗ = 100 K prescribed also on the edges. Transient 3D temperature curves in the center 

of plate midplane are shown in Fig. 9a superposing results obtained with TTC and STC models, along with  

 

Fig 8. Three different cases of thermal (boundary/body) excitations: Case 1: constant temperature prescribed (up/down faces); 

Case 2: dome-shape irradiation flow (up face), dome-shape temperature prescribed (down face); Case 3: free heat exchange 

(up/down faces), active source (body) 
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(a)  (b)  

Fig 9. Case 1, constant temperature prescribed on up/down faces: time histories of (a) 3D temperature and (b) energy in the 

center of plate midplane. TTC (red), STC (magenta), analytical solutions with 5 (green) and 20 (blue) terms, finite element 

solution (black dots). 

those provided by an analytical solution of non-stationary conduction with 5 or 20 terms in the series, assumed 

as benchmark [57], and by a finite element solution. The STC (blue) curve agrees very well with the nearly 

conciding 20-term analytical (gray) and finite element (black dots) solutions, while the curve of the 5-term 

analytical solution (green) gives a bad estimate at the first seconds of conduction, because it starts from a high 

and unrealistic negative value, but then approaches the curves of greater precision. The TTC curve (red) 

correctly presents a zero value at the initial instant and grows without inflection points, however overestimating 

the transient temperature. Figure 6(b) reports the time history of total energy balance in the 3D membrane 

equation, showing a swift vanishing of the STC marked initial imbalance and a slower zeroing of the TTC one. 

But, overall, possible transient imbalance does not affect the steady response.   

Still in the plate center, Figure 10 shows 3D temperature curves along the thickness at two, nearly initial 

(a) and intermediate (b), instants, along with the 3D internal energy curves for the latter (c). The STC 

temperature profile is very close to the 20-term analytical and finite element ones since the nearly initial instant, 

notwithstanding a slight internal energy difference still occurring at 𝑡 = 10 s, while TTC exhibits a 

progressively vanishing (see Fig. 9(a)) temperature overestimation.   

Figure 11 shows temperature graphs along x, at mid-plane level and y half-size. Remembering boundary 

conditions, at the nearly initial instant 𝑡 = 0.3 s the real temperature is zero along the whole x direction except 

on the edges, where it is  𝑇 = 100 K; therefore, in Fig. 11(a), STC (although providing the correct temperature 

in the centre) implies the same shape error of TTC, which persists at 𝑡 = 10 s (Fig. 11c) and only vanishes in 

steady conditions. This is due to the different mathematical assumption for the prescribed constant temperature 

on the boundary with respect to the assumed internal 2D dome-shape temperatures (Eqs. 17(d,e)). To improve 

the approximation, multimodal instead of unimodal thermal shapes along x and y should be considered,  

(a)  (b)  (c)  

Fig 10. Case 1, constant temperature prescribed on up/down faces: Temperature profiles along the thickness in midpoint, at (a) 

𝑡 = 0.3 s,  (b) 𝑡 = 10 s,  and (c) internal energy for the latter. TTC (red), STC (magenta), analytical solutions with 5 (green) and 20 

(blue) terms, finite element solution (black dots). 
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(a)  (b)  

(c)  (d)  

Fig 11. Case 1, constant temperature prescribed on up/down faces: Temperature (a,c) and internal energy (b,d) profiles along x at  

𝑦 = 𝑏/2, 𝑧 = 0 and (a,b) 𝑡 = 0.3 s,  (c,d) 𝑡 = 10 s. TTC (red), STC (magenta), analytical solutions with 5 (green) and 20 (blue) 

terms, finite element solution (black dots). 

however nullifying the minimal ROM perspective. But the error shape will vanish if consistently considering 

for the temperature (or other thermal loads) prescribed on the external surfaces the same dome-shape spatial 

distribution as the assumed 2D internal temperature one, as it will be done in the following excitation cases 2 

and 3. Moreover, from the whole analysis of case 1, STC results are seen to be   close to those of the 20-term 

analytical solution, also in the transient, and such to be reliably assumed as reference for further comparing 

cheaper ROMs such as TTC and CTC ones.   

Case 2 refers to a square, single-layer, epoxy/carbon fibre composite [40], orthotropic and thicker (a/h = 

10) plate with cold edges, subjected to a dome-shaped heat flow 𝑞3(𝑥, 𝑦, 𝑧, 𝑡) on the upper surface and a dome-

shaped temperature distribution (with 𝑇∗ = 10 K) on the lower surface (Fig. 8). Since thermal loads are not 

symmetrical, also the reduced bending component 𝑇𝑅1(𝑡)
 
is activated, contrary to Case 1, overall giving rise 

to the 3D temperature curves of STC (practically coinciding with finite element solution) and TTC in  

(a)  (b)  (c)  

Fig 12. Case 2, dome-shaped flow and temperature prescribed on up/down faces: (a) time histories of temperature, (b,c) 

profiles along the thickness in midpoint, at 𝑡 = 200 𝑠 and 𝑡 = 8000 𝑠. TTC (red), STC (magenta), exact stationary analytical 

solution (gray line in (c)), finite element solution (black dots). 
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(a)  (b)-  (c)  

Fig 13. Case 3, free heat exchange on up/down faces and active body source: (a) time histories of temperature, (b,c) profiles along 

the thickness in midpoint, at 𝑡 = 100 s and 𝑡 = 6000 s. TTC (red), STC (magenta), CTC (orange), finite element solution (black 

dots). 

 Fig. 12(a), whose transients are much longer than those of Case 1 and very close to each other. Figure 12 also 

shows the corresponding temperature profiles along the thickness, in the central point of the plate. They are 

quite dissimilar at a nearly initial instant (𝑡 = 200 𝑠) (b), mostly at the upper points far away from the 

midplane, but almost coincident at the stationary state (𝑡 = 8000 𝑠) (c), where the STC profile perfectly 

coincides with finite elements and with the curve (gray, but not visible) of the exact stationary analytical 

solution [58].  

Case 3 refers to the same plate with cold edges of case 2, subjected to a free convective exchange with the 

surrounding medium on the up/down faces, and to a body source energy inside the plate, with intensity linearly 

varying along the thickness between two assigned extreme values (Fig. 8). Since free heat exchange on external 

faces can be prescribed also in the CTC model, it is considered in the comparison, too. Figure 13a compares 

3D temperature curves of TTC with those of STC and CTC, in the midpoint. CTC time history is far away 

from those of the other two models (with also a stationary value significantly lower), which instead are quite 

close to each other. Figure 13(b,c) shows the corresponding temperature profiles along the thickness, in the 

central point of the plate, at a nearly initial instant (𝑡 = 100 s) and at stationary state (𝑡 = 6000 s). All models 

exhibit a more marked temperature increase in the lower part of the plate, due to the considered power density 

distribution along the thickness (Fig. 8); however, the maxima of the more refined models are not located at 

the up/down surfaces, possibly due to heat dissipation towards the environment occurring therein. In the 

stationary phase (Fig. 13(c)), the CTC profile exhibits a considerable deviation from TTC and STC ones, which 

practically coincide with each other. Obviously, the CTC model is much penalized by the assumed linear 

temperature distribution (Eq. (11)), which entails analytical vanishing of the thermal flow contribution to the 

3D balance, even though its overall effect along the thickness is taken into account in the 2D balance through 

the 𝑄(0)and  𝑄(1)contributions in Fig. 3(d) [42].  

5. Nonlinear dynamics of TTC model 

 

In view of a systematic, computationally heavy, yet reliable investigation of the nonlinear dynamics of two-

way thermomechanically coupled plates with a corresponding ROM, it is important to identify an acceptably 

‘best’ minimal model to use, as resulting from a compromise among different requirements. Features of 

a) functionality (ability to provide reliable descriptions of phenomena under examination),  

b) richness (quantity and quality of nonlinear characteristics preserved from the underlying continuous 

formulation, in order to allow exhaustive descriptions of the involved dynamics),  

c) flexibility (ability to consider a variety of thermomechanical assumptions, excitations and boundary 

conditions of technical interest),  

d) cheapness (ability to reduce both computational and result interpretation burden),  

are considered. 

From the thermal viewpoint, the analysis in Sect. 4.2 highlights the excellent capability of the minimal TTC 

model to account for a variety of excitations and boundary conditions of technical interest. It is much higher 
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than the CCT one (however with the same minimal structure of two ODEs/unknowns), while also providing a 

description of the spatiotemporal temperature field matching very well the ‘nearly exact’ steady one of STC 

(with minor differences in the transient), which however requires six ODEs/unknowns, thus being more 

involved in computational terms. In turn, CTC does not achieve such a good steady temperature description 

even for small plate thicknesses, mostly if considering greater intensities of thermal source energy [45]. 

From the mechanical and coupling viewpoints, TTC and CTC are practically ‘identical’ in the minimal 

reduction perspective (one and three ODEs/unknowns, respectively, and same structure), yet with the former 

model allowing to account also for third-order shear defomability (besides more thermal boundary conditions). 

The mechanical balance of STC might be reduced to a single equation, too, if neglecting displacement terms 

of order higher than cubic [45], possibly allowing for a more reliable description of thermal-to-mechanical 

coupling effects entailed by highly involved internal temperature fields. However, this would be somehow 

inconsistent with the assumed higher-order temperature distribution, and questionable if dealing with quite 

thick plates. Alternatively, a higher-order expansion should be assumed in Eqs. (17(a-c)) for the mechanical 

out-of-plane configuration variables, thus further increasing the overall number of reduced ODEs/unknowns.  

All previous points highlight how TTC can represent the ‘best’ minimal model to use for systematic 

numerical investigations of the nonlinear dynamics of thermomechanically coupled symmetric cross-ply 

laminates. In the sequel, transient and steady responses under a variety of thermal (boundary and body) sources 

entailing direct activation of the temperature field, in addition to mechanical excitations, will be analysed, 

highlighting the influence of thermomechanical coupling and the non-trivial effects of slow thermal dynamics 

on the swift steady mechanical response via tools of local and global dynamics.   

The set of dimensionless TTC (and CTC) two-way coupled governing ODEs (mechanical, thermal 

membrane, and thermal bending, sequentially), with aij now denoting nondimensional coefficients, is reported 

in Fig. 14, where mechanical and body thermal excitations are included, however without terms due to specific 

thermal boundary conditions. The distributed in-plane constant axial load p (see Fig. 2) enters the a13 

coefficient of mechanical linear stiffness, transverse harmonic load (of amplitude f in the a17 coefficient) 

exciting the plate at primary resonance appears in the mechanical equation, and membrane (e0) and bending 

(e1) internal heat sources enter the corresponding thermal equations. Coupling terms in the three equations are 

framed by red boxes.  

Specific thermal boundary conditions (b.c.) prescribed on the upper and lower surfaces add further terms 

as per the equations reported in Fig. 15, which refer to cases considered in the following investigations. The 

first set of equations (also holding for CTC) includes a new term (in red, with 𝛼1 dimensional (in Kelvin-1) 

coefficient of thermal expansion) in the membrane equation (the sole one directly activated, in the absence of 

e0 and e1), associated with a dimensional (in Kelvin) time-constant temperature difference 𝑇∞ between plate 

and surrounding medium, which entails free heat exchange (FHE) on the up/down outer surfaces.  

 

Fig 14. General structure of two-way coupled ODEs (mechanical, thermal membrane, and thermal bending) for TTC (and 

CTC); red-squared terms account for the thermomechanical coupling, blue-squared terms represent mechanical and thermal 

excitations. 
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Fig 15. General ODEs (Fig. 14) with additional terms due to different boundary conditions. Top block: Free heat exchange (FHE), 

one more (red) term in membrane equation. Bottom block: Prescribed prescribed constant (PPC) temperature, two more (red) 

terms in membrane and bending equations; prescribed prescribed dome-shape (PPD) temperature: two more (red) terms in 

membrane and bending equations, plus two more (blue) terms in mechanical equation. 

 The second set of ODEs holds for a prescribed spatial distribution of (possibly different) temperatures on 

the upper (Tup) and lower (Tdown) surfaces, which (still in the absence of e0 and e1) entail direct activation of 

both membrane and bending thermal dynamics (indirect activation always occurs, due to the presence of 

mechanical coupling terms), unlike the FHE condition. Two different distributions are considered, constant 

(PPC: prescribed prescribed constant) or dome-shaped with Tup, Tdown dimensional (in Kelvin) central values 

(PPD: prescribed prescribed dome-shape), both entailing additional (red) terms in the membrane and bending 

equations, with different a23, a35 values. Coefficients of the other thermal terms are also different from the 

corresponding ones in FHE equations, because the physical processes activated by free heat exchange 

(convection plus conduction) 

and prescribed temperatures (only conduction) are different. The PPD b.c. also induce two (blue) additional 

terms in the mechanical equation, one affecting the linear mechanical stiffness (like the axial load), and the 

other adding a constant external excitation.  

In the next sub-section, nonlinear dynamics of TTC model is investigated by considering a square 

orthotropic single-layer plate in epoxy/carbon fiber composite, with thickness ratio a/h = 100, subjected to 

mechanical loads consisting of in-plane pre-stressing axial force p in incipient buckling condition, and 

transverse harmonic excitation of amplitude f at primary resonance. As regards thermal loads, the capability 

of TTC model to account for different excitation conditions is highlighted by considering four different cases 

of either boundary conditions on external surfaces or body excitation, with also a comparative overview of the 

ensuing coupled thermomechanical responses. Material elastic and thermal properties are taken from [13], 

apart from a lower value of the specific heat considered in the first two cases for easier computation, and are 

assumed to be temperature-independent. Details of the various analyses can be found in [40,41,46].  

First, FHE boundary condition (i.e., the first set of ODEs in Fig. 15) and bending body excitation e1 are 

separately addressed, for being suitable reference cases to get an overall view of the effects of basic, yet 

qualitatively different, thermal excitations on the plate buckling/postbuckling, in both local and global 

dynamics terms. They also allow us to get a fundamental understanding of the important influence entailed by 

the slow thermal dynamics on the much swifter mechanical vibrations of the plate, as governed by the 

thermomechanical coupling. In both cases, the membrane body excitation e0 is set to zero. Note that  𝑇∞ and 

e1 excitations can be dealt with also by the CTC model, which was indeed first used for systematic 

investigations of the relevant nonlinear responses [40]. When using TTC, local and global dynamics outcomes 
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of the thin plate considered here are essentially the same as CTC ones, which are thus referred to for 

summarizing the main features of dynamic buckling/post-buckling.  

Then, the sole PPC or PPD boundary conditions (second set of ODEs in Fig. 15, with e0=e1=0) are 

considered, to highlight the great variety of buckled/post-buckled dynamical scenarios obtainable under 

different quantitative and qualitative prescriptions for the same kind of thermal excitation. Further on, thermal 

sources of different nature (boundary vs body) but possibly equivalent effects on the coupled 

thermomechanical response are also considered, dwelling on the similarity/difference of actual outcomes.  

In all considered cases, the system response is described in terms of local and global dynamics. The first 

one is studied realizing bifurcation diagrams by means of the continuation software AUTO [59], which allows 

us to investigate existence and stability of periodic steady solutions as a function of selected parameters. The 

detected solutions are then characterized with phase portraits and temporal evolutions obtained by numerically 

integrating the ODEs with Wolfram Mathematica [60] software. The second one is addressed by constructing 

2D cross sections of the 4D basins of attraction with a C++ ad hoc routine, which works by dividing the 

selected state plane in a grid of proper size and by locating the centers of the grid box from which the 

trajectories detected via quasi-Newton’s method are followed. Overall, the fundamental role played by global 

dynamics analysis in unveiling meaningfully different outcomes of the mechanical response resulting from the 

slowness of thermal dynamics is addressed.  

 

 

5.1  Dynamic buckling/post-buckling: a local and global analysis 

Free heat exchange. The sole time-constant temperature difference 𝑇∞ between plate and envronment 

entails pure convection on external surfaces and pure internal conduction, with direct activation of the sole 

symmetric membrane thermal dynamics (TR0), and the mechanical response altered thanks to the presence of 

the coupling linear term a16TR0W which modifies the linear stiffness. In turn, a minor bending temperature TR1 

is dragged by the mechanical coupling term 𝑎33𝑊̇(𝑡). The bifurcation diagram of mechanical response with 

varying 𝑇∞ is reported in Fig. 16(a) in terms of minimum and maximum response curves pointing out the 

evolution of corresponding overall amplitudes. If moving from a p-induced mechanical pre-buckling 

configuration in which the sole one-period response P1 exists, progressive warming of the environment (i.e., 

𝑇∞ > 0) entails onset of a first (P1III/P1IV) and then a second (P1I/P1II) couple of buckled solutions, oscillating 

around the varied positive/negative configurations of the plate. For 𝑇∞ = 190 𝐾, both couples are represented 

as high- (green/blue) and low- (orange/red) amplitude oscillations, respectively, in the phase portraits of Fig. 

16(b), where the coexisting (gray) post-buckled cross-well response oscillating around both varied equilibria  

(a)  (b)  

Fig 16. FHE. (a) Bifurcation diagram of transversal displacement of the plate center with varying temperature difference between 

plate and environment 𝑇∞ (circle: saddle-node bifurcation, square: transcritical bifurcation; continuos lines: stable branches; 

dashed lines: unstable branches); (b) phase portraits of periodic solutions at 𝑇∞ = 190 𝐾. Gray P1: pre-buckling/cross-well 1-

period solution; orange P1I/red P1II: buckled low-amplitude 1-period solutions; cyan P1III/ blue P1IV: buckled high-amplitude 1-

period solutions; pink P2: 2-period solutions. 
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(a)  (b)  

(c)  

Fig 17. FHE. (a) Cross sections of 4D basin of attraction of thermomechanical model in (𝑊,  𝑊̇) plane, for TR0(0) =TR1(0) =0: (i) 

pre-buckling (𝑇∞ = 0 𝐾), (ii) post-buckling (𝑇∞ = 100 𝐾). (b) Basins of attraction of uncoupled mechanical oscillator for 

TR0=0.9. (c) Time histories of thermomechanical variables, for 𝑇∞ = 100 𝐾, with i.c. (−1.35,0.18,0,0). (Gray P1, cyan P1III, blue 

P1IV, pink P2 basins correspond to solutions of Fig. 16; TR0 time history: orange, green, red horizontal lines refer to cross sections 

in Fig. 18). 

and ensuing from the P1 pre-buckling solution which remains stable is also reported. The mechanical response 

is globally symmetric with respect to trivial equilibrium, yet with mirrored solutions of each couple and a 

radial symmetry of the respective Poincaré points (left panel of Fig. 16(b)). In turn, membrane thermal 

responses in each of the two couples are self-symmetric and oscillate around the mean steady state value TR0 

= 1.718 (mid panel), whereas the corresponding bending responses are also mirrored with radial symmetry, as 

the mechanical ones from which they are dragged, and oscillate around the rest position (right panel). 

To get a comprehensive understanding of the plate thermomechanical response, the local dynamics description 

provided by bifurcation diagrams and phase portraits/Poincaré maps is complemented with the analysis of 

global dynamics through basins of attraction, which provide fundamental information on the effect of initial 

conditions. To this aim, a lower warming (𝑇∞ = 100 𝐾) of the environment marking the maximum interval of 

occurrence of the sole first couple (P1III/P1IV) of buckled solutions (red arrow in Fig. 16(a)) is considered, so 

to have a less involved topological scenario of the 4D basin of attraction (in the four,  i.e. displacement, 

velocity, membrane and bending temperatures, state space) even though only relevant planar cross sections are 

constructed. Being mainly interested in grasping the influence of thermal excitations on the mechanical 

response, the most natural physical cross section is the one in the mechanical state plane for trivial values of 

thermal initial conditions, i.e. TR0(0) = TR1(0) = 0. It is shown in Fig. 17(a) for 𝑇∞ = 0 𝐾  ((i), pre-buckling) 

and 𝑇∞ = 100 𝐾 ((ii), post-buckling), respectively, both panels showing the presence of the sole (gray) basin 

of pre-buckling P1 solution, the latter scenario being inconsistent with the mixed (buckled and un-buckled) 

steady response pattern highlighted by the local analysis in Fig. 16. The 2D basin of attraction obtained for the 

‘uncoupled’ model is also reported in Fig. 17(b). lt is obtained by independently solving the uncoupled (i.e., 

with a24 = 0) membrane thermal equation (as per the analysis in Sect. 4.2) and then, sequentially, the 

mechanical equation with the ensuing mean steady value (TR0 = 0.9) of membrane temperature. A multistable 

scenario including the first pair of buckled solutions (P1III/P1IV) coexisting with the pre-buckling P1 response 

is obtained, consistent with the local analysis outcomes in Fig. 16.   

The apparent discrepancy between Figs. 17(a(ii)) and 17(b) is explained by looking at the transient 

dynamics,  shown in Fig. 17(c) in terms of time histories of the three reduced variables. The long transient  
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(a) (b) 

Fig 18. FHE: 𝑇∞ = 100 𝐾. (a) Cross sections of 4D basin in (𝑊,  𝑊̇) plane for increasing TR0 values, with TR1 =0 ; (b) cross 

section in (𝑇𝑅0,  𝑊̇) plane for trivial TR1 and 𝑊=-1.5, with the (orange, green, red) vertical lines corresponding to mechanical 

cross sections in (a). Gray P1, cyan P1III, blue P1IV, pink P2 basins correspond to solutions of Fig. 16. 

time needed by the membrane temperature to attain its steady value entails a slow thermal contribution to the 

mechanical stiffness responsible for buckling occurrence. As a consequence, the mechanical response, which 

has a much quicker dynamics, settles at the first steps of its temporal evolution to the sole stable solution 

depicted by the system in the pre-buckling regime, i.e. the P1 gray solution. Since this represents a robust 

attractor also in the post-buckling scenario, the trajectories settled onto it do not modify their behaviour when 

the thermal evolution is completed, with the whole contribution furnished to the mechanical stiffness. Indeed, 

the apparent incongruity between local and global results for the coupled model is explained by reminding that 

Fig. 17(a) represents just planar sections of the 4D basin, obtained for null thermal initial conditions. 

Considering mechanical cross sections for increasing values of TR0 allows us to describe the evolution of basins 

spatial organization (Fig. 18(a)), up to exactly reproducing the uncoupled model scenario when TR0 is set to 

the relevant mean steady value 0.9 (third panel in Fig. 18(a)). This behaviour is summarized in a different cross 

section of the 4D basin of attraction, i.e. the (𝑇𝑅0, 𝑊̇) plane for trivial TR1 in Fig. 18(b), obtained by fixing W=-

1.3 within the buckled P1III cyan basin at TR0 =0.2 (first panel in Fig. 18(a)). Figure 18(b) shows how for 

TR0<0.2 the basin of attraction of the coupled system in the mechanical state plane coincides with the sole pre-

buckling solution basin, while the buckled cyan basin appears in the (𝑇𝑅0, 𝑊̇) section and enlarges its compact 

part for 0.2<TR0<0.9. In terms of steady mechanical outcome this means that, if considering a vanishing i.c. for 

TR0 – as somehow natural from the practical viewpoint – or even a nearly vanishing one within the grey stripe 

(TR0<0.2) in the cross section of Fig. 18(b), the coupled system ends up to the pre-buckling solution. Instead, 

assuming 0.2<TR0<0.9, it is progressively much more likely to end up to the buckled solution P1III, or even to 

the companion buckled P1IV if looking at the upper/lower fractal zones in Fig. 18(b), which for TR0>0.9 spread 

over about the whole 𝑊̇ interval, thus making the final outcome quite uncertain. 

Overall, the coupled model shows itself capable of capturing the actual, transient and steady, 

thermomechanical behaviour of the physical system, whose steady mechanical outcome is meaningfully 

affected by the slow thermal transient evolution, and also, though to a definitely minor extent, by the small 

thermal fluctuations actually occurring in the steady dynamics. In contrast, the uncoupled model is able to 

describe only the specific mechanical condition attained at the very end of the thermal transient.  

It is worth noting that if a body thermal source e0 constant along the thickness were considered, instead of 

the 𝑇∞ difference with the environment, overall comparable effects would be obtained as regards local and 

global dynamics, although the specific response features would be generally different due to the different 

physical processes activated by the body vs boundary excitation [46].   

Bending body source. A time constant bending excitation e1 with linear variation along the thickness produces 

equal cooling and warming of the two external surfaces. The bifurcation diagram of mechanical response with 

varying e1 is reported in Fig. 19(a). Moving again from a mechanically-induced pre-buckling configuration for  
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(a)  

(b)  

(c)  

Fig 19. Bending body source. (a) Bifurcation diagram of transversal displacement of the plate center with varying bending body 

source 𝑒1 (circle: saddle-node bifurcation, diamond: period-doubling bifurcation; continuos lines: stable branches; dashed lines: 

unstable branches). (b) Cross sections of 4D basin of attraction of thermomechanical model in (𝑊,  𝑊̇) plane, for TR0(0) =TR1(0) 

=0: (i) pre-buckling (𝑒𝟏 = 0), (ii) post-buckling (𝑒1 = 0.0003). (c) Basins of attraction of uncoupled mechanical oscillator for 

TR1=4.57. (d) Time histories of thermomechanical variables for 𝑒1 = 0.0003, with i.c. (0,0,0,0). (Gray P1: pre-buckling/cross-well 

1-period solution (basin); orange P1I/red P1II: buckled low-amplitude 1-period solutions (basins); cyan P1III/ blue P1IV: buckled 

high-amplitude 1-period solutions (basins); pink P2: 2-period solutions (basins). TR1 time history: orange, cyan, green horizontal 

lines refer to cross sections in Fig. 20).  

e1=0, in which the sole one-period response P1 exists, the addition of a bending excitation generates buckled 

responses confined around only one positive/negative equilibrium (i.e., in one of the two potential wells, in 

global dynamics terms), depending on the sign of e1, whose change provides an overall antisymmetric scenario 

of mechanical response. In particular, in a range of relatively high positive values of e1, both the low- (P1II red 

curve) and high- (P1IV blue curve) amplitude buckled solutions exist and are stable, along with a cross-well 

period-2 solution P2 (pink curve) confined in a limited excitation range. However, the results obtained in terms 

of cross section of the 4D basin for e1 =0.0003 (ii), reported in Fig. 19(b) together with the cross section for e1 

=0 (i), provide discordant indications with respect to those furnished by the bifurcation diagrams. Indeed, a 

monostable behavior characterized by the sole (blue) high-amplitude buckled solution P1IV is observed, with 

no evidence of the expected basins of the (red) low-amplitude buckled solution P1II and of the (pink) P2 

response. Moreover, the comparison with the outcomes of the uncoupled oscillator with mean steady value TR1 

=4.57 (as deduced by the time history of the bending thermal variable in Fig. 19(d)), reported in Fig. 19(c), 

points out meaningful differences as regards the kind of detected solutions in the mechanical state plane. As 

in the previous FHE case, the reasons for this disagreement stand in the effect of the thermomechanical 

coupling together with the simultaneous presence of slow and fast dynamics. Indeed, the slowness of the  
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(a) (b) 

Fig 20. Bending body source: 𝑒1 = 0.0003. (a) Cross sections of 4D basin in (𝑊,  𝑊̇) plane for increasing TR1 values, with TR0 =0 

; (b) cross section in (𝑇𝑅1,  𝑊̇) plane for trivial TR0, with the (orange, cyan,green) vertical lines corresponding to mechanical cross 

sections in (a). Red P1II, blue P1IV, pink P2 basins correspond to solutions of Fig. 19. 

bending thermal transient (left panel of Fig. 19(d)) causes the contribution of the e1 excitation to be supplied 

gradually into the mechanical equation by means of the coupling term related to TR1. On the other hand, the 

mechanical vibration is much faster than the thermal one and its transient, needed for reaching a stable solution, 

is very short. From a phenomenological viewpoint, it appears possible to neglect the mechanical transient and 

to look only at the attractor of the system, whose evolution with increasing values of the thermal bending 

excitation from zero to the selected value e1=0.0003 can be followed in the bifurcation diagram of Fig. 19(a). 

For low values of e1, where the gray P1 attractor is stable, the mechanical response is cross well at least in its 

first initial steps, before possibly jumping to the coexisting blue buckled solution P1IV upon its onset. But when 

the bending excitation reaches a value (e1 ≃0.000056) providing a bending thermal variable TR1 in the 

mechanical equation such to destabilize the P1 response via a period doubling bifurcation (Fig. 19(a)), the 

mechanical trajectories are more likely to swiftly jump onto the P1IV buckled response, as shown in the very 

first steps of the W time history (mid panel in Fig. 19(d)). And since this solution is stable after the rise of the  

further (red) buckled solution P1II, the system response remains steady on it for all considered values of 

mechanical initial conditions.  

Also in this case, considering cross sections of the 4D basin of attraction with different values of the 

governing thermal variable TR1 allows to obtain a comprehensive description of the system global dynamics. 

With reference to the excitation value e1=0.0003, and looking at the final outcomes of the dynamics beginning 

with the given TR1 initial conditions, Figure 20(a) points out that relevant increasing values succeed in 

progressively shortening the transient dynamics and more swiftly reproducing the response of the uncoupled 

system when the i.c. is set to the steady value, thus capturing the presence of other basins of attraction (third 

vs first panel in Fig. 20(a)). As in the FHE case, the whole behaviour is summarized in Figure 20(b), which 

shows a cross section of the 4D basin of attraction in the (𝑇𝑅1, 𝑊̇) state plane, obtained by fixing the 

mechanical initial condition to W = 1.75, within the buckled P1II red basin at TR1= 3 (mid panel in Fig. 20(a)).  

For initial TR1<3, the response of the coupled model always settles on the high-amplitude buckled P1IV blue 

basin, due to the slow thermal contribution into the mechanical equation which is insufficient to move the  

response towards the other, yet existing, P2 and P1II attractors. For 3 <TR1 < 5, the arise and enlargement of 

the low-amplitude P1II red basin is highlighted, while for high TR1 initial conditions the latter becomes the only 

existing solution for the system, according to the outcomes of the bifurcation diagrams of Fig. 19(a) showing 

the P1II response as the only possible one for high thermal excitation. In fact, setting a high TR1 initial condition 

corresponds to provide, in the first step of the dynamical evolution, a high contribution into the mechanical 

equation by means of the coupling term related to a15. As a consequence, the displacement response is initially 

moved into the monostable range characterized by the P1II solution, which therefore attracts all the trajectories 

regardless of the chosen initial velocity. Due to the fact that such solution is stable also when the thermal 
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variable stabilizes around its steady value, it represents the only possible response of the system in the 

considered TR1 range. As a final comment, it is worth noting that, contrary to Fig. 18(b) of the previous FHE 

case, no fractal arrangement is present in Fig. 20(b), due to the different kind of mechanical buckling 

(symmetric versus antisymmetric) achievable with the two thermal excitations. When the membrane variable 

is activated, in fact, the coexistence of several buckled solutions possibly reachable by the trajectories causes 

the fractalization of the relevant basins, whereas the antisymmetric behaviour of the bending variable strongly 

reduces the multistability region and the basins are organized in a more compact way. 

Constant vs dome-shaped prescribed temperatures. Contrary to FHE, arbitrary temperature values prescribed 

on the upper and lower surfaces generate a nonsymmetric thermal field along the thickness. Moreover, with 

respect to FHE which entails also convection, the involved pure conduction causes an increase of all 

coefficients in the second set of thermal equations of Fig. 15, and a given, pure mechanical excitation produces 

higher thermal responses due to the greater mechanical coupling terms a24 and a33.  Moving again from a p-

induced pre-buckling configuration in which the sole P1 response exists, mechanical bifurcation diagrams in 

terms of PPC (black) or PPD (red) temperature on the lower surface Tdown are compared in Fig. 21, for the fixed 

Tup = 100 K value implying onset of the two high-amplitude buckled responses P1III and P1IV. Both mechanical 

responses are nonsymmetric due to the contemporary activation of membrane and bending thermal dynamics, 

with also a different behavior inside the positive and negative buckled wells as regards stability ranges and 

amplitudes of the associated P1I/P1II and P1III/P1IV periodic responses. The outcomes point out differences of 

amplitude and stability regions between PPC and PPD buckled responses for high values of Tdown, and mostly 

located in the negative buckled well, which corresponds to the mechanical configuration bent towards the 

colder (i.e., upper) surface. Another important difference between PPC and PPD solutions occurs in the pre-

buckling scenario. In fact, for negative Tdown values, no stable periodic response occurs with PPC, whereas the 

negative high-amplitude buckled response P1III with PPD remains stable in the whole Tdown-negative range. 

Global features of the response obtained with the two sets of b.c. are compared in Fig. 22, which reports 

cross sections of the corresponding 4D basins of attractions in the mechanical state plane obtained for thermal 

variable values set at the beginning (i.e., TR0(0) = TR1(0) = 0; left panel) and the end (i.e., TR0(0), TR1(0) equal 

to steady values; right panel) of the relevant transient dynamics. Cross sections at four different Tdown values, 

as per the four vertical lines in Fig. 21, are reported. For each considered Tdown, the global response scenarios 

in the cross section for steady temperatures values (right panel) are fully consistent with the (steady) 

mechanical responses in the corresponding local bifurcation diagrams (Fig. 21). By way of example, for  

 

Fig 21. Bifurcation diagrams of transversal displacement of the plate center with varying temperature on the lower surface Tdown 

for PPC (black) and PPD (red) boundary conditions, with temperature on the upper surface Tup = 100 K (circle: saddle-node 

bifurcation, diamond: period-doubling bifurcation; continuos lines: stable branches; dashed lines: unstable branches). 
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Fig 22. Cross sections of 4D basin in (𝑊 ∈ [−4,4],  𝑊̇ ∈ [−2,2]) plane at different Tdown values and Tup = 100 K, for PPC and 

PPD boundary conditions, with trivial (left panel) and steady (right panel) initial values of thermal variables TR0 and TR1. (Basins: 

gray P1, orange P1I, red P1II, cyan P1III, blue P1IV, pink P2, black chaos).  
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Fig 23. Phase portraits of PPC chaotic (black) and PPD periodic (cyan) solutions, at Tdown = -400 K (left vertical line in Fig. 21), 

with enlargements of the thermal PPC solutions highlighting the chaotic nature of the responses.  

Tdown=400 K, the large red basin of the low-amplitude P1II solution fills most of the positive buckled well with 

both PPC and PPD b.c., but the large orange basin of the low-amplitude P1I solution in the negative buckled 

well of PPC is widely replaced, with increased fractality, by the cyan basin of the high-amplitude P1III response 

of PPD, the other minor basins (of high-amplitude blue solution P1IV, and cross-well gray P1 and pink P2 

solutions) being similar with the two b.c. Meaningful qualitative differences between PPC and PPD steady 

cross sections occur at Tdown = -100 K and Tdown = -400 K, too. In both cases, PPD b.c. entail a monostable cyan 

cross section, as per the corresponding solely stable P1III buckled (red) response in Fig. 21, whereas the PPD 

cross section is bistable (with nearly equivalent P1 gray and P1III cyan areas) at Tdown = -100 K and monostable 

at Tdown = -400 K. However, the latter monostability (black) corresponds to a chaotic buckled solution (of 

purely mechanical origin) occurring for negative Tdown values in the unstable region of the PPC bifurcation 

diagram, which is completely different from the P1III solution of PPD: the two (PPC black chaotic and PPD 

cyan periodic) responses are compared in the (partially zoomed) phase portraits of Fig. 23 for all three 

(mechanical and thermal) variables.  

Cross sections of the 4D basins for trivial values of the thermal variables (left panel in Fig. 22) coincide 

with those for corresponding steady values (right panel) only in the case of monostable steady solutions. If the 

steady scenario is multistable, as for positive Tdown values in the bifurcation diagram (Fig. 21), trivial cross 

sections of both PPC and PPD may strongly differ from the corresponding steady ones. As for the FHE and 

body bending cases in Figs. 18 and 20, respectively, this is a consequence of the variably slow thermal transient 

not having come into play yet, thus allowing the fast mechanical response to settle onto a different stable and 

more robust solution in the first instants of its time evolution, for most initial conditions. In any case, the 

generally different (multi- or mono-stable) response scenarios of PPC and PPD trivial cross sections (Fig. 22, 

left panel) entail swiftly attained mechanical steady outcomes which may be meaningfully different from each 

other, as highlighted, e.g., in Fig. 24(a) for Tdown = 400 K and fully trivial i.c.: the PPC response settles onto 

the cross-well P1 solution (black), whereas the PPD one settles onto the buckled P1IV solution (red). 

 

 

Fig 24. Time histories of P1 (black, PPC) and P1IV (red, PPD) solutions, with i.c. (0,0,0,0), at Tdown = 400 K (right vertical line in 

Fig. 21). 
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Fig 25. Temperature evolution (thick black) along the thickness in the center of the plate, and single constant (dark red), linear 

(red), quadratic (orange) and cubic (yellow) contributions at Tup = 100 K, Tdown = 400 K, for PPC (left) and PPD (right). 

As regards companion thermal variables, notwithstanding a nearly comparable length of PPC and PPD 

transients, steady values of the former are considerably higher than those of the latter for both TR0 and TR1. The 

underlying reason for such higher values is the already mentioned inconsistence of the constant temperature 

prescription over the plate external surfaces of PPC with respect to the dome-shape spatial distribution of the 

two thermal variables over the midplane, assumed in the modeling stage (Eq. 18(d,e)). This discrepancy 

enforces an overestimation along the whole thickness, and thus also in the center of the plate, of the PPC 

thermal field resulting from the superposition of all (constant, linear, quadratic, cubic) contributions in Eq. 3 

(Fig. 25, left), which is needed to satisfy the temperature values (Tup = 100 K, Tdown = 400 K) prescribed on the 

two surfaces and to concurrently assume an internal dome-shape distribution. This does not occur for the PPD 

case with coherent external/internal temperature distributions, whose thermal field along the thickness (Fig. 

25, right) results from the superposition of the major constant and linear contributions in Eq. 3.    

Antisymmetric boundary condition vs body source. It is worth comparing the dynamics obtained when 

alternatively applying a prescribed boundary condition or a thermally equivalent body source. Response 

scenarios provided by two purely antisymmetric excitations are referred to, namely the already considered 

bending body source e1 and PPD b.c. with equal and opposite values (Tup = -Tdown), whose thermal equivalence 

is established by the relation e1 = a351(Tup  -Tdown)/a34 obtained from the steady uncoupled bending equation 

of the second set in Fig. 15. Mechanical bifurcation diagrams in terms of the alternative control parameters e1 

(blue) and Tup = -Tdown  (red) are presented in Fig. 26(a). Despite the overall equivalent thermal effects of the 

two excitations, different mechanical responses are obtained due to the peculiar structure of the reduced ODEs. 

In fact, the boundary condition Tup = -Tdown modifies the mechanical behavior not only indirectly by means of 

the coupling term related to a15, as the e1 excitation, but also directly acting into the mechanical equation with 

the a19 term. This implies a strengthening of the external forcing produced by the thermal condition that causes 

the overall mechanical buckled response to occur for lower absolute values of the applied thermal source with 

Tup = -Tdown (red) than with e1 (blue). 

This behavior is confirmed by the comparison of mechanical cross sections of the 4D basins with the two 

excitations in a specific antisymmetric condition. Consider Tup = 100 K = -Tdown (vertical line in Fig. 26(a)), 

for which the PPD trivial and steady cross sections, already reported in Fig. 22 (third line, second and fourth 

columns), highlight the monostable scenario characterized by the negative buckled cyan P1III response, since 

the cross-well P1 solution (top red branch in Fig. 26(a)) is unstable. The corresponding cross sections (Fig. 

26(b)) with the equivalent e1 = - 9.83 10-5 are dominated by the stable P1 response (top blue branch in Fig. 

26(a)), with a meaningfully increasing presence of the cyan P1III basin as moving from the trivial (left) to the 

steady (right) cross section, due to the usual thermal transient effect. The temperature evolution along the 

thickness is also shown (Fig. 26(c)) for the two excitations. The Tup = - Tdown = 100 K b.c. produce a linear 

temperature distribution (left), whereas the equivalent body source e1 produces a nonlinear distribution (right). 

Equal values of TR1 (i.e., the profile slope in the center) occur with the two excitations, as per the imposed  
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(a)  

(b)   

(c)   

Fig 26. (a) Bifurcation diagrams of transversal displacement of the plate center with varying bending body source e1 (blue) or 

prescribed temperature on the plate surfaces Tup = -Tdown  (red) (circle: saddle-node bifurcation, diamond: period-doubling 

bifurcation; continuos lines: stable branches; dashed lines: unstable branches). (b) Cross sections of 4D basin in (𝑊,  𝑊̇) plane with 

e1 = - 9.83 10-5, for trivial (left) and steady (TR0= 0, TR1= -1.138, right) initial values of thermal variables TR0 and TR1. (Basins: gray 

P1, cyan P1III). (c) Temperature evolution (thick black) along the thickness in the center of the plate, and single linear (red) and 

cubic (yellow) contributions for Tup = - Tdown = 100 K (left) and e1 = - 9.83 10-5 (right). 

bending equivalence. However, when applying the sole body source, temperature values are implicitly set to 

zero on the upper and lower surfaces (otherwise non-vanishing Tup = - Tdown contributions would exist in all 

equations), thus entailing the antisymmetric temperature profile along the thickness to settle to a cubic shape. 

6. Effect of thermomechanical coupling 

 

After presenting the local and global dynamics of the fully coupled TTC model subjected to mechanical 

excitation and a variety of thermal excitations, it is worth resuming the issue of which response features would  
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Fig 27. Further reduced models: from 3-dof two-way, i.e. fully, coupled (model 3-2, top block) to mechanical uncoupled (model 

1, bottom block). Intermediate models:  (i) two-way coupled, with the sole active bending thermal equation/unknown (2-dof 

model 2-2, mid-block); one-way coupled, with no mechanical contributions into (ii) both thermal equations (3-dof model 3-1, 

second block from top) or (iii) the sole bending thermal equation (2-dof model 2-1, second block from bottom). 

be missed or kept, if alternatively performing a partially coupled analysis or even an uncoupled one. This is 

made by evaluating the importance of the various terms and variables of coupling entering the full equations, 

as regards contributing to a satisfactory and comprehensive description of the response. Indeed, outcomes of 

investigations performed for different active thermal regimes have highlighted a minor role played in the 

mechanical response by the mechanical coupling terms in thermal equations, which govern the two-way 

coupling, and by the non-directly excited thermal variables/equations, which govern the number of essential 

thermal degrees of freedom. This provides useful hints as to a further possible dimensional reduction of the 

considered model. Both two-way (from thermal to mechanical, and from mechanical to thermal) and one-way 

(from thermal to mechanical) coupling are considered, along with intermediate models accounting for only the 

directly excited thermal equation/variable [46]. 

Reference is made to the simplest case of FHE b.c., whose first set of fully coupled equations (Fig. 15) are 

reported on top of Fig. 27 and referred to as 3-2 model because of including 3-dof and accounting for two-way 

coupling. Moving from it, a sequence of gradually simplified ROMs is obtained by neglecting coupling terms 

and/or equations/variables. A 3-dof one-way coupled model (from thermal to mechanical), named 3-1, is 

obtained by neglecting the mechanical contribution into the thermal equations, i.e. by setting a24 = a33 = 0. 

Then, based on the kind of considered thermal excitation, a further dimension reduction to a 2-dof model can 

be obtained by considering only one active thermal equation/variable, since a symmetric (antisymmetric) 

thermal source entails a response with predominant membrane (bending) temperature field. Here, the sole body 

bending excitation 𝑒1 is considered (i.e., 𝑇∞ = 𝑒0 = 0) in addition to mechanical ones, because, due to the 

generally high value of the a32/a23 ratio of relevant thermal stiffnesses, it affects the mechanical response (via 

the a15 coupling term in the relevant equation) more swiftly than a membrane (𝑇∞ or 𝑒0) excitation, whose 

equation is thus disregarded. The ensuing two-way coupled model is named 2-2 in Fig. 27. With further 

reductions, a 2-dof one-way model (2-1) is obtained by neglecting the coupling term a33, ending up to the most  
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(a) 

 

 

(b)  

(c)  

Fig 28. Time histories, phase portraits and Poincaré maps of displacement (a), bending temperature (b) and membrane 

temperature (c), for 𝑒1 = 0.0003 and trivial i.c., with the different reduced models presented in Fig. 27. 

simplified model (1) – already considered for comparison in previous analyses – composed of the sole 

mechanical equation with no membrane contribution (a16 = 0) and with bending thermal excitation taken into 

account by setting TR1 to the mean steady value TR1 = −a34e1/a32 obtained from the bending equation.  

Local bifurcation analysis of all four, further reduced, models with varying 𝑒1 furnishes exactly the same 

mechanical diagram, also equal, substantially, to that of the fully coupled 3-2 model in Fig. 19(a), highlighting 

how the steady periodic responses are insensitive to both the possibly different thermomechanical transient 

and the coupling. Instead, differences occur in the bifurcation diagrams of bending and membrane thermal 

variables (not shown for the sake of conciseness, see [46]). In fact, while the response of the directly activated 

variable TR1 cannot be followed by the uncoupled 1 model (although its value is known from the corresponding 

equation), the behavior of t  he dragged temperature TR0 can be described by the sole 3-2 and 3-1 models which 

include both thermal variables. Moreover, with respect to the latter, the fully coupled 3-2 model is the only 

one able to correctly grasp the TR0 response, since the 3-dof one-way model, although considering the 

membrane variable, furnishes identically null solutions due to the non-activation of the corresponding 

equation. 
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Fig 29. Transient dynamics of the mechanical response, for 𝑒1 = 0.0003 and trivial i.c., with the different reduced models 

presented in Fig. 27. 

In turn, global analysis of 3-1, 2-2 and 2-1 models for 𝑒1 = 0.0003  provides mechanical cross sections for 

trivial thermal initial conditions always equal to the 3-2 model cross section in Fig. 19(b(ii)) characterized by 

the sole (blue) buckled P1IV solution, different from the global scenario of the mechanical uncoupled 1 model 

in Fig. 19(c), which exhibits all three basins (red P1II, blue P1IV, pink P2) of the buckled solutions identified 

by the local analysis. Again, this is due to the slowness of the bending thermal transient (taken into account 

also by the simplified coupled models due to the combined presence of the bending equation and the a15 term, 

but ignored in the uncoupled model), that causes the contribution of e1 to be supplied gradually into the 

mechanical equation via the coupling term related to TR1, thus allowing the swift mechanical vibration to  jump 

onto the persistingly stable P1IV buckled response (see earlier comments to the mid panel in Fig. 19(d)). 

The effect of the various coupling terms is discussed further by looking at the temporal evolution of a single 

trajectory with fixed trivial initial conditions, as provided by the five models, along with the associated steady 

phase portraits and Poincaré maps (Fig. 28). The mechanical time histories of the four coupled models (non-

cyan colors in Fig. 28(a)) show the swift initial jump onto the high-amplitude steady P1IV solution, whereas 

the time law of the uncoupled  model 1 (cyan) jumps onto the low-amplitude steady P1II, because the selected  

mechanical initial conditions belong to different basins of attraction (Fig. 19(b(ii),c)). Moving to the temporal 

evolution of thermal variables, the time histories of the directly activated bending one (Fig. 28(b)) obtained 

with the four coupled models allow to point out the role played by the two-way coupling. In fact, the sole gray 

3-2 and red 2-2 models catch the small periodic oscillation around the steady value common to all coupled 

models, due to the contribution of the mechanical response via the a33 coupling term, while the one-way 3-1  

and 2-1 models exhibit the steady equilibrium with no oscillation. The coincidence of TR1 outcomes for the 

one-way models (3-1 ≡ 2-1) directly ensues from the neglected a33 coupling term in the bending equation. In 

turn, the TR1 coincidence for also the two-way models (3-2 ≡ 2-2) highlights that, even in the fully coupled 

case (3-2), the membrane variable indirectly activated by e1, via W, entails such small (i.e., higher order) 

coupling effects on TR1 to produce an overall behavior of the latter undistinguishable from that obtained with 

2-2, where the membrane equation/variable is disregarded. Finally, the dynamics of the (though very small) 

dragged membrane temperature is caught only by the fully coupled 3-2 model (Fig. 28(c)), able to originate a 

non-null response by means of the a24 coupling term, while the 3-1 model also including the TR0 variable 

provides a null outcome due to non-activation of the corresponding equation.  

Figure 29 compares the transient mechanical responses obtained with the five models, whose lengths are 

linked with neglecting or accounting for coupling terms. The mechanical cyan model 1 exhibits the shortest 

transient, since the whole contribution of the bending excitation to the mechanical equation is provided at the 

beginning of the time history. The one-way models (green 3-1 and blue 2-1) display the same transient 

duration, since the membrane thermal variable TR0, although being present in the 3-1 model, is not actually 
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activated due to the missing a24 coupling term, thus having no influence on the displacement evolution. Finally, 

the two-way models (gray 3-2 and red 2-2) accounting for coupling terms also in thermal equations exhibit 

longer mechanical transients, the longest one being provided by the fully coupled 3-2 model thanks to the very 

slow contribution supplied by also the dragged membrane variable (Fig. 28(c)). 

In the light of all the above results it appears that, with the solely considered (bending) thermal excitation, 

the 2-dof one-way 2-1 model is the most ‘economical’ one to be conveniently used for a systematic numerical 

investigation aimed at reliably describing the response in terms of the mechanical variable and of the dominant 

(i.e., bending) thermal one, although caught in its solely steady features. Of course, outcomes will be different 

if considering a combined membrane/bending thermal excitation, with the definite need to use at least the 3-1 

model. Indeed, the two-way coupled model 3-2 is necessary to grasp the actual dynamic evolution in steady 

conditions not only of the mechanical variable but also of thermal variables.    

In general terms, the model to be selected for nonlinear dynamic analysis strongly depends on the response 

aspects and operating conditions of interest, according to the following summary of relevant 

capabilities/deficiencies.   

• Two-way coupled models (thermally complete, 3-2, or incomplete, 2-2)  

      Due to mechanical coupling in thermal equations: 

− thermal dynamics directly excited → actual time-varying steady response caught; 

− thermal dynamics non-directly (i.e. passively) excited → dragged into the response in complete model;  

− structural dynamics: very slow contributions of thermal variables (with membrane much slower than 

bending) entails lengthy transient response, which is longer for the complete model due to  contribution 

of also the dragged thermal variable.  

• One-way coupled models (thermally complete, 3-1, or incomplete, 2-1)  

Due to missing mechanical coupling in thermal equations: 

‒ thermal dynamics directly excited → stationary instead of time-varying steady response; 

‒ thermal dynamics non-directly excited → not dragged into the response even in complete model;  

‒ structural dynamics: only slightly reduced transient with respect to two-way coupled models, due to  

missing time-varying steady response of coupled thermal variable(s) directly excited. 

• Uncoupled thermal-mechanical model (1):  

− steady thermal dynamics: independently obtained by solving the mechanically-uncoupled equations; 

− steady structural dynamics: missing slow thermal transients may entail totally different structural 

response, depending on the relevant i.c. 

 

7. Conclusions 

 

Thermomechanical coupling of composite plates in a nonlinear dynamic environment is a topic of major 

interest in aerospace, mechanical and civil engineering, that can be addressed via a two-way (i.e., full) or one-

way (i.e., partial) coupling formulation. Within the former less common, yet more general, perspective, dealing 

with the richness and possible complexity of the nonlinear response requires developing proper reduced order 

models such to exhibit the main features of the continuous problem in the background and to allow extended 

and detailed, but economical, parametric investigations in a variety of mechanical and thermal conditions. The 

wide body of research conducted in the last few years on the related modeling, analysis and phenomenology 

has been overviewed in this paper. 

As regards the modeling stage, thermomechanical problem has been formulated in a unified way first at the 

two-dimensional level, by looking at the considered von Kármán model, with or without shear deformability, 

against a large variety of (general or approximate) nonlinear coupled models to be possibly constructed. In 

both the correspondingly consistent, cubic or linear, assumed distributions of temperature along the thickness, 

thermal field is described by sole two variables, by properly accounting for arbitrary boundary conditions 

prescribed on the upper and lower surfaces. Then, a consistent and controllable dimension reduction of the 

mechanical field has been carried out, based on two sequential kinematic condensations, of in-plane and shear 
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rotations dynamics, performed at the continuous and reduced level, respectively. Considering single-mode 

Galerkin discretization has allowed to end up to minimal models with one (transverse) mechanical and two 

(membrane and bending) thermal unknown variables, which still exhibit the nonlinear and full 

thermomechanical coupling features embedded in the underlying continuous models. In particular, the minimal 

ROM based on cubic assumptions for the 2D mechanical and thermal fields has allowed to deal with not only 

(in-plane and transverse) mechanical excitations, but also a meaningful variety of body and, mostly, boundary 

thermal sources.  

After validating minimal ROMs in terms of linear dynamics and mechanical/thermal buckling, a first stage 

of numerical analysis has been concerned with the sole thermal dynamics, by reconstructing the transient and 

steady 3D spatiotemporal responses from the reduced models outcomes via a controllable backward procedure. 

Two cases of pure or mixed boundary excitations, and one case of mixed boundary/body thermal sources have 

been considered. Comparison with analytical solutions, with responses provided by a higher order reduced 

model, and with finite elements results has allowed to get a comprehensive and reliable understanding of the 

thermal dynamics entailed by different excitations. The minimal TTC model capable to account for a variety 

of excitations and thermal boundary conditions of technical interest has been identified as the ‘best’-selected 

minimal model in terms of richness, reliability and cheapness, to be used in the computationally demanding 

investigation of nonlinear/complex dynamics of symmetric cross-ply laminates. 

This has been conducted by systematically analysing the local and global nonlinear dynamics of a square 

epoxy/carbon fiber composite plate under a variety of distinct, time-independent, thermal (boundary and body) 

sources entailing direct activation of the temperature field, in addition to mechanical excitations consisting of 

in-plane pre-stressing axial force in incipient buckling condition and transverse harmonic excitation at primary 

resonance. Considered thermal excitations include (i) free heat exchange with the environment, (ii) a body 

source entailing sole plate bending, prescribed (iii) constant or (iv) dome-shaped spatial distributions of 

temperature on the upper and lower surfaces, giving rise to an asymmetric transverse thermal field, and (v) a 

comparison of purely antisymmetric sources of different (boundary vs body) nature, thermally equivalent with 

each other but with different dynamical effects. 

Nonlinear tools of analysis of local and global dynamics have been used in the numerical investigation, 

including bifurcation diagrams under varying thermal excitations, time histories, phase portraits, Poincaré 

maps, and planar cross sections of 4D basins of attraction. Both transient and steady responses have been 

summarized, providing a comparative overview of the effects of different thermal excitations on the 

mechanical response in pre- and post-buckling conditions, highlighting the great variety of dynamical 

scenarios obtainable under different (quantitative and qualitative) prescriptions for the same kind of thermal 

excitation, and the overall meaningful changes of dynamical responses.  

In all considered cases, complex interaction phenomena characterized by the coexisting slow-fast dynamics 

have been unveiled by means of global dynamics. Indeed, the analysis of proper cross sections of the 

multidimensional basin of attraction has been seen to play a fundamental role for unveiling the important 

effects of the slow transient evolution of thermal response on the steady outcome of the much swifter 

mechanical vibrations. In particular, depending on the considered thermal initial conditions, the steady 

mechanical response may substantially differ from the specific one provided by the uncoupled model, which 

is solely able to describe the condition attained at the very end of the thermal transient, whereas the coupled 

model is capable to capture the entire set of transient and steady thermomechanical behaviours of the actual 

multiphysics system.  

Still in the context of the minimal reliable, yet ‘economical’, modeling perspective, the issue of a possible 

further reduction of the considered ROMs has been dealt with, evaluating the importance of the various terms 

and variables of coupling entering the full thermomechanical equations, as regards contributing to a 

satisfactory and comprehensive description of the response in different (thermal) excitation conditions. A 

sequence of lower dimensional and/or partially coupled models has been identified, ending up to the 

mechanically uncoupled one with prescribed steady temperature. A summary of correctly caught or missing 

thermal and mechanical outcomes, obtainable by considering two- or one-way coupled models, or the 
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uncoupled one, has been presented, pointing out how the proper selection of a reliable model for nonlinear 

dynamic analysis strongly depends on the response aspects and operating conditions of interest. 

The issue of the two-way versus one-way comparison is subtle, and requires further investigation with both 

strongly reduced and large order models. Yet, the accomplished comparative analysis of minimal ROM 

responses to one exemplary excitation has allowed to highlight the effects of considering or neglecting specific 

coupling terms, and to draw a tentative overall picture of expectable qualitative outcomes under more general 

excitation conditions. As regards structural response, missing mechanical couplings in thermal equations entail 

relatively minor changes with respect to the two-way model, mostly due to the reduced importance of the 

thermal transients. In this respect, irrespective of its simplicity, the considered minimal ROM furnishes just 

the same general outcome of an overall appropriateness of the one-way coupling as obtained in the literature 

by richer (and certainly more precise) models. As regards thermal response, major differences between two-

way and one-way coupled models can be expected, linked with the associated time-varying vs stationary 

response regimes, with the considered thermal variables/conditions and, possibly, with other aspects. Finally, 

the reliability of uncoupled analyses strongly depends on the possibly minor importance of the overlooked 

thermal transient in a given application area.  

    Of course, the presented reduced modeling framework is not proposed as an alternative to multi-dof 

(finite element) models to be adopted in most engineering applications. Yet, whether properly conceived and 

used, minimal models may definitely allow extended analyses and in-depth understanding of at least some 

fundamentals of the system nonlinear dynamics, thus representing valuable tools in the preliminary 

investigation stage of technical applications. 

Research is currently going on as regards the asymptotic formulation of bifurcation scenarios in pre- and 

post-buckling regimes, by properly accounting for the different time scales on which mechanical and thermal 

dynamics do develop. Experimental validations are also planned. In a wider and more general multiphysics 

context also including, e.g., electromagnetic phenomena, the generality and controllability of the developed 

unified approach may be suitably exploited to formulate proper minimal ROMs for nonlinear dynamic analyses 

in micro/nano-engineering.     
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