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Abstract: The aim of the present tutorial paper is to recall notions from manifold calculus and to
illustrate how these tools prove useful in describing system-theoretic properties. Special emphasis
is put on embedded manifold calculus (which is coordinate-free and relies on the embedding of a
manifold into a larger ambient space). In addition, we also consider the control of non-linear systems
whose states belong to curved manifolds. As a case study, synchronization of non-linear systems by
feedback control on smooth manifolds (including Lie groups) is surveyed. Special emphasis is also
put on numerical methods to simulate non-linear control systems on curved manifolds. The present
tutorial is meant to cover a portion of the mentioned topics, such as first-order systems, but it does
not cover topics such as covariant derivation and second-order dynamical systems, which will be
covered in a subsequent tutorial paper.

Keywords: first-order and second-order abstract systems; feedback control system; smooth manifolds

1. Introduction

The theory of dynamical systems whose state spaces possess the structures of curved
manifolds has been applied primarily in physics (especially to mathematically describe the
theory of general relativity at the beginning of the 20th century). More recently, dynamical
systems on manifolds have proven their relevance in a number of subjects in engineering
and applied sciences such as in robotics and in biomedical engineering [1–5] to name a few.
The observation at the core of such applications is that those dynamical systems whose
descriptive variables are bound to one another by non-linear holonomic constraints may be
studied by means of the rich variety of mathematical tools provided by manifold calculus
(a shortened terminology to denote ’calculus on manifold’) and may be framed in the class
of dynamical systems on manifold.

The structures of the state manifolds of such dynamical systems depend on the
application at hand. As a concrete example, whenever the dynamics of a rigid body is
concerned, the state manifold of choice is the special orthogonal group SO(3), because it
encodes the attitude of a flying drone or a submarine robot. Most applications of interest
(such as the computation of the dynamics of flying bodies) concern well-studied and well-
understood curved manifolds, such as the special orthogonal group, the unit hypersphere
and the group of symmetric, positive-definite matrices.

From the perspective of performing numerical simulations of dynamical systems on
a computing platform, it is necessary to design adequate numerical methods to compute
approximate solutions which still meet the structures of the state manifolds. Classical
numerical methods, such as those in the Euler class or in the Runge–Kutta class, will fail
when applied directly to such dynamical systems because they were designed to work on
flat spaces and cannot cope with non-flat manifolds [6].

As a specific applied field, the time synchronization of first-order dynamical systems
on curved state manifolds by non-linear control will be surveyed. The time synchronization
of non-autonomous dynamical systems has been applied in physiology [7,8], ecology [9],
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atmosphere physics [10], neurology [11] and many more applied fields [12–14]. Synchro-
nization theory is a topic that appears to be very interesting from an abstract point of view
and, at the same time, very useful in a number of applications. Indeed, synchronization
theory appears to be an exciting and interdisciplinary research topic that combines key
ideas from system theory, control theory and manifold calculus. In particular, non-linear
control theory on manifolds may supply tools to design control fields to force a pair of
dynamical systems into synchronizing their dynamics over time [15,16].

The present tutorial paper is devoted to recalling fundamental notions from manifold
calculus and to explaining how these concepts apply to system theory and to non-linear
control theory, taking time synchronization as a representative case of study in non-linear
control. The present contribution is oriented to readers who either possess a good command
of calculus but not of manifold calculus, or to readers who claim an understanding of theo-
retical manifold calculus, but do not have enough insight in the application/computation
aspects of this field. In addition, a basic understanding of system theory and control theory
will be assumed. The content of the present tutorial paper may be summarized as follows:

• It provides a clear and well-motivated introduction to manifold calculus, the basis of
system and control theories on manifolds, with special emphasis on computational
and applicational aspects. The present contribution provides practical formulas to deal
with those real-valued manifolds that, in the author’s experience, are the most accessed
in engineering and applied science problems. As a matter of fact, complex-valued
manifolds are not treated at all.

• It clearly states and illustrates the idea that, when one wishes to perform a simulation,
by a computing platform, of dynamical systems on manifolds described in terms of
differential equations, it is necessary to time-discretize such differential equations
in a suitable way. In order to achieve such a discretization, it is not safe to invoke
standard discretization methods (such as the ones based on Euler forward–backward
discretization), which do not work as they stand on curved manifolds. One should
therefore resort to more sophisticated numerical integration techniques.

• By the author’s choice, the present tutorial paper does not carry any graphical illustra-
tions nor any numerical simulation results. Readers who are interested in deepening
their understanding of this topic are invited to to sketch graphs autonomously and to
code examples in their favorite programming language.

The present paper is organized as follows. Section 2 lays out some introductory
material, such as the motivation behind manifold calculus and a list of manifolds mostly
accessed in applications. Section 3 introduces the notion of curves and tangent bundles and
allied topics, such as normal spaces. Section 4 provides a first introduction, with examples,
to first-order dynamical systems on manifolds. Section 5 presents a special kind of deriva-
tive of a function having a manifold as a domain and a manifold as a co-domain, termed a
pushforward map. Section 6 introduces a class of manifolds that have peculiar features:
the Lie groups. Section 7, in detail, treats the fundamental concept of metrization of a
curved space through the more familiar notion of metrization of vector spaces. Section 8
introduces notions such as geodesic lines, Riemannian distance and exponential maps.
Section 9 surveys the notion of Riemannian gradient and illustrates such a concept via
examples. Section 10 introduces and exemplifies the notion of parallel transport along a
curve, which is of paramount importance in manifold calculus and its computer-based
implementations. Section 11 outlines the concept of manifold retraction and vector trans-
port, which are computationally convenient approximations of exponential maps and
parallel transport, respectively. Section 12 illustrates a feedback control theory suitable
for application to first-order systems insisting on state manifolds. Section 13 introduces
the notion of Riemannian Hessian, which stems from a second-order approximation of a
manifold-to-scalar function, and recalls optimization algorithms that extend the Newton
method to look for a zero of a vector field. Section 14 concludes this tutorial paper.

As a distinctive aspect of the present tutorial paper, the main flow of discussion
is based on coordinate-free (or component-free) expressions, which facilitates the imple-
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mentation of the main equations by a matrix-friendly computational language (such as
MATLAB©). Coordinate-free manifold calculus is introduced by the technical tool of em-
bedded calculus, which stems from embedding a manifold into a larger ambient space
where the calculation rules are simpler and more familiar to readers. The starred subsec-
tions, namely subsections marked by an asterisk (*), address some specific arguments,
related to coordinate-prone manifold calculus, which may be skipped by the uninterested
readers without detriment to the comprehension of the main flow of this presentation.

The present tutorial paper does not cover a number of subjects, such as the covariant
derivation of vector fields, continuous-time second-order dynamical systems arising from
a Lagrangian framework nor higher-order discrete-time dynamical systems, nor the key
topics related to manifold curvature. These topics will be the subject of a forthcoming
tutorial paper.

2. Coordinate-Free Embedded Manifold Calculus

In this section, we recall the relevant notation and fundamental properties of ma-
trix calculus, as well as several examples of manifolds of interest in engineering and
applied sciences.

In manifold calculus, both embedded (or extrinsic) and intrinsic coordinates may
be accessed. With the aim of elucidating the difference between extrinsic and intrinsic
coordinates for manifold elements, let us mention the case of the space SO(2) of planar
rotations. The space SO(2) is a mono-dimensional manifold; therefore, any element
X ∈ SO(2) may be pointed to by one intrinsic coordinate: a matrix X ∈ SO(2) may be
represented as

X(θ) =

[
cos θ sin θ
− sin θ cos θ

]
, (1)

with θ ∈ [0, 2π). On the other hand, by embedding the space SO(2) into the space R2×2 of
2× 2 real-valued matrices, it turns out that any element of SO(2) may be regarded as a
two-by-two real-valued matrix

X =

[
X11 X12
X21 X22

]
, (2)

whose entries must satisfy the four non-linear constrains:
X2

11 + X2
21 = 1,

X2
22 + X2

12 = 1,
X11X12 + X21X22 = 0,
X11X22 − X12X21 = 1.

(3)

The four parameters X11, X12, X21, X22 denote embedded or extrinsic coordinates. The
orthogonality and normality constraints of the columns of the matrix X may be represented
through two coordinate-free constraints in a compact way as

X>X = I2 and det(X) = 1, (4)

where a superscript > denotes matrix transposition and I2 denotes a 2× 2 identity matrix.
Another illustrative example is the ordinary sphere S2 that may be parametrized as

follows: 
x = cos θ sin ϕ

y = sin θ sin ϕ

z = cos ϕ

(5)

with parameters 0 ≤ θ < 2π and 0 ≤ ϕ ≤ π (in cartography, the coordinate θ is termed
‘latitude’, while the coordinate ϕ is termed ‘longitude’.) In general, the dimension of a
manifold denotes the minimal number of parameters that are required to individuate
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a point on a manifold. While in common speech the ordinary sphere is termed ‘three-
dimensional’, it is indeed a bi-dimensional manifold embedded in a three-dimensional
ambient space. The dimension of the manifold is 2; the dimension of the embedding space,
instead, is 3.

In general, in engineering and applied mathematics, using intrinsic coordinates is
deprecated. As we have just seen, representing an ordinary sphere through intrinsic co-
ordinates is fairly easy, but what about, for example, a hypersphere S9? Any intrinsic
representation would require nine angles and a series of complicated trigonometric expres-
sions. Assuming that a manifold of interest may be embedded into a larger ambient space
A, it is way easier to represent one such manifold as a subset of points of an ambient space
that meet certain constraints. For example, the sphere S9 may be embedded in R10 and
every point of such a sphere may be represented by an array x ∈ R10 such that

10

∑
i=1

x2
i = x>x = 1. (6)

Clearly, the ten coordinates xi, termed embedded coordinates, turn out to be unnecessary
(nine coordinates would be enough). The existence of an embedding may be evaluated
through classical results of manifold calculus, which also state the best dimension of the
ambient space A on the basis of the structural properties of the embedding. Two such
results are the strong Whitney embedding theorem and the Nash isometric embedding theorem
for Riemannian manifolds. In the present tutorial, we are concerned exclusively with manifolds
that may be embedded into a linear ambient space.

The number of extrinsic coordinates is, in general, far larger than the number of
intrinsic coordinates; hence, a coordinate-free embedded representation is, in general,
redundant. However, as long as computer implementation is concerned, a coordinate-free
representation is advantageous because computing languages, such as MATLAB© and
Python, generally deal seamlessly with bi-dimensional arrays. With reference to the sphere,
let us examine a simple example that tells us why manifolds need their own calculus.

Example 1. Take a point x ∈ S2 and a direction v ∈ R3 − {0}, such that x>v = 0, and let us
write the parametric equation of a line departing from x in the direction v as `(t) := x + t v, with
0 ≤ t ≤ 1. It is important to point out that none of the points over such a line belong to the sphere,
except for the point x. In fact, we have

`>(t)`(t) = (x + t v)>(x + t v) = 1 + t2‖v‖2, (7)

since v is orthogonal to x. It turns out that `>(t)`(t) 6= 1 if t 6= 0, hence the assertion. �

This simple example tells us that standard constructs, such as straight lines, do not work
on curved manifolds, hence the need of a specific calculus to be consistently developed.

2.1. General Notation and Properties

In general, column arrays are denoted by a lower-case letter, while matrices are
denoted by an upper-case letter. Manifold elements, for a generic manifold, are denoted as
lower-case letters.

A number of matrix functions and factorizations will be invoked in this paper, namely:

• Matrix trace: The trace of a square matrix M ∈ Rp×p (namely the sum of its principal-
diagonal entries) is denoted by tr(M). Matrix trace has a cyclic permutation invariance
property. For example, given three conformable (i.e., mutually multipliable) matrices
A, B, C, it holds that:

tr(ABC) = tr(BCA) = tr(CAB). (8)
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• Matrix square root: Given a matrix M ∈ Rp×p, its square root R is the unique matrix
such that R2 = P. Not every matrix admits a square root. Special square roots (such
as a symmetric square root) will be defined later.

• Spectral factorization: Given a matrix M ∈ Rp×p, let us assume that there exists an
orthogonal matrix X (i.e., one such that X>X = Ip) and a real diagonal matrix D
such that M = XDX>. The expression on the right-hand side denotes the spectral
factorization of the matrix M. Such a factorization turns out to be very useful in
evaluating matrix polynomials. For example, it holds that

M4 = (XDX>)4 = (XDX>)(XDX>)(XDX>)(XDX>) =

XD(X>X)D(X>X)D(X>X)DX> = XDDDDX> = XD4X>.
(9)

Exponentiating full matrices is cumbersome, while exponentiating diagonal matrices
is amiable.

• Thin QR factorization: Any matrix M ∈ Rp×q, with p ≥ q, may be factored as the
product of a p× p orthogonal matrix Q and a p× q upper triangular matrix R, namely
M = QR. In general, a QR factorization is not unique [17]. To remove such kind of
indeterminacy, the R-factor may be chosen with strictly positive entries on its main
diagonal, so that the factorization is unique.

• Compact singular value factorization (SVD): Compact SVD of a matrix M ∈ Rp×q

is a matrix factorization of the type M = ADB> in which D is square diagonal of
size r × r, where r ≤ min{p, q} is the rank of M, and has only nonzero singular
values. In this variant, A denotes a p× r matrix and B denotes a q× r matrix, such that
A>A = B>B = Ir [18].

• Polar factorization: Given a real-valued p × n matrix M, its polar factorization is
written as M = XS, where X denotes a p× n matrix such that X>X = In, termed polar
factor, and S denotes a symmetric positive semidefinite n× n matrix [19]. The polar
factorization of a matrix always exists and, if the matrix is full rank, its polar factor is
unique.

• Matrix exponential: Given a matrix M ∈ Rp×p, its matrix exponential is denoted as
Exp (M). Matrix exponential is defined via a series as

Exp (M) :=
∞

∑
k=0

Mk

k!
. (10)

There exist special formulas to compute the matrix exponential via a finite number
of operations for special matrices (see, for example, [20] and references therein). For
example, for a symmetric matrix M ∈ Rp×p, that admits a spectral factorization
M = XDX>, it holds that

Exp (M) = X Exp (D)X>, (11)

where Exp (diag(λ1, λ2, λ3, . . . , λp)) = diag(eλ1 , eλ2 , eλ3 , . . . , eλp).
• Principal matrix logarithm: Given a matrix M ∈ Rp×p, its principal matrix logarithm

is denoted as Log (M). Matrix logarithm is defined via a series as

Log (M) := −
∞

∑
k=1

(Ip −M)k

k
, defined for ‖Ip −M‖ < 1. (12)

In the specialized literaure it is possible to find special formulas to compute the
principal matrix logarithm via a finite number of operations for special matrices.
For example, for a positive-definite matrix M ∈ Rp×p, which admits a spectral
factorization M = XDX>, it holds that

Log (M) = X Log (D)X>, (13)
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where Log (diag(λ1, λ2, λ3, . . . , λp)) = diag(log λ1, log λ2, log λ3, . . . , log λp). Recall
that any symmetric, positive-definite matrix has only positive eigenvalues; hence,
Log (D) is a real-valued matrix.

The other notation used within this paper is defined at its earliest occurrence. We just
recall that the symbol := denotes a definition and that the derivative of a function F(t)
with respect to its scalar parameter t is denoted as Ḟ.

2.2. Manifolds and Embedded Manifolds (or Submanifolds)

The formal definition of a smooth manifold is quite convoluted, as it requires notions
from mathematical topology [21]. More practically, a manifold may be essentially regarded
as a generalization of surfaces in higher dimensions that is endowed with the noticeable
property of being locally similar to a flat space. In addition, a manifold may generally
be regarded as an abstract mathematical object, not necessarily ready for computation,
whereas, in practice, manifolds of interest in applied science and engineering are essentially
matrix manifolds.

Let us consider a smooth manifold M and a point x on it. From an abstract point of
view, x is an element of a set M and does not necessarily carry any intrinsic numerical
features. In order to be able to develop calculus on manifolds, to, for instance, compute the
directional derivative of a function f : M→ R, it is convenient to ‘coordinatize’ a manifold.
To this aim, let us take a neighborhood (open set) U ⊂M that contains the point x and a
coordinate map ψ : U → Rp. The size p denotes the minimal number of coordinates that is
necessary to specify the location of the point x unequivocally and is taken as the dimension
of the manifold. The map ψ needs to be a one-to-one map. In this way, we attach a set
of coordinates ψ(x) to the point x. Such a construction establishes a smooth one-to-one
correspondence between a point on a manifold and its coordinate point; therefore, the
two concepts may be confused and we may safely speak of a point x ∈M when actually
speaking of its coordinates.

The above theoretical construction carries a number of practical drawbacks. For
instance, notice that in general a manifold cannot be covered by a single coordinate map.
Indeed, in general a manifold needs to be covered by a number of neighborhoods Uk,
each of which is equipped with a coordinate map ψk : Uk → Rp. The set {Uk} thus
forms a basis for the manifold. Such a basis need not be finite, although it needs to be
countable and is termed ‘atlas’. In general, the basis neighborhoods Uk may happen to be
overlapping one another; hence, the coordinate maps ψk need to satisfy the compatibility
conditions. Such conditions formalize the natural requirement that there need to be a
one-to-one smooth correspondence between any two different coordinate systems insisting
on regions of the manifolds belonging to more than one neighborhood. In formal terms,
if Uk ∩Uh 6= ∅, then the ‘transition functions’ ψ−1

k ◦ ψh and ψ−1
h ◦ ψk should possess the

structure of diffeomorphisms, namely C∞ functions endowed with C∞ inverses.
As mentioned in the introduction, in the present tutorial we are neglecting coordinates

in favor of embeddings, except in starred sections that cover coordinate-prone calculations
and that may be skipped by uninterested readers. A smooth manifold is by nature a
continuous object. Manifolds of interest in applications, described in embedded terms,
may be summarized as follows:

• Hypercube: The simplest manifold of interest is perhaps the hypercube Rp, which is
essentially the set spanned by p real-valued variables (or p-tuples).

• Hypersphere, oblique manifold, hyperellipsoid: A hypersphere is represented as
Sp−1 := {x ∈ Rp | x>x = 1} and is the subset of points of the hypercube with
unit Euclidean distance from point 0. This is a smooth manifold of dimension p− 1
embedded in the hypercube Rp; in fact, with only p− 1 coordinates, we can identify
unequivocally any point on a sphere. In [21], it is shown how to ‘coordinatize’ such a
manifold through, e.g., the stereographic projection, which requires two coordinate
maps applied to two convenient neighborhoods (each including only one ‘pole’) on
the sphere. The special cases are S1, the unit circle, and S2, the ordinary sphere. There
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exist a number of applications insisting on the hyperspheres Sp−1 such as, for instance,
blind deconvolution [22,23], data classification [24], adaptive pattern recognition [25]
and motion planning, optimization, and verification in robotics and in computational
biology [26]. A smooth manifold closely related to the unit hypersphere is the oblique
manifold [27], defined as:

OB(p) := {X ∈ Rp×p | diag(X>X) = Ip}, (14)

where the operator diag(·) returns the zero matrix except for the main diagonal that is
copied from the main diagonal of its argument. The structure of the oblique manifold
may be easily studied on the basis of the unit hypersphere; in fact, the following
identification holds true:

OB(p) ∼= Sp−1 × Sp−1 × · · · × Sp−1︸ ︷︷ ︸
p times

, (15)

hence, each column of a OB(p)-matrix may be treated as a Sp−1-column array. The
hyperellipsoid Lp−1 is defined as:

Lp−1 := {x ∈ Rp | ‖DRx‖2 = 1}, (16)

with D ∈ Rp×p being diagonal and positive-definite and R ∈ Rp×p being a hyper-
rotation such that R>R = Ip and det(R) = 1. The mathematical structure of the hyper-
ellipsoid Lp−1 may be studied on the basis of the manifold structure of the hypersphere.
The hyperellipsoid Lp−1 is used, e.g., in the calibration of magnetometers [28].

• General linear group and special linear group: The general linear group is defined
as GL(p) := {X ∈ Rp×p | det(X) 6= 0}. This is the subset of the space of p × p
matrices Rp×p which are invertible. The special linear group is defined as Sl(p) :=
{X ∈ Rp×p | det(X) = 1}. This is the subset of the general linear group made by all
matrices with a unitary determinant.

• Orthogonal group, special orthogonal group, special Euclidean group: An orthogo-
nal group of size p is defined by O(p) := {X ∈ Rp×p | X>X = Ip}. The manifold O(p)
has dimension 2−1 p(p− 1). In fact, every matrix in O(p) possesses p2 entries which
are constrained by 2−1 p(p + 1) orthogonality/normality restrictions. The manifold of
special orthogonal matrices is defined asSO(p) :=

{
X ∈ Rp×p | X>X = Ip, det(X) = 1

}
.

A smooth manifold closely related to the special orthogonal group is the special Eu-
clidean group, denoted as SE(p), that finds applications in robotics (see, e.g., [29]).
The special Euclidean group is a set of (p + 1)× (p + 1) matrices defined as:

SE(p) :=
{[

X δ
0 1

]∣∣∣∣X ∈ SO(p), δ ∈ Rp
}

. (17)

• Stiefel manifold: The (compact) Stiefel manifold is defined as:

St(n, p) := {X ∈ Rn×p | X>X = Ip}, (18)

where p ≤ n. Avery Stiefel matrix has np entries, but its elements are constrained
by 2−1 p(p− 1) non-linear constraints, and hence the dimension of a Stiefel manifold
St(n, p) is np− 2−1 p(p− 1). Exemplary applications are blind source separation [30],
non-negative matrix factorization [31], best basis search/selection [32], electronic
structures computation [33] and factor analysis in psychometrics [34]. A generalization
of the Stiefel manifold, to be applied to principal subspace tracking, was studied in
the contribution [35]. Such a generalized Stiefel manifold is defined as:

StB(n, p) = {X ∈ Rn×p | X>BX = Ip}, (19)
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where B denotes any symmetric, positive-definite n× n matrix. The contribution [35]
studied the structure of the tangent bundle of the generalized Stiefel manifold and
suggested a computationally convenient calculus for this manifold.

• Real symplectic group: The real symplectic group is defined as

Sp(2n) := {Q ∈ R2n×2n|Q> JQ = J}, J :=
[

0n In
−In 0n

]
, (20)

where the symbol In denotes again a n× n identity matrix and the symbol 0n denotes a
whole-zero n×n matrix. The skew-symmetric matrix J enjoys the following properties:
J2 = −I2n, J−1 = J> = −J.

• Manifold of symmetric, positive-definite (SPD) matrices: The main features of the
space

S+(p) := {P ∈ Rp×p|P = P>, P > 0} (21)

of symmetric, positive-definite matrices was surveyed, e.g., in [36,37]. We recall that a
matrix P ∈ Rp×p is termed positive definite if for every column array z ∈ Rp − {0}
it holds that z>Pz > 0. A useful property is that the (real) eigenvalues of any SPD
matrix are all strictly positive. A related manifold is the space S+(n, p) of symmetric
fixed-rank positive-semidefinite matrices, that may be defined as:

S+(n, p) := {XX> | X ∈ Rn×p, rank(X) = p}. (22)

The growing use of low-rank matrix approximations to retain tractability in large-scale
applications boosted extensions of the calculus of positive-definite matrices to their
low-rank counterparts [38].

• Grassmann manifold: A Grassmann manifold Gr(n, p) is a set of subspaces of Rn

spanned by p-independent vectors, namely

Gr(n, p) = {span(w1, w2, w3, . . . , wp)}, (23)

with w1, w2, w3, . . . , wp ∈ Rn being a p-tuple of arbitrary and linearly independent
n-dimensional arrays. Grassmann manifolds are compact, smooth manifolds and are
special cases of more general objects termed flag manifolds [39]. A representation of
any of such subspaces may be assumed as the equivalence class [X] = {XR | X ∈
St(n, p), R ∈ O(p)} [33]. In practice, an element [X] of the Grassmann manifold
Gr(n, p) is represented by a matrix in St(n, p), whose columns span the subspace [X].

It is easy to see that manifolds of interest in applications may exhibit large dimensions.
Coordinatizing these manifolds may be inconvenient for practical purposes when their sizes
are larger than some units. For this reason, matrix manifolds are treated as submanifolds
of Rp or Rp×n and their elements are represented by solid arrays.

In general, we shall denote as A an ambient space that a manifold is embedded into.
We shall assume that any ambient space A of interest in the present tutorial paper is a
Euclidean vector space, namely, a finite-dimensional vector space over the real numbers
endowed with an inner product, that we shall denote as 〈·, ·〉A.

Example 2. An elementary example of manifold calculus involving the circle S1 is the Borsuk–
Ulam theorem.

Theorem 1. Let f : S1 → R denote a continuous function. There exist two antipodal points
x,−x ∈ S1 such that f (x) = f (−x).

Proof. Let g(y) := f (y)− f (−y) with y ∈ S1. Choose an arbitrary point x0 ∈ S1:

• If g(x0) = 0, then x = x0;
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• If g(x0) 6= 0, notice that g(−x0) = f (−x0) − f (−(−x0)) = −( f (x0) − f (−x0)) =
−g(x0). Since g is continuous and takes a different sign in two different points of its
domain, there must exist at least a point x ∈ S1 such that g(x) = 0.

The above cases prove the assertion by exhaustion.

The Borsuk–Ulam theorem has an interesting consequence for the temperature of the Earth.
In fact, let us identify the equator with S1 and the temperature over the equator with the function
f , then the Borsuk–Ulam theorem implies that there exist two antipodal points over the equator
where the temperature is the same. Indeed, the Borsuk–Ulam theorem holds in every dimension,
which implies, for example, that if S2 represents the Earth’s surface and f : S2 → R2 returns the
atmospheric temperature and the Earth’s pressure in a point of the Earth surface, then there exist
two antipodal points on Earth that exhibit the same temperature-pressure value pair! �

Matrix factorizations are characterized by a paramount importance in applied calcula-
tions, as illustrated in the following.

Example 3. Let us recall that every symmetric, positive-definite matrix may be factorized as:

P = RDR>, (24)

where P ∈ S+(n), R ∈ SO(n) and D denotes a diagonal n× n matrix. In fact, D is the matrix
whose in-diagonal entries coincide with the eigenvalues and R is the matrix whose columns coincide
with the eigenvectors of P. The factorization (24) simplifies some calculations, for example, it holds
that:

P3 = PPP = (RDR>)(RDR>)(RDR>) = RD(R>R)D(R>R)DR>

= RDDDR> = RD3R>,
√

P = R
√

DR>,

Exp (P) =
∞

∑
i=0

Pi

i!
=

∞

∑
i=0

(RDR>)i

i!
=

∞

∑
i=0

RDiR>

i!
= R Exp (D)R>,

P−1 = RD−1R>.

(25)

The net result is that convoluted matrix operations may be turned into fairly simple computa-
tions that require a finite number of elementary operations. �

Manifolds may be classified as compact or non-compact:

• The manifolds Sn−1 ⊂ A, with A := Rn, and SO(n) ⊂ A, with A := Rn×n, are
compact since there exists a ball B(0, r) ⊂ A, with r < ∞, that contains them.

• The manifold S+(n) is non-compact since no t finite-radius ball exists that contains it.

In practical terms, the elements of a compact manifold are necessarily limited in value,
while the elements of a non-compact manifold may take arbitrarily large values.

From a computational point of view, dynamical systems on compact manifolds, even
if they turn out to be unstable, do not pose serious implementation problems, while
dynamical systems on non-compact manifolds may result in implementational difficulties
(and easily cause runtime errors).

3. Smooth Curves, Tangent Vector Fields, Tangent Spaces and Bundle, Normal Spaces

An interesting object we may think of on a smooth manifold M is a smooth curve
γ : [−ε, ε] → M, with ε > 0. It is worth remarking that a curve may cross different
coordinate charts (Uk, ψk); therefore, it is generally necessary to split a curve in as many
branches (or segments) as coordinate charts it crosses. The function γ describes a curve on
the manifold M delimited by the endpoints γ(−ε) and γ(ε).



Symmetry 2021, 13, 2092 10 of 94

3.1. Curves and Bundles for Embedded Manifolds

Let us assume that a manifold M is embedded into an ambient space A of suitable
dimensions (for instance, the sphere Sp−1 is embedded in the ambient space A := Rp). In
the following, a number of examples, and a counterexample, are discussed to clarify the
important notion of a smooth curve on a manifold.

Example 4. On a hypersphere Sn−1, consider the following function:

γ(t) :=
x + t v√

(x + t v)>(x + t v)
(26)

with t ∈ [−ε, ε] and x, v ∈ Rn being arbitrary (but let us avoid the singularity x + t v = 0).
Notice that γ(0) = x/‖x‖. To verify that such a function γ traces indeed a curve on the hyersphere
it suffices to show that, for every t ∈ [−ε, ε] and x, v ∈ Rn, it holds that γ(t) ∈ Sn−1. Indeed,

γ>(t)γ(t) =
(x + t v)>(x + t v)[√
(x + t v)>(x + t v)

]2 = 1. (27)

In addition, consider the following function

γ(t) := x cos(
√

v>v t) +
v√
v>v

sin(
√

v>v t), (28)

with t ∈ [−ε, ε] and with x ∈ Sn−1 and v ∈ Rn − {0} such that v>x = 0. (In this case, it turns
out that γ(0) = x.) Similarly to the previous example, in order to prove that γ is a valid curve on
the hypersphere, it suffices to show that γ(t) ∈ Sn−1 for every t ∈ [−ε, ε]:

γ>(t)γ(t) = [x cos(‖v‖ t) +
v
‖v‖ sin(‖v‖ t)]>[x cos(‖v‖ t) +

v
‖v‖ sin(‖v‖ t)]

= (x>x) cos2(‖v‖ t) + 2
x>v
‖v‖ sin(‖v‖ t) cos(‖v‖ t) +

v>v
‖v‖2 sin2(‖v‖ t)

=(1) cos2(‖v‖ t) + 2
(0)
‖v‖ sin(‖v‖ t) cos(‖v‖ t) + (1) sin2(‖v‖ t) = 1.

(29)

It is not difficult to evaluate γ′(t) and, in particular, to show that γ′(0) = v.
Let us now consider an example of a curve over the manifold SO(n) of the hyper-rotations. In

particular, let us examine the following curve on the manifold SO(2):

γ(t) :=
[

cos(b t) sin(b t)
− sin(b t) cos(b t)

]
(30)

with t ∈ [−ε, ε] and b ∈ R being arbitrarily chosen. (Notice that γ(0) = I2.) In order to show
that function γ represents a curve over the space of planar rotations, it suffices to compute the
product γ>(t)γ(t) and to show that it keeps equal to the identity I2 and that det(γ(t)) = 1 for
every value of t in its range:

γ>(t)γ(t) =
[

cos(b t) sin(b t)
− sin(b t) cos(b t)

]>[ cos(b t) sin(b t)
− sin(b t) cos(b t)

]
=

[
cos(b t) − sin(b t)
sin(b t) cos(b t)

][
cos(b t) sin(b t)
− sin(b t) cos(b t)

]
=

[
1 0
0 1

]
,

det(γ(t)) = cos2(b t)− (− sin2(b t)) = 1.

(31)
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Further to this, let us prove that the following function represents a curve over the manifold
SO(n):

γ(t) := X(In + t H)(In − t H)−1 (32)

with t ∈ [−ε, ε], X ∈ SO(n) and H> = −H ∈ Rn×n. (Even in this case, it holds that
γ(0) = X.) In order to prove such a statement, it is necessary to compute γ>(t)γ(t) and to show
that it equals In and that det(γ(t)) = 1 at any time:

γ>(t)γ(t) = [X(In + t H)(In − t H)−1]>X(In + t H)(In − t H)−1

= (In − t H)−>(In + t H)>(X>X)(In + t H)(In − t H)−1

= (In + t H)−1(In + t H)>(In + t H)(In − t H)−1

= (In + t H)>[(In + t H)−1(In + t H)](In − t H)−1

= (In + t H)>(In − t H)−1

= (In − t H)(In − t H)−1 = In,

det(γ(t)) = det(X)det(In + t H)det−1(In − t H)

= det(X)det(In + t H)det−1((In + t H)>) = 1,

(33)

where the superscript −> denotes the inverse of the transposed matrix.
Notice that, in the proof, we have made use of some matrix identities, including the commuta-

tivity property (In + t H)(In − t H)−1 = (In − t H)−1(In + t H) and det(A) = det(A>).
As a further example, let us consider the following function, which we shall prove to represent

a curve over the manifold of the 2× 2 symmetric, positive-definite matrices:

γ(t) :=
[

a (t + 1)2 b (t + 1)2

b (t + 1)2 c (t + 1)2

]
(34)

with t ∈ [−ε, ε], 0 < ε < 1, a > 0 and ac− b2 > 0. (Notice that γ(0) =
[

a b
b c

]
.) To prove the

assertion, it suffices to show that γ>(t) = γ(t) and that the eigenvalues of γ(t) are strictly positive
for any t in its range. Symmetry is immediately verified. The eigenvalues are a (t + 1)2 > 0 and
(ac− b2)(t + 1)4 > 0.

Let us now consider a counterexample. Define the following function:

γ(t) := P + t Q, (35)

with t ∈ [−ε, ε] and P, Q ∈ S+(n) arbitrary. In general, the above function does not represent a
curve in S+(n). To prove such an assertion, it suffices to recall that, in general, a linear combination
of two positive-definite matrices does not result in a positive-definite matrix. As a numerical example,

consider the following: P :=
[

4 1
1 1

]
and Q :=

[
2 −1
−1 1

]
. Then, γ(t) =

[
4 + 2t 1− t
1− t 1 + t

]
. It

is readily verified that if t ∈ [−4, 4], then γ(t) is not necessarily positive-definite for every value
of t in the range (for example, γ(−3) is not positive-definite). From this counterexample, we can
verify that the manifold S+(n), as all manifolds just exemplified, is not a linear space with respect
to standard matrix operations. �

From a system-theoretic perspective, a curve may be thought of as a trajectory gener-
ated by a dynamical system whose state space is a smooth manifold. Take, for instance,
the case of a little magnetized ball rolling over a metallic spherical surface: no matter how
the little ball moves over the surface of the sphere, during its motion the contact point
will describe a curve γ(t) over the larger sphere from the initial time t = −ε to t = +ε.
The parameter t may be thought of as a time index, whose progression corresponds to
the flowing of time. Thinking of physical objects moving over curved surfaces helps in
understanding the main concepts in manifold calculus, even though a certain degree of
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abstraction is still necessary, not only because the dimensions of manifolds of interest may
be far larger than 3, but also because most manifolds are difficult to visualize in practice.

A noteworthy property of curves is that they are equivalent up to a regular reparame-
terization.

Comparing the position over a smooth curve in two close-by instants provides the
notion of speed, namely, how quickly an object is moving along a trajectory and in which
direction. In particular, denoting by γx : [−ε, ε] → M a curve such that γx(0) = x,
the quantity

vx := lim
h→0

γx(h)− γx(0)
h

=
dγx(t)

dt

∣∣∣∣
t=0

= γ̇x(0) ∈ A, (36)

denotes such a speed, which is represented as a tangent vector vx at the point x on the
manifold. Clearly, the vector vx does not belong to the curved manifold M, whereas it is
tangent to it in the point x. (Notice that in this tutorial the word ‘vector’ is reserved to
tangent vectors, while a column-type array—which may represent a location—is termed
‘array’.)

Consider every possible smooth curve on a manifold of dimension p passing through
the point x and compute the tangent vectors to all these curves in the point x at once. The
collection of these tangent vectors span a linear space of dimension p, which is referred to
as tangent space (or ‘tangent plane’) to the manifold M at the point x, and is denoted with

TxM := {γ̇x(0) | ∀ γx} ⊂ A. (37)

Since there exist infinitely many curves passing through a given point with the same
velocity, one should define a tangent vector as an equivalence class of curves passing through
such a given point, while being tangent to each other at that point. A tangent plane is hence
a collection of such vectors. In addition, we should underline that each tangent space is
a subset of the ambient space due to the special nature of A, being both a point set and a
vector space.

Taking a point x ∈ M and a tangent vector vx ∈ M, any pair (x, vx) is thought of as
belonging to an abstract set termed tangent bundle, defined as

TM := {(x, v) ∈ A2 | x ∈M, v ∈ TxM}. (38)

In order to facilitate computation, it is useful to introduce the concept of the normal
space of an embedded manifold in a given point under a chosen metric:

NxM := {z ∈ A | 〈z, v〉A = 0, ∀v ∈ TxM}. (39)

The normal space NxM represents the orthogonal complement of the tangent space
with respect to a Euclidean ambient space A that the manifold M is embedded into (in fact,
some authors denote normal spaces as T⊥x M).

Let us examine the structure of the tangent/normal spaces of a number of smooth
manifolds:

• Hypercube: Since the space Rp is linear, when it is embedded into itself, each tangent
space coincides to the whole space, namely, for every, x ∈ Rp it holds that TxRp ≡ Rp.
Since a normal space is the orthogonal complement to a tangent space, we must
conclude that NxRp = {0}.

• Hypersphere: At every point x ∈ Sp−1, the tangent space has the structure

TxSp−1 := {v ∈ Rp | v>x = 0}. (40)



Symmetry 2021, 13, 2092 13 of 94

The normal space NxSp−1 at every point of the hypersphere, which is the orthogonal
complement of the tangent space with respect to the ambient space A := Rp that the
manifold Sp−1 is embedded in, has the structure

NxSp−1 := {λx | λ ∈ R} (41)

in the case that the ambient space is equipped with the Euclidean inner product
〈v, w〉A := v>w.

• Special orthogonal group: The tangent space of the manifold SO(p) has the structure

TXSO(p) = {V ∈ Rp×p | V>X + X>V = 0p}. (42)

This may be proven by differentiating a generic curve γ(t) ∈ SO(p) passing through
X at t = 0. Every such curve satisfies the orthogonal-group characteristic equation
γ>(t)γ(t) = Ip; therefore, after differentiation, one obtains

γ̇>(0)γ(0) + γ>(0)γ̇(0) = 0p. (43)

By recalling that the tangent space is formed by velocity vectors γ̇(0), the above-
mentioned result is readily achieved. Provided the ambient space A := Rp×p is
endowed with the canonical Euclidean metric 〈V, W〉A := tr(V>W), the normal space
at a point X may be defined as

NXSO(p) = {N ∈ Rp×p | tr(N>V) = 0, ∀V ∈ TXSO(p)}. (44)

It is easy to convince oneself that every tangent vector V ∈ TXSO(p) may be written
as V = XH, with H skew-symmetric (i.e., such that H> = −H); then, any element
N ∈ NXSO(p) may be written as N = XS, with S = S>. In fact, the normality
condition implies 0 = tr(V>(XS)) = tr(SV>X) = tr(X>VS>), which is equivalent
to −tr((V>X)S>); therefore, the normality condition may be recast as tr((V>X)(S−
S>)) = 0. It is hence necessary and sufficient that S = S>; therefore,

NXSO(p) = {XS | S> = S ∈ Rp×p}. (45)

• Stiefel manifold: Given a trajectory [−ε, ε] 3 t 7→ X(t) ∈ St(n, p), derivation with
respect to the parameter t yields Ẋ>X + X>Ẋ = 0, which means that the tangent
space to the manifold St(n, p) in a point X ∈ St(n, p) has the structure:

TXSt(n, p) = {V ∈ Rn×p | V>X + X>V = 0}. (46)

The normal space has the structure:

NXSt(n, p) = {XS | S ∈ Rp×p, S> − S = 0}. (47)

• Real symplectic group: The tangent space associated with the real symplectic group
has the structure:

TQSp(2n) = {V ∈ R2n×2n | V> JQ + Q> JV = 02n}. (48)

The tangent spaces and the normal space associated with the real symplectic group
may be characterized as follows:{

TQSp(2n) = {V = QJS | S ∈ R2n×2n, S> = S},
NQSp(2n) = {N = JQH | H ∈ R2n×2n, H> = −H}.

(49)

• Space of symmetric, positive-definite matrices: Given a point P ∈ S+(p), its tangent
bundle may be characterized simply by observing that every curve γ : [−ε, ε] →
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S+(p) satisfies γ(t) = γ(t)> and γ(t) > 0. Only the equality constraint influences the
structure of the tangent space; therefore,

TPS+(p) = {S ∈ Rp×p | S> = S}. (50)

Notice that every tangent space is identical to each other as it does not depend on the
base point P.

• Grassmann manifold: For every element [X] ∈ Gr(n, p), the tangent space may be
represented as:

T[X]Gr(n, p) = {V ∈ Rn×p|X>V = 0}. (51)

A tangent space T[X]Gr(n, p) may be decomposed as the direct sum of a horizontal
space and of a vertical space at [X] ∈ Gr(n, p) [40]. Starting from a point [X] ∈ Gr(n, p),
moving along a horizontal direction causes a change in subspace, while moving along
a vertical direction does not change the subspace [X].

3.2. Vector Fields

Let us now consider a map vx : M → TM that associates a tangent vector vx with
every point x of a manifold. One such map is termed tangent vector field (or simply vector
field, for short). The set of all tangent vector fields of a manifold M is denoted as Γ(M).
Vector fields are objects of prime importance in manifold calculus. In physical system
dynamics, vector fields are associated with, e.g., speed and acceleration.

Example 5. A vector field on a manifold M is a function f : M→ TM that assigns to every point
x ∈ M a tangent vector f (x) ∈ TxM. A vector field may even depend on the time parameter, in
which case it will be denoted as f (t, x) with f : R×M→ TM.

Let us now consider the hypersphere S7 embedded in A := R8 and the function f : S7 → R8

defined as:
f (x) := (I8 − xx>)Ax, (52)

where x indicates a column array of 8 elements and A ∈ R8×8 is an arbitrary constant matrix.
Such a function describes a vector field in Γ(S7) because it holds that f (x) ∈ TxS7 for every x.
In fact,

x> f (x) = x>(Ax− xx>Ax) = x>Ax− (x>x)(x>Ax) = 0. (53)

Notice that the tangent vector f (x) is inextricably tied to the point x on the manifold. In fact,
in general, taking two distinct points x, y ∈M, it turns out that f (x) /∈ TyM. It is then sensible
to describe a vector field as a set of pairs:

(x, f (x)) ∈ TM. (54)

As a further example, let us consider the manifold SO(8) embedded in A := R8×8 and a
function f : R× SO(8)→ R8×8:

f (t, R) := RA t + R2BR>, (55)

where R is a 8× 8 orthogonal matrix variable, while A and B are 8× 8 skew-symmetric constant
matrices (namely, A> = −A and B> = −B). Such a function represents a (time-varying) vector
field on the manifold of hyper-rotations in that, for every R ∈ SO(8) and t ∈ R, it holds that
f (t, R) ∈ TRSO(8). Such an assertion may be proven as follows

R> f (t, R) + f>(t, R)R = R>(RA t + R2BR>) + (RA t + R2BR>)>R

= (R>R)A t + (R>R)RBR> + A>(R>R)t + RB>R>(R>R)

= A t + RBR> − A t− RBR>

= 0n.

(56)
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As a last example, let us take the manifold S+(5) embedded in A := R5×5 and a function
f : S+(5)→ R5×5 defined as

f (P) := P + P2 + 3 P−1, (57)

where P is a 5× 5 symmetric, positive-definite matrix variable (hence, even P2 = PP and P−1 are
symmetric, positive-definite). It turns out that the function f represents a vector field in Γ(S+(5));
in fact, for every P ∈ S+(5), it holds that f (P) ∈ TPS+(5):

f>(P)− f (P) = (P + P2 + 3 P−1)> − (P + P2 + 3 P−1)

= P> + P2> + 3 P−> − P− P2 − 3 P−1

= P + P2 + 3 P−1 − P− P2 − 3 P−1

= 0n.

(58)

(Notice that, in the proof, only the symmetry of the matrix P and of its powers P2 and P−1 has
been made use of.) �

As a matter of fact, manifold calculus primarily deals with two kinds of objects:

• Points on a manifold, denoted as x ∈M ⊂ A;
• Tangent vectors, denoted as v ∈ TxM ⊂ A.

and occasionally on normal arrays, which are instrumental in calculations. In the case
of matrix manifolds, which are of prime importance in applications, the ambient space
A := Rp×q; hence, points x and tangent vectors v are essentially arrays or matrices (either
rectangular or square).

3.3. Canonical Curves, Canonical Basis of a Tangent Space*

In intrinsic manifold calculus, the way to regard, e.g., tangent spaces and vector fields
is based on differential operators [21]. Formally, if F denotes a smooth function space, a
tangent vector v ∈ TxM is defined in such a way that v : F → R; namely, v( f ) denotes the
directional derivative of the function f ∈ F along the direction v. Recall that a differential
operator in TxM may be written as a linear combination of elementary differential operators,
namely the derivatives along the basis axes, through some coefficients.

Let M denote a smooth manifold of dimension p and let γx : [−ε, ε] → M denote
any smooth curve such that γx(0) = x. Let us assume, for simplicity, that the image of γx
is entirely contained in a chart (U, ψ). The map ψ ◦ γx traces out a smooth curve in the
parameter space Rp, which is differentiable in the usual multivariable calculus sense. Let
us denote the intrinsic coordinates of the points over the curve as

(θ1(t), θ2(t), θ3(t), . . . , θp(t)) = ψ(γx(t)). (59)

The superscript notation θi to denote the ith coordinate is standard in manifold calcu-
lus. This notation helps when checking expressions written in intrinsic coordinates. Since
the chart ψ is invertible by definition, we may represent the curve γ in local coordinates by

γx(t) = ψ−1(θ1(t), θ2(t), θ3(t), . . . , θp(t)). (60)

In particular, it holds that x = ψ−1(θ1(0), θ2(0), θ3(0), . . . , θp(0)). On the basis
of the representation (60), we may define as many as p canonical curves as γi

x(t) :=
ψ−1(θ1(0), θ2(0), . . . , θi(0) + t, . . . , θp(0)) for t ∈ [−ε, ε] and i = 1, 2, 3, . . . , p. Namely,
a canonical curve around a point is traced on a manifold by letting only one of the p
coordinates vary at a time. Let us now consider the tangent vectors

∂x
i := γ̇i

x(0) =
dγi

x(t)
dt

∣∣∣∣
t=0
∈ TxM. (61)
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The set {∂x
1 , ∂x

2 , . . . , ∂x
p} is termed canonical basis of the vector space TxM. Its property

of being a basis is implied by the fact that such canonical vectors are linearly independent
from one another. Therefore, any tangent vector may be written as a linear combination of
canonical vectors, that is

vx = v1
x∂x

1 + v2
x∂x

2 + · · ·+ vp
x∂x

p, (62)

where the quantities v1
x represent the coefficients of the linear combination. To shorten the

equations, the above expression may be written simply as v = vi∂i, where the information
about what happens at the point x has been suppressed and the summation is implied by
the presence of a repeated index (i), one in upper position (i) and one in lower position (i),
which is commonly referred to as Einstein summation convention.

Example 6. Let us consider the case of a sphere S2 embedded into R3. A parametrization of S2

(excluding the South pole) is

x = ψ−1(θ1, θ2) :=

sin θ1 cos θ2

sin θ1 sin θ2

cos θ1

 (63)

for 0 ≤ θ1 ≤ π (where θ1 is commonly referred to as ‘latitude’) and 0 ≤ θ2 < 2π (where θ2 is
commonly referred to as ‘longitude’). For example, the point ψ−1(0, 0) coincides with the North
pole, while the point ψ−1(π

2 , 0) lays on the equator of the sphere. Given a point x = ψ−1(θ1
0 , θ2

0),
the curve

γ1
x(t) =

sin(θ1
0 + t) cos θ2

0
sin(θ1

0 + t) sin θ2
0

cos(θ1
0 + t)

 (64)

traces a ‘meridian’ through x, while the curve

γ2
x(t) =

sin θ1
0 cos(θ2

0 + t)
sin θ1

0 sin(θ2
0 + t)

cos θ1
0

 (65)

traces a ‘parallel’ through x. Hence, by definition, the tangent space TxS2 is spanned by the
canonical basis vectors

∂x
1 = γ̇1

x(0) =
dγ1

x(t)
dt

∣∣∣∣
t=0

=

cos θ1
0 cos θ2

0
cos θ1

0 sin θ2
0

− sin θ1
0

 (66)

and

∂x
2 = γ̇2

x(0) =
dγ2

x(t)
dt

∣∣∣∣
t=0

=

− sin θ1
0 sin θ2

0
sin θ1

0 cos θ2
0

0

. (67)

For example, it is readily seen that

∂
(π

2 ,0)
1 =

 0
0
−1

, ∂
(π

2 ,0)
2 =

0
1
0

, (68)

represents tangent vectors at [1 0 0]> (i.e., the North pole). �

The dual space to a tangent space TxM, denoted as T?
xM, is termed cotangent space.

Elements of a cotangent space are termed covectors ω ∈ T∗xM. Covectors combine with
vectors by ‘annihilation’ to a scalar. Given a canonical basis {∂x

1 , ∂x
2 , . . . , ∂x

p} of TxM, it is
possible to define a canonical basis {dx1, dx2, . . . , dxp} of T∗xM by the conditions dxi(∂j) =
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δi
j. The union of all cotangent spaces form a cotangent bundle T∗M := {(x, ω) | x ∈M, ω ∈

T∗xM}.

4. First-Order Dynamical Systems on Manifolds

A number of physical phenomena are described in system theory as systems of
coupled differential equations in several variables. A fairly general representation of such
systems is

ẋ(t) = f (t, x(t)), x(0) = x0 ∈ Rp, t ∈ [0, tf], (69)

where x ∈ Rp denotes a state variable array and represents a set of descriptive variables,
and f : R×Rp → Rp represents a state-transition function. The multi-variable array-type
function f denotes a (possibly time-varying) vector field that represents the set of velocities
of change of the state of the system. The solutions of the differential Equation (69) represent
integral curves of the vector field f . In this case, the space Rp represents the flat state space
and the velocity space of the model (69) at once.

In order to take into account further constraints on the state variables, termed invari-
ants, it is convenient to introduce the notion of curved state space in the form of a smooth
manifold. This logical process leads to a type of first-order dynamical system described by

ẋ(t) = f (t, x(t)), x(0) = x0 ∈M, t ∈ [0, tf], (70)

where f : R×M→ TM denotes the state-transition function of the mathematical model
and x ∈ M denotes the state of the system at any given time t. Even in this case, the
function f denotes the velocity field; however, in this case, the state space is the manifold
M, while the velocity space is the tangent bundle TM.

Let us underline two aspects of the above equation:

• Meaning of ẋ(t) in the expression (70): Since we assumed the manifold M to be
embedded in an ambient space A of type Rp×q, the quantity ẋ(t) is an array or a
matrix made of the derivatives of the entries of x(t) with respect to the time parameter
t. Let us recall, however, that even if such a specification helps one understand the
subject, we shall never write any relation involving single components of such matrix-type
objects as we shall treat any state variable x as a whole, (except in a low-dimensional
example). The solution x(t) of the differential Equation (70) is the trajectory of the
system and is represented by a curve on the manifold M; hence, ẋ(t) denotes the
speed along the trajectory since, for every t ∈ [0, tf], it holds that (x(t), ẋ(t)) ∈ TM,
namely ẋ ∈ Γ(M).

• Separation (or non-equivalency) of first-order and second-order systems: When
dealing with dynamical systems in Rp×q, the system (69) is actually fairly general
since, upon introducing additional variables, it is possible to turn an n-th order system
into a first-order system. We consider now how such a property stems from the
legitimate ‘confusion’ between the state space and velocity space. In contrast to this,
when dealing with dynamical systems on manifolds, such confusion is not legitimate,
since x ∈M while ẋ ∈ TxM; namely, the system state and the system velocity belong
to very different spaces. It suffices to recall that M is generally a curved space (i.e., non
linear) while each TxM is a vector space (flat, linear). For this reason, second-order
systems are not assimilable to first-order systems.

Example 7. Let us reconsider the function (52). On the basis of such a vector field, we may define
the following first-order system on the hypersphere Sn−1:

ẋ(t) = (In − x(t) x>(t)) A x(t), x(0) = x0 ∈ Sn−1. (71)

Such a system may be rewritten equivalently as:

ẋ = A x− (x>A x)x. (72)
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Let us examine the equilibrium points of such dynamical system. Any equilibrium point x?
must satisfy the equation

A x? = (x>? A x?)x?. (73)

Whenever A is symmetric and positive-definite, Equation (73) establishes that x? is an eigen-
vector of matrix A. In effect, the state of the system (72) evolves towards an eigenvector of the matrix
A. For this reason, the dynamical system (73) represents a prototypical example of a continuous-time
calculation system.

The differential Equation (72) is commonly referred to as the Oja equation and was studied
by Prof. Erkki Oja from the Helsinki University of Technology (currently Aalto University).
It was studied in several contexts, including automation and control [41], and constitutes an
exemplification of the fact that even a fairly simple computing element might be able to perform
a complex calculations, namely, extracting an eigenvector x? (and the corresponding eigenvalue
λ? := x>? A x?) from an arbitrarily-sized matrix. �

Let us now consider an example, drawn from circuit theory, that introduces the notion
of ‘invariants’ for a dynamical system, which indeed motivates the study of dynamical
systems on manifolds.

Example 8. In order to emphasize the notion of invariants in connection to dynamical systems,
let us consider the simple model of an ideal DC-to-DC converter studied in [42]. The mathematical
model of such converter reads: 

C1
dv1
dt = (1− u)i3,

C2
dv2
dt = u i3,

L3
di3
dt = −(1− u)v1 − u v2,

(74)

where v1, v2 are state voltages (across capacitors), i3 is a state current (across an inductor) and
u ∈ {0, 1} denotes the control input (a switch). The following function is an invariant for such an
electrical circuit

I := 1
2 C1v2

1 +
1
2 C2v2

2 +
1
2 L3i23. (75)

Indeed, such a quantity represents the total energy across the electrical network. By invariant
it is meant that ˙I = 0, namely that the time-function I (t) keeps the same value for every t.
Notice, in fact, that

dI

dt
= v1C1

dv1

dt
+ v2C2

dv2

dt
+ i3L3

di3
dt

= v1(1− u)i3 + v2 u i3 + i3(−(1− u)v1 − u v2)

= 0.

(76)

In order to simplify the analysis of such a dynamical system, let us define the following abstract
state variables:

x1 :=

√
C1

2
v1, x2 :=

√
C2

2
v2, x3 :=

√
L3

2
i3. (77)

Let us arrange the above state variables into the state array x :=

x1
x2
x3

. The system (74) may

thus be rewritten as ẋ = f (t, x), with

f

t,

x1
x2
x3

 :=


0 0

√
1

C1 L3
(1− u(t))

0 0
√

1
C2 L3

u(t)

−
√

1
C1 L3

(1− u(t)) −
√

1
C2 L3

u(t) 0


︸ ︷︷ ︸

=:H(t)

x1
x2
x3

. (78)
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In short, f (t, x) = H(t)x.
In terms of the new state variables, the invariant may be rewritten as:

I (x) := x2
1 + x2

2 + x2
3. (79)

Assuming, for instance, that I (x0) = 1, Equation (79) establishes that the state x belongs to
the sphere S2. Hence, we may observe that the state space of the DC-to-DC converter is the unit
sphere S2 embedded in R3.

As a last verification step, let us prove that f (t, x) = H(t)x ∈ TxS2 for every t. It suffices to
prove that (H x)>x = 0, namely that x>H>x = 0. By definition of H, it is readily found to be a
skew-symmetric matrix, namely that for every t, it holds that H>(t) = −H(t). By transposing the
product x>H>x, we find the sought result; in fact,

(x>H>x)> = x>Hx = −(x>H>x), (80)

and since x>H>x is a scalar, it must hold that (x>H>x)> = x>H>x, therefore it must be equal
to zero. �

First-order dynamical systems are characterized by a (possibly varying) vector field
that determines its dynamics, as illustrated by the following example.

Example 9. Let us consider the following first-order dynamical system on the manifold SO(3) of
three-dimensional rotations in space:

Ṙ(t) = A− R(t)A>R(t), R(0) = I3. (81)

In this system, the matrix R ∈ SO(3) represents the orientation of a moving orthogonal frame
attached to a rigid body with respect to an inertial reference frame, while the arbitrary constant
matrix A ∈ R3×3 determines its rotational speed (namely, the orientation of the axis of rotation and
the rotational velocity).

The orientation matrix is often termed attitude for rigid bodies such as drones and satellites:

• The instance R = I3 indicates that the object is horizontal with respect to the reference frame;
• The instance R 6= I3 indicates that it is necessary to rotate the body-fixed axes to align them to

the inertial axes.

The dynamical system (81) is of the type Ṙ = f (R). Let us verify that f (R) := A− RA>R is
a vector field of TSO(3). To show such a property, it suffices to prove that f>(R)R+ R> f (R) = 03.
This is in fact true:

(A− RA>R)>R + R>(A− RA>R) = A>R− R>A(R>R) + R>A− (R>R)A>R

= A>R− R>A + R>A− A>R

= 03.

(82)

It is worth noticing that the property f ∈ Γ(SO(3)) holds true even in the case that A is a
time-varying matrix field, namely A = A(t). �

5. Tangent Maps: Pushforward and Pullback

Let us consider two Riemannian manifolds M and N. Any smooth function f : M→ N
transforms a curve in M into a curve in N. Since both curves are associated with their
velocity vector fields, which define their tangent spaces, one might wonder how the
function f maps tangent spaces in M into tangent spaces in N. The answer is materialized
as a pushforward map.
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Let x ∈ M, then a pushforward map dx f : TxM → Tf (x)N is defined such that for
every smooth curve γx : [−ε, ε]→M, γx(0) = x it holds that:

d
dt

f (γx(t))
∣∣∣∣
t=0

=: dx f (γ̇x(0)). (83)

In general, therefore, given a function f : M → N that maps a point x from the
manifold M to the point f (x) on the manifold N, the map dx f associates to any tangent
vector v belonging to the tangent space TxM a tangent vector dx f (v) belonging to the
tangent space Tf (x)N by ‘pushing’ such vector to such space.

A pushforward map is indeed a linear approximation of a smooth map on tangent
spaces. Any tangent map dx f (v) is linear in the argument v. The map dx f at a point x
represents, in practical terms, the best linear approximation of the function f near x. A
pushforward map may be regarded as a generalization of the total derivative of ordinary
calculus. (Some authors would denote a pushforward map by an asterisk as in f?; however,
this notation takes up the space of the reference point x hence hindering it.)

Let us consider two special cases of interest.

1. Pushforward of a manifold-to-scalar function: The special case that N := R, namely that
f is a manifold-to-scalar function, is particularly important in applications. Such a
special case will be covered later since it involves the notion of Riemannian gradient.

2. Pushforward of a matrix-to-matrix function: This is the case that the smooth manifolds M
and N are real matrix manifolds embedded in Rp×p. Any smooth function between
any such pair of manifolds is of matrix-to-matrix type. Let us assume that the
function f is analytic about a point X0 ∈ M, namely, that it may be expressed as a
polynomial series:

f (X) =
∞

∑
k=0

ak(X− X0)
k, ak ∈ R. (84)

Then, the pushforward map dX f (V) in a point X ∈M applied to the tangent direction
V ∈ TXM may be expressed as:

dX f (V) =
∞

∑
k=1

ak

k−1

∑
r=0

(X− X0)
rV(X− X0)

k−r−1. (85)

It is easily recognized that the tangent map d fX(V) is linear in the argument V. As a
reference for the readers, we recall the analytic expansion of three matrix-to-matrix
functions, that may be used to compute the corresponding pushforward maps:

• Matrix exponential: For the map f (X) = Exp (X), it holds that X0 = 0, ak =

(k!)−1 for k ≥ 0;
• Principal matrix logarithm: For the map f (X) = Log (X), it holds that X0 = Ip,

a0 = 0, ak = (−1)k+1k−1 for k ≥ 1;
• Matrix inversion: For the map f (X) = X−1, it holds that X0 = Ip, ak = (−1)k

for k ≥ 0.

The inverse of a pushforward map dx f is termed pullback map and is denoted as
(dx f )−1. A map (dx f )−1(w) ‘pulls’ any tangent vector w from the tangent space Tf (x)N
back to the tangent space TxM.

6. Lie Groups, Lie Algebras, Lie Brackets

Lie groups are hybrid mathematical constructions sharing properties that characterize
smooth manifolds and algebraic groups. Let us recall that an algebraic group is an algebraic
structure (G, m, i, e) made of a set G, either discrete or continuous, endowed with an
internal operation denoted as m : G×G→ G, usually referred to as group multiplication
(not necessarily a multiplication is the standard sense, though), an inversion operation
denoted as i : G → G, and an identity element with respect to group multiplication
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denoted as e. The multiplication, inversion and identity are related in such a way that, for
every triple x, y, z ∈ G, it holds that:

m(x, e) = m(e, x) = x

m(x, i(x)) = m(i(x), x) = e,

m(x, m(y, z)) = m(m(x, y), z).

(86)

Note that, in general, group multiplication is not commutative, i.e. m(x, y) 6= m(y, x).
Two instances of algebraic groups are (Z,+,−, 0), a discrete group, and (GL(p), ·,−1 , Ip),

a continuous group. The structure (Z,+,−, 0) represents the set of integer numbers (either
positive or negative, also including 0) with the standard addition as a group multiplication,
which implies that the inverse is the standard subtraction while the identity is the 0 element.
The second example, namely the structure (GL(p), ·,−1 , Ip), represents the subset of non-
singular matrices of size p× p, endowed with the standard matrix-to-matrix multiplication
‘·’ as group multiplication. In such a case, the inverse operation coincides with the standard
matrix inversion while the group identity coincides with the identity matrix Ip. It is
straightforward to show that such group operations/identities satisfy the recalled group
axioms. A counterexample of a structure that is not an algebraic group is given by the
set of non-negative integer numbers Z+

0 , which does not form a group under standard
addition/subtraction (in fact, the subtraction of two positive integers does not necessarily
return a positive integer).

With the notions of algebraic groups and smooth manifolds, we may now define a
well-known object of manifold calculus, namely a Lie group. A Lie group conjugates the
properties of an algebraic group and of a smooth manifold, as it is a set endowed with
group properties and a manifold structure. Paraphrasing Wirth:

Lie group := Manifold + Algebraic group.

Let us denote by TxG the tangent space of a Lie group G at a point x ∈ G. The tangent
space at the identity, namely TeG, represents a special instance of tangent spaces. In fact,
such a tangent space, upon being endowed with a binary operator termed Lie brackets,
possesses the structure of a so-called Lie algebra and will be denoted as g.

Let us examine the structure of the Lie algebra of the following Lie groups:

• Hypercube: The hypercube, also known as a translation group, is a Lie group un-
der standard matrix sum (matrix subtraction and zero matrix complete the group
structure). The Lie algebra of Rp coincides with itself.

• General linear group and the special linear group: Both the general linear group
GL(p) and the special linear group Sl(p) are Lie groups under standard matrix
multiplication and inversion. The Lie algebra of the general linear group, namely
gl(p), coincides with Rp×p. The linear algebra associated with the special linear group
is more interesting and its determination involves some clever matrix computations.
Let us consider Sl(p) endowed with standard matrix multiplication, inversion and Ip
as the group identity and a curve γ : [−ε, ε] → Sl(p) defined by γ(t) := Exp (t A),
where Exp denotes the matrix exponential and A ∈ Rp×p. Clearly, γ(0) = Ip; hence,
γ̇(0) represents any element of the Lie algebra sl(p). It is not hard to prove that

γ̇(t) = A Exp (t A), (87)

hence, γ̇(0) = A ∈ sl(p). Now, let us recall a result from matrix calculus [43]:

d
dt

det(γ(t))
∣∣∣∣
t=0

= tr(γ̇(0)). (88)
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In the present case, since det(γ(t)) ≡ 1, it follows from the above considerations that
tr(A) = 0. In conclusion, we found that

sl(p) = {A ∈ Rp×p | tr(A) = 0}, (89)

the space of traceless matrices. The algebra sl(p) has dimension p2 − 1.
• Special orthogonal group: The SO(n) manifold is a Lie group under standard matrix

multiplication. The Lie algebra associated with the special orthogonal group is the
set of skew-symmetric matrices so(p) := {H ∈ Rp×p | H + H> = 0p}. In fact, at the
identity it holds that TIpSO(p) = so(p). The Lie algebra so(p) is a vector space of
dimension 2−1 p(p− 1).

• Real symplectic group: The Lie algebra associated with the real symplectic group
may be characterized as follows:

sp(2n) = {H = JS | S ∈ R2n×2n, S> = S}, (90)

where the quantity J denotes again the fundamental skew-symmetric matrix.
• Manifold of symmetric, positive-definite matrices: The Lie algebra associated with

the Lie group S+(p) is the set of p× p symmetric matrices, namely s+(p) := {S ∈
Rp×p | S> = S}. The space of symmetric, positive-definite matrices is not a group un-
der standard matrix multiplication. We recall from [44] the following group structure
(S+(p), m, i, e):

– Multiplication: m(P, Q) := Exp (Log P + Log Q), (logarithmic multiplication),
with P, Q ∈ S+(p), where ‘ Log ’ denotes the principal matrix logarithm;

– Identity element: e = Ip (notice that Log Ip = 0p);
– Inverse: i(P) = Exp (−Log P) (matrix inversion), with P ∈ S+(p) (any symmet-

ric, positive-definite matrix is non-singular).

It is easy to verify that the proposed instances of m, i, e satisfy the algebraic-group
axioms in S+(p). Additionally, the logarithmic multiplication on S+(p) is compatible
with its smooth manifold structure, as the map (P, Q) 7→ m(P, i(Q)) = Exp (Log P−
Log Q) is smooth.

An essential peculiarity of any Lie groups (G, m, i, e) is that the whole group may
always be brought back to a convenient neighborhood of the identity e and the same holds
true for every tangent space TxG, ∀x ∈ G, which may be brought back to the algebra g. Let
us consider, for instance, a curve γx : [−ε, ε]→ G such that γx(0) = x. We may define a
new curve

γ̃x(t) := m(γx(t), i(x)) (91)

that has the property γ̃x(0) = e. Conversely, γx(t) = m(γ̃x(t), x). This operation closely
resembles a translation of a curve into a neighborhood of the group identity.

The above observation leads to defining two Lie-group functions:

• Right translation: Defined as a function Rx : G → G by Rx(y) := m(y, x) for every
pair (x, y) ∈ G;

• Left-translation: Defined as a function Lx : G→ G by Lx(y) := m(i(x), y) for every
pair (x, y) ∈ G;

the distinction between the left translation and right translation is somewhat arbitrary: we
chose a rather non-standard one.

Notice that Rx and Lx commute; in fact,

Rx(Lx(y)) = m(m(i(x), y), x) = m(i(x), m(y, x)) = Lx(Rx(y)). (92)

Let us consider a simple example to get acquainted with the notion of left/right
translation.
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Example 10. Let us particularize the notion of left/right translation to the familiar hypercube.
In Rp, considered as a group under standard array addition, these functions may be defined as
Rx(y) := y + x and Lx(y) = −x + y. The composition Rx(Lx(y)) returns Rx(Lx(y)) =
Lx(y) + x = −x + y + x, namely Rx(Lx(y)) = y; hence, Rx ◦ Lx = idx. Since Rx and Lx
commute, we may say that, in this specific case, the functions Rx and Lx are the inverse of one
another. In general, this is not true, though, and the failure of the composition Rx ◦ Lx to equal an
identity map is caused by the lack of commutativity of a group. �

Now, let us consider the curve Lx(γx): it crosses the identity e at t = 0. Consequently,
the pushforward dxLx maps every vector in TxG to a vector in TeG. Namely,

dxLx : TxG→ g. (93)

Likewise, taking an arbitrary smooth curve γe passing by the identity e ∈ G at t = 0
and considering the curve Rx(γe), it is readily seen that the latter crosses the point x at t = 0.
Consequently, the pushforward deRx maps every vector in TeG to a vector in TxG. Namely,

deRx : g→ TxG. (94)

Recall that TxG and g are of equal dimension and that the pushforward map is
linear; hence, the pushforward map dxLx allows us to translate a vector belonging to a
tangent space of a group to a vector belonging to its algebra (and vice versa through its
pullback). This is the reason for which the Lie algebra of a Lie group is sometimes termed
the ‘generator’ of a group.

It is easy to see that, if the structure of g is known for a group G, it might be convenient
to coordinatize a neighborhood of the identity of G through elements of the associated
algebra with the help of a conveniently selected homeomorphism (namely, a continuous
function between topological spaces that has a continuous inverse function). Such a
homeomorphism is known in the literature as an exponential map and is denoted as exp:
g → G. We shall discuss the notion of exponential map for general manifolds in a later
section.

As mentioned, a Lie algebra is endowed with a binary operator termed Lie bracket,
denoted as [·, ·]. Let us survey its derivation. Let us define the function Ψx : G→ G termed
inner isomorphism as

Ψx(y) := Lx(Rx(y)). (95)

The inner isomorphism provides a measure of non-commutativity of a Lie group. It is
interesting to notice that the function Ψx preserves the inner product of G; in fact, taken
two elements y, z ∈ G, it holds that

Ψx(m(y, z)) =m(i(x), m(m(y, z), x))

=m(i(x), m(m(m(y, x), m(i(x), z)), x))

=m(m(i(x), m(y, x)), m(i(x), m(z, x)))

=m(Ψx(y), Ψx(z));

(96)

hence, it represents a Lie-group automorphism.
Now, let us take the differential of Ψx(y) with respect to the variable y at y = e. To

this aim, it suffices to consider a curve y : [−ε, ε]→ G such that y(0) = e and an element
x ∈ G, and to compute the derivative of Ψx(y(t)) with respect to t at t = 0. The calculation
of the derivative gives

d
dt

Ψx(y(t)) = (dy(t)Ψx)(ẏ(t)) = (dRx(y(t))Lx) ◦ (dy(t)Rx)(ẏ(t)). (97)
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Setting y = e and letting v := ẏ(0) ∈ g and Adx := deΨx yields

Adx(v) := (dxLx) ◦ (deRx)(v). (98)

By virtue of the properties (93) and (94), Adx is a linear map from g to itself, namely
an endomorphism in End(g). The map Adx is termed adjoint representation of the Lie algebra g.

In addition, let us now consider a smooth curve x : [−ε, ε] → G such that x(0) = e
and ẋ(0) = u ∈ g and let us evaluate the map

adu :=
d
dt

(dxLx) ◦ (deRx)

∣∣∣∣
t=0

. (99)

By the chain rule, one obtains

adu :=
d
dt

(dx(t)Lx(t))

∣∣∣∣
t=0
◦ (deRe) + (deLe) ◦

d
dt

(deRx(t))

∣∣∣∣
t=0

. (100)

This is termed adjoint operator and coincides with the Lie bracket of two tangent vectors
up to sign, namely

[u, v] := −adu(v). (101)

The Lie bracket provides a measure of non-commutativity of the algebra g.

Example 11. Let us consider the Lie group GL(n) endowed with standard matrix multiplication
and let us write down explicitly the inner isomorphism, the adjoint representation and the Lie bracket.

Since LX(Y) = X−1Y and RX(Y) = YX, the inner isomorphism reads ΨX(Y) = X−1YX.
Taking a curve Y(t) ∈ GL(n) such that Y(0) = In and Ẏ(0) = V ∈ Rn×n yields

AdX(V) =
d
dt

(X−1Y(t)X)

∣∣∣∣
t=0

= X−1VX. (102)

To end with, taking a curve X(t) ∈ GL(n) such that X(0) = In and Ẋ(0) = U ∈ Rn×n

yields

adU(V) =
d
dt

(X−1(t)VX(t))
∣∣∣∣
t=0

= (−UV) + VU = −[U, V]. (103)

In the above calculation, we have used a known matrix identity, namely

d
dt

X−1(t) = −X−1(t)Ẋ(t)X−1(t). (104)

In this case, [A, B] := AB− BA denotes the matrix commutator. �

7. Metrization, Riemannian Manifolds

A Riemannian manifold is a smooth manifold M whose tangent bundle is equipped
with a smooth family of positive-definite inner products M 3 x 7→ 〈·, ·〉x ∈ R. An inner
product is locally defined at every point x ∈M of a manifold as a bilinear function from
TxM× TxM to R. It is important to remark that the inner product acts on two elements
of a tangent space to the manifold at a given point x; it therefore depends (smoothly) on
the point x. Hence, such an inner product gives rise to a local metric. Whenever an inner
product 〈·, ·〉x does not depend explicitly on the point x, it is termed uniform. Given two
tangent vectors v, w ∈ TxM, their inner products are denoted as 〈v, w〉x.

7.1. Coordinate-Free Metrization by Inner Products and Metric Kernels

Let us recall some of the general properties of any inner product. In general, any vector
space V may be endowed with an inner product (also termed scalar product) denoted by
〈·, ·〉 : V×V→ R. Any inner product has a set of properties:
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• For every u, v ∈ V, it holds that 〈u, v〉 = 〈v, u〉,
• For every u, v, w ∈ V, it holds that 〈u + w, v〉 = 〈u, v〉+ 〈w, v〉,
• For every u, v ∈ V and c ∈ R, it holds that 〈c u, v〉 = c〈u, v〉,
• The norm of a vector v ∈ V is defined as ‖v‖ :=

√
〈v, v〉,

• An inner product is non-degenerate if and only if 〈u, v〉 = 0 for every v ∈ V implies
u = 0.

Let us consider a simple example about the above notions.

Example 12. Let us consider the special case V := Rp and the inner product:

〈u, v〉 = u>S v, (105)

with S being a symmetric, p× p matrix. If S, in addition to being symmetric, is also positive-definite,
then such an inner product is non-degenerate. �

It pays to recall the notion of adjoint operator with respect to a metric on a vector space.
Let us consider again the vector space V endowed with an inner product 〈·, ·〉 : V×V→ R
and a linear operator ω : V → V. Ad adjoint operator ω† : V → V is one such that, for
every v, w ∈ V, it holds that

〈ω†(v), w〉 = 〈v, ω(w)〉. (106)

A self-adjoint operator is one such that ω† = ω, while an antiadjoint operator is one
such that ω† = −ω. The following observation on self-adjoint operators in quadratic forms
is in order.

Observation 1. Every operator may be decomposed as the sum of a self-adjoint and of an antiadjoint
operator; in fact, it holds that

ω = 1
2 (ω + ω†) + 1

2 (ω−ω†). (107)

As far as quadratic forms 〈ω(v), v〉 are concerned, only the self-adjoint component plays a
role. In fact, it is not hard to show that

〈ω(v), v〉 = 〈 1
2 (ω + ω†)(v), v〉. (108)

This is indeed true for any arbitrary inner product of the type 〈ω(v), w〉, in fact, some
straightforward algebraic work reveals that

〈ω(v), w〉 = 1
2{〈ω(w + v), w + v〉 − 〈ω(w− v), w− v〉}. (109)

Since the right-hand side is a combination of quadratic forms, the left-hand side depends only
on the self-adjoint part of ω.

In the case of a manifold, at every point, x ∈M corresponds a tangent space TxM that
may be endowed with an inner product. Therefore, to denote the inner product assigned
to the vector space TxM, we use the notation 〈·, ·〉x.

Example 13. Given a Riemannian manifold (M, 〈·, ·〉) and two smooth vector fields f , g ∈ Γ(M),
we may define the function h : M→ R as

h(x) := 〈 f (x), g(x)〉x. (110)

Notice that the inner product varies smoothly from one tangent space to another; hence, the
function h is regular in M. The function h : M→ R represents a scalar field on M.
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As a further example, let us consider an arbitrary curve γ : [−ε, ε]→M over a manifold M.
On the basis of such curve, we can define a function ϕ : [−ε, ε]→ R as

ϕ(t) := 〈 f (γ(t)), g(γ(t))〉γ(t). (111)

Notice that the inner product ‘accompanies’ the point x = γ(t) that travels along the curve
and involves different tangent spaces. Even the function ϕ : [−ε, ε]→ R represents a scalar field
restricted to the curve γ. �

On a Riemannian manifold M, the norm of a vector v ∈ TxM is defined as ‖v‖x :=√
〈v, v〉x. A specific property of Riemannian manifolds is that the norm is positive-definite;

namely ‖v‖2
x ≥ 0, where ‖v‖x = 0 if an only if v = 0.

Choosing the ‘right’ metric for a given manifold in a given application is one of the
most challenging aspects of metrization, especially because it is seldom unclear what ‘right’
practically means. When in doubt, it is possible to resort to canonical metrics. A number of
canonical metrics for different manifolds of interest are summarized in the following:

• Hypercube: For the space Rp of (column) arrays, the canonical metric is the Euclidean
metric 〈u, v〉x := u>v, for every u, v ∈ Rp, while for the space Rp×q of rectangular
matrices, the canonical metric is the Euclidean metric 〈U, V〉X := tr(U>V), for every
U, V ∈ Rp×q. Notice that both these metrics do not depend explicitly on the point that
they are calculated at, and hence they are uniform.

• Hypersphere: The hypersphere Sp−1 embedded into the ambient space Rp inherits
its canonical metric; hence, we shall choose 〈u, v〉x := u>v for every u, v ∈ TxSp−1.
Even this metric is uniform.

• General linear group and the special linear group: A metric for the general linear
group GL(p) 3 A is:

〈U, V〉A := tr((A−1U)>(A−1V)), ∀U, V ∈ TAGL(p). (112)

Such a metric was popularized, for instance, in [45], in the context of machine learning.
• Special orthogonal group: The canonical metric in SO(p) is defined as 〈U, V〉X :=

tr(U>V), for any X ∈ SO(p) and U, V ∈ TXSO(p). Notice that the norm of a tangent
vector V ∈ TXSO(p) is ‖V‖X =

√
〈V, V〉 =

√
tr(V>V) =: ‖V‖F, known as the

Frobenius norm [18].
• Stiefel manifold: There are two well-known metrics for the Stiefel manifold, namely,

the Euclidean metric and the canonical metric.

1. Euclidean metric: A possible metric that the Stiefel manifold may be endowed
with is the Euclidean metric, inherited from the embedding of St(n, p) in Rn×p:

〈U, V〉X := tr(U>V), U, V ∈ TXSt(n, p). (113)

2. Canonical metric: The Stiefel manifold may be endowed with a second kind of
metric, termed ‘canonical metric’. The associated inner product reads:

〈U, V〉X := tr
(

U>
(

In − 1
2 XX>

)
V
)

, U, V ∈ TXSt(n, p), (114)

which, unlike the Euclidean metric (113), is not uniform over the Stiefel manifold.

• Real symplectic group: There exist two known metrics in the scientific literature that
were applied to the real symplectic group.

1. Khvedelidze–Mladenov metric: A metric for the real symplectic group Sp(2n) is:

〈U, V〉Q := tr(Q−1UQ−1V), ∀U, V ∈ TQSp(2n). (115)
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It is referred to as Khvedelidze–Mladenov metric (or KM metric, for short, [46]).
This is an indefinite metric; hence, a manifold endowed with this metric is not
Riemannian (it is in fact referred to as a pseudo-Riemannian manifold).

2. Euclidean metric: A further metric for the real symplectic group Sp(2n) is:

〈U, V〉Q := tr((Q−1U)>(Q−1V)), ∀U, V ∈ TQSp(2n). (116)

Such a metric is inherited from the embedding of a real symplectic group Sp(2n)
into the space of real invertible matrices GL(2n) that, in turn, is embedded into
the real hypercube R2n×2n and hence inherits its canonical metric.

• Space of symmetric, positive-definite matrices: The canonical metric in S+(p) is
defined as 〈U, V〉P := tr(UP−1VP−1), for any P ∈ S+(p) and U, V ∈ TPS+(p).
Clearly, this is not a uniform metric.

• Grassmann manifold: The canonical metric on a Grassmann manifold is

〈U, V〉[X] = tr(U>V), ∀U, V ∈ T[X]Gr(n, p), (117)

which corresponds to the Euclidean metric in the Stiefel manifold that is used to
represent elements of the Grassmann manifold.

Example 14. The inner product (115) gives rise to a metric which is not positive-definite on the
space Sp(2n) ⊂ GL(2n). To verify this property, it suffices to evaluate the structure of the squared
norm ‖V‖2

Q = tr((Q−1V)2) with Q ∈ Sp(2n) and V ∈ TQSp(2n). By the structure of the
tangent space TQSp(2n), it is known that Q−1V = JS with S ∈ R2n×2n symmetric. It holds that:

JS =

[
0n In
−In 0n

][
S1 S2
ST

2 S3

]
=

[
ST

2 S3
−S1 −S2

]
,

with S1, S3 ∈ Rn×n being symmetric and S2 ∈ Rn×n being arbitrary. Hence, tr((JS)2) =
2tr(S2

2)− 2tr(S1S3), which has an indefinite sign. �

In general, there exists a canonical metric inherited from the ambient space A that
a manifold M is embedded in. We know that whenever a manifold is embedded in an
ambient space A, the inner product between two tangent vectors may be written as

〈u, w〉x = 〈u, Gx(w)〉A, (118)

where 〈·, ·〉A denotes an inner product in A. The expression (118) is based on a metric
kernel G : TM→ TM. Metric kernels play a prominent role in coordinate-free embedded
manifold calculus since a kernel and its derivative determine most of the main functions
and maps that we shall encounter in the next sections. We assume that the metric kernel
has the following properties:

1. Linearity: Gx(v) is linear in v, namely Gx(v + α w) = Gx(v) + α Gx(w), for every
α ∈ R, x ∈M and v, w ∈ TxM;

2. Symmetry: Gx is a self-adjoint operator, namely 〈u, Gx(w)〉A = 〈Gx(u), w〉A;
3. Closure with respect to TM: Gx is an endomorphism of TxM, namely Gx(v) ∈ TxM,

for every x ∈M and v ∈ TxM;
4. Invertibility: Gx is invertible, namely, its inverse G−1

x is well-defined for every x ∈M.

In general, a metric kernel is not well-defined in the whole ambient space A. We shall
invoke the fact that it is well-defined in TM and that it might be extended to M×A, in
fact in the expression Gx(a) one must take x ∈ M but it is allowable to take a ∈ A, since
the metric kernel is linear in the argument a. Occasionally, we might need to extend the
metric kernel G by an operator G : A2 → A that is defined at least in a neighborhood of
M× A and such that G ≡ G in TM. (In principle, such an ‘extendability’ requirement
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is not necessary, although it facilitates some computations and certainly clarifies some
computational developments.)

Example 15. Let us consider a hypersphere Sn−1 ⊂ A where A := Rn endowed with a metric
〈u, w〉x = 〈u, w〉A := u>w. It is readily seen that, in this example, Gx = idx; therefore, the metric
kernel is linear, self-adjoint, invertible and an endomorphism of TxSn−1.

Let us further consider the manifold S+(n) ⊂ A endowed with the metric 〈U, W〉P :=
tr(UP−1WP−1), where A := Rn×n is endowed with the metric 〈U, V〉A := tr(U>V). In this
case, the metric kernel does not coincide with the identity, rather:

GP(W) := P−1WP−1. (119)

Let us verify that such metric kernel has the four mentioned properties:

1. Linearity: GP(W) appears to be linear in W; in fact, it holds that GP(V + α W) = P−1(V +

α W)P−1 = P−1VP−1 + α P−1WP−1, for every α ∈ R, V, W ∈ TPA,
2. Symmetry: GP is self-adjoint; in fact, it holds that 〈U, GP(W)〉A = tr(U(P−1WP−1)) =

tr((P−1UP−1)W) = 〈GP(U), W〉A, by virtue of the cyclic permutation invariance of the
trace operator,

3. Closure: GP turns out to be an endomorphism of TPS+(n); in fact, for every matrix U ∈
TPS+(n), it holds that GP(U) = P−1UP−1 is a symmetric matrix. Hence, it belongs to
TPS+(n) (notice that (P−1UP−1)> = P−>U>P−> = P−1UP−1 because both U and P
are symmetric),

4. Invertibility: GP is invertible; in fact, if W = GP(U) = P−1UP−1, then U = PWP =:
G−1

P (W).

Notice that GP is not well-defined in Rn×n (in fact, if P is taken in Rn×n, P−1 does not
necessarily exist).

As a last example, let us consider the Stiefel manifold St(n, p) ⊂ A is endowed with the metric
〈U, W〉X := tr(U>(In − 1

2 XX>)W), where A := Rn×p endowed with 〈U, V〉A := tr(U>V).
In this case, the metric kernel GX : Rn×p → Rn×p reads

GX(W) := (In − 1
2 XX>)W. (120)

Linearity and symmetry are readily proven. Closure may be proven as follows. Take X ∈
St(n, p) and W ∈ TXSt(n, p), namely W>X + X>W = 0p. Define U := (In − 1

2 XX>)W. It
now suffices to show that U ∈ TXSt(n, p), which holds true; in fact,

U>X + X>U = W>X− 1
2 W>XX>X + X>W − 1

2 X>XX>W

= W>X + X>W − 1
2

(
W>X + X>W

)
= 0p.

(121)

The invertibility of the matrix kernel follows from the invertibility of the matrix In − 1
2 XX>.

From the Sherman–Morrison–Woodbury (matrix inversion) formula [47]

(A + UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1, (122)

it follows, upon setting A := In, C := − 1
2 Ip, U := X and V := X>, that(

In − 1
2 XX>

)−1
= In − X(−2 Ip + X>X)−1X> = In + XX>, (123)

that exists for every X ∈ St(n, p). �

Further, let us examine separately and concisely the structure of the metric kernel for
the symplectic group endowed with its canonical metric.
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Example 16. Let us consider the symplectic group Sp(2n) endowed with the canonical metric
〈V, W〉Q := tr((Q−1V)>(Q−1W)). Assume the symplectic group Sp(2n) to be embedded in the
ambient space A := R2n×2n endowed with the Euclidean metric 〈U, V〉A := tr(U>V). A simple
expansion gives

〈V, W〉Q := tr(V>Q−>Q−1W), (124)

hence the metric kernel reads GQ(W) := (Q−>Q−1)W.

7.2. Covariancy, Contravariancy, Tensors*

The convention on index used so far comes from the nature of different objects in
relation to their behavior upon coordinate changes.

Let a smooth manifold M be a submanifold of dimension p of a Euclidean space and
let us fix a curve γ : [−ε, ε]→M, described by:

γx(t) = (x1(t), x2(t), . . . , xp(t)). (125)

The subscript x tells that the components of the curve are expressed through coordi-
nates x. The tangent vector v := γ̇x(0) has the components:

vx = (ẋ1(0), ẋ2(0), . . . , ẋp(0)). (126)

Now, let us introduce a change of variable xi := κi(ξ1, ξ2, . . . , ξ p), for i = 1, 2, . . . , p,
such that

γξ(t) = (κ1(ξ1(t), ξ2(t), . . . , ξ p(t)), . . . , κp(ξ1(t), ξ2(t), . . . , ξ p(t))). (127)

In the new coordinates, the tangent vector at t = 0 is expressed as

vξ =

(
∂κ1

∂ξ i ξ̇ i(0),
∂κ2

∂ξ i ξ̇ i(0), . . . ,
∂κp

∂ξ i ξ̇ i(0)
)
=

(
∂x1

∂ξ i ξ̇ i(0),
∂x2

∂ξ i ξ̇ i(0), . . . ,
∂xp

∂ξ i ξ̇ i(0)
)

. (128)

At the heart of intrinsic manifold calculus is the requirement that one such tangent
vector stays exactly the same, no matter which coordinates are used. Observe that the
components vj

x := ẋj(0) and the components vj
ξ := ξ̇ j(0) are related by

vj
x =

∂xj

∂ξ i vi
ξ . (129)

Such a set of equations prescribes how the components of a tangent vector vary
upon a coordinate change. Every object that obeys the above law is termed contravariant.
Contravariant objects are marked by an upper index.

The canonical basis vectors ∂i do not obey the law (129). In fact, from the requirement
that vx = vξ , it follows that

vj
x∂x

j =
∂xj

∂ξ i vi
ξ ∂x

j = vi
ξ ∂

ξ
i , (130)

which implies that ∂xj

∂ξ i ∂x
j = ∂

ξ
i . Multiplying both sides by ∂ξ i

∂xk gives

∂ξ i

∂xk
∂xj

∂ξ i ∂x
j =

∂ξ i

∂xk ∂
ξ
i . (131)

Since ∂ξ i

∂xk
∂xj

∂ξ i =
∂xj

∂xk = δ
j
k, we obtain the transformation law

∂x
k =

∂ξ i

∂xk ∂
ξ
i . (132)
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Every object that obeys the above law is termed covariant. Covariant objects are
marked by a lower index.

Concerning tangent vectors, we may summarize the above results saying that the
components of a tangent vector v ∈ TxM are contravariant, while the basis of a tangent
space TxM is covariant.

Given two tangent vectors u, v ∈ TxM, their inner products may be written as

〈u, v〉x = 〈ui∂x
i , vj∂x

j 〉x = uivj〈∂x
i , ∂x

j 〉x, (133)

due to the bilinearity of the inner product. Now, define gij(x) := 〈∂x
i , ∂x

j 〉x. Then, 〈u, v〉x =

gij(x)uivj. The functions gij are clearly symmetric in their indexes (hence, on a smooth
manifold of dimension p, these functions are p2, but only 2−1 p(p− 1) are independent).
Moreover, these functions are covariant in both indexes.

Given the canonical basis {dx1, dx2, . . . , dxp} of a cotangent space T∗xM, every covec-
tor may be written as ω = ωidxi. It is easy to show that the components of a covector are
covariant, while the basis elements of a cotangent space are contravariant.

Vectors and covectors are special cases of more general objects termed tensors. A vector
is a (1, 0)-tensor, while a covector is a (0, 1)-tensor. In general, it is possible to construct
(p, q)-tensors by an operation termed tensor product denoted by ⊗. Each component of
one such tensor has p upper indexes and q lower indexes. For example, one can construct
the metric tensor g = gij dxi ⊗ dxj, which is a (0, 2)-tensor. Its inverse is g−1 = gij ∂i ⊗ ∂j,
which is a (2, 0)-tensor. Additionally, δi

j represents the mixed components of the so-termed

fundamental tensor δ = δi
j ∂i ⊗ dxj, which is a (1, 1)-tensor.

Example 17. Let us show in what sense functions gij(x) are covariant components of a tensor.
Given a variable change x = κ(ξ), from property (132) it follows that

gij(κ(ξ)) = 〈∂x
i , ∂x

j 〉κ(ξ)

=

〈
∂ξk

∂xi ∂
ξ
k ,

∂ξh

∂xj ∂
ξ
h

〉
κ(ξ)

=
∂ξk

∂xi
∂ξh

∂xj 〈∂
ξ
k , ∂

ξ
h〉κ(ξ)

=
∂ξk

∂xi
∂ξh

∂xj gkh(ξ).

(134)

This is the transformation law of a (0, 2)-tensor. The point is that the components gij(x)
transform into components gkh(ξ) through a linear expression, whose coefficients depend on the
derivatives of one set of coordinates with respect to the other set. �

8. Geodesic Arc, Riemannian Distance, Exponential and Logarithmic Map

A geodesic on a smooth manifold may be intuitively looked at in different ways:

• On a general manifold, the concept of geodesic extends the concept of a straight line
from a flat space to a curved space. In fact, let us consider a curved manifold M
embedded in an ambient space Rp. Such ambient space contains straight lines in the
usual meaning, but the manifold, being curved, hardly accommodates any straight
lines. Geodesics are curves that resemble straight lines in that they copy some of their
distinguishing features.

• On a metrizable manifold, a geodesic connecting two points is locally defined as the
shortest curve on the manifold connecting these endpoints. Therefore, once a metric
is specified, the equation of the geodesic arises from the minimization of a length
functional. Such a definition comes from the observation that any straight line in Rp

is indeed the shortest path connecting any two given points.
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• A further distinguishing feature of straight lines is that they are self-parallel, namely,
sliding a straight lines infinitesimally along itself returns the same exact lines. Such
a concept gives rise to a definition of geodesic which requires to specify the mathe-
matical meaning of ‘sliding a piece of line infinitesimally along itself’. The technical
argument to access such a definition is covariant derivation, which is not covered in
the present tutorial (while it will be covered in a forthcoming review paper).

• Another intuitive interpretation is based on the observation that a geodesic emanating
from a point on a manifold coincides with the path followed by a particle sliding on
the manifold at a constant speed. For a manifold embedded in a larger ambient space
and in special circumstances, this is equivalent to the requirement that the naïve (or
embedded) acceleration of the particle is either zero or perpendicular to the tangent
space to the manifold at every point of its trajectory. (In the present tutorial paper, we
use the term naïve acceleration to distinguish it from covariant acceleration, which will
only be defined in a subsequent tutorial.)

Starting from the above informal description, we are going to examine in detail the
notion of embedded geodesy. In particular, we shall treat the problem according to an
energy-minimizing principle (which is in fact equivalent to a length-minimizing principle).

8.1. Coordinate-Free Embedded Geodesy

The length of a smooth curve γ : [−ε, ε]→M may be evaluated though a rectification
formula as:

Lγ :=
∫ ε

−ε

√
〈γ̇(t), γ̇(t)〉γ(t)dt. (135)

The net result of this argument is that, through the definition of an inner product on
the tangent bundle to a Riemannian manifold, we are able to measure the lengths of paths
in the manifold itself, which turns the manifold into a metric space.

Example 18. Let us consider the manifold described in intrinsic coordinates:

M := {(θ1, θ2, sin(θ1) + 1) ∈ R3 | (θ1, θ2) ∈ R2}. (136)

Let us consider the curve (θ1, θ2) = (t, t) obtained by mapping a segment of the plane R2 to
the manifold M, namely:

γ(t) := (t, t, sin(t) + 1), t ∈ [a, b]. (137)

Let us assume the manifold M to be endowed with the metric 〈v, w〉x := v>w. In order to
evaluate the length of such a curve, it is necessary to evaluate the velocity field γ̇:

γ̇(t) = (1, 1, cos(t)), t ∈ [a, b]. (138)

The length of the curve is now obtained through the rectification formula:

L(γ) :=
∫ b

a

√
12 + 12 + cos2(t)dt =

∫ b

a

√
2 + cos2(t)dt. (139)

Such an integral may not be expressed in terms of elementary functions. �

On the basis of the concepts of ‘curve’ and of ‘length of a curve’, it is possible to define
the notion of ‘distance between two points on a Riemannian manifold’ d(·, ·).

To define a notion of distance, let us consider what follows:

1. Given a manifold (M, 〈·, ·〉), take two arbitrary points p, q ∈M;
2. Choose a curve γ : [0, 1] → M that has p and q as endpoints, namely, such that

γ(0) = p and γ(1) = q;
3. Take as as distance d(p, q) the length of such a curve, namely L(γ); one such definition

seems a good starting point, but needs to be perfected since there exist infinitely many
curves joining two given points.
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It is important to underline that the notion of distance is not univocally defined since it
depends on the inner product that a manifold is endowed with. Since there exist infinitely many
curves joining two points on a manifold, a distance between two points p and q is actually
defined as the length of the shortest curve connecting such two points, namely

d(p, q) := inf
γ

∫ 1

0

√
〈γ̇(t), γ̇(t)〉γ(t)dt. (140)

The problem of selecting the shortest path connecting two points is far from easy to
solve. A possible method to look for it is the so-called variational method that we are going
to introduce in the following.

The key point is to introduce an energy functional defined as

E (γ) :=
∫ 1

0
〈γ̇(t), γ̇(t)〉γ(t)dt, (141)

whose minimum argument coincides to a geodesic. The variational method consists of
looking for a curve that makes the energy functional stationary, namely, for a curve such
that δE (γ) = 0. A concept that facilitates the formulation of the variational method is that
of normal space to a manifold in a point.

Clearly, the above definition introduces yet another degree of freedom, since the defi-
nition of normal space is based on a choice of inner product 〈·, ·〉A to evaluate orthogonality.
It is instructive to notice that, since a normal space is defined as the orthogonal complement
to a tangent space with respect to the ambient space, then

TxM⊕ NxM = A. (142)

In other terms, every element in A may be decomposed exactly as the sum of a tangent
and a normal vector.

Example 19. Let us evaluate the structure of the normal spaces to the hypersphere Sn−1 embedded
in A := Rn. Let us recall that Sn−1 := {x ∈ Rn | x>x = 1} and that TxSn−1 = {v ∈ Rn |
v>x = 0}. Let us select 〈y, z〉A := y>z for every y, z ∈ A. Since, by definition,

NxSn−1 := {z ∈ Rn | z>v = 0, ∀v ∈ Rn such that v>x = 0}, (143)

it is easily found that
NxSn−1 = {λx | λ ∈ R}. (144)

Let us further determine the structure of the normal spaces for the manifold SO(n). Let us
recall that SO(n) := {R ∈ Rn×n | R>R = In, det(R) = 1} and that TRSO(n) = {V ∈ Rn×n |
V>R + R>V = 0}. Let us take A := Rn×n and 〈Y, Z〉A := tr(Y>Z) for Y, Z ∈ A. Let us also
recall that

V>R + R>V = (R>V)> + R>V = H> + H = 0n, (145)

where H := R>V. Hence, any tangent vector at R may be written as V = RH with H being
skew-symmetric. By definition,

NRSO(n) := {Z ∈ Rn×n | tr(Z>V) = 0, ∀V = RH, H> + H = 0n}, (146)

and hence it is readily found that

NRSO(n) = {RS | S ∈ Rn×n, S> = S}. (147)

As a verification step, let us show that, for every n× n special orthogonal matrix R, skew-
symmetric matrix H and symmetric matrix S, it holds that 〈R H, R S〉A = 0. To this aim, let us
show that:

〈R H, R S〉A = tr((R H)>R S) = tr(H>(R>R)S) = −tr(H S). (148)
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Now, it is not hard to prove that every skew-symmetric matrix H is ‘orthogonal’ to every
symmetric matrix S; in fact:

tr(H S) = tr((H S)>)︸ ︷︷ ︸
Because tr(X)=tr(X>)

= tr(S>H>) = tr(S(−H)) = tr((−H)S)︸ ︷︷ ︸
Because tr(XY)=tr(YX)

= −tr(H S), (149)

and therefore tr(H S) = 0. From this result it follows that 〈R H, R S〉A = 0.
As a last example, let us determine the structure of the normal space to the manifold S+(n).

Recall that S+(n) := {P ∈ Rn×n | P> = P, P > 0} and that TPS+(n) = {V ∈ Rn×n |
V> −V = 0}. In this case, choose A := Rn×n and 〈Y, Z〉A := tr(Y>Z) for every Y, Z ∈ A. By
definition, it holds that

NPS+(n) := {Z ∈ Rn×n | tr(Z>V) = 0, ∀V such that V> −V = 0}, (150)

from which it turns out that

NPS+(n) = {Z ∈ Rn×n | Z> + Z = 0}. (151)

In fact, NPS+(n) represents the set of n× n matrices that are orthogonal to all n× n sym-
metric matrices, which coincides with the set of all n× n skew-symmetric matrices. Notice that
NPS+(n) does not depend explicitly on the base point P. �

The notion of normal space affords formulating the variational problem δE (γ) = 0
as a differential inclusion. For every specific manifold, it will then be possible to turn such
a differential inclusion into a differential equation to be solved under appropriate initial
conditions. Let us consider a curve γ : [0, 1]→M and let us define the fundamental form
F : TM→ R as:

F (x, v) := 〈v, v〉x. (152)

The following result holds.

Theorem 2. For a manifold M, the variational equation δE (γ) = 0 is equivalent to the following
differential inclusion:

∂F

∂γ
− d

dt
∂F

∂γ̇
∈ NγM. (153)

Notice that such a relation appears as a generalized form of the well-known Euler–
Lagrange equation of rational mechanics [48].

Proof. In order to prove such an important result, notice that the energy functional may be
rewritten as:

E (γ) =
∫ 1

0
F (γ, γ̇)dt. (154)

It is important to notice that, by virtue of the property (118), for every (x, v) ∈ TM,
there exists a neighborhood of (x, v) in A2, where the partial derivatives ∂F (x,v)

∂x and ∂F (x,v)
∂v

exist (technically, one should use an extension F in place of F ). Such partial derivatives
are intended in the Gateaux sense, namely

lim
ε→0

F (x + ε u, v)−F (x, v)
ε

=:
〈

∂F (x, v)
∂x

, u
〉A

, for every u ∈ A,

lim
ε→0

F (x, v + ε u)−F (x, v)
ε

=:
〈

∂F (x, v)
∂v

, u
〉A

, for every u ∈ A.

(155)

Let us define an arbitrary smooth variation η : [0, 1]→ TM, namely a deviation from
the geodesic γ, such that η(0) = η(1) = 0.
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For a sufficiently small constant ε > 0, it is possible to evaluate the quantity F (γ +
εη, γ̇ + εη̇). Applying the Taylor series expansion in A2 gives:

F (γ + εη, γ̇ + εη̇) = F (γ, γ̇) + ε

〈
∂F

∂γ
, η

〉A
+ ε

〈
∂F

∂γ̇
, η̇

〉A
+O(ε2), (156)

where O denotes a Landau symbol and it is used to compactly represent the remainder of
the series (e.g., in Lagrange form). The variation of the energy of a curve may be concretely
defined as:

δE (γ) := lim
ε→0

E (γ + εη)− E (γ)

ε
= lim

ε→0

1
ε

∫ 1

0
[F (γ + εη, γ̇ + εη̇)−F (γ, γ̇)]dt

=
∫ 1

0

〈
∂F

∂γ
, η

〉A
dt +

∫ 1

0

〈
∂F

∂γ̇
, η̇

〉A
dt +

∫ 1

0
lim
ε→0

O(ε2)

ε
dt.

(157)

The last integral is null. The second last integral may be rewritten, upon integration
by parts, as: ∫ 1

0

〈
∂F

∂γ̇
, η̇

〉A
dt =

〈
∂F

∂γ̇
, η

〉A
∣∣∣∣∣
1

0

−
∫ 1

0

〈
d
dt

∂F

∂γ̇
, η

〉A
dt. (158)

The first addendum on the right-hand side is null because the variation η vanishes at
the endpoints of the curve; therefore,

δE (γ) =
∫ 1

0

〈
∂F

∂γ
− d

dt
∂F

∂γ̇
, η

〉A
dt. (159)

By imposing that δE (γ) = 0 it is readily obtained that, since the variation η is arbitrary,
it must hold the relation (153).

Let us apply the above theorem to a number of manifolds.

Example 20. Let us determine the equation of geodesics on the hypersphere Sn−1 through Equation (153).
Let us recall that Sn−1 := {x ∈ Rn | x>x = 1}; assume that 〈v, w〉x := v>w (independently of
x) and let us recall that NxSn−1 = {λx | λ ∈ R}. Now, the equation of the geodesic reads:

∂(γ̇>γ̇)

∂γ
− d

dt
∂(γ̇>γ̇)

∂γ̇
= 0− 2

dγ̇

dt
= −2γ̈ ∈ {λγ | λ ∈ R} (160)

In summary, the equation for the geodesic is

γ̈(t) = λγ(t). (161)

(Since λ is arbitrary, it absorbed the factor −2.) The geodesic equation is then a second-order
differential equation in γ that needs two conditions to be solved.

As a further example, let us derive the geodesic equation for the manifold SO(n). Let us recall
that SO(n) := {R ∈ Rn×n | R>R = In, det(R) = 1}; the canonical inner product in this space
is 〈V, W〉R := tr(V>W) (independently of R) and that NRSO(n) = {RS | S ∈ Rn×n, S = S>}.
According to the general principle, the geodesic equation reads as

∂(γ̇>γ̇)

∂γ
− d

dt
∂(γ̇>γ̇)

∂γ̇
= 0− 2

dγ̇

dt
= −2γ̈ ∈ {γ S | S ∈ Rn×n, S = S>} (162)

In summary, the geodesic equation on the space SO(n) reads as

γ̈ = γ S, (163)

with S denoting an arbitrary symmetric function. �
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Through the notion of geodesic arcs, one may define the notion of Riemannian (or
geodesic) distance between two nearby points in a smooth manifold. In fact, let us denote
by x, y ∈ M two nearby points and assume that there exists a unique geodesic arc γ

y
x :

[0, 1]→M such that γ
y
x(0) = x and γ

y
x(1) = y. By definition, the length of such geodesic

arcs is taken as the distance between its two endpoints, namely:

d(x, y) :=
∫ 1

0

√
〈γ̇y

x(t), γ̇
y
x(t)〉γy

x(t)
dt. (164)

It is worth noticing, at this point, that the expression of the geodesic distance may be
rewritten in terms of the fundamental form F , namely

d(x, y) =
∫ 1

0

√
F (γ

y
x, γ̇

y
x)dt. (165)

A noteworthy (and extremely useful) result that we are going to prove is that, along a
geodesic, the fundamental form keeps constant. We shall see after the proof that such a
result noticeably simplifies the computation of the geodesic distance.

Theorem 3. Along a geodesic arc γ : [0, 1] → M, the function F (γ(t), γ̇(t)) stays constant
with respect to t.

Proof. Let us mention that, for any given pair (x, v) ∈ TM, it holds that〈
∂F (x, v)

∂v
, v
〉A

= 2 F (x, v), (166)

which clearly stems from the fact that F (x, v) is quadratic in v. Such a property may be
shown by recalling that F (x, v) = 〈v, Gx(v)〉A, where G denotes again a metric kernel, and
by noticing that

∂F (x, v)
∂v

= 2 Gx(v), (167)

from which it follows that 〈
∂F (x, v)

∂v
, v
〉A

= 〈2 Gx(v), v〉A, (168)

hence the property (166). Let us now show that the differential inclusion (153) and the
property (166) imply the constancy of the fundamental form F along a geodesic, namely
that:

F (γ(t), γ̇(t)) = F (γ(0), γ̇(0)) for every value t ∈ [0, 1] (169)

on every geodesic. By multivariable calculus it is readily proven that:

d
dt

F (γ, γ̇) =

〈
∂F

∂γ
,

dγ

dt

〉A
+

〈
∂F

∂γ̇
,

dγ̇

dt

〉A
. (170)

Integrating such an equation over the interval [0, t] gives:

∫ t

0
dF =

∫ t

0

〈
∂F

∂γ
,

dγ

dt

〉A
dt +

∫ t

0

〈
∂F

∂γ̇
,

dγ̇

dt

〉A
dt. (171)

The integral on the left-hand side is equal to F |t0, while the last integral on the
right-hand side may be evaluated through integration by parts and equals
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∫ t

0

〈
∂F

∂γ̇
,

dγ̇

dt

〉A
dt =

〈
∂F

∂γ̇
,

dγ

dt

〉A
∣∣∣∣∣
t

0

−
∫ t

0

〈
d
dt

∂F

∂γ̇
,

dγ

dt

〉A
dt

=2 F |t0 −
∫ t

0

〈
d
dt

∂F

∂γ̇
,

dγ

dt

〉A
dt,

(172)

by Equation (166). From Equations (171) and (172), it follows that:

F |t0 =
∫ t

0

〈
∂F

∂γ
− d

dt
∂F

∂γ̇
,

dγ

dt

〉A
dt + 2F |t0, (173)

hence

− F |t0 =
∫ t

0

〈
∂F

∂γ
− d

dt
∂F

∂γ̇
,

dγ

dt

〉A
dt. (174)

From the differential inclusion (153), it follows that the integrand is null; therefore,
F |t0 = 0 for every t ∈ [0, 1].

The above result means that any geodesic trajectory is traveled at a constant speed.

Since, along a geodesic arc, the speed
√
〈γ̇y

x(t), γ̇
y
x(t)〉γy

x(t)
is constant for any t, it holds that

d(x, y) =
√
〈γ̇y

x(0), γ̇
y
x(0)〉x. (175)

It is worth underlining that, provided that one knows the functional expression of
the geodesic connecting two points, their distance does not require integration, but just
algebraic operations. (The difficulty is hidden by the fact that finding the exact expression
of a geodesic connecting two points may be more troublesome than one might expect.)

We make an observation in order to justify an idea presented at the beginning of this
subsection about normal naïve acceleration for a geodesic.

Observation 2. Let us take a closer look at the differential inclusion (153), where F (x, v) =
〈v, Gx(v)〉, namely

∂〈γ̇, Gγ(γ̇)〉A
∂γ

− d
dt

∂〈γ̇, Gγ(γ̇)〉A
∂γ̇

∈ NγM. (176)

Under the hypothesis that the metric kernel Gx does not depend explicitly on the point x, the
first term on the left-hand side vanishes. In this case, let us plainly assume that Gx ≡ idx. In

addition, we have already established that ∂〈γ̇,Gγ(γ̇)〉A
∂γ̇ = 2Gγ(γ̇). The above differential inclusion

may hence be written as
(Gx ≡ idx ⇒) γ̈ ∈ NγM, (177)

namely, the naïve acceleration is perpendicular to the velocity. This is perhaps the simplest form of a
geodesic equation on a manifold. This is, in fact, the case for the hypersphere surveyed in an example.

A geodesic arc may be expressed in terms of two pieces of information, in addition to
its endpoints, such as the initial values γ(0) = x ∈M and γ̇(0) = v ∈ TxM, which represent
the point where a geodesic departs from and its initial speed, respectively. A geodesic arc
determined by these two pieces of information will be denoted as γx,v : [0, 1]→M.

Example 21. Let us consider a geodesic γx,v : [0, 1] → M, with (x, v) ∈ TM, such that
γ̇x,v(0) = v. In this case, it holds that

L(γx,v) =
√
〈v, v〉x =

√
F (x, v). (178)

�
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8.2. Exponential and Logarithmic Maps

To a geodesic arc γx,v : [0, 1]→M is associated a map expx : TxM→M defined as:

expx(v) := γx,v(1). (179)

The function (179) is termed exponential map with pole x ∈M and is of paramount im-
portance in manifold calculus. The exponential map exp : TM→M takes two arguments,
the point x ∈ M over the manifold and a vector v ∈ TxM tangent to the manifold at the
pole x, and returns a point on the manifold itself. A practical reading of the exponential
map is that it advances a point x toward a direction v, like vector addition moves a point
along a straight line in flat spaces. In other words, the following two expressions are the
counterparts of each other in a flat space Rn and in a manifold M:{

γx,v(t) = x + t v in Rn, t ∈ [0, 1],
γx,v(t) = expx(t v) in M, t ∈ [0, 1].

(180)

Much like the first expression denotes the shortest/straightest line on a flat space
(endowed with a Euclidean metric), the second expression denotes the shortest/straightest
line over a curved manifold.

The exponential map depends on the pair (x, v) ∈ TM and is locally invertible around
v = 0. This follows from the fact that expx(0) = x and by local invertibility results. In the
flat manifold Rn, the exponential map may be inverted easily; in fact

from y = x + v it follows that v = y− x. (181)

In the flat manifold Rn, we recover the classical and intuitive meaning of the exponen-
tial map and of its inverse:

• Exponential map: Given a point x and a vector v in Rn, the exponential map expx(v) :=
x + v moves the point from x to x + v. (Indeed, the term ‘vector’ comes from the
homonymus Latin term that means ‘transporter’.)

• Inverse exponential map: Given two points x and y in Rn, the inverse of the ex-
ponential map exp−1

x (y) returns a vector v such that expx(v) = expx(exp−1
x (y)) =

x + (y− x) ≡ y. In other words, the inverse exponential map applied to two points
x, y determines the vector v that ‘transports’ x to y.

Let us observe that the inverse exponential map is non-symmetric in its arguments,
namely the notation exp−1

x (y) makes it immediately clear that it is not allowed to swap
x with y. Indeed, even in the flat space Rn, it holds that exp−1

x (y) := y − x = −(x −
y) = − exp−1

y (x). (In the case of a curved manifold, such a reciprocity relation is more
convoluted.)

Generally, the inverse exponential map is termed logarithmic map. On a manifold M
where it is defined an exponential map exp : TM → M a logarithmic map is denoted as
log : M2 → TM. A logarithmic map takes as arguments two points x, y ∈M and returns a
vector v = logx(y) ∈ TxM. It is important to underline that a logarithmic map is defined
only locally, namely, only if x, y ∈ M lay sufficiently close to one another. The lack of a
global logarithmic map may be understood as follows. A logarithmic map is defined by
the following equation:

expx(logx y) = y, (182)

and therefore, the existence of logx y is tied to the chance of determining one and only
one geodesic arc γ

y
x that connects the given points x, y ∈ M, and then, by the equality

γ
y
x(t) = γx,v(t), it follows that logx y ≡ v. However, not every pair of points may be

connected by a unique geodesic, and hence a global logarithmic map, in general, fails to
exist. A quick example of such an unavoidable problem is found on the sphere S2; taking x
as the North pole and y as the South pole, there exist infinitely many geodesic lines that
connect the two poles. Hence, logx y is undetermined.
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Let us examine the expressions of geodesic arcs, geodesic distances and exponential
maps for manifolds of interest in system theory and non-linear control.

• Hypercube: The space Rp endowed with the Euclidean metric admits straight lines
as geodesics; in fact, since TxRp = Rp it follows that NxRp = {0}, and hence the
geodesic equation is simply γ̈x,v = 0 and its solution is γx,v(t) = x + t v for every
x ∈ Rp, v ∈ TxRp and t ∈ [0, 1]. Now, take two points x, y ∈ Rp and look for a
geodesic arc connecting them with t ∈ [0, 1]. It is necessary to find a vector v ∈ TxRp

such that γx,v(1) = y. Such a vector is clearly v = y− x; hence, the unique geodesic

arc connecting x to y is γ
y
x(t) = x + t(y − x). Since

√
〈γ̇y

x(0), γ̇
y
x(0)〉x = ‖v‖, the

Riemannian distance reads
d(x, y) =‖y− x‖, (183)

which is a well-known result from calculus and geometry.
• Hypersphere: On the hypersphere Sp−1 embedded in the Euclidean space Rp, a

geodesic line may be conceived as a curve on which a particle, departing from the
point x ∈ Sp−1 with velocity v ∈ TxSp−1, slides with constant speed ‖v‖, where
‖ · ‖ denotes the standard L2 vector norm. On the hypersphere, we denote such
a curve as γx,v(t), where the variable t ∈ [0, 1] provides a parametrization of the
curve. The differential equation characterizing geodesics on the hypersphere may
be determined by observing that, with the given conditions, in this case the naïve
acceleration of the particle must be either null or normal to the tangent space at
any point of the hypersphere itself, namely γ̈x,v(t) ∈ Nγx,v(t)S

p−1. Since the normal
space to a hypersphere at a point x is radial along x, the geodesic equation reads
as γ̈x,v(t) = λγx,v(t). In explicit form, the equation of the geodesic on the unit
hypersphere may be written as [49]:

γx,v(t) = x cos(‖v‖t) + v sin(‖v‖t)‖v‖−1, t ∈ [0, 1], (184)

as it is easy to verify by substitution. Additionally, it is easy to verify that γx,v(0) = x,
γ̇x,v(0) = v and that γx,v(t)>γx,v(t) = 1 for every t. The exponential map associated
with the above geodesic is

expx(v) := x cos(‖v‖) + v sin(‖v‖)‖v‖−1. (185)

The relationship (184) for the geodesic represents a ‘great circle’ on the hypersphere.
Now let us take two points x, y ∈ Sp−1 (non-antipodal, such that x>y 6= −1) and let
us look for a geodesic arc of the form (184) connecting them. It is clearly necessary to
find a vector v ∈ TxSp−1 such that γx,v(1) = y. Such an equation in the unknown v
may be expressed explicitly as

x cos(‖v‖) + v sinc(‖v‖) = y, (186)

where ‘ sinc’ denotes the cardinal sine function. Pre-multiplying the above equation
by x> gives cos(‖v‖) = x>y, namely ‖v‖ = acos(x>y); hence

v =
y− x(x>y)

sinc(acos(x>y))
. (187)

This expression represents the inverse of the exponential map applied to points
x, y ∈ Sp−1, namely

logx y :=
(Ip − xx>)y

sinc(acos(x>y))
. (188)
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Notice that such a logarithmic map is defined only when x>y 6= −1, namely when
the two points are antipodal. The unique geodesic arc connecting x to y is given by

γ
y
x(t) = x cos(acos(x>y)t) +

y− x(x>y)
sinc(acos(x>y))

sinc(acos(x>y)t). (189)

A noticeable consequence is that, since
√
〈γ̇y

x(0), γ̇
y
x(0)〉x = ‖v‖, the Riemannian

distance between the points x and y reads

d(x, y) = acos(x>y), (190)

where the inverse cosine function ‘acos’ returns a value in [0, π].
• Special orthogonal group: In general, it is not easy to obtain the expression of a

geodesic arc on a given manifold in closed form. In the present case, with the assump-
tions considered, the geodesic on SO(p) departing from the identity with velocity
H ∈ so(p) has expression γ̃(t) = exp(t H). (It is important to verify that γ̃(0) = Ip

and dγ̃(t)
dt

∣∣∣
t=0

= H.) It might be useful to verify such an essential result by the help

of the following arguments. A geodesic γ̃(t) on the Riemannian manifold SO(p),
embedded in the Euclidean ambient space A := Rp×p and endowed with its canonical
metric, departing from the identity Ip, should satisfy ¨̃γ(t) ∈ Nγ̃(t)SO(p), and therefore
it should hold:

¨̃γ(t) = γ̃(t)S(t) , with S>(t) = S(t). (191)

Additionally, we know that any geodesic arc belongs entirely to the base manifold;
therefore γ̃>(t)γ̃(t) = Ip. By differentiating such an expression two times with respect
to the parameter t, one obtains:

¨̃γ>(t)γ̃(t) + 2 ˙̃γ>(t) ˙̃γ(t) + γ̃>(t) ¨̃γ(t) = 0p. (192)

By plugging Equation (191) into Equation (192), we find that S(t) = − ˙̃γ>(t) ˙̃γ(t),
which leads to the second-order differential equation on the orthogonal group:

¨̃γ(t) = −γ̃(t)( ˙̃γ>(t) ˙̃γ(t)), (193)

to be solved with the initial conditions γ̃(0) = Ip and ˙̃γ(0) = H. It is a straightforward
task to verify that the solution to this second-order differential equation is given by
the one-parameter curve γ̃(t) = Exp (t H), where ‘Exp’ denotes a matrix exponential.
The expression of the geodesic arc in the position of interest may be made explicit by
taking advantage of the Lie-group structure of the orthogonal group endowed with
the canonical metric. In fact, let us consider the pair X ∈ SO(p) and V ∈ TXSO(p) as
well as the geodesic γ(t) that emanates from X, namely γ(0) = X, with velocity V. We
claim that the geodesic departing from X ∈ SO(p) in the direction V ∈ TXSO(p) is:

γX,V(t) = X Exp (t X>V). (194)

In fact, let us consider the left-translated curve γ̃(t) = X>γX,V(t). It has the following
properties:

1. The curve γX,V(t) belongs to the orthogonal group at any time. This may be
proven by computing the quantity γ>X,V(t)γX,V(t) and taking into account that
the identity Exp>(t H) = Exp (−t H) holds true. Therefore,

γ>X,V(t)γX,V(t) = Exp>(tX>V)X>X Exp (tX>V)

= Exp (−tX>V)Exp (tX>V) =

= Ip.
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2. It satisfies Equation (193); hence, it is a geodesic. In fact, notice that γ̃(t) =

X>X Exp (tX>V) = Exp (tX>V); hence, ˙̃γ(t) = X>V Exp (tX>V) and ¨̃γ(t) =
(X>V)2 Exp (tX>V). Now, the right-hand side of Equation (193) has the ex-
pression−Exp (tX>V)(X>V Exp (tX>V))>X>V Exp (tX>V) = −Exp (tX>V)
Exp (−tX>V)(X>V)>X>V Exp (tX>V) = (X>V)2 Exp (tX>V) because X>V ∈
so(p), hence the claim.

3. It satisfies γ̃(0) = X and ˙̃γ(0) = X(X>V) = V; hence, it has the correct base
point and direction.

Therefore, the exponential map associated with the above geodesic expression reads

expX(V) := X Exp (X>V). (195)

Now, fixed two points X, Y ∈ SO(p), let us compute the geodesic arc γY
X : [0, 1]→ SO(p)

that joins them. It all boils down in finding a tangent vector V ∈ TXSO(p) such that
Y = X Exp (X>V). Pre-multiplying this expression by X> gives X>Y = Exp (X>V);
hence, Log (X>Y) = X>V. Pre-multiplying the last equality by X gives the sought
tangent vector as V = X Log (X>Y). The logarithmic map associated with the above
exponential map therefore reads

logX Y := X Log (X>Y). (196)

The Riemannian distance between X and Y then takes the expression

d(X, Y) = ‖X Log (X>Y)‖F = ‖Log (X>Y)‖F, (197)

where ‘Log’ denotes, as usual, the matrix logarithm.
• Stiefel manifold: Let us consider the expression of geodesics corresponding to

two metrics.

1. Euclidean metric: The solution of the geodesic equation, with the initial conditions
γX,V(0) = X ∈ St(n, p) and γ̇X,V(0) = V ∈ TXSt(n, p), reads [33]:

γX,V(t) = [X V]Exp
(

t
[

X>V −V>V
Ip X>V

])
I2p,p Exp (−tX>V), (198)

for t ∈ [0, 1]. The expression of the exponential map corresponding to the
Euclidean metric reads, therefore,

expX(V) := [X V]Exp
([

X>V −V>V
Ip X>V

])
I2p,p Exp (−X>V), (199)

while the expression of the logarithmic map and of the Riemannian distance
between two given points, in closed form, are unknown at present (to the best of
the author’s knowledge). The pseudo-identity matrix I2p,p, with 2p rows and p
columns, is just an identity matrix topping a zero matrix.

2. Canonical metric: The geodesic arc γX,V may be computed as follows. Let Q and
R denote the factors of the thin QR factorization of the matrix V, then:

γX,V(t) = [X Q]Exp
(

t
[

X>V −R>

R 0p

])[
Ip
0p

]
, (200)

for t ∈ [0, 1]. The expression of the exponential map corresponding to the
canonical metric is, therefore,

expX(V) := [X Q]Exp
([

X>V −R>

R 0p

])[
Ip
0p

]
, (201)
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while the expressions of the logarithmic map and of the Riemannian distance
between two points are still unknown.
In fact, neither the logarithmic map nor the geodesic distance are known in
closed form for a Stiefel manifold.

• Real symplectic group: According to the two considered metrics, we have:

1. KM metric: Under the pseudo-Riemannian metric (115), it is indeed possible to
solve the geodesic equation in closed form. The geodesic curve γQ,V : [0, 1] →
Sp(2n) with Q ∈ Sp(2n) and V ∈ TQSp(2n) corresponding to the indefinite
Khvedelidze–Mladenov metric (115) has the expression:

γQ,V(t) = Q Exp (tQ−1V). (202)

In fact, the geodesic equation in variational form is:

δ
∫ 1

0
tr(γ−1γ̇γ−1γ̇)dt = 0. (203)

The calculation of this variation is facilitated by the following rules of the calculus
of variations:

δ(Q−1) = −Q−1(δQ)Q−1, (204)

δ

(
dQ
dt

)
=

d
dt

(δQ), (205)

δ(QZ) = (δQ)Z + Q(δZ), (206)

for curves Q, Z : [0, 1] → Sp(2n). By computing the variations, integrating by
parts and recalling that the variations vanish at endpoints, it is found that the
geodesic equation in variational form reads:∫ 1

0
tr(δγ(γ−1γ̈γ−1 − γ−1γ̇γ−1γ̇γ−1))dt = 0. (207)

The variation δγ ∈ TγSp(2n) is arbitrary. By the structure of the normal space
NQSp(2n), the equation tr(P>δγ) = 0, with δγ ∈ TγSp(2n), implies that P> =
HJγ−1 with H ∈ so(2n). Therefore, Equation (207) is satisfied if and only if:

γ−1γ̈γ−1 − γ−1γ̇γ−1γ̇γ−1 = HJγ−1, H ∈ so(2n), (208)

or, equivalently,
γ̈− γ̇γ−1γ̇ = γHJ, (209)

for some H ∈ so(2n). In order to determine the value of matrix H, note that:

γ> Jγ− J = 0⇒ γ̈> Jγ + 2γ̇> Jγ̇ + γ>γ̈ = 0.

Substituting the expression γ̈ = γ̇γ−1γ̇ + γHJ into the above equation yields
the condition JHJ = 0. Hence, H = 0 and the geodesic equation reads:

γ̈− γ̇γ−1γ̇ = 0. (210)

Its solution, with the initial conditions γ(0) = Q ∈ Sp(2n) and γ̇(0) = V ∈
TXSp(2n), is found to be of the form (202). By definition of matrix exponential, it
follows that γ̇Q,V(t) = V Exp (t Q−1V).

2. Euclidean metric: The expression of the geodesic corresponding to the Euclidean
metric was derived in [50]. Let γ : [0, 1]→ Sp(2n) be a geodesic arc connecting
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the points X, Y ∈ Sp(2n). Let us define h(t) := γ−1(t)γ̇(t). The geodesic that
minimizes the following energy functional∫ 1

0
tr(h>(t)h(t))dt, (211)

is the solution of the differential (Lax) equation:

ḣ(t) = h>(t)h(t)− h(t)h>(t). (212)

Furthermore, for the initial conditions γ(0) = X ∈ Sp(2n) and γ̇(0) = V ∈
TXSp(2n), the geodesic on the real symplectic group is given by

γX,V(t) = X Exp (t(X−1V)>)Exp (t[(X−1V)− (X−1V)>]), (213)

in the case that the real symplectic group is equipped by a Euclidean metric.

• Space of symmetric, positive-definite matrices: The geodesic arc, corresponding to
the canonical metric, emanating from a point P ∈ S+(p) in the direction V ∈ TPS+(p)
has the expression:

γP,V(t) =
S√P Exp

(
t
S√

P−1V
S√

P−1
)

S√P, (214)

where S√· denotes a symmetric matrix square root. The exponential and the logarith-
mic maps for P, Q ∈ S+(p) and V ∈ TPS+(p) thus read:

expP(V) =
S√P Exp

(
S√

P−1V
S√

P−1
)

S√P, (215)

logP(Q) =
S√P Log

(
S√

P−1Q
S√

P−1
)

S√P. (216)

The symmetric matrix square root of a S+(p) matrix P may be computed by means of its
eigenvalue factorization. In fact, if the matrix P is factored as X diag(λ1, λ2, λ3, . . . , λp)X>,
with X ∈ O(p) and every λk > 0, then it holds that S√P = X diag(

√
λ1,
√

λ2,
√

λ3, . . . ,√
λp)X>. The squared Riemannian distance between two points P, Q ∈ S+(p) is

given by

d2(P, Q) = 〈logP Q, logP Q〉P = tr((logP Q)P−1(logP Q)P−1)

= tr
(

S√P Log
(

S√
P−1Q

S√
P−1

)
S√PP−1 S√P Log

(
S√

P−1Q
S√

P−1
)

S√PP−1
)

= tr
(

Log 2
(

S√
P−1Q

S√
P−1

)
S√PP−1 S√P

)
= tr

(
Log 2

(
S√

P−1Q
S√

P−1
))

.

Notice that the following identity holds true:

tr(Ip −
S√

P−1Q
S√

P−1)k = tr(Ip −QP−1)k, (217)

and hence the Riemannian distance between two SPD matrices may be written equiv-
alently as

d2(P, Q) = tr(Log 2(QP−1)), (218)

as obtained by the series expansion of the matrix logarithm function (cf. Section 2.1).
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• Grassmann manifold: A geodesic arc on a Grassmann manifold emanating from
[X] ∈ Gr(n, p) with the velocity V ∈ T[X]Gr(n, p) may be written as:

γ[X],V(t) = [XB A]

[
cos(Dt)
sin(Dt)

]
B>,

= XB cos(Dt)B> + A sin(Dt)B>.
(219)

where X ∈ St(n, p) denotes a Stiefel matrix whose columns form an orthonormal basis
of the subspace [X] and ADB> denotes the compact singular value factorization of the
matrix V. The sin/cos functions applied to a diagonal matrix simply act, in terms of
components, on the entries of the main diagonal. As a compact, smooth Riemannian
manifold, a Grassmann manifold is geodesically complete, which implies that any two
points on Gr(n, p) may be connected by a geodesic arc.
The exponential map associated with the canonical metric reads:

exp[X](V) = XB cos(D)B> + A sin(D)B>. (220)

The logarithmic map log[X][Y] of two subspaces [X], [Y] ∈ Gr(n, p) is not easy to
compute in general. In [40], it is shown that if their Stiefel representatives X, Y ∈
St(n, p) are such that the product X>Y is symmetric, then log[X][Y] = ADB>, where
B(cos D)B> denotes the spectral factorization of the matrix X>Y and A := (I −
XX>)YB(sin D)−1.

Example 22. Let us compute the length of a geodesic curve γ
y
x : [0, 1]→ Sn−1 that, by definition,

represents the distance between points x, y ∈ Sn−1:

d(x, y) := L(γy
x). (221)

Let us start by showing that:

γ̇
y
x(t) =

1
sin θ

[θ cos(θ t)y− θ cos(θ (1− t))x] (222)

with cos θ := x>y; hence,

‖γ̇y
x(t)‖2 =

θ2

sin2 θ

[
cos2(θ t) + cos2(θ (1− t))− 2 cos(θ t) cos(θ (1− t))x>y

]
= θ2 = acos2(x>y).

(223)

It is instructive to verify that ‖γ̇y
x(t)‖2 does not actually depend on t, which facilitates the

computation of the length. In fact, the length of γ
y
x : [0, 1]→ Sn−1 is given by:

L(γy
x) =

∫ 1

0
‖γ̇y

x(t)‖dt = acos(x>y)
∫ 1

0
dt. (224)

Therefore, the distance between x, y ∈ Sn−1 equals:

d(x, y) = acos(x>y). (225)

As a further example, let us determine the length of the geodesic curve γR,V : [0, 1]→ SO(n)
given by the relationship (194). By definition, it holds that

L(γR,V) =
∫ 1

0
‖γ̇R,V(t)‖dt. (226)
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Let us show that

γ̇R,V(t) = (R R>)V Exp (R>V t) = V Exp (R>V t), (227)

therefore

L(γR,V) =
∫ 1

0

√
tr[(V Exp (R>V t))>V Exp (R>V t)]dt

=
∫ 1

0

√
tr[Exp (−R>V t)V>V Exp (R>V t)]dt

=
∫ 1

0
‖V‖dt = ‖V‖,

(228)

as proven in the general theoretical developments. �

The following observation clarifies a technical argument.

Observation 3. The parameter t in the expressions of geodesic lines, which we may identify as
time, indicates which point of a geodesic one is referring to. Normally, the value t = 0 corresponds
to the initial point x, namely γx,v(0) ≡ x. It is instructive to observe that, in all examined cases,
the velocity v and the time parameter t appear to be multiplied to one another. For example, the
equation of the geodesic γx,v on a hypersphere may be rewritten as

γx,v(t) = cos(‖v‖ t) x + sin(‖v‖ t)
v t
‖v‖ t

, t > 0. (229)

This means that it is always possible to re-scale the parameter t as α t as long as the velocity v
is re-scaled as v/α, where α > 0. This is the reason why the time parameter t normally ranges in
the interval [0, 1].

8.3. Geodesic Interpolation

The notions of metric, distance, geodesics, are related to the notion of interpolation. In
fact, the interpolation between two points x, y ∈M may be defined through the optimiza-
tion problem [51]:

ι
y
x(t) := arg min

z∈M
[(1− t)d2(x, z) + td2(z, y)], (230)

with parameter t ∈ [0, 1] providing the degree of interpolation between the two points. The
one-parameter curve ι

y
x : [0, 1]→M describes a trajectory over the manifold M, having x

and y as endpoints, which may be regarded as an interpolation curve. For example, the
value ι

y
x(

1
2 ) is regarded as a midpoint between points x and y.

Example 23. Let us consider two close points X, Y ∈ SO(p) and let us look for an interpolation
of such points in SO(p) endowed with its canonical metric. We are looking for a minimizer of the
criterion:

Z 7→ (1− t)‖Log (X>Z)‖2
F + t‖Log (Y>Z)‖2

F, (231)

with t ∈ [0, 1] assigned. We may look for an explicit solution of the above minimization problem
by reasoning as follows. The points X and Y may be connected by a geodesic arc γX,V(τ) =
X Exp (τX>V) with τ ∈ [0, 1] and V ∈ TXSO(p) such that γX,V(1) = Y, namely, with V
satisfying condition Exp (X>V) = X>Y. As the interpolating point ιYX(t) must be as close as
possible to both X and Y, it should belong to the geodesic γX,V(τ); therefore, we are left with the
problem of minimizing the criterion function:

τ 7→ (1− t)‖Log (X>X Exp (τX>V))‖2
F + t‖Log (Y>X Exp (τX>V))‖2

F

= (1− t)‖τX>V‖2
F + t‖(τ − 1)X>V‖2

F

= ((1− t)τ2 + t(τ − 1)2)‖Log (X>Y)‖2
F,
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with respect to the variable τ. In the second line, we have used the identity Y>X = Exp (−X>V).
The minimum of the above criterion function in [0, 1] is readily seen to be achieved in τ = t; thus,
the interpolating curve reads:

ιYX(t) = X Exp (t Log (X>Y)) = X(X>Y)t (232)

for 0 ≤ t ≤ 1. Notice that a matrix power Aα, with A ∈ Rn×n and α ∈ R, is defined (inasmuch as
it exists) in terms of matrix exponential/logarithm, hence the last identity. �

Generalizing the notion of midpoint, one comes up with the notion of mean value (and
of dispersion of a sample set around its mean value) in a metrizable manifold M. We may
consider what follows:

• The notion of ‘mean value’ of objects in a metrizable space should reflect the intuitive
understanding that the mean value is an element of the space that locates ‘amidst’ the
available objects. Therefore, a fundamental tool in the definition of mean value is a
measure of ‘how far apart’ elements in the sample space lie to one another.

• The notion of ‘metric variance’ of objects in a metrizable space should be defined in a
way that accounts for the dispersion of these objects about their mean values and also
depends on how the dissimilarity of such objects is measured.

A way of defining the mean value of a set of objects xk ∈M, k = 1, . . . , K, is provided
by the notion of Fréchet sample mean. The Fréchet sample mean and associated sample
metric variance [52] may be defined as:

µ := arg min
x∈M

1
K

K

∑
k=1

d2(x, xk), (233)

σ2 := min
x∈M

1
K

K

∑
k=1

d2(x, xk), (234)

where d denotes a distance function in the Riemannian manifold M. It is worth noting
that there is no guarantee, in general, that the optimization problem (233) admits a unique
solution. For example, consider the space Sp−1 and a sample set consisting of two antipodal
points; then, every point over the equator is a mean value. (Notice that a mean is Fréchet
only if it is a global minimizer, otherwise it is a Karcher mean.) If the sample points are
close enough to each other, it is known that the mean value is unique [53].

The notion of mean value of a set of points belonging to a curved manifold is utterly
important in system theory and non-liner control. In fact, the mean value µ is, by definition,
close to all points in a collection of points. Therefore, the tangent space TµM associated
with a cloud of data points may serve as a reference tangent space (see, for example, [54]).

8.4. Coordinate-Prone Geodesy, Christoffel Symbols*

In terms of the variation of an energy functional, a geodesic on a manifold M is defined
as the unique curve γ(t) ∈M, t ∈ [0, 1] that meets the following requirement

δ
∫ 1

0
〈γ̇, γ̇〉γdt = 0, (235)

where the symbol δ denotes the variation of the integral functional. The integral func-
tional in (235) represents the total action associated with the parametrized smooth curve
γ : [0, 1]→M of local coordinates xk = γk(t) and may be written explicitly as:∫ 1

0
〈γ̇, γ̇〉γdt =

∫ 1

0
gij(γ(t))γ̇i(t)γ̇j(t)dt. (236)
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The variation δ in the expression (235) corresponds to a perturbation of the total
action (236). Let η : [0, 1] → M denote an arbitrary parametrized smooth curve of local
coordinates ηk(t) such that ηk(0) = ηk(1) = 0. Define the perturbed action as

A ∗η (h) :=
∫ 1

0
gij(γ + h η)(γ̇i + h η̇i)(γ̇j + h η̇ j)dt, (237)

with h ∈ [−ε, ε], ε > 0. The condition (235) may be expressed explicitly in terms of the
perturbed action as:

lim
h→0

A ∗η (h)−A ∗η (0)

h
= 0, ∀ perturbation η. (238)

The perturbed total action may be expanded around h = 0 as follows:

A ∗η (h) =
∫ 1

0

[
gij(x) + h

∂gij

∂xk ηk +O(h2)

]∣∣∣∣
x=γ(t)

[γ̇iγ̇j + h(γ̇iη̇ j + γ̇jη̇i) +O(h2)]dt

=
∫ 1

0
gij(γ)γ̇

iγ̇jdt + h
∫ 1

0

[
gij(x)(γ̇iη̇ j + γ̇jη̇i) + ηk ∂gij

∂xk γ̇iγ̇j
]∣∣∣∣

x=γ(t)
dt +O(h2)

= A ∗η (0) + h
∫ 1

0

[
gik(x)γ̇iη̇k + gkj(x)γ̇jη̇k +

∂gij

∂xk γ̇iγ̇jηk
]∣∣∣∣

x=γ(t)
dt +O(h2),

where O(h2) is such that limh→0 h−1O(h2) = 0. The first term in the integral on the
right-hand side of the last line may be integrated by parts, namely:

∫ 1

0
gik(γ)γ̇

iη̇kdt = gik(γ)γ̇
iηk
∣∣∣1
0
−
∫ 1

0

d(gik(γ)γ̇
i)

dt
ηkdt, (239)

whose first term on the right-hand side vanishes to zero because ηk(0) = ηk(1) = 0, hence:∫ 1

0
gik(γ)γ̇

iη̇kdt = −
∫ 1

0

(
∂gik

∂xj γ̇iγ̇j + gik(x)γ̈i
)∣∣∣∣

x=γ(t)
ηkdt. (240)

A similar result holds for the second term within the integral on the right-hand side.
Therefore, it holds that:

A ∗η (h)−A ∗η (0)

h
=
∫ 1

0

[(
∂gij

∂xk −
∂gik

∂xj −
∂gkj

∂xi

)
γ̇iγ̇j − 2gik(x)γ̈i

]∣∣∣∣
x=γ(t)

ηkdt +
O(h2)

h
.

The condition (238), therefore, implies that:

gikγ̈i +
1
2

(
−

∂gij

∂xk +
∂gik

∂xj +
∂gkj

∂xi

)
γ̇iγ̇j = 0. (241)

Let us now recall the notion of Christoffel symbols of the first kind (named after Elwin
Bruno Christoffel) associated with a metric tensor of components gij. These coefficients are
defined as:

Γijk :=
1
2

(
∂gjk

∂xi +
∂gik

∂xj −
∂gij

∂xk

)
. (242)

On top of it, the Christoffel symbols of the second kind are defined as Γh
ij := ghkΓijk. The

Christoffel symbols of the second kind are symmetric in the covariant indices, namely,
Γh

ij = Γh
ji.

On the basis of the Christoffel symbols, Equation (241) may be rewritten as

gikγ̈i + Γijkγ̇iγ̇j = 0. (243)
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Multiplying by ghk and introducing the Christoffel symbols of the second kind, Equa-
tion (243) may be written as:

γ̈i + Γi
jkγ̇jγ̇k = 0. (244)

Such a system of second-order differential equations needs two initial conditions to be
solved. Typical initial conditions are γi(0) = xi and γ̇i(0) = vi.

Example 24. One might wonder if the Christoffel symbols defined in (242) are the components of a
tensor. The answer is negative, because none of its lower index denote covariancy. �

9. Riemannian Gradient of a Manifold-to-Scalar Function

The gradient of a scalar function in a point of its manifold-type domain represents a
degree of variability of the function in a vicinity of such a point. In the present section, we
are going to survey the notion of ‘Riemannian gradient’ starting from more familiar cases
to obtain a full definition for manifold-to-scalar functions.

9.1. Riemannian Gradient: Motivation and Definition

In the simplest case of a scalar function of a scalar variable f : R → R, its degree
of variability is quantified by its slope d f

dx . In fact, let us recall that, given a point x ∈ R,
moving slightly away from it of a little amount h ∈ R, the value of the function f (x + h)
may be related to the value of f (x) through a Taylor series expansion. Such an expansion,
truncated to a first-order term by a Lagrange-type remainder, reads

f (x + h) = f (x) +
d f (x)

dx
h +O(h2), (245)

and hence the first derivative of the function (that is, its gradient) truly quantifies the
variability of the function around the point x. In the above expression, O again denotes a
Landau symbol.

In the more involved case of a scalar function of several variables, f : Rp → R,
the gradient ∂ f

∂x quantifies again the degree of variability of the function around a point,
although such information is spread along p axes. In fact, in this case, there exist multiple
directions along which the variability of a function may be explored. After choosing a
direction, one may move away along a straight line. Starting from a point x ∈ Rp and
moving away along a direction v ∈ Rp of a small fraction t, the value of f (x + t v) may be
related to the value of f (x) through a multivariable Taylor series expansion which, in the
first order, reads

f (x + t v) = f (x) +
(

∂ f (x)
∂x

)>
(t v) +O(t2). (246)

Therefore, the gradient of the function f (which, in this case, may be termed ‘Euclidean
gradient’ and coincides with the ‘Gateaux derivative’ and with the ‘Jacobian’ of the function)

encodes the variability of the function and the quantity
(

∂ f (x)
∂x

)>
v represents the directional

derivative of the function f at x along the direction v. In the following, we shall utilize the
shorter notation ∂x := ∂

∂x .
In the case of a scalar function whose domain is a curved manifold f : M → R, its

gradient, which we shall denote as gradx f , serves again to quantify the degree of variability
of a function in the neighborhood of point x ∈M along a given tangent direction. On the
same line of reasoning as before, starting from a point x ∈ M one may think of moving
away slightly along a given tangent direction v ∈ TxM. After choosing a direction, the
simplest way to move away from a point along a given direction is to travel along a geodesic
line for a short time. Thus, taking a geodesic γx,v : [−ε, ε]→M, the value of f (γx,v) may
be related to the value f (x) through a Taylor-type expansion, which is written as

f (γx,v(t)) = f (x) + 〈gradx f , t v〉x +O(t2). (247)
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Therefore, the gradient of the function f quantifies the variability of a function around
a point, while 〈gradx f , v〉x may be interpreted as a directional derivative of the function f
at x along a direction v. From the relationship (247), we see that

f (γx,v(t))− f (x)
t

= 〈gradx f , v〉x +
O(t2)

t
. (248)

Taking the limit as t approaches zero, the second addendum on the right-hand side
vanishes to zero; hence, we obtain

〈gradx f , v〉x = lim
t→0

f (γx,v(t))− f (x)
t

=
d f (γx,v(t))

dt

∣∣∣∣
t=0

. (249)

The right-hand side is resemblant of a Gateaux derivative of the function f in the
direction v. The relationship (249) may be indeed taken as a definition of the gradient of
the function with the proviso that it should hold for every v ∈ TxM.

By taking a closer look at the expression (249), it is readily seen that it holds even if
the geodesic line is replaced by any smooth curve γ : [−ε, ε]→M as long as γ(0) = x and
γ̇(0) = v, in which case we can write

〈gradx f , v〉x = lim
t→0

f (γ(t))− f (x)
t

. (250)

Now let us underline an illusory contradiction in the above expression.

Observation 4. The curve γ takes part only in closed proximity of the point x; therefore, the
right-hand side of the above relation only depends on the point x and the tangent v, as well as the
function f , and, in particular, it does not depend on the metric. In other words, the result of the
expression limt→0

f (γ(t))− f (x)
t quantifies how much the function f varies upon moving away from

the point x toward the direction v. As opposed to this, the left-hand side of the relation (250) seems
to depend on the metric 〈·, ·〉. Since the metric may be chosen arbitrarily and independently of the
function f and of the quantities x and v, the above relation looks like a conceptual clash.

The only possible way to fix such an illusory contradiction is to recognize that the gradient
itself must depend on the metric in such a way that the directional derivative 〈gradx f , v〉x does not.
In other words, if we denote by 〈·, ·〉(1) and 〈·, ·〉(2) two metrics for the manifold M, then it must
hold that

〈grad(1)
x f , v〉(1)x = 〈grad(2)

x f , v〉(2)x (251)

for every v ∈ TxM, where grad(1)
x f denotes the gradient of the function f at x corresponding to the

metric 〈·, ·〉(1) and grad(2)
x f denotes the gradient of the function f at x corresponding to the metric

〈·, ·〉(2).

Let us formalize the above discussion with the aim of formalizing the notion of
Riemannian gradient on a Riemannian manifold. Let us consider a Riemannian manifold M
embedded in an ambient space A and, for every point x, the tangent space TxM. Let us
now consider a smooth function f : M → R and an inner product 〈·, ·〉A in A. We shall
require that the function f is extendable to a neighborhood of x in A so as to be able to
compute the Gateaux derivative ∂x of the function f with respect to x. (As usual, we are
supposed to use an extension f in the following expressions.) Let us recall that

lim
h→0

f (x + h v)− f (x)
h

=: 〈∂x f , v〉A. (252)

We denote the inner product that the tangent bundle TM is endowed with at x ∈M
as 〈·, ·〉x. The Riemannian gradient gradM

x f of the function f over the manifold M at the
point x is uniquely defined by the following two conditions:
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• Tangency condition: For every x ∈M, gradM
x f ∈ TxM.

• Metric compatibility condition: For every x ∈ M and every v ∈ TxM ⊂ A, it holds
that 〈gradM

x f , v〉x = 〈∂x f , v〉A.

The tangency condition codifies the requirement that a Riemannian gradient must
always be a tangent vector to the manifold, namely (x, gradx f ) ∈ TM, while the metric
compatibility condition codifies the requirement that the inner product between a gradient
vector and any other tangent vector belonging to the same tangent space takes a value that
is invariant with respect to the chosen metric. The latter condition is better understood by
considering that the linear component of the variation of a function when moving away
from a point x of a quantity v is given by

dx f (v) = 〈gradM
x f , v〉x. (253)

Clearly, the amount dx f (v) depends only on x, f and the displacement v, certainly
not on the metric. As a consequence, the gradient needs to depend on the metric. The
‘reference’ inner product is taken as the inner product that the ambient space is endowed
with. In fact, the Riemannian gradient of a manifold-to-scalar function represents the rate
of change of such function at a given point toward a given direction. The superscript M

may be removed for simplicity.
Let us survey the calculation of the Riemannian gradient in a number of spaces of

interest in applications.

• Hypercube: In the space Rp endowed with the Euclidean metric, the Gateaux deriva-
tive of a regular function f : Rp → R is simply the column array of partial derivatives of
function f with respect to the entries of the column array x = [x(1) x(2) x(3) · · · x(p)]>,
namely

gradRp

x f = ∂x f :=


∂ f

∂x(1)
∂ f

∂x(2)
...

∂ f
∂x(p)

. (254)

Likewise, the Gateaux derivative of a regular function f : Rp×q → R is the Jacobian
matrix of partial derivatives of function f with respect to the entries of the matrix X,
denoted by X(i,j), namely

gradRp×q

X f = ∂X f :=


∂ f

∂X(1,1)
∂ f

∂X(1,2) · · · ∂ f
∂X(1,q)

∂ f
∂X(2,1)

∂ f
∂X(2,2) · · · ∂ f

∂X(2,q)

...
...

. . .
...

∂ f
∂X(p,1)

∂ f
∂X(p,2) · · · ∂ f

∂X(p,q)

. (255)

• Hypersphere: Given a regular function f : Sp−1 → R, its Riemannian gradient at

x ∈ Sp−1 is denoted as gradSp−1

x f ∈ TxSp−1. The Riemannian gradient associated with
the canonical metric has the expression:

gradSp−1

x f = (Ip − xx>)∂x f . (256)

In fact, the metric compatibility condition prescribes that 〈gradSp−1

x f , v〉 = 〈∂x f , v〉, for

every v ∈ TxSp−1; hence, 〈gradSp−1

x f − ∂x f , v〉 = 0 for every v ∈ TxSp−1, and therefore

gradSp−1

x f − ∂x f ∈ NxSp−1. It follows that

gradSp−1

x f = ∂x f + λ x, (257)
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for some λ ∈ R. The tangency condition then entails (gradSp−1

x f )>x = 0, hence that
(∂x f + λ x)>x = 0, namely λ = −x>∂x f , which gives the stated result.

• Special orthogonal group: Let us compute the Riemannian gradient of a regular
function f : SO(p) → R. Let the manifold SO(p) be equipped with its canonical
metric. Let gradSO(p)

X f denote the gradient vector of a function f at R ∈ SO(p)
derived from the canonical metric. According to the compatibility condition for the
Riemannian gradient it must hold that:

〈V, gradSO(p)
R f 〉 = 〈V, ∂R f 〉, ∀V ∈ TRSO(p)

and therefore:
〈V, gradSO(p)

R f − ∂R f 〉 = 0, ∀V ∈ TRSO(p).

This implies that the quantity gradSO(p)
R f − ∂R f belongs to the normal space NRSO(p),

namely:
gradSO(p)

R f = ∂R f + RS, with S being p× p symmetric. (258)

In order to determine the unknown matrix S, we may exploit the tangency condition,
namely (gradSO(p)

R f )>R + R>(gradSO(p)
R f ) = 0p. Let us first pre-multiply both sides

of Equation (258) by R>, which gives:

R>gradSO(p)
R f = R>∂R f + S.

The above equation, transposed hand by hand, gives:

(gradSO(p)
R f )>R = ∂>R f R + S.

Hand-by-hand summation of the last two equations gives:

R>∂R f + ∂>R f R = −2S ,

that is:
S = −1

2

(
R>∂R f + ∂>R f R

)
. (259)

By plugging the expression (259) into the expression (258), we obtain the Riemannian
gradient in the orthogonal group, corresponding to its canonical metric:

gradSO(p)
R f =

1
2

(
∂R f − R ∂>R f R

)
. (260)

• Stiefel manifold: Let us compute the expression of the Riemannian gradient of a
regular function f : St(n, p) → R at a point X ∈ St(n, p) corresponding to the
Euclidean and the canonical metrics. Recall that the Riemannian gradient gradSt(n,p)

X f
in a Stiefel manifold embedded in the Euclidean space Rn×p is the unique matrix in
TXSt(n, p) such that:

tr
(

U>∂X f
)
= 〈U, gradX f 〉X , ∀U ∈ TXSt(n, p). (261)

1. Euclidean metric: The metric compatibility condition becomes tr(U>(∂X f−
gradSt(n,p)

X f )) = 0, which implies that gradSt(n,p)
X f = ∂X f + XS, with S being

p × p symmetric. Pre-multiplying both sides of this equation by the matrix
X> yields S + X>∂X f = X>gradSt(n,p)

X f . Transposing both hands of the above
equation and summing hand by hand yields:
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S = −1
2

(
∂>X f X + X>∂X f

)
+

1
2

(
(gradSt(n,p)

X f )>X + X>gradSt(n,p)
X f

)
. (262)

From the condition gradSt(n,p)
X f ∈ TXSt(n, p), according to Equation (46), it

follows that (gradSt(n,p)
X f )>X + X>gradSt(n,p)

X f = 0. In conclusion, the sought
Riemannian gradient reads:

gradSt(n,p)
X f = ∂X f − 1

2
X
(

∂>X f X + X>∂X f
)

. (263)

2. Canonical metric: The metric compatibility condition prescribes that:

tr
(

U>
(

∂X f −
(

In −
1
2

XX>
)

gradSt(n,p)
X f

))
= 0, ∀U ∈ TXSt(n, p), (264)

and therefore, invoking the tangency condition as well, it turns out that:{
∂X f −

(
In − 1

2 XX>
)

gradSt(n,p)
X f = XS,

S = 1
2
(
X>∂X f + ∂>X f X

)
.

(265)

Solving for the Riemannian gradient yields the final expression:

gradSt(n,p)
X f = ∂x f − X ∂>X f X. (266)

• Real symplectic group: According to the two considered metrics, the expression of
the gradient may be computed as outlined below.

1. KM metric: The structure of the pseudo-Riemannian gradient of a regular function
f : Sp(2n) → R associated with the Khvedelidze–Mladenov metric (115) is
given by

∇Q f = 1
2 QJ

(
Q>∂Q f J − J∂>Q f Q

)
. (267)

In fact, the pseudo-Riemannian gradient of a regular function f : Sp(2n) → R
associated with the metric (115) is computed as the solution of the following
system of equations:{

tr(Q−1gradQ f Q−1V) = tr(∂>Q f V), ∀V ∈ TQSp(2n),
grad>Q f J Q + Q> JgradQ f = 0.

(268)

The first constraint ensures the compatibility of the pseudo-Riemannian gradient
with the chosen metric, while the second constraint enforces the requirement for
the pseudo-Riemannian gradient to lay on a specific tangent space. In particular,
the metric compatibility condition may be recast as:

tr(V>(∂Q f −Q−>grad>Q f Q−>)) = 0. (269)

The above condition implies that ∂Q f − Q−>grad>Q f Q−> ∈ NQSp(2n), and

hence that ∂Q f − Q−>grad>Q f Q−> = JQH with H ∈ so(2n). Therefore, the
pseudo-Riemannian gradient of the criterion function f has the expression:

∇Q f = Q ∂>Q f Q−QHJ. (270)
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In order to determine the value of the unknown skew-symmetric matrix H, it
is sufficient to plug the expression (270) of the gradient within the tangency
condition, which becomes:(

Q ∂>Q f Q−QHJ
)>

JQ + Q> J
(

Q ∂>Q f Q−QHJ
)
= 0. (271)

Solving for H gives:

H = − 1
2

(
JQ>∂Q f + ∂>Q f QJ

)
. (272)

Plugging the above expression into (270) gives the result (267).
2. Euclidean metric: The structure of the Riemannian gradient ∇Q f of a regular

function f : Sp(2n)→ R corresponding to the metric (116) reads:

∇Q f = 1
2 QJ

(
∂>Q f QJ − JQ>∂Q f

)
. (273)

In fact, the Riemannian gradient ∇Q f must satisfy the conditions:{
∇Q f = QJ(H −Q−1 J∂Q f ),
H = 1

2 (Q
−1 J ∂Q f + ∂>Q f QJ),

(274)

from which the expression of the Riemannian gradient associated with the metric
(116) follows.

• Manifold of symmetric, positive-definite matrices: The Riemannian gradient gradP f
of the function f : S+(p)→ R may be calculated as the unique vector in TPS+(p) that
satisfies the following equation:

tr(V∂P f ) = tr
(

VP−1(gradS+(p)
P f )P−1

)
, ∀V ∈ TPS+(n). (275)

The solution of the above equation satisfies:

∂P f − P−1(gradS+(p)
P f )P−1 = 1

2

(
∂P f − ∂>P f

)
, (276)

and hence the expression of the sought Riemannian gradient follows:

gradS+(p)
P f = 1

2 P
(

∂P f + ∂>P f
)

P. (277)

• Grassmann manifold: The Riemannian gradient grad[X] f may be calculated by its
definition and reads as:

∇Gr(n,p)
[X]

f = (In − XX>)∂X f . (278)

The above calculations may be conveniently unified by recalling the notion of metric
kernel, which affords turning the metric compatibility condition into a projection. Let us
recall that the inner product 〈v, u〉x may be written as 〈v, Gx(u)〉A. On the basis of such an
equality, the metric compatibility condition may be rewritten as

〈Gx(gradM
x f ), v〉A = 〈∂x f , v〉A for every v ∈ TxM. (279)

Equivalently, 〈Gx(gradM
x f )− ∂x f , v〉A = 0 for every v ∈ TxM. By the definition of a

normal space, such a condition may be rewritten as

Gx(gradM
x f )− ∂x f ∈ NxM. (280)
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In practical terms, the Gateaux derivative ∂x f ∈ A may be uniquely decomposed
into the sum of two terms, a tangent one (that it, the gradient) and a normal one. Upon
discarding the normal component, the remainder is the sought gradient.

The latter observation may be expressed using the notion of orthogonal projection.
Let us define an orthogonal projector Πx : A→ TxM as an operator that maps an element of
the ambient space to a tangent vector in a specific tangent space. Let us observe that

Πx(a) ∈ TxM⇔ a−Πx(a) ∈ NxM. (281)

The projection operator Πx : A→ TxM is defined by the two conditions:

1. Tangency: Πx(a) ∈ TxM for x ∈M and a ∈ A.
2. Complementarity: 〈v, a−Πx(a)〉A = 0 for all v ∈ TxM.

Notice that if ν ∈ NxM then Πx(ν) = 0, while if v ∈ TxM then Πx(v) = v.

Observation 5. Orthogonal projection stems from a minimization problem, namely, given a point
a ∈ A and a vector space V, the orthogonal projection of a on V is the shortest vector in V that
approximates a, namely

min
v∈V
〈a− v, a− v〉A. (282)

Applying orthogonal projection to both sides of the relationship (280) leads to

Πx(Gx(gradM
x f ))−Πx(∂x f ) = 0, (283)

but since Πx(Gx(gradM
x f )) = Gx(gradM

x f ), we may write the explicit formula

gradM
x f = G−1

x (Πx(∂x f )). (284)

The latter expression is quite suggestive, as it states that the Riemannian gradi-
ent of a function may be computed as the projection of its Gateaux derivative over
a tangent space, to make it a tangent vector, further compensated by the metric ker-
nel to take into account the effect of the metric (namely, to make it sure that the inner
product of gradient with any tangent vector is independent of the metric). Notice that
〈gradM

x f , v〉x = 〈G−1
x (Πx(∂x f )), Gx(v)〉A. Since Gx is self-adjoint, such expression simpli-

fies into 〈Πx(∂x f ), v〉A which is, in fact, independent of the metric kernel.
Let us summarize a few expressions of interest of orthogonal projection.

• Hypersphere: An expression of an orthogonal projector Πx : Rn → TxSp−1, for
x ∈ Sp−1, where the ambient space Rp is endowed with a Euclidean metric, is:

Πx(a) := (Ip − xx>)a. (285)

Notice that a−Πx(a) = (x>a)x is radial (that is, directed along x) and hence normal.
• Stiefel manifold: It might be useful to define an orthogonal projection operator ΠX :

Rn×p → TXSt(n, p), for X ∈ St(n, p). Let us assume the ambient space A := Rn×p be
endowed with a Euclidean metric 〈U, V〉A := tr(U>V). In this case, the orthogonal
projection takes the expression

ΠX(U) := U − 1
2 X(X>U + U>X), (286)

• Grassmann manifold: An expression of orthogonal projection Π[X] : Rn×p → T[X]Gr
(n, p), for [X] ∈ Gr(n, p) is

Π[X](V) := (In − XX>)V. (287)

Let us apply the above considerations to a quadratic function on the hypersphere.
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Example 25. Let us consider the function f : Sn−1 → R defined as:

f (x) := 1
2 x>P0 x, (288)

with P0 ∈ S+(n) being constant. We assume the hypersphere to be embedded in the ambient space
Rn endowed with a Euclidean metric. The Euclidean gradient (and also the Gateaux derivative) of
such a function reads as

∂ f
∂x

= P0 x. (289)

Since, on the hypersphere, Πx(a) = (I − xx>)a, the Riemannian gradient of the function f
takes the expression

gradx f = (In − xx>)P0 x = P0 x− (x>P0x)x. (290)

�

Let us verify that the expression (286) is indeed an orthogonal projection over the
tangent bundle TSt(n, p).

Example 26. The expression ΠX(U) := U − 1
2 X(X>U + U>X) realizes an orthogonal pro-

jection over the tangent space TXSt(n, p). To prove such a statement, it suffices to show that
ΠX(U) ∈ TXSt(n, p) and that 〈U −ΠX(U), V〉A = 0 for every V ∈ TXSt(n, p), which rep-
resent the conditions of tangency and of orthogonality, respectively. To what concerns the first
property:

X>ΠX(U) + Π>X (U)X

= X>U + U>X− 1
2 (X>X)(X>U + U>X)− 1

2 (X>U + U>X)(X>X)

= 0.

(291)

To what concerns the second property, notice that

〈U −ΠX(U), V〉A

= tr(V>(U −U + 1
2 X(X>U + U>X))

= 1
2 tr(V>X(X>U + U>X)).

(292)

Now observe that H := V>X is skew-symmetric, while S := X>U + U>X is symmetric, for
every X ∈ St(n, p), U ∈ A and V ∈ TXSt(n, p). Since tr(HS) ≡ 0, the statement holds true. �

A further interesting counterexample clarifies the notion of orthogonality in orthogo-
nal projection.

Example 27. Let us consider the function ΠX(U) := U − XU>X which realizes a projection
over the tangent bundle TSt(n, p) but not an orthogonal one as long as the Euclidean metric is
concerned. Showing that it indeed realizes a projection is fairly easy; in fact,

X>ΠX(U) + Π>X (U)X

= X>U −U>X + U>X− X>U

= 0.

(293)
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Likewise, we can show that such a projection is not orthogonal in the Euclidean metric; in fact,

〈U −ΠX(U), V〉A

= tr(V>(U −U + XU>X))

= tr((V>X)(U>X)).

(294)

Since the matrix product U>X is arbitrary, the latter expression is not guaranteed to be null. �

As a last example, let us consider the case of the symplectic group endowed with its
canonical metric. The orthogonal projection is not easy to express in closed form.

Example 28. Let us consider the symplectic group Sp(2n) embedded into the ambient space
A := R2n×2n endowed with a Euclidean metric 〈A, B〉A := tr(A>B). By definition of orthogonal
projection, ΠQ(A) must be an element of the tangent space TQSp(2n), while A−ΠQ(A) must be
an element of the normal space NQSp(2n). According to the characterization (49), it should then
hold

A−ΠQ(A) = JQH, (295)

namely ΠQ(A) = A − JQH, with H skew-symmetric to be determined. From the tangency
condition, it follows that

(A− JQH)> JQ + Q> J(A− JQH) = 0. (296)

Through some manipulations, the above equation may be rewritten as

HQ>Q + Q>QH = −A> JQ + Q> J>A. (297)

All quantities in the above equation are known except for the unknown skew-symmetric matrix
H. The above equation is an instance of the more general Sylvester equation (for a review, see,
e.g., [55]).

According to [55], there exist a number of expressions to write the solution to such an equation.
One solution is based on the Kronecker operations. In particular, in this case we can use the
Kronecker sum I2n ⊕Q>Q and the vectorization operator ‘vec’ to rewrite Equation (297) as

(I2n ⊕Q>Q) vec(H) = vec(−A> JQ + Q> J>A). (298)

The orthogonal projection operation may therefore be expressed as

ΠQ(A) = A− JQ vec−1{(I2n ⊕Q>Q)−1 vec(−A> JQ + Q> J>A)}. (299)

A more elegant expression stems from an integral representation of the solution of the Sylvester
Equation (297), namely

ΠQ(A) = A + JQ
∫ +∞

0
Exp (Q>Q t)(−A> JQ + Q> J>A)Exp (Q>Q t)dt. (300)

For the integral representation of the solution of a Sylvester equation, we refer the readers to
the aforementioned review paper [55]. We mention that none of these solutions are efficient from a
computational point of view.

9.2. Application of Riemannian Gradient to Optimization on Manifold

An important application of the Riemannian gradient, which is of specific interest in
system theory and non-linear control, is gradient-based mathematical optimization, which
we are going to briefly survey in the remainder of the present section.

Let us preliminarily observe that the relationship (250) that defines the notion of
Riemannian gradient possess a further interpretation. Let us take a regular function
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f : M → R, a regular curve γ : [−ε, ε] → M and a metric 〈·, ·〉 in TM. The functions
f and γ may be composed as f ◦ γ : [−ε, ε] → R. Therefore, from the relation (250), it
follows that:

d
dt

f (γ(t)) = 〈gradγ(t) f , γ̇(t)〉γ(t) (301)

along the curve γ. As a matter of fact, such a relation is a counterpart of the familiar rule of
derivation for composite functions

d
dt

f (g(t)) =
d f
dg

(g(t))
dg
dt

(t). (302)

To determine the maximum of a function on a manifold it is possible to make use of
a gradient method. Such a method is based on the following important property: given a
regular function f : M→ R, the solution x(t) of the following initial value problem

ẋ(t) = ±gradx(t) f , x(0) = x0 ∈M, (303)

is such that
lim

t→+∞
x(t) = x? (304)

where x? denotes a point of local minimum of the function f near x0 if one chooses the sign
‘−’ in front of the gradient; otherwise, x? denotes a local maximum of the function f near
x0 if one chooses the sign ‘+’ in front of the gradient.

For a function with domain Rn, the extremal points are among those that make its
partial derivatives vanish to zero. A similar result holds for functions whose domain is a
smooth manifold. Given a differentiable function f : M→ R, the extremal points are those
x ∈M for which:

gradx f = 0. (305)

This observation may be exploited

• To determine those points x? to which the solutions of the differential Equation (303)
will tend toward;

• Considering that Equation (305) is often non-linear and difficult to solve in closed
form, while the differential Equation (303) may be solved (albeit approximately) by
numerical recipes, the differential Equation (303) may be considered as a way to solve
an equation such as (305).

On the basis of the relation (301), it is quite straightforward to show the following
fundamental result.

Theorem 4. The differential equation

ẋ(t) = −gradx(t) f , x(0) = x0 ∈M, (306)

generates trajectories toward points of the domain corresponding to ever-decreasing values of the
function f .

Proof. Let us observe that

ḟ = 〈gradx f , ẋ〉x = 〈gradx f ,−gradx f 〉x = −‖gradx f ‖2
x ≤ 0, (307)

where equality holds if and only if gradx f = 0.

In a fully analogous way, upon choosing the sign + in front of the gradient, the
corresponding differential equation generates trajectories tending toward ever-increasing
values of the function f . Notice that the above facts are completely independent of the
initial value x0 and from the chosen metric.
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In practical terms, it is safe to assume that the function f admits maxima and minima.
For example, in the case of a continuous function f defined on a compact manifold, such as
the hypersphere Sn−1, a theorem by Weierstrass ensures that f admits at least a maximum
and a minimum. (In fact, the Weierstrass extreme value theorem holds for topological spaces
which any manifold is an instance of.)

To summarize, the differential Equation (303) may be exploited to look for the extremal
points of a function:

• The dynamical system ẋ(t) = +gradx(t) f , x(0) = x0 ∈ M generates a trajectory in
the state space M that tends toward a point of maximum of the function f located
near the initial state x0,

• Conversely, the dynamical system ẋ(t) = −gradx(t) f , x(0) = x0 ∈ M generates a
trajectory in the space M that tends toward a point of minimum of the function f
located near the initial state x0.

The locality property of such a gradient-based extremum search is due to the mono-
tonicity property (307), which essentially shows that the trajectory of such systems fall in
the basin of attraction of the extremal point that the initial condition also belongs to. In
practice, the choice of an initial condition (also termed, in this context, initial guess), is a
sensitive step that determines the success or the failure of extremal-point searching. In fact,
a function f might possess several extremal points (namely, local maxima and minima). It
pays to keep in mind that the extremal-point searching method based on the first-order
dynamical systems (303) is able to determine only an extremal point at a time and, in
particular, only the one nearest to the initial guess x0. It is therefore important to put into
effect some pre-estimation technique to initialize the search procedure correctly.

From an algorithmic point of view, as opposed to what is required in numerical
simulation where precision is a common demand, in the case of optimization by a gradient
method, only the last point of the trajectory, namely x?, needs to be approximated with
good precision, and hence the employed numerical method does not need to be of a high
order.

Example 29. Let us consider Oja’s equation [56,57]

ẋ(t) = (In − x(t)x>(t))P0 x(t), x(0) = x0 ∈ Sn−1, (308)

with P0 ∈ S+(n). As we have seen in the previous example, the right-hand side of Oja’s equation
coincides with the Riemannian gradient of the function (often termed ‘Rayleigh quotient’) f (x) :=
1
2 x>P0 x over the unit hypersphere endowed with its canonical metric. Such a function is quadratic,
continuous and differentiable and is defined over a compact space; hence, it admits a maximum over
the space Sn−1. Indeed, it admits n local maxima. The differential Equation (308) hence affords
determining one of its local maxima depending on the initial condition.

The extremal points are those that make the gradient gradx f = P0 x− (x>P0 x) x vanish to
zero, namely the solutions x ∈ Sn−1 to the equation

P0 x = (x>P0 x) x. (309)

Clearly, the solutions x? coincide with the eigenvectors of the symmetric, positive-definite
matrix P0. Let us observe that the eigenvalue associated with the eigenvector x? is λ? := x>? P0 x?;
hence, f (x?) = 1

2 λ?. Since the dynamical system (308) looks for the maximal value of the function
f , Oja’s equation generates a trajectory that tends toward the eigenvector of P0 corresponding to its
maximal eigenvalue. �

The differential equations of the kind

ẋ(t) = gradx(t) f , (310)
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represent an instance of dynamical systems of the first order, on a manifold, of the gradient
type. (Notice that to switch the sign in front of the gradient, it suffices to take the function
− f instead of f . Likewise, to rescale the gradient of a factor η > 0 , it suffices to take η f
instead of f .)

9.3. A Golden Gradient Rule: Gradient of Squared Distance

A golden calculation rule involving the notion of Riemannian gradient and that of
Riemannian distance is as follows:

gradxd2(x, y) = −2 logx y. (311)

The formal proof of this result which, of course, holds under technical conditions,
traces back to [53]. It is instructive to verify this property in a couple of cases.

Example 30. Let us verify the calculation rule (311) for the familiar case that M = Rp. We
have already shown that d2(x, y) = ‖ logx y‖2. In the case of the hypercube Rp, endowed with
a Euclidean metric, it holds that logx y = y − x; therefore, d2(x, y) = ‖x − y‖2, the familiar
Euclidean distance in Rp. Now, let us observe that

∂‖x− y‖2

∂x
= 2(x− y), (312)

and henceforth
∂d2(x, y)

∂x
= −2(y− x) = −2 logx y. (313)

In addition, we can verify such a property for the hypersphere Sp−1. Let us recall that
d2(x, y) = arccos2(x>y); therefore, it holds that

∂d2(x, y)
∂x

= 2 d(x, y)

− 1√
1− (x>y)2

y. (314)

By the calculation rule for the gradient on the unit hypersphere, we obtain

gradxd2(x, y) = − 2 d(x, y)
sin d(x, y)

(Ip − xx>)y = −2
(Ip − xx>)y
sinc d(x, y)

(315)

which coincides precisely with −2 logx y on the unit hypersphere. �

For those who are mathematically minded, it is interesting to read a sketch of proof of
the golden rule (311) based on properties that we have already surveyed.

Theorem 5. Let us consider a Riemannian manifold (M, 〈·, ·〉) embedded in an ambient space
(A, 〈·, ·〉A) and a pair of points x, y ∈ M such that d(x, y) and logx y are well defined. The Rie-
mannian gradient of the squared distance d2(x, y) with respect to the variable x equals −2 logx y.

Proof. Let us define the following functions:

• An arbitrary sufficiently smooth curve αx(t) such that αx(0) = x, while α̇x(t) is
arbitrary;

• The fundamental form F (x, v) := 〈v, v〉x;
• A geodesic curve c(t, s) connecting the point y to the point αx(t), emanating from the

former, with parameter s ∈ [0, 1];
• The partial derivatives ċ(t, s) := ∂c

∂t (t, s) and c′(t, s) := ∂c
∂s (t, s).

In addition, notice that the following properties hold:

(P1) c(t, 0) = y, therefore ċ(t, 0) = 0;
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(P2) c(t, 1) = αx(t), therefore ċ(t, 1) = α̇x(t);
(P3) c′(t, 1) = − logαx(t) y. (In fact, notice that if γx

y : [0, 1] → M denotes a geodesic

from x to y then it holds that γ̇
y
x(0) = logy x and γx

y(s) = γ
y
x(1 − s); therefore,

γ̇x
y(1) = −γ̇

y
x(0) = − logy x.)

Let us recall that the squared Riemannian distance between two points may be written
in terms of the fundamental form, namely

d2(αx(t), y) = F (c(t, s), c′(t, s)), (316)

where the right-hand side of the above equation is independent of s, as we have shown in
Section 8. Let us integrate both sides of the above equation with respect to s in the interval
[0, 1]. This gives:

d2(αx(t), y) =
∫ 1

0
F (c(t, s), c′(t, s))ds. (317)

Now, let us compute the derivative of both sides with respect to the parameter t:

d
dt

d2(αx(t), y) =
∫ 1

0

d
dt

F (c(t, s), c′(t, s))ds

=
∫ 1

0

〈
∂F

∂c
(t, s),

∂c
∂t
(t, s)

〉A
ds +

∫ 1

0

〈
∂F

∂c′
(t, s),

∂c′

∂t
(t, s)

〉A
ds.

(318)

The second integral may be rewritten through the rule of integration by parts upon ob-
serving that ∂c′

∂t = ∂ċ
∂s (Schwarz) and recalling that ∂F (x,v)

∂v = 2 Gx(v), where G denotes the
metric kernel associated with the metrics in M and A. The application of such rule gives:

∫ 1

0

〈
∂F

∂c′
(t, s),

∂c′

∂t
(t, s)

〉A
ds = 〈2 Gx(c′(t, s)), ċ(t, s)〉A

∣∣∣1
s=0

−
∫ 1

0

〈
d
dt

∂F

∂c′
(t, s), ċ(t, s)

〉A
ds.

(319)

Putting the pieces together gives:

d
dt

d2(αx(t), y) =
∫ 1

0

〈
∂F

∂c
(t, s)− d

dt
∂F

∂c′
(t, s), ċ(t, s)

〉A
ds

+ 〈2 c′(t, s), ċ(t, s)〉c(t,s)
∣∣∣1
s=0

(320)

Since c(·, s) is a geodesic, the first integral is null due to the differential inclusion (153);
therefore, we rest with

d
dt

d2(αx(t), y) = 〈2 c′(t, 1), ċ(t, 1)〉c(t,1) − 〈2 c′(t, 0), ċ(t, 0)〉c(t,0). (321)

Now, due to property P1, the second term on the right-hand side of the above equality is
null; hence, thanks to properties P2–P3, the above equality simplifies to

d
dt

d2(αx(t), y) = 2〈− logαx(t) y, α̇x(t)〉αx(t). (322)

Setting t = 0 and recalling the definition of gradient (249) proves the golden rule.

Let us emphasize how useful such a result is, since in non-linear control a number of
functions to differentiate are based on distances. Let us apply the golden calculation rule
to a non-linear control problem known as consensus optimization.
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Example 31. A category of dynamical systems of gradient type on manifolds are those associated
with consensus optimization among a set of agents [58,59]. Let us consider, as an example, a
dynamical system that affords reaching attitudinal consensus in a fleet of flying objects (such as
drones).

The attitude of a flying agent (namely, its orientation in space) may be represented by a
rotation matrix R ∈ SO(3) that summarizes the three attitudinal coordinates roll, pitch and
yaw. A fleet of N flying agents may be described as a set of N rotation matrices Ri ∈ SO(3) with
i = 1, 2, 3, . . . , N.

The attitude of each agent in the fleet is then described by a time-function Ri(t). Consensus
optimization may be formulated as follows:

• Given a metric for the manifold SO(3), it is possible to define a distance function d : SO(3)×
SO(3)→ R+

0 between any pair of attitude matrices in SO(3);
• A hierarchy is established among the agents in a fleet through a set of weights wij ≥ 0;
• Then, consensus optimization consists of determining an evolution law for each agent to

minimize the distance between any pair of attitude matrices weighted according to the assigned
hierarchy, namely, to minimize the function

fi :=
1
2

N

∑
j=1

wij d2(Ri, Rj), with i = 1, 2, 3, . . . , N. (323)

Notice that d(Ri, Ri) = 0; hence, the values assigned to the diagonal coefficients wii are
unimportant.

On the basis of the calculation rule (311), it turns out that

gradRi
fi = −

N

∑
j=1

wij logRi
Rj. (324)

The set of gradient-type control systems to achieve consensus optimization within the fleet reads:

Ṙi(t) =
N

∑
j=1

wij logRi(t)
Rj(t), Ri(0) = R0

i ∈ SO(3), (325)

with i = 1, 2, 3, . . . , N and t ≥ 0. (Notice that logR R = 0.) �

9.4. Riemannian Gradient in Coordinates*

Let f : M→ R denote a smooth manifold-to-real function, whose gradient at a point
x ∈M is sought. Let us fix a coordinate system on a local chart that includes the point x
whose local coordinates are x1, x2, . . . xp.

In order to determine the gradient gradx f , let us make use of the metric compatibility
condition, recalling that

• The Euclidean inner product reads 〈∂x f , v〉 = ∂ f
∂xk vk.

• The inner product reads 〈gradx f , v〉x = gik(gradx f )ivk.

The metric compatibility condition requires that

∂ fx

∂xk vk = gik(gradx f )ivk for every choice of v, (326)

hence, gik(gradx f )i = ∂ fx
∂xk . Multiplying both sides by ghk one obtains ghkgik(gradx f )i =

ghk ∂ fx
∂xk . Since ghkgik = δh

i , we obtain

(gradx f )h = ghk ∂ fx

∂xk . (327)
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The Riemannian gradient in intrinsic coordinates is therefore expressed as

gradx f = ghk ∂ fx

∂xk ∂x
h . (328)

In manifold calculus, the Riemannian gradient has yet another interpretation in rela-
tion to the differential of a manifold-to-real function and to so-called musical isomorphisms.
In fact, there exist canonical operators to convert contravariant components to covariant
(also referred to as lowering an index) or vice versa (raising an index).

Given a regular function f : M→ R, its differential d f : TM→ T∗M is expressed by:

d fx(v) = 〈gradx f , v〉x, v ∈ TxM, (329)

where gradx f : M → TxM denotes its Riemannian gradient. Namely, the differential
represents the linear part of the change of a function when moving away from a point x in
the direction v. In local coordinates:

d fx(v) = gij(x)(∇x f )ivj. (330)

Since the differential does not depend on the choice of coordinates, it must hold that
d fx(v) = (∂i f )xvi. It follows the metric-compatibility condition gij(x)(∇x f )j = (∂i f )x.
Such expressions may be interpreted through ‘musical’ isomorphisms:

• Sharp isomorphism (]): The ‘sharp’ isomorphism ] : T∗M→ TM takes a cotangent
vector and returns a tangent vector. Namely, given a cotangent vector ω = ωi dxi, the
sharp isomorphism acts like v := ω] = gijωi∂j. For example, in the case of gradient,
one may say that gradx f = (d fx)].

• Flat isomorphism ([): The ‘flat’ isomorphism [ : TM→ T∗M takes a tangent vector
and returns a cotangent vector. Namely, given a tangent vector v = vi ∂x

i , the flat
isomorphism acts like ω := v[ = gijvidxj. Then, the differential is the dual of gradient
via a flat isomorphism.

10. Parallelism and Parallel Transport along a Curve

Parallel transport along a curve on a manifold is a fundamental concept that emerges
from the curved nature of manifolds and is deeply interwoven in the fabric of mani-
fold calculus.

10.1. Properties and Definition of Parallel Transport

Given a curve on a Riemannian manifold M embedded into a Euclidean space A, a
point x ∈ M on the curve and a tangent vector v ∈ TxM to the curve, if such a vector is
moved to another point on the curve by ordinary rigid translation (which is available in
A and may be referred to as ‘parallel translation’), in general it will not be tangent to the
curve anymore. This observation suggests that it is necessary to define a notion of transport
that is compatible with the structure of the manifold.

Another reason to motivate the notion of parallel transport is the lack of existence of
‘uniform’ vector fields on curved manifolds. On a flat space, such as Rp, a uniform vector
field u : Rp → Rp is a field x 7→ ux such that ux is constant (same direction, length and
orientation) for every x ∈ Rp. On a curved manifold embedded in an ambient space A,
however, it is unlikely that a tangent vector field may take the same value in two points,
because tangency at one point would most likely imply lack of tangency in another point.
The closest notion to uniformity would be parallelism: Informally speaking, a vector field
is said to be parallel along a curve if it keeps the same orientation with respect to such a
curve’s own velocity field. Notice that this property is expressed in quite vague terms:
such vagueness is indeed intended and implies that there exist infinitely many ways to
interpret the notion of parallel transport.
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Example 32. Let M denote a Riemannian manifold and x 7→ wx a tangent vector field on the
tangent bundle TM; namely, the function w assigns a tangent vector to each point x on the manifold.
In the familiar case that M = R3, there exists a notion of uniform vector field; namely, a vector
field may take the same amplitude and direction in any point of the base-space M. This is the case, for
example, of an electric field within an ideal capacitor or an induction field within an ideal electrical
coil. A distinguishing feature of a uniform vector field in R3 is that its directional derivative is zero
everywhere; namely, given any point x ∈ R3 and any direction v ∈ TxR3, it holds that

lim
h→0

wx+hv − wx

h
= 0, (331)

where the left-hand side represents the directional derivative of the vector field w ∈ Γ(M) along a
direction v at the point x.

On a curved manifold M, uniform vector fields hardly exist, as the rigid translation of a
tangent vector to a different point of a manifold will most likely result in a non-tangent vector.
The closest notion to uniformity that may be recovered on a curved manifold is that of parallelism.
A parallel vector field needs to satisfy a generalized version of the condition (331) (which we
shall not see in this survey since it requires covariant derivation, which will be covered in a
separate survey). �

The notion of parallelism of a vector field gives rise to an important canonical operator
in manifold calculus, namely, parallel transport along a curve. Parallel transport allows one
to, e.g., compare vectors belonging to different tangent spaces. On a smooth Riemannian
manifold M, fix a smooth curve γ : [0, 1] → M. The parallel transport map associated
with the curve γ is denoted as Ps→t

γ : Tγ(s)M → Tγ(t)M, which is a linear map for every
s, t ∈ [0, 1], namely

Ps→t
γ (α w + β v) = αPs→t

γ (w) + βPs→t
γ (v) (332)

for every α, β ∈ R and u, v ∈ Tγ(s)M. The parallel transport map depends smoothly on its
arguments and is such that Ps→s

γ coincides with the identity map and Pu→t
γ ◦ Ps→u

γ = Ps→t
γ

for every s, u, t ∈ [0, 1]. (Notice that the last property holds on the same curve only, while
it does not hold for different arcs.)

In most cases of importance in system theory and control, the main interest lies in
the parallel transport of a tangent vector along a geodesic curve on a Riemannian manifold,
rather than along a generic smooth curve. Parallel transport along a geodesic arc may be
conjugated in at least two ways:

• Parallel transport along a geodesic arc joining two given points: Given two (suffi-
ciently close) points x, y ∈ M, and a tangent vector w ∈ TxM, the parallel transport
of w from x to y along the geodesic arc connecting x to y is denoted by Px→y(w),
since this notation shows all relevant information. In fact, the notation Px→y for the
parallel transport operator is a shortened version of P0→1

γ
y
x

: TxM → TyM, where

γ
y
x : [0, 1]→M would denote the geodesic arc such that γ

y
x(0) = x and γ

y
x(1) = y.

• Parallel transport along a geodesic specified by a point and a tangent direction:
Given a point x ∈ M, and a tangent direction v ∈ TxM, the parallel transport of a
vector w ∈ TxM along the geodesic arc departing from the point x toward the direction
v is denoted by P0→t

γx,v (w), where γx,v : [−ε, ε]→M, with ε > 0 and t ∈ [−ε, ε], would
denote the geodesic curve such that γx,v(0) = x and γ̇x,v(0) = v.

There exist other special cases of interest in control and automation. One such special
case supplies a partial answer to the problem of effecting parallel transport on a manifold
for which the structure of the parallel transport operator is unknown. Another special
case is parallel transport along a closed loop, which may arise when dealing with periodic
trajectories or self-intersecting trajectories.

• Self parallel transport along a geodesic arc: A distinguishing feature of a geodesic
arc is that it parallel-transports its own initial slope. On a setting where the parallel
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transport operator is unknown in closed form, there exists no known way to transport
a given vector w along a geodesic curve γx,v. However, it is possible to parallel-
transport a given vector v along a geodesic γx,v, namely to compute P0→t

γx,v (v): it
coincides exactly with γ̇x,v(t). Such a numerical trick was invoked, for instance,
in [39], Subsection III.A.

• Parallel transport along a closed loop: Parallel transport of a vector along a (piece-
wise continuous) loop ` is denoted as P` : TxM → TxM, where x is termed base of
the loop. In general, P`(v) 6= v, for v ∈ TxM. This phenomenon is referred to as
anholonomy. Whenever P` realizes an isometry, since ‖P`(v)‖x = ‖v‖x, the operator P`

changes only the orientation of v. For example, if M ⊂ R3, then we may say that P`(v)
is a rotated version of a tangent vector v laying in the same tangent space, namely, P`

may be represented as an element of the orthogonal group O(3). Intuitively, holonomy
is specifically related to curved spaces, and therefore holonomy must be related to
curvature. This conjecture is made precise by the Ambrose–Singer theorem [60].

In the following, we shall go through a detailed derivation of the notion of parallel
transport along a curve on the tangent bundle of a manifold embedded in an ambient
space. In general, the result of parallel transport depends on the curve; moreover, parallel
transport may be conceived in a way that preserves the angle between transported vectors
but not their lengths, or to preserve both.

10.2. Coordinate-Free Derivation of Parallel Transport

Let us develop a notion of parallel transport P such that, in every point of the curve
γ, it holds that P0→t

γ (w) ∈ TγM. In addition, a fundamental requirement that parallel
transport should fulfill is that, given two tangent vectors u, w ∈ TxM that form an angle α,
parallel transport should preserve the value of such angle along the whole curve, namely
the angle between P0→t

γ (u) and P0→t
γ (w). Let us recall that the angle α between two vectors

u, w in TxM is defined by

cos(α) :=
〈u, w〉x
‖u‖x ‖w‖x

. (333)

We may thus require parallel transport to fulfill:

1. Tangency condition: for every t ∈ [0, 1] it should hold that P0→t
γ (w) ∈ Tγ(t)M,

2. Conformal isometry condition: for every value of the parameter t ∈ [0, 1] it should
hold that 〈P0→t

γ (u),P0→t
γ (w)〉γ(t) keeps constant to 〈u, w〉x along the curve.

Let us verify that the second condition implies both conformality and isometry. To
what concerns isometry, let us show that taking w = u gives:

〈P0→t
γ (u),P0→t

γ (u)〉γ(t) = ‖P0→t
γ (u)‖2

γ(t), (334)

from which it follows that ‖P0→t
γ (u)‖γ(t) keeps constant along the curve γ to ‖u‖x. It is

straightforward to prove conformality; in fact,

〈P0→t
γ (u),P0→t

γ (w)〉γ(t)
‖P0→t

γ (u)‖γ(t) ‖P0→t
γ (w)‖γ(t)

=
〈u, w〉x
‖u‖x ‖w‖x

, ∀t ∈ [0, 1]. (335)

(Let us recall that a linear transformation that preserves angles is termed conformal.)
It is important to underline that the above conditions do not define parallel transport
univocally, but they represent minimal requirements for an operator to be qualified as
parallel transport. In other words, parallel transport may be defined in several ways
as long as it meets the above conditions, which turn out to be of great importance in
non-linear control.

To ease notation, let us define the following fields:
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• u(t) := P0→t
γ (u): a vector field (γ(t), u(t)) that represents the evolution, over the

curve γ, of the vector u that is tangent to the manifold at γ(0) and after transport it
will be tangent at γ(1),

• w(t) := P0→t
γ(t) (w): analogous to u(t), both are transport fields,

• Q(t) := 〈u(t), w(t)〉γ(t): a scalar field that represents the inner product between the
above two transport fields along the curve γ.

For a manifold M embedded in an ambient space A endowed with a metric 〈·, ·〉A, the
condition of conformality and isometry may be written in a more detailed way. Let us
recall from Section 7 that the inner product of two tangent vectors may be written as
〈u, w〉x = 〈u, Gx(w)〉A, where the metric kernel has key properties, namely Gx(v) is linear
in v, Gx is self-adjoint (namely, 〈u, Gx(w)〉A = 〈Gx(u), w〉A), Gx is invertible and its inverse
is denoted as G−1

x , and Gx maps TxM to itself.
In order to perform the following calculations seamlessly, it pays to highlight a few

calculation rules about the metric kernel G and the fundamental form F :

1. Taylor series expansion of the kernel G: Given Gx(v) with x ∈ M, v ∈ TxM, let
us write

Gγx,w(t)(v) = Gx(v) + G•x(v, t w) +O(t2), (336)

where γx,w : [−ε, ε] → M denotes any smooth curve such that γx,w(0) = x and
γ̇x,w(0) = w, with w ∈ TxM denoting a direction along which a variation of the
metric kernel is sought. The quantity G•x(v, w) represents a first-order derivative of
the kernel Gx calculated with respect to the variable x. (Notation-wise, the ‘bullet’
derivative is a convenient way to denote a derivative that cannot be expressed in more
specific terms. For example, if f , g are real functions of a real variable, one might
denote d

dx f (g(x)) = ḟ (g(x))ġ(x) as f •(g(x), ġ(x)).) The formal definition goes like

G•x(v, w) :=
d
dt

Gγx,w(t)(v)
∣∣∣∣
t=0

, (337)

where again γx,w : [−ε, ε]→M denotes any smooth curve such that γx,w(0) = x and
γ̇x,w(0) = w. The function G•x(v, w) is linear in the arguments v and w and, in general,
non-linear in x. Notice that the extendability property of Gx from TxM to A holds also
for the first argument of the derivative G•x .

2. Commutativity with the inner product in the ambient space: In the expression
〈u, G•x(v, w)〉A it is allowed to swap the arguments u and v. In fact, notice that

〈u, G•x(v, w)〉A = 〈u,
d
dt

Gγx,w(t)(v)
∣∣∣∣
t=0
〉A =

d
dt
〈u, Gγx,w(t)(v)〉

A
∣∣∣∣
t=0

=
d
dt
〈Gγx,w(t)(u), v〉A

∣∣∣∣
t=0

= 〈 d
dt

Gγx,w(t)(u)
∣∣∣∣
t=0

, v〉A

= 〈v, G•x(u, w)〉A.

(338)

This property of G•x holds even if the first argument of the derivative belongs to A.
3. Partial derivatives of the fundamental form: Let us recall the definition of the fun-

damental form F (x, v) := 〈v, Gx(v)〉A. Its partial derivatives read

∂F

∂x
(x, v) = G•x(v, v),

∂F

∂v
(x, v) = 2 Gx(v). (339)

Let us see a few examples to clarify the above definitions and properties.
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Example 33. Let us start considering the case of the manifold S+(n) endowed with its canonical
metric, embedded in the ambient space A := Rn×n endowed with a Euclidean metric. In this setting,
we have seen that GP(V) = P−1VP−1. By definition, its ‘bullet derivative’ reads

G•P(V, W) =
d
dt

(γ−1Vγ−1)

∣∣∣∣
t=0

, (340)

where γ : [−ε, ε] → S+(n) denotes any smooth curve such that γ(0) = P ∈ S+(n) and
γ̇(0) = W ∈ TPS+(n). By using the noticeable matrix-flow derivation rule (104), we obtain

d
dt

(γ−1Vγ−1) = (−γ−1γ̇γ−1)Vγ−1 + γ−1V(−γ−1γ̇γ−1). (341)

Setting t = 0 leads to the sought expression

G•P(V, W) = −P−1WP−1VP−1 − P−1VP−1WP−1. (342)

Let us verify the property of commutativity with the inner product. We may calculate that

〈G•P(V, W), U〉A =− tr(P−1WP−1VP−1U)− tr(P−1VP−1WP−1U),

〈G•P(U, W), V〉A =− tr(P−1UP−1WP−1V)− tr(P−1WP−1UP−1V).
(343)

The two quantities may be proven equal by the cyclic permutation property of the trace.
Another example that we are surveying concerns the manifold Sp(2n) endowed with its

canonical metric again embedded in the ambient space A := Rn×n endowed with a Euclidean
metric. In this setting, we have seen that GQ(V) = Q−>Q−1V. Its ‘bullet derivative’ reads

G•Q(V, W) =
d
dt

(γ−>γ−1V)

∣∣∣∣
t=0

, (344)

where γ : [−ε, ε] → Sp(2n) denotes any smooth curve such that γ(0) = Q ∈ Sp(2n) and
γ̇(0) = W ∈ TQSp(2n).

By invoking the identity (104) once again, we obtain

d
dt

(γ−>γ−1) = (−γ−1γ̇γ−1)>γ−1 + γ−>(−γ−1γ̇γ−1). (345)

Setting t = 0 leads to the expression

G•Q(V, W) = −Q−>(W>Q−> + Q−1W)Q−1V. (346)

Let us verify the commutativity property with the inner product. We may calculate that

〈U, G•P(V, W)〉A =− tr(U>Q−>(W>Q−> + Q−1W)Q−1V),

〈V, G•P(U, W)〉A =− tr(V>Q−>(W>Q−> + Q−1W)Q−1U).
(347)

These two quantities may be proven equal by transposing the arguments of the traces. �

The condition of conformality and isometry may be written very compactly as Q̇ = 0.
By multivariable calculus and the above definition and properties, we obtain:

Q̇ = 〈u̇, Gγ(w)〉A + 〈u, G•γ(w, γ̇)〉A + 〈u, Gγ(ẇ)〉A. (348)

(This is one situation in which we need to invoke the ‘extendability’ property of the
metric kernel; in fact, notice that ẇ does not necessarily belong to TγM.) In the second



Symmetry 2021, 13, 2092 66 of 94

term on the right-hand side, the vector fields u and w may be swapped, and hence we may
write:

Q̇ = 〈u̇, Gγ(w)〉A + 〈w, G•γ(u, γ̇)〉A + 〈u, Gγ(ẇ)〉A. (349)

Since the above development is still too general to lead to a computable notion of
parallel transport, let us refer parallelism to the velocity field associated with the curve γ,
namely, let us set w := γ̇. This means that the parallel transport operation will keep fixed
the angle between the transported vector and the velocity vector associated with the curve.
The expression of Q̇ becomes then:

Q̇ = 〈u̇, Gγ(γ̇)〉A + 〈γ̇, G•γ(u, γ̇)〉A + 〈u, Gγ(γ̈)〉A. (350)

In the above relation, all quantities are known except for the transport field u of which
we are seeking a temporal evolution law.

A special case, of sure interest in applications since it dispenses us from choosing a
curve γ, is parallel transport along a geodesic line. Let thus γ denote a geodesic and let us
recall that, in this case, the expression Gγ(γ̈) may be rewritten in terms of the velocity γ̇
through the differential inclusion that characterizes a geodesic line. Let us then revamp the
geodesic equation with the aim of writing it in a Christoffel normal form. Recall that, given
the fundamental form for a line F (γ, γ̇) = 〈γ̇, Gγ(γ̇)〉A, whenever it is a geodesic line it
holds that:

∂F

∂γ
− d

dt
∂F

∂γ̇
∈ NγM. (351)

According to the relationships in (339)

∂F

∂γ
= G•γ(γ̇, γ̇),

∂F

∂γ̇
= 2 Gγ(γ̇), (352)

and then
d
dt

∂F

∂γ̇
= 2 G•γ(γ̇, γ̇) + 2 Gγ(γ̈), (353)

therefore the differential inclusion (351) that defines a geodesic line becomes

− G•γ(γ̇, γ̇)− 2 Gγ(γ̈) = Bγ(γ̇, γ̇), (354)

where Bx : (TxM)2 → NxM is a bilinear function of its vector arguments and returns an
element of the normal space NxM. Ultimately, we obtained

Gγ(γ̈) = − 1
2 G•γ(γ̇, γ̇)− 1

2 Bγ(γ̇, γ̇). (355)

This same expression may be rewritten compactly in one of the following normal
Christoffel forms: {

Gγ(γ̈) + Γ̄γ(γ̇, γ̇) = 0, or
γ̈ + ¯̄Γγ(γ̇, γ̇) = 0,

(356)

where the function Γ̄x is termed Christoffel form of the 1st kind, while the quantity ¯̄Γx := G−1
x ◦ Γ̄x

is termed Christoffel form of the 2nd kind. Notice that only the restricted Christoffel form
Γ̄x(v, v) with x ∈M and v ∈ TxM has been defined so far, namely

Γ̄x(v, v) := 1
2 G•x(v, v) + 1

2 Bx(v, v). (357)

Since both terms on the right-hand side are bilinear in their vector arguments, the
Christoffel form is quadratic. It is now necessary to define the full Christoffel form Γx(u, w),
with x ∈ M and u, w ∈ TxM on the basis of its restricted version. Such a result may be
achieved through the following polarization formula:

Γ̄x(u, w) := 1
4{Γ̄x(u + w, u + w)− Γ̄x(u− w, u− w)}, (358)
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which stems from the requirements that the full Christoffel form is bilinear and symmetric in
its vector argument, namely Γ̄x(u, w) = Γ̄x(w, u).

Employing the normal Christoffel form in the latest expression of Q̇ gives:

Q̇ = 〈u̇, Gγ(γ̇)〉A + 〈γ̇, G•γ(u, γ̇)〉A − 〈u, Γ̄γ(γ̇, γ̇)〉A. (359)

Since Γ̄ is derived by polarization from a restricted bilinear function, it is self-adjoint
in both its arguments; hence, it commutes with the inner product 〈·, ·〉A. Therefore, in the
third term on the right hand side it is possible to swap the transport field u with any of the
two fields γ̇, which leads to:

Q̇ = 〈u̇, Gγ(γ̇)〉A + 〈γ̇, G•γ(u, γ̇)〉A − 〈γ̇, Γ̄γ(u, γ̇)〉A

= 〈u̇, Gγ(γ̇)〉A + 〈γ̇, Γ̄γ(u, γ̇)〉A
(360)

where we have used the fact that Γ̄ and 1
2 G• differ by a purely normal component.

In order to make the above addenda uniform to one another, let us introduce in the
above expression twice the identity Gγ ◦ G−1

γ (= idγ) obtaining:

Q̇ = 〈Gγ(γ̇), u̇〉A + 〈Gγ(γ̇), G−1
γ ◦ Γ̄γ(u, γ̇)〉A.

Now it is possible to gather the terms in Gγ(γ̇) and to write the above sum as a single
inner product:

Q̇ = 〈Gγ(γ̇), u̇ + G−1
γ ◦ Γ̄γ(u, γ̇)〉A = 0. (361)

Ultimately, the last relationship still expresses the basic property of parallel transport
to realize a conformal isometry, which still leaves much room open for a precise definition of
parallel transport. The condition Q̇ = 0 alone would give rise to infinitely many equations
to compute a transport field, and hence parallel transport. Among these infinitely many,
one arises simply by requiring the right-hand side of the above inner product to vanish to
zero. Namely:

u̇ + ¯̄Γγ(u, γ̇) = 0. (362)

The solution of such equation supplies an expression for the transport field which, in
turn, supplies a notion of parallel transport along a geodesic line, namely

Px→y(u) := u(1), (363)

where u(t) denotes the solution of the differential Equation (363) with the initial condition
u(0) = u. Such a differential equation in A is first-order and linear in the unknown
transport field. Since the set of solutions to a linear first-order differential equation is a
linear space, parallel transport is a linear isomorphism of the tangent bundle TM.

Example 34. As anticipated, a noteworthy property of any geodesic line is that it self-transports
its own velocity along. In other words, given a geodesic γ

y
x : [0, 1]→M that connects two points

x, y ∈M, the following function turns out to realize parallel transport:

P0→t
γ

y
x
(γ̇

y
x(0)) := γ̇

y
x(t). (364)

Let us verify that it meets the fundamental properties any parallel transport should meet:

1. Tangency: for every t ∈ [0, 1] it holds thatP0→t
γ

y
x
(γ̇

y
x(0)) ∈ Tγ

y
x(t)

M; in fact, P0→t
γ

y
x
(γ̇

y
x(0)) =

γ̇
y
x(t) is tangent to the curve at every point γ

y
x(t).

2. Conformal isometry: for every t ∈ [0, 1] it holds that 〈P0→t
γ

y
x
(γ̇

y
x(0)),P0→t

γ
y
x
(γ̇

y
x(0))〉γy

x(t)
=

‖γ̇y
x(t)‖2

γ
y
x(t)

which is constant along a geodesic,

as claimed. �
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As a special case, it is worth considering a manifold M endowed with a uniform metric.
In this instance, the metric kernel Gx is independent of the point x, and therefore it holds
that G• ≡ 0 along every (geodesic) line. The transport field equation hence simplifies into

u̇ = − 1
2 G−1 ◦ Bγ(u, γ̇). (365)

In the ever simpler instance where the metric is Euclidean, the metric kernel coincides
with the identity (namely Gx ≡ idx), and hence it turns out that

u̇ = − 1
2 Bγ(u, γ̇). (366)

Recalling that the function B maps the double tangent bundle (TM)2 to the normal
bundle NM, it is quite straightforward to figure out a practical interpretation of the differen-
tial Equation (366). It basically prescribes that, when traveling from a point over the curve
γ to another infinitesimally close point, the transport field looses its normal component to
stay tangent.

The following two examples aim at clarifying the above theoretical developments.

Example 35. Let us apply the theoretical development just analyzed to determine a transport
field equation on a hypersphere Sn−1 ⊂ A with A := Rn endowed with the metric 〈u, w〉x :=
〈u, w〉A = u>w.

Let us start by determining the Christoffel form (of the first or second kind is unessential,
in this case, because the metric kernel coincides with the identity). The easiest way to determine
Christoffel forms is via a geodesic equation. The fundamental form, in this case, reads F := γ̇>γ̇.
From the fundamental form we find that

∂F

∂γ
= 0 and

∂F

∂γ̇
= 2 γ̇, (367)

therefore
d
dt

∂F

∂γ̇
= 2 γ̈. (368)

The geodesic equation then reads γ̈ = λ γ; hence, λ = γ̈>γ. From the tangency of the velocity
γ̇, it follows that:

γ̇>γ = 0 d/dt⇒ γ̈>γ + γ̇>γ̇ = 0, (369)

and henceforth γ̈>γ = −‖γ̇‖2. As a consequence, λ = −‖γ̇‖2 and:

Γ̄x(u, w) = ¯̄Γx(u, w) = −(u>w)x. (370)

We may now verify that 〈Γ̄x(u, w), v〉A = 〈Γ̄x(v, w), u〉A. It holds that

〈Γ̄x(u, w), v〉A =− (u>w)(v>x) = 0,

〈Γ̄x(v, w), u〉A =− (v>w)(u>x) = 0,
(371)

hence the assertion.
The equation of the transport field, in this case, reads as:

u̇ + (u>γ̇)γ = 0. (372)

Such differential equation may be solved and returns an expression for the transport field u.
The definition (363) returns then the expression for the parallel transport from the point x ∈ Sn−1

of a vector w ∈ TxSn−1 to the point y ∈ Sn−1:

Px→y(w) :=

[
In −

(x + y)y>

1 + x>y

]
w. (373)
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Let us verify some characteristic features of the above map:

• Linearity: The linearity of Px→y(w) with respect to w (but not with respect to x ad y) is
quite apparent.

• Identity: Letting y ≡ x leads to an identity map. In fact, it holds that Px→x(w) =[
In − (x+x)x>

1+x>x

]
w =

[
In − 2xx>

2

]
w = (In − xx>)w = w− x(x>w) = w− 0 = w.

• Tangency: It should hold that y>Px→y(w) = 0. In fact: y>
[

In − (x+y)y>

1+x>y

]
w = y>w−

y>(x+y)y>w
1+x>y = y>w− (y>x+1)y>w

1+x>y = y>w− y>w = 0.

Important properties of the map (373) have been hence verified. �

Example 36. Let us consider the case of the manifold S+(n) ⊂ A endowed with the metric
〈U, W〉P := tr(UP−1WP−1) embedded in the ambient space A := Rn×n endowed with the metric
〈U, V〉A := tr(UV). Recall from Section 7 that the corresponding metric kernel takes the expression
GP(W) := P−1WP−1 (which, as a function of W, is well-defined in the whole ambient space A).

Let us determine the Christoffel form of the second kind through calculations related to geodesy.
Define the fundamental form on a curve as F (γ, γ̇) := tr(γ̇γ−1γ̇γ−1) and observe that:

∂F

∂γ̇
= 2γ−1γ̇γ−1 [≡ 2 Gγ(γ̇)], (374)

∂F

∂γ
= −2 γ−1γ̇γ−1γ̇γ−1 [≡ G•γ(γ̇, γ̇)], (375)

from which it follows that:

d
dt

∂F

∂γ̇
= 2

d
dt

(γ−1)γ̇γ−1 + 2γ−1γ̈γ−1 + 2γ−1γ̇
d
dt

(γ−1). (376)

Recalling the matrix identity

d
dt

(γ−1) = −γ−1γ̇γ−1,

leads to
d
dt

∂F

∂γ̇
= −4 γ−1γ̇γ−1γ̇γ−1 + 2 γ−1γ̈γ−1, (377)

which, in turn, implies that:

∂F

∂γ
− d

dt
∂F

∂γ̇
=− 2 γ−1γ̇γ−1γ̇γ−1 + 4 γ−1γ̇γ−1γ̇γ−1 − 2 γ−1γ̈γ−1,

= 2 γ−1γ̇γ−1γ̇γ−1 − 2 γ−1γ̈γ−1,

= 2 γ−1(γ̇γ−1γ̇− γ̈)γ−1.

(378)

The transport equation, in normal Christoffel form, hence reads:

γ̈− γ̇γ−1γ̇−ωγ = 0, (379)

where ω denotes a skew-symmetric matrix function (namely ω> = −ω) such that the product ωγ
belongs to the normal space at γ.

In order to determine a function ω, let us invoke the condition of tangency of the velocity field
γ̇ that, in this case, is expressed as γ̇> = γ̇. From such a condition, it follows that γ̈> = γ̈; hence:

(γ̈− γ̇γ−1γ̇−ωγ)> = γ̈− γ̇γ−1γ̇− γω> = 0, (380)
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from which it follows that ω = 0. The restricted Christoffel form of the second kind, in this case,
hence reads as

¯̄ΓP(V, V) := −VP−1V. (381)

To determine the complete Christoffel form of the second kind, let us make use of the polarization
formula (358):

¯̄ΓP(V, W) := 1
4

{
¯̄ΓP(V + W, V + W) + ¯̄ΓP(V −W, V −W)

}
= 1

4

{
−(V + W)P−1(V + W) + (V −W)P−1(V −W)

}
= − 1

2 VP−1W − 1
2 WP−1V.

(382)

Let us now verify that the form Γ̄ commutes with the ambient inner product. We have
Γ̄ = G ◦ ¯̄Γ; therefore,

Γ̄P(V, W) = − 1
2 P−1(VP−1W + WP−1V)P−1. (383)

As a consequence, we have

〈Γ̄P(V, W), U〉A =− 1
2 tr(UP−1VP−1WP−1 + UP−1WP−1VP−1),

〈Γ̄P(U, W), V〉A =− 1
2 tr(VP−1UP−1WP−1 + VP−1WP−1UP−1),

(384)

which may be easily proven equal by the cyclic commutation property of matrix trace.
As a consequence, and employing the relation (342), the parallel transport equation is found

to be:

U̇ + γ(−γ−1γ̇γ−1Uγ−1 − γ−1Uγ−1γ̇γ−1)γ−
(
− 1

2 γ̇γ−1U − 1
2 Uγ−1γ̇

)
= 0, (385)

or, after a few straightforward simplifications,

U̇ − 1
2

(
γ̇γ−1U + Uγ−1γ̇

)
= 0. (386)

Through the definition (363), we may obtain the expression of the parallel transport from a
point P ∈ S+(n) of a tangent vector W ∈ TPS+(n) to a point Q ∈ S+(n):

PP→Q(W) :=
√

QP−1W
√

P−1Q, (387)

where the matrix square root
√
· returns a symmetric matrix. Let us verify two properties of the

found operator:

• Identity: Setting Q ≡ P leads to parallel transport collapse to an identity map. Indeed, it
holds that PP→P(W) :=

√
PP−1W

√
P−1P = W.

• Tangency: It holds that (PP→Q(W))> = PP→Q(W). In fact, we have (PP→Q(W))> =

(P−1Q)
>
2 W>(QP−1)

>
2 = (Q>P−>)

1
2 W(P−>Q>)

1
2 =

√
QP−1W

√
P−1Q = PP→Q(W).

Linearity is apparent as well. �

The calculations illustrated in the previous example requires the evaluation of the
partial derivatives of the fundamental form F , determined in (374) and (375). It is quite
instructive to sketch such calculations.

Example 37. Let us survey in detail the calculations that led to relations (374) and (375). Such
calculations may be carried out through calculus (exact way) or by analytic approximations (which
is more clear from a computational viewpoint).
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To begin with, it is useful to analytically justify a matrix approximation, namely

(P + E)−1 ≈ P−1 − P−1EP−1, (388)

with P ∈ S+(n) and E ∈ Rn×n with ‖E‖ small. Such approximation may be proven through the
notion of analytic matrix function. By definition, a matrix-to-matrix function f : Rn×n → Rn×n

is analytic in a point X0 ∈ Rn×n if it admits, in a neighborhood of such a point, a polynomial series
expansion, namely:

f (X) =
∞

∑
n=0

an (X− X0)
n, for ‖X− X0‖ < ρ (389)

where an ∈ R are coefficients of the series and ρ > 0 denotes the radius of convergence of the
polynomial series.

Let us now consider the function f (X) := (In + X)−1. It is analytic in a neighborhood of the
point X = 0n and the associated polynomial series, truncated to the second term, reads:

(In + X)−1 ≈ In − X, (390)

from which it readily follows that

(P + E)−1 = (P(In + P−1E))−1

= (In + P−1E)−1P−1

≈ (In − P−1E)P−1

= P−1 − P−1EP−1.

(391)

To justify the partial derivatives (374) and (375), let us define F (P, V) := tr(VP−1VP−1)
and evaluate its partial derivatives with respect to P and V. The partial derivative of a matrix-to-
scalar function may be thought of as the ‘coefficient’ of the linear term arising from an additive per-
turbation.

Applying such a practical idea to evaluate the partial derivative with respect to the first
argument gives:

F (P + E, V) = F (P, V) +

〈
∂F

∂P
, E
〉A

+ higher order terms, (392)

where E denotes a matrix (termed perturbation) whose entries are small numbers (such that ‖E‖
is very small). In the present case, we have:

F (P + E, V) = tr(V(P + E)−1V(P + E)−1),

≈ tr(V(P−1 − P−1EP−1)V(P−1 − P−1EP−1))

≈ tr(VP−1VP−1)− tr(VP−1EP−1VP−1)− tr(VP−1VP−1EP−1)

+ higher order terms

=F (P, V)− tr(P−1VP−1VP−1E)− tr(P−1VP−1VP−1E)

+ higher order terms

=F (P, V)− 2 tr(P−1VP−1VP−1E) + higher order terms.

(393)

Comparing this expression with (392), one obtains the sought result, namely:

∂F

∂P
= −2 P−1VP−1VP−1. (394)
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To what concerns the second argument, we may write that:

F (P, V + E) = F (P, V) +

〈
∂F

∂V
, E
〉A

+ higher order terms, (395)

where E again denotes a perturbation. In this case, we have:

F (P, V + E) = tr((V + E)P−1(V + E)P−1),

= tr(VP−1VP−1) + tr(EP−1VP−1) + tr(VP−1EP−1)

+ higher order terms

=F (P, V) + tr(P−1VP−1E) + tr(P−1VP−1E)

+ higher order terms

=F (P, V) + 2 tr(P−1VP−1E) + higher order terms.

(396)

Comparing such an expression with (395) yields:

∂F

∂V
= 2 P−1VP−1, (397)

which is the sought result. �

Let us summarizes a few known formulas about parallel transport. All the formu-
las given below hold under the provision that the manifolds are endowed with their
canonical metrics.

• Hypercube: The hypercube endowed with the standard Euclidean metric is a flat
space; hence, parallel transport may be realized as a rigid translation. Namely parallel
transport is an identity map.

• Hypersphere: Parallel transport on the hypersphere Sp−1 of the tangent vector w ∈
TxSp−1 along the geodesic arc γx,v of an extent t may be computed by [39]:

P0→t
γx,v (w) =

[
Ip +

cos(‖v‖t)− 1
‖v‖2 vv> − sin(‖v‖t)xv>

]
w. (398)

For a reference, readers might want to consult [61]. Starting from this, some math-
ematical work leads to the following result: given two points x, y ∈ Sp−1 and a
vector w ∈ TxSn−1, the parallel transport operator Px→y : TxSp−1 → TySp−1 has the
following structure:

Px→y(w) =

[
Ip −

(x + y)y>

1 + x>y

]
w, (399)

provided that x>y 6= −1 (namely, the points x and y are not antipodal one to another).
• Special orthogonal group: Parallel transport along a geodesic curve on the special

orthogonal group SO(p) may be implemented through the following formula:

PX→Y(W) = X
√

X>YX>W
√

X>Y. (400)

• Stiefel manifold: To the best of this author’s knowledge, there appear to be no closed
formulas about parallel transport on a Stiefel manifold St(n, p). This is one of those
cases in which self-parallel transport might be invoked. A self-parallel transport
expression, corresponding to the canonical metric, is

P0→t
γX,V

(V) = [V − XR>]Exp
(

t
[

X>V −R>

R 0p

])[
Ip
0p

]
, (401)

where R denotes the R-factor of the thin QR factorization of the matrix (In − XX>)V.
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• Manifold of symmetric, positive-definite (SPD) matrices: Given a geodesic arc
γX,V : [0, 1] → S+(p) and a tangent vector W ∈ TXS+(p), the expression of the
parallel transport operator that shifts the tangent vector W along the geodesic arc
γX,V(t) toward the endpoint t = 1 reads:

P0→1
γX,V

(W) = Exp
(

VX−1

2

)
W Exp

(
X−1V

2

)
. (402)

Some mathematical work leads to the following result: given two points X, Y ∈
S+(p) and a tangent vector W ∈ TXS+(p), the parallel transport operator PX→Y :
TXS+(p)→ TYS+(p) has the following structure:

PX→Y(W) =
√

YX−1W
√

X−1Y. (403)

• Grassmann manifold: Parallel transport of a vector U ∈ T[X]Gr(n, p) along the
geodesic γ[X],V with V ∈ T[X]Gr(n, p) is given by [33]:

P0→t
γ[X],V

(U) =

(
[XB A]

[
− sin(Dt)
cos(Dt)

]
A> + In − AA>

)
U, (404)

where ADB> denotes the compact singular value decomposition of the matrix V.

Let us derive the expression of the Christoffel form of the second kind for the special
orthogonal group.

Example 38. According to the canonical metric for the special orthogonal group SO(n), the
fundamental form is F (R, V) := tr(V>V); hence, the geodesic equation stemming from the
differential inclusion reads as γ̈ = γS, where S is a symmetric function. Recalling that any geodesic
line must satisfy the constraint γ>γ = In, deriving this twice with respect to time gives

γ̈>γ + 2γ̇>γ̇ + γ>γ̈ = 0. (405)

Plugging in the geodesic equation leads to S = −γ̇>γ̇, and hence the complete geodesic
equation reads as γ̈ = −γγ̇>γ̇. Consequently, the restricted Christoffel form of the second kind
associated with the special orthogonal group endowed with the canonical metric takes the expression

¯̄ΓR(V, V) := R(V>V). (406)

The full Christoffel form descends from the polarization Formula (358), which leads to

¯̄ΓR(V, W) = 1
2 R(V>W + W>V). (407)

It is interesting to notice that ¯̄ΓR(V, W) ∈ NRSO(n). �

Let us derive the expression of the Christoffel form of the second kind for the
Stiefel manifold.

Example 39. As we have seen, the Stiefel manifold St(n, p) may be endowed both with a Euclidean
metric and its canonical metric.

In the Euclidean metric, the fundamental form reads as F (X, V) := tr(V>V); hence, the
geodesic equation stemming from the differential inclusion reads as γ̈ = γS, where S is a symmetric
function. Recalling that any geodesic must satisfy the constraint γ>γ = Ip, similarly to the
calculations shown in the previous example, we find that

¯̄ΓX(V, V) := X(V>V). (408)
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The full Christoffel form descends from the polarization Formula (358), which leads to

¯̄ΓX(V, W) = 1
2 X(V>W + W>V). (409)

In the canonical metric, the fundamental form reads F (X, V) := tr
(

V>
(

Ip − 1
2 XX>

)
V
)

.
Calculations of the geodesic equation show that

∂F

∂γ̇
= 2(Ip − 1

2 γγ>)γ̇,

∂F

∂γ
= − γ̇γ̇>γ.

(410)

From the first derivative, it follows that

d
dt

∂F

∂γ̇
= 2(Ip − 1

2 γγ>)γ̈− (γ̇γ> + γγ̇>)γ̇. (411)

From the differential inclusion (153), it hence follows the equation

2(Ip − 1
2 γγ>)γ̈ = −γ̇γ̇>γ + γ̇γ>γ̇ + γγ̇>γ̇− γS, (412)

where S is a symmetric matrix function to be determined. To solve for the naive derivative γ̈, let us
recall that (Ip − 1

2 γγ>)−1 = Ip + γγ>. Hence, the above equation may be rewritten as

γ̈ = γ̇γ>γ̇ + γ(γ>γ̇)2 − γγ̇>γ̇− γS, (413)

where we have repeatedly used the fact that γ̇>γ = −γ>γ̇. Plugging the above relationship into
the condition (405) leads to the expression S = 2(γ>γ̇)2. Plugging back such an expression into
the relationship (413) leads to the geodesic equation

γ̈ + γ̇γ>γ̇ + γ((γ>γ̇)2 + γ̇>γ̇) = 0, (414)

from which stems the restricted Christoffel form of the second kind

¯̄ΓX(V, V) = VV>X + XV>(In − XX>)V. (415)

Calculations to obtain the full Christoffel form of the second kind lead to the expression

¯̄ΓX(V, W) = 1
2

{
(VW> + WV>)X + XW>(In − XX>)V + XV>(In − XX>)W

}
(416)

through the polarization formula. �

To conclude this subsection, let us prove an interesting result that concerns the parallel
transport of a manifold logarithm, which will be invoked later in connection to non-linear
control.

Theorem 6. Given two points x, y ∈ M, provided the manifold logarithms logx y and logy x
exist, it holds that

Px→y(logx y) = − logy x. (417)

Proof. Let γ
y
x : [0, 1] → M denote the geodesic arc connecting x to y and let γ̃x

y(t) :=
γ

y
x(1− t) denote the associated reversed geodesic. By definition of the logarithmic map,

it holds that γ̇
y
x(0) = logx y. Since γ̃x

y is a geodesic, it also holds that ˙̃γx
y(0) = logy x. In

addition, by the definition of a reversed geodesic, it holds that ˙̃γx
y(0) = −γ̇

y
x(1). By the

self-parallel transport property of any geodesic, it also follows that γ̇
y
x(1) = Px→y(γ̇

y
x(0)).

The assertion is hence proven.
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10.3. Coordinate-Prone Derivation of Parallel Transport*

The basic requirement of parallel transport along a curve is that it ensures the trans-
ported vector to be tangent to the curve at any given point. Clearly, this condition by
itself is too weak to give rise to a unique solution to the problem of parallel transport. In
Riemannian manifold calculus, it is additionally required that parallel transport along
a geodesic preserves the inner product between the transported tangent vector and the
tangent to the geodesic curve.

Under such a proviso, a parallel-transport rule may be constructed as follows. Let
γ : [0, 1] → M denote a geodesic curve on a p-dimensional Riemannian manifold M
endowed with a metric tensor of components gij. Upon taking a vector v ∈ Tγ(0)M, define
a vector field vγ ∈ Γ(M) (which might be well-defined only along the curve γ and not
necessarily outside of it) that denotes the transport of v along the curve γ. The tangency
requirement is expressed by vγ(t) ∈ Tγ(t)M, for every t ∈ [0, 1]. The inner-product
preservation property of parallel transport is expressed by requiring that the sought vector
field vγ meets the formal condition:

〈vγ(t), γ̇(t)〉γ(t) = constant over the curve γ(t). (418)

Using local coordinates vγ = (v1, v2, . . . , vp) and γ = (x1, x2, . . . , xp) and differentiat-
ing the above equation with respect to the parameter t yields the condition:

d
dt

(gijvi ẋj) = 0, (419)

namely:
∂gij

∂xk ẋk ẋjvi + gij ẋjv̇i + gih ẍhvi = 0. (420)

Now, let us exploit the fact that the components xh describe a geodesic arc (namely, a
self-parallel curve) on the Riemannian manifold M. Accordingly, it holds that ẍh = −Γh

kj ẋ
k ẋj.

Making use of such identity in Equation (420) yields:((
∂gij

∂xk − gihΓh
kj

)
ẋkvi + gijv̇i

)
ẋj = 0. (421)

Calculations with the Christoffel symbols show that the above equation may be
rewritten as:

ghj(Γ
h
ikvi ẋk + v̇h)ẋj = 0. (422)

from such relation, one may derive the set of differential equations

v̇h = −Γh
ikvi ẋk. (423)

which describe the evolution of the components of the transport field. Solving the above
set of non-linear equations under appropriate initial conditions yields a rule to perform
parallel transport.

11. Manifold Retraction and Vector Transport

Since the computation of an exponential map on a given manifold may be cumbersome,
the notion of retraction is sometimes invoked. A manifold retraction map R : TM→M is a
function that satisfies the following requirements [62] and that is easier to compute than an
exponential map:

1. Any restriction Rx is defined in some open ball B(0, ρx) of radius ρx > 0 about
0 ∈ TxM and is continuously differentiable;

2. It holds that Rx(v) = x if v = 0;
3. Let v(t) ∈ B(0, ρx) ⊂ TxM denote any smooth function on the tangent space TxM,

with t ∈ [−ε, ε] and v(0) = 0. The curve y(t) = Rx(v(t)), for t ∈ [−ε, ε], lies in
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a neighborhood of x = y(0). It holds that ẏ = dRx|v(v̇) where dRx|v : TvTxM →
TRx(v)M denotes a tangent map. Notice that v(t) lies in TxM for every t; hence, the
derivative v̇ is defined simply as

v̇(t) := lim
h→0

v(t + h)− v(t)
h

. (424)

For t = 0, it holds that dRx|0 : T0TxM→ TRx(0)M. Let us identify T0TxM ∼= TxM and
let us recall that TRx(0)M = TxM. In order for Rx to be a retraction, the map dRx|0
must equate the identity map in TxM.

In practice, a retraction Rx(v) sends a tangent vector v ∈ Tx M to a manifold M 3 x into
a neighbor of the point x. Any exponential map of a Riemannian manifold is a retraction.
Another class of retractions was surveyed in [63].

Manifold retraction is a computationally convenient replacement of exponential map
and, according to the definition given above, it behaves as a manifold exponential up to
first order. As manifold logarithm is a local inverse of manifold exponential, one might
wonder if a local inverse of retraction exists. Such problems have been studied in a number
of papers and a possible solution has been codified under the name of a manifold lifting
map [64].

Let us examine a few formulas of interest about manifold retraction.

• Hypercube: Not surprisingly, the simplest manifold retraction on the hypercube is
realized through array addition, namely Rx(v) := x + v.

• Hypersphere: Let x ∈ Sp−1 and v ∈ TxSp−1. A simple retraction map on the unit
hypersphere is

Rx(v) :=
x + v
‖x + v‖ , (425)

where ‖ · ‖ denotes a 2-norm. Let us verify that this map meets the three mentioned
requirements to be a retraction:

– Requirements 1 and 2: Easily verified by inspection.

– Requirement 3: Let y(t) = x+v(t)
[(x+v(t))>(x+v(t))]1/2 . Deriving both sides with respect

to t yields:

ẏ =
v̇‖x + v‖+ (x + v) 1

2
v̇(x+v)+(x+v)> v̇

‖x+v‖
‖x + v‖2 =

v̇‖x + v‖2 + (x + v)v̇>(x + v)
‖x + v‖3 .

Setting v = 0 leads to

ẏ(0) =
v̇(0)‖x‖2 + xv̇>x

‖x‖3 .

Since ‖x‖ = 1 and v̇ ∈ TxSp−1, it follows that v̇>x = 0, and hence the result is
proven.

• Stiefel manifold: There exist a number of retractions on the Stiefel manifold, which
are briefly outlined below.

1. Retraction based on QR factorization: In [64], it was shown that one of the
retractions that map a tangent vector of TXSt(n, p) to St(n, p) is given by:

Rqr
X (V) := qf(X + V), (426)

where qf(·) denotes the Q-factor of the thin QR factorization of its Rp×n matrix
argument.

2. Retraction based on polar factorization: Given a point X ∈ St(n, p) and a vector
V ∈ TXSt(n, p), the polar-factorization-based retraction may be written as [64]:

Rpol
X (V) := pf(X + V), (427)
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where pf(·) denotes the polar factor of a given matrix. Such a retraction may
be written in closed form. In fact, write X + V = QS. From the conditions
Q>Q = Ip and S> = S, it follows that:

(X + V)>(X + V) = S>Q>QS⇒ X>X + X>V + V>X + V>V = S2.

Since it holds that X>X = Ip and X>V + V>X = 0, and the matrix Ip + V>V is

positive-definite, one obtains S = (Ip + V>V)
1
2 . From the equality X + V = QS,

the following closed-form expression for the polar factorization-based retraction
is obtained:

Rpol
X (V) = (X + V)(Ip + V>V)−

1
2 . (428)

3. Orthographic retraction map: The paper [65] studies orthographic retractions on
submanifolds of Euclidean spaces. In the paper [65], it is proven that, given a pair
(X, V) ∈ TSt(n, p), under the proviso that V is sufficiently close to 0 ∈ TXSt(n, p),
there exists a normal array Z ∈ NXSt(n, p) such that the function

Rorth
X (V) := X + V + Z (429)

is a retraction on St(n, p). By the structure of the normal spaces, the orthographic
retraction map on the Stiefel manifold St(n, p) reads as:

Rorth
X (V) = X + V + XS, (430)

provided that there exists a p× p symmetric matrix S such that V + X(Ip + S) ∈
St(n, p), namely, such that:

(X + V + XS)T(X + V + XS) = Ip. (431)

The above equation in the unknown matrix S may be written in plain form as:

− S2 − S(XTV + Ip)− (VTX + Ip)S−VTV = 0. (432)

The Equation (432) represents an instance of Continuous-time Algebraic Riccati
Equation (CARE). The orthographic retraction map (430) may be computed
numerically as shown in [64].

• Real symplectic group: Possible retractions on a real symplectic group Sp(2n) are

RQ(V) := Q Exp (Q−1V), (433)

whose properties were studied in the contributions [66,67], and the one based on the
Cayley map, as explained in [2].

• Grassmann manifold: There exist a number of retractions on the Grassmann mani-
fold, which are briefly outlined below.

1. Retraction based on QR-factorization: In [40], one of the retractions that map a
tangent vector V ∈ T[X]Gr(n, p) onto Gr(n, p) is given by:

Rqr
X (V) := qf(X + V), (434)

where qf(·) denotes again the Q-factor of the thin QR factorization of its Rp×n

matrix argument and X ∈ St(n, p) is a Stiefel representative of the subspace [X].
2. Retraction based on polar factorization: Given a subspace [X] ∈ Gr(n, p) and

a tangent vector V ∈ T[X]Gr(n, p), the polar-factorization-based retraction may
be written as [40]:

Rpol
X (V) := (X + V)(Ip + V>V)−

1
2 , (435)
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where X ∈ St(n, p) is a Stiefel representative of the subspace [X].

The parallel transport Equation (362) is, in general, difficult to solve, and hence
the parallel transport operator might not be available in closed form for manifolds of
interest. Approximations of the exact parallel transport are available, as the ‘Schild’s
ladder’ construction [68] and the vector transport method [62]. In order to define the notion
of vector transport, a smooth manifold M is supposed to be embedded into a (possibly large)
linear ambient space A of appropriate dimension. Upon endowing the linear space A with
an inner product, it is possible to define an orthogonal projection operator Πx : A→ TxM,
with x ∈M. Define the Whitney sum

TM⊕ TM := {(x, (v, w)) | x ∈M, v ∈ TxM, w ∈ TxM}. (436)

Then, the vector transport operator

vt : (x, (v, u)) ∈ TM⊕ TM 7→ w ∈ Texpx(v)
M (437)

associated to an exponential map exp : TM→M is defined as:

vtx,v(u) := Πexpx(v)
(u). (438)

In practice, instead of parallel-translating the tangent vector u ∈ TxM along a geodesic
arc emanating from the point x ∈M in the direction v ∈ TxM as P0→1

γx,v (u), vector transport
moves rigidly the vector u within A up to the point y and then orthogonally projects the
vector u over the tangent space TyM where y = expx(v).

With a slight abuse of exact terminology, one may refer to vector transport of a vector
u ∈ TxM to a tangent space TyM by Πy(u) for a fixed y ∈M. In practice, vector transport
is based on the following procedure:

1. Embed the manifold M into a metric ambient space A.
2. Translate rigidly the vector u ∈ TxM across the ambient space A ⊃ M to a point

y ∈M.
3. Project the vector u into the tangent space TyM by means of a suitable orthogonal

projector Πy : A→ TyM.

Vector transport associated with the above procedure is Πy(u), which moves the
vector u from TxM ⊂ A to TyM.

Depending on the manifold structure, vector transport might result to be much less
expensive to compute than exact parallel transport. As a drawback, vector transport does
not enjoy some of the fundamental properties of parallel transport; for instance, vector
transport does not realize an isometry nor a conformal transformation. Isometry may be
recovered through an appropriate normalization, though.

12. Control Systems on Manifolds and Numerical Implementation

This section presents an instance of error feedback control of first-order systems on
manifold and their numerical implementation, with special emphasis to system synchro-
nization. In the present research, we will regard synchronization as a goal to be achieved
by non-linear proportional-type control. We shall see that the design of a synchronizing
controller may be effected through the classical notion of Lyapunov function and we shall
further introduce the notion of control effort to quantify the energy consumption associated
with a control action.

12.1. Synchronization of First-Order Dynamical Systems via Feedback Control

Synchronization is meant primarily to make two identical (or twin) dynamical systems
synchronize their dynamics overt time, provided that their initial states differ from one
another and that one of them is able to access the state of the other. In order not to
restrict how far such two initial states may lay apart, the state space M is assumed to be
a geodesically complete path-connected manifold. In principle, the restriction that the two
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systems to synchronize must be identical is not necessary, as long as their mathematical
models insist on the same state manifold.

In a system pair, the independent dynamical system will be referred to as the leader,
while the controlled dynamical system will be referred to as the follower. In this section, we
shall assume that the leader and the follower differ from one another, whereby the case of
identical systems will follow as a special (although most meaningful) case.

We shall cover in this paper only the case that the leader is represented by a first
order, non-autonomous dynamical system on manifold, described by the tangent-bundle
differential equation

ẋ`(t) = f `(t, x`(t)), with x`(0) = x`0 ∈M, t ≥ 0, (439)

where x` ∈M denotes the leader’s state variable and f ` : R×M→ TM denotes a possibly
time-dependent state-transition operator. Likewise, the controlled follower is described by

ẋ(t) = f (t, x(t)) + u(t), with x(0) = x0 ∈M, t ≥ 0, (440)

where x ∈ M denotes the follower’s state variable, f : R×M → TM denotes a state-
transition operator of the follower, u ∈ TM denotes a tangent-bundle control field (in
particular, u(t) ∈ Tx(t)M) and, in general, the initial state x0 ∈ M differs from the initial
state x`0 ∈M.

The control field that will drive the follower to synchronize to the leader is defined
on the basis of an instantaneous (non-delayed) distance-minimization design. Assume
the state manifold M to be endowed with a specific metric and hence a distance function
d : M×M→ R and a logarithmic map log : M×M→ TM. Let us define the function

D(t) := 1
2 d2(x`(t), x(t)) = 1

2 〈logx`(t)(x(t)), logx`(t)(x(t))〉x`(t), (441)

which is proportional to the squared Riemannian distance between the state of the leader
and the state of the follower. The following result shows how to define a distance minimiz-
ing control action.

Theorem 7. The control field

u := Px`→x( f `(t, x`))− f (t, x) + c logx(x`), (442)

with c > 0, minimizes the function D(t) asymptotically.

Proof. The derivative of the function D with respect to the time-parameter t reads

Ḋ = 〈− logx`(x), ẋ`〉x` + 〈− logx(x`), ẋ〉x
= − 〈logx`(x), f `(t, x`)〉x` − 〈logx(x`), f (t, x) + u〉x.

(443)

The above expression appears as a sum of two terms referring to two different tangent
spaces. It is convenient to move calculations to only one tangent space. We shall take, as
the tangent space of reference, the one attached to the state of the follower. Assuming that
parallel transport realizes a conformal isometry (see Section 10), it holds that

〈logx`(x), f `(t, x`)〉x` = 〈P
x`→x(logx`(x)),Px`→x( f `(t, x`))〉x. (444)
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In addition, by Theorem 6, it holds that Px`→x(logx`(x)) = − logx(x`) because parallel
transport and manifold logarithm are referred to the same geodesic line. Therefore, the
expression (443) may be recast as

Ḋ = 〈logx(x`),Px`→x( f `(t, x`))〉x − 〈logx(x`), f (t, x) + u〉x
= 〈logx(x`),Px`→x( f `(t, x`))− f (t, x)− u〉x,

(445)

thanks to the linearity of the inner product. Let us set the control field u so that the sum
Px`→x( f `(t, x`)) − f (t, x) − u in (445) is proportional to − logx(x`), which leads to the
expression (442). The choice that led to the control field (442) implies that the function
D satisfies

Ḋ = −c 〈logx(x`), logx(x`)〉x = −c‖ logx(x`)‖2
x = −2c D . (446)

Since the inner product defines a positive-definite local norm, the above equation
entails the inequality Ḋ ≤ 0 at any time, which implies asymptotic synchronization.
Equality may hold only when logx(x`) = 0, which happens when the follower and the
leader are perfectly synchronized.

In the expression (442), the constant c takes the meaning of a communication strength
between the leader and the follower. In addition, one might notice that the differential
Equation (446) may be solved for D and gives D(t) ∝ e−2ct; hence, synchronization
happens with exponential time speed (fast at the beginning, then slower). Such a result is
completely independent of the metric that the state manifold M was endowed with and
the speed of synchronization depends only on the constant c.

Let us consider, as an example, a simpler and more familiar case.

Example 40. As a special case, when M = R3 endowed with the standard Euclidean metric, the
parallel transport operator is simply the identity map, while logx y = y− x. Therefore, the criterion
function D takes the shape of a quadratic error, namely D = 1

2 e>e, where e := x− x`, discussed
in [69], and the corresponding control field takes the expression u = f `(t, x`)− f (t, x)+ c (x`− x),
which coincides with the control field discussed in the paper [69].

The freedom in the choice of an inner product accounts for the generalization considered in [69]
that consists of considering a Lyapunov function D := 1

2 e>Pe with P being a symmetric, positive-
definite weighting matrix. Such a weighting matrix seems to be absent from our formulation of
a quadratic error (441), yet it is ‘hidden’ in such an expression. In fact, invoking once again an
ambient space A that the state space is embedded within and a metric 〈·, ·〉A, we may rewrite the
quadratic error (441) as

D = 1
2 〈logx(x`), Gx(logx(x`)〉A, (447)

and hence, by comparison, we see that the synchronization error reads e := logx(x`) and that the
role of the weighting matrix P is played by the metric kernel G. �

In control theory, it is customary to associate a scalar index, the control effort, to the
control field [70]. In the context of systems on manifold, we define the control effort
σ : R→ R as

σ(t) := 〈u(t), u(t)〉x(t) = ‖u(t)‖2
x(t). (448)

Whenever the follower system and the leader system are twins, namely their state-
transition functions are identical f ` ≡ f , under mild continuity conditions on such state-
transition functions the control effort vanishes asymptotically to zero. In fact, by the continuity
of the state-transition function, it follows that Px`→x( f (t, x`))− f (t, x) approaches 0 as
x(t) approaches x`(t). Such a conclusion holds no longer true if the follower and leader systems’
state-transition functions differ from one another (namely, whenever f ` 6= f ). It is worth
underlining that the state-transition functions of the leader and of the follower systems,
namely f ` and f , may differ to one another even when these systems are identical since
the information on the leader’s state as acquired by the follower may be affected by
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measurement noise, namely, it might hold that f (t, ·) = f `(t, ·) + ν(t), where ν(t) denotes
a measurement disturbance.

Another interesting observation concerns the speed of synchronization in connection
to control effort saving. The constant c in the expression (442) influences the speed of
synchronization, namely, the larger c, the speedier the synchronization. However, it is easy
to see from the definition (448) that the constant c also affects the control effort, namely, the
larger c, the more expensive the control action. Clearly, the proportional control constant c
should be chosen as a tradeoff between speed and cost.

12.2. Numerical Methods to Simulate First-Order Systems

In the present subsection we shall recall from the specialized literature the notions of
forward Euler method and of explicit 4th-order Runge–Kutta method to simulate numerically
classical first-order, non-linear, non-autonomous systems. In addition, in the body of the
present section we shall lay out extensions of such numerical methods to implement on a
computing platform those mathematical dynamical systems insisting on curved manifolds.
The main ideas to achieve such an extension may be summarized as follows:

Extension of straight stepping: Classical numerical methods tailored to Rn advance the
solution from one step to the next by moving a system’s state along straight segments. On
curved state manifolds, the notion of ‘straight segment’ needs to be replaced by the notion
of ‘geodesic arc’, and henceforth additive stepping needs to be replaced by exponential-
map-based stepping.

Extension of linear stages: High-order methods in Rn select a stepping direction as
a linear combination of a number of estimations of a vector field (in the Runge–Kutta
methods, these estimations are called ‘stages’). On curved spaces, moving directions are
tangent vectors that cannot be combined together directly because they belong to different
tangent spaces. Such tangent directions need to be ‘aligned’ together in a given tangent
space by means of parallel transport and then combined together.

The forward Euler scheme (fEul) is perhaps the simplest numerical scheme known
in the scientific literature to tackle an initial value problem. On a Euclidean space Rn, the
forward Euler method to simulate numerically a dynamical system ẋ(t) = f (t, x(t)) reads
as

xk+1 = xk + T f (kT, xk), k = 0, 1, 2, 3, . . . , K, (449)

where k denotes a step counter ranging from 0 to a given integer K > 0, T denotes a
time-discretization interval (generally, T � 1) and xk denotes an approximation to the true
state x(k T). The accuracy and numerical stability of this method turn out to be reasonable
as long as the state-transition function meets certain conditions [71].

This Euler method moves forward the current state xk to the next state xk+1 along a
straight line directed toward f (kT, xk) of a fraction specified by T. Since curved manifolds
admits no straight lines in the sense of Euclidean geometry, a plain forward Euler method
is inherently unsuitable to cope with a tangent-bundle differential equation, as exemplified
in the following.

Example 41. To tackle the problem that arises about the numerical implementation of dynamical
systems on manifolds, it is worth examining an explanatory example based on the low-dimensional
manifold SO(2). As already outlined, by embedding the space SO(2) into the space A := R2×2,
any element of SO(2) may be regarded as a 2-by-2 real-valued matrix X =

[
X11 X12
X21 X22

]
whose

entries must satisfy the constrains: X2
11 + X2

21 = 1, X2
22 + X2

12 = 1, X11X12 + X21X22 = 0 and
X11X22 − X12X21 = 1.

Let us consider the first-order dynamical system Ẋ = f (X) on the manifold SO(2), with
f : X ∈ SO(2) 7→ f (X) ∈ TXSO(2). Such a dynamical system may be written as a set of
four differential equations of the type Ẋij(t) = fij(X11(t), X12(t), X21(t), X22(t)). In the present
case, it holds that f (X) = XΩ with Ω =

[ 0 ω
−ω 0

]
, where ω = ω(X(t)) ∈ R. The forward

Euler stepping technique of numerical calculus to solve the above system of differential equations
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would read as Xk+1 = Xk + T f (Xk), with T > 0 denoting a step size and k ≥ 0 a step counter.
Such a numerical stepping method does not take into account the constraints on the entries of
matrix X, namely, it generates a trajectory k 7→ Xk in the ambient space R2×2 rather than in the
feasible manifold SO(2). Namely, starting from a point Xk ∈ SO(2), it would yield a new point
Xk+1 /∈ SO(2). The reason of such behavior is that Euler techniques insist on flat spaces and do
not cope automatically with curved manifolds.

It is instructive to investigate in detail the effect of an Euler stepping method in the solution of
the differential equation Ẋ = XΩ. In such a context, the Euler stepping equation reads:

Xk+1 = Xk(I2 + TΩk), with Ωk =

[
0 ωk
−ωk 0

]
, k ≥ 0. (450)

As the starting point, X0 satisfies X>0 X0 = I2, and it holds that:

X>1 X1 = (I2 + TΩ0)
>X>0 X0(I2 + TΩ0) = I2 − T2Ω2

0. (451)

Notice that Ω2
k = −ω2

k I2, and hence X>1 X1 = (1 + T2ω2
0)I2. The result of the first step X1

already lost normality of its columns of an additive amount T2ω2
0 and changed its determinant from

1 to
√

1 + T2ω2
0. Since T is generally far smaller than 1, and since the deviation is proportional

to T2, such a deviation may not be apparent from the first steps, yet progressively detrimental.
However, the first step keeps the orthogonality of the columns of the matrix X (such a result is
peculiar of the case SO(2) only and does not copy to the general case SO(n) with n > 2). For the
next step, it holds that:

X>2 X2 =(I2 + TΩ1)
>X>1 X1(I2 + TΩ1)

=(1 + T2ω2
0)(I2 − T2Ω2

1)

=(1 + T2ω2
0)(1 + T2ω2

1)I2.

(452)

By induction, it is readily verified that the matrix Xk keeps monotonically loosing the normality
of its two columns of an identical amount. �

The forward Euler method (449) can be extended to a smooth manifold by replacing
the notion of straight line with the notion of geodesic line, to give

xk+1 = expxk
(T f (kT, xk)), k = 0, 1, 2, 3, . . . , K. (453)

The generalization from (449) to (453) is conceived as follows. On a curved state
manifold M, each point xk belongs to M while each quantity f (kT, xk) is a tangent
vector in TxkM: these two quantities cannot be combined in an additive way, because
xk + T f (kT, xk) /∈M, rather, such quantities are combined by the help of the exponential
map, which describes a geodesic arc departing from the state xk in the tangent direction
f (kT, xk). The above stepping method allows one to compute the first K discrete points of
the trajectory generated by the dynamical system ẋ = f (t, x), with x ∈M, given the initial
state x0 ∈M. For a Euclidean state space M = Rn, it holds that expx(v) = x + v; therefore,
the scheme (453) is apparently a generalization of the well-known Euler scheme (449) from
Euclidean to curved spaces.

The set of equations to simulate on a computing platform a leader system and a
controlled follower system by the fEul method on a manifold are hence laid out as follows

x`k+1 = expx`k
(T f `(kT, x`k)), Free leader

uk = Px`k→xk ( f `(kT, x`k))− f (kT, xk) + c logxk
(x`k), Controller

xk+1 = expxk
(T ( f (kT, xk) + uk)), Controlled follower

k = 0, 1, 2, 3, . . . , K.

(454)



Symmetry 2021, 13, 2092 83 of 94

For the sake of comparison, we notice that, in the case of a leader-follower pair
evolving on a Euclidean state space M = Rn, the above Equation (454) would simplify into

x`k+1 = x`k + T f `(kT, x`k), Free leader
uk = f `(kT, x`k)− f (kT, xk) + c (x`k − xk), Controller
xk+1 = xk + T ( f (kT, xk) + uk), Controlled follower
k = 0, 1, 2, 3, . . . , K,

(455)

because x`k, xk ∈ Rn and f , f ` : R×Rn → Rn.
A second class of methods that we would like to recall is the explicit, fourth-order

Runge–Kutta algorithm. The family of Runge–Kutta numerical integration methods on
Euclidean spaces Rn was conceived in order to increase the precision of lower-order
methods, such as the Euler method [72]. The explicit 4th-order Runge–Kutta method
(eRK4), is based on four partial increments (stages) that, combined together, lead to a
complete step: 

h1,k := f (kT, xk),
h2,k := f (kT + 1

2 T, xk +
1
2 Th1,k),

h3,k := f (kT + 1
2 T, xk +

1
2 Th2,k),

h4,k := f ((k + 1)T, xk + Th3,k),

xk+1 = xk + T (
h1,k

6 +
h2,k+h3,k

3 +
h4,k

6 ),
k = 0, 1, 2, 3, . . . , K.

(456)

Similar to the Euler method, the eRK4 method moves forward the current state xk
to the next state xk+1 along a straight line toward a specific direction, except that such a
direction is computed in a more convoluted way.

The eRK4 method may be extended to a curved manifold by appropriately converting
each of the equations in (456). Such a conversion needs to take into account that the state
space M is now a curved manifold:

h1,k := f (kT, xk),
xk+1/4 = expxk

( 1
2 Th1,k),

h2,k := f (kT + 1
2 T, xk+1/4), h̃2,k = Pxk+1/4→xk (h2,k),

xk+1/2 = expxk
( 1

2 Th̃2,k),

h3,k := f (kT + 1
2 T, xk+1/2), h̃3,k = Pxk+1/2→xk (h3,k),

xk+3/4 = expxk
(Th̃3,k),

h4,k := f ((k + 1)T, xk+3/4), h̃4,k = Pxk+3/4→xk (h4,k),

xk+1 = expxk

(
1
6 Th1,k +

1
3 T (h̃2,k + h̃3,k) +

1
6 Th̃4,k

)
,

k = 0, 1, 2, 3, . . . , K.

(457)

(The notation xk+1/4, xk+1/2, . . . , used to indicate intermediate steps, is standard in
numerical calculus.) The reasoning that led to this numerical scheme is outlined as follows:
Once a direction h1,k is obtained in the first stage, it is used to determine the direction h2,k in
the second stage; the formula to compute h2,k in (456) prescribes to evaluate the vector field
f (·, x) in a point xk +

1
2 Th1,k; this last expression, however, cannot be applied directly on a

curved manifold and needs to be replaced by expxk
( 1

2 Th1,k), which gives the expression
h2,k in (457); even so, the obtained result cannot be used directly, since the update rule
in (456), which prescribes to advance the value xk by xk+1 = xk + T( 1

6 h1,k +
1
3 h2,k + . . .),

needs to be translated into xk+1 = expxk

(
1
6 Th1,k +

1
3 Th2,k + . . .

)
which, in turn, requires

the vector h2,k to belong to TxkM, while it belongs to Txk+1/4M; for this reason, it is necessary
to make a further modification and to parallel transport the vector h2,k to TxkM, namely, to
compute h̃2,k = Pxk+1/4→xk (h2,k); the same holds for the subsequent stages.
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The complete set of equations required to implement numerically a leader and a
controlled follower by the eRK4 method on a manifold are



h`1,k := f `(kT, x`k),
x`k+1/4 = expx`k

( 1
2 Th`1,k),

h`2,k := f `(kT + 1
2 T, x`k+1/4), h̃`2,k = Px`k+1/4→x`k (h`2,k),

x`k+1/2 = expx`k
( 1

2 Th̃`2,k),

h`3,k := f `(kT + 1
2 T, x`k+1/2), h̃`3,k = Px`k+1/2→x`k (h`3,k),

x`k+3/4 = expx`k
(Th̃`3,k),

h`4,k := f `((k + 1)T, x`k+3/4), h̃`4,k = Px`k+3/4→x`k (h`4,k),

x`k+1 = expx`k

(
1
6 Th`1,k +

1
3 T(h̃`2,k + h̃`3,k) +

1
6 Th̃`4,k

)



Leader

uk = Px`k→xk ( f `(kT, x`k))− f (kT, xk) + c logxk
(x`k), Controller

h1,k := f (kT, xk),
xk+1/4 = expxk

( 1
2 Th1,k),

h2,k := f (kT + 1
2 T, xk+1/4), h̃2,k = Pxk+1/4→xk (h2,k),

xk+1/2 = expxk
( 1

2 Th̃2,k),

h3,k := f (kT + 1
2 T, xk+1/2), h̃3,k = Pxk+1/2→xk (h3,k),

xk+3/4 = expxk
(Th̃3,k),

h4,k := f ((k + 1)T, xk+3/4), h̃4,k = Pxk+3/4→xk (h4,k),

xk+1 = expxk

(
1
6 Th1,k +

1
3 T(h̃2,k + h̃3,k) +

1
6 Th̃4,k + Tuk

)
,



Follower

k = 0, 1, 2, 3, . . . , K.

(458)

The implementation of the above equations on a computing platform does not pose se-
rious concerns as long as the chosen development language possesses adequate commands
to deal seamlessly with arrays and array-type functions.

13. Riemannian Hessian of a Manifold-to-Scalar Function

The next step in Taylor series approximation to a manifold-to-scalar function beyond
the first-order term (through gradient) is the second-order termed based on the notion of
‘Hessian’.

13.1. Definition, Properties and Coordinate-Free Calculation of Riemannian Hessian

Given a differentiable function f : M → R, its Riemannian Hessian at a point x ∈M
is a linear operator Hx f : TxM → TxM that appears in the quadratic term of the Taylor
approximation

f (γx,v(t)) = f (x) + 〈gradx f , v〉xt + 1
2 〈Hx f (v), v〉xt2 +O(t3), (459)

where γx,v : [−ε, ε] → M denotes, in principle, any smooth curve such that γx,v(0) = x
and γ̇x,v(0) = v. A major problem with such liberality in the choice of a curve is that,
since clearly

〈Hx(v), v〉x =
d2 f (γx,v(t))

dt2

∣∣∣∣
t=0

, (460)

the Hessian operator would not just depend on the pair (x, v) but also on γ̈x,v(0), which is
not prescribed. A Hessian that depends on the shape of the curve γ which, after all, should
be instrumental—not determinant—is hardly acceptable in practice, which is why the
notion of a Hessian operator is generally defined with respect to a geodesic γx,v. It is worth
pointing out that, according to the ‘algebraic’ argument recalled in Observation 1, since the
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Hessian stems from a quadratic form, only its self-adjoint part plays a role. Indeed, since its
very definition stems from a quadratic form, only its self-adjoint component may be determined.

Not surprisingly, the Riemannian Hessian on a manifold M embedded in an ambient
space A is related to the ambient Hessian in A. Still, there is a perhaps surprising outcome
in its calculation, namely, it depends on the ambient gradient of f (while the standard
Hessian does not). Let us recall what is meant by ambient Hessian ∂2

x f of a function
f : A→ R, that is

∂2
x f (v) := lim

h→0

∂ρx,v(h) f − ∂x f
h

=
d
dt

∂ρx,v(t) f
∣∣∣∣
t=0

, (461)

where ρx,v : [−ε, ε] → M denotes any smooth curve such that ρx,v(0) = x ∈ M and
ρ̇x,v(0) = v ∈ TxM—for instance, if f : Rp → R, then ∂2

x f takes the form of a p× p matrix
of partial derivatives and ∂2

x f (v) just denotes the matrix-to-column-array product (∂2
x f )v.

To carry out the calculation of the Riemannian Hessian, let us recall the relation-
ship (301) that may be written as

d
dt

f (γx,v(t)) = 〈gradγx,v(t) f , γ̇x,v(t)〉γx,v(t). (462)

Introducing the metric kernel and the inner product on the ambient space gives:

d
dt

f (γx,v(t)) = 〈Gγx,v(t)(gradγx,v(t) f ), γ̇x,v(t)〉A. (463)

Recalling the explicit expression (284) of the Riemannian gradient based on an orthog-
onal projector Π gives

d
dt

f (γx,v(t)) = 〈Πγx,v(t)(∂γx,v(t) f ), γ̇x,v(t)〉A. (464)

The right-hand side in the above expression has been written in a way that makes it
easier to take a second derivative with respect to the parameter t, which reads as

d2

dt2 f (γx,v(t)) = 〈 d
dt Πγx,v(t)(∂γx,v(t) f ), γ̇x,v(t)〉A + 〈Πγx,v(t)(∂γx,v(t) f ), γ̈x,v(t)〉A. (465)

The first expression on the right-hand side may be written explicitly by introducing a
linear operator Π• that represents a derivative of the orthogonal projector, while the second
term on the right-hand side may be made more explicit by recalling, from the relationships
in (356), the relation between the naïve acceleration over a geodesic and the Christoffel
form of second kind. Let us define the linear operator

Π•x(a, v) :=
d
dt

Πρx,v(t)(a)
∣∣∣∣
t=0

, (466)

where x ∈ M denotes a point where projection is carried out, a ∈ A is an element of the
ambient space whose projection is sought, v ∈ TxM is a tangent direction along which a
variation of the projected vector Πx(a) is sought to be estimated and ρx,v : [−ε, ε]→M is
any smooth curve such that ρx,v(0) = x and ρ̇x,v(0) = v.

To clarify the above definition, let us examine a useful computation rule.

Example 42. Let us define g : M → A as an ambient-valued function of a manifold-valued
argument and a smooth curve γ : R→M. Let us now consider the composition Πγ(t)(g(γ(t))).
We aim at calculating its derivative with respect to the parameter t. It holds that

d
dt

Πγ(g(γ)) = Π•γ(g(γ), γ̇) + Πγ(∂γg(γ̇)), (467)



Symmetry 2021, 13, 2092 86 of 94

which is a linear function of γ̇. �

On the basis of the above calculation rule, of interest in the following developments,
we can prove a collateral property of the map Π•.

Example 43. The map Π• applied to two tangent vectors returns a normal element. In fact,
let us recall that Πx(Πx(a)) = Πx(a) for every x ∈ M and a ∈ A. On any smooth curve
γ : [−ε, ε]→M such that γ(0) = x and γ̇(0) = v it holds that

Πγ(Πγ(a)) = Πγ(a). (468)

Deriving with respect to the parameter t and applying the computation rule (467), yields

Π•γ(Πγ(a), γ̇) + Πγ(Π•γ(a, γ̇)) = Π•γ(a, γ̇). (469)

Setting t = 0 yields:

Π•x(Πx(a), v) + Πx(Π•x(a, v)) = Π•x(a, v). (470)

Now we can set w := Πx(a) ∈ TxM and write

Π•x(w, v) = Π•x(a, v)−Πx(Π•x(a, v)). (471)

The term on the right-hand side represents the normal component of Π•x(a, v), and hence
Πx(Π•x(w, v)) = 0. �

On the basis of the definition (337), the second derivative (465) may be rewritten as

d2

dt2 f (γx,v(t)) = 〈Π•γx,v(t)(∂γx,v(t) f , γ̇x,v(t)), γ̇x,v(t)〉A

+ 〈Πγx,v(t)(
d
dt ∂γx,v(t) f ), γ̇x,v(t)〉A

− 〈Πγx,v(t)(∂γx,v(t) f ), ¯̄Γγx,v(t)(γ̇x,v(t), γ̇x,v(t))〉A.

(472)

Setting t = 0 leads to

〈Hx f (v), v〉x = 〈Π•x(∂x f , v), v〉A + 〈Πx(∂
2
x f (v)), v〉A − 〈Πx(∂x f ), ¯̄Γx(v, v)〉A. (473)

As a last step, recall that, in the rightmost term, it is possible to swap one instance of v
with the term Πx(∂x f ); hence, we write

〈Gx(Hx f (v)), v〉A = 〈Π•x(∂x f , v), v〉A + 〈Πx(∂
2
x f (v)), v〉A − 〈 ¯̄Γx(Πx(∂x f ), v), v〉A, (474)

which must hold for every v ∈ TxM. The last expression is equivalent to

Gx(Hx f (v))−Π•x(∂x f , v)−Πx(∂
2
x f (v)) + ¯̄Γx(Πx(∂x f ), v) ∈ NxM. (475)

An explicit expression of the Riemannian Hessian may now be obtained by applying
the orthogonal projector Πx to both sides and then the inverse metric kernel to the result,
which ultimately gives

Hx f (v) = G−1
x (Πx(∂

2
x f (v))) + G−1

x (Πx(Π•x(∂x f , v)))− G−1
x (Πx( ¯̄Γx(Πx(∂x f ), v))). (476)

Notice that, unless the difference between the last two terms is zero, the Riemannian
Hessian depends on the ambient gradient ∂x f .

It is worth examining separately a few special cases in which the expression of the
Riemannian Hessian simplifies:
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• Case that Πx is independent of x: This case occurs when tangent spaces coincide to
one another. In this case, the projection operator may simply be denoted as Π and it
holds that Π• ≡ 0; therefore,

Hx f (v) = G−1
x (Π(∂2

x f (v)))− G−1
x (Π( ¯̄Γx(Π(∂x f ), v))). (477)

• Case that the metric kernel coincides with the identity: This is the case most gener-
ally covered in the literature that occurs when the ambient space A is a Euclidean
space. In this case

Hx f (v) = Πx(Π•x(∂x f , v)) + Πx(∂
2
x f (v))−Πx( ¯̄Γx(Πx(∂x f ), v)). (478)

This case was explicitly covered in [73], in which the expression of the Hessian was
given in terms of Weingarten map. The importance of the Weingarten map in applied
sciences was further highlighted in [74].

• Case that the gradient of the function f is null: In a point x ∈M where gradx f = 0
the expression of the Hessian simplifies noticeably. In fact the last two terms in (476)
vanish to zero; therefore, it holds that

Hx f (v) = (G−1
x ◦Πx)(∂

2
x f (v)). (479)

This is in fact the only case in which the Hessian does not depend on the Christof-
fel form.

• Case of the manifold Rp endowed with a Euclidean metric: This is the reference
case that we may look at for familiarity. In this case, Gx = idx, Πx = idx, Γ̄x = 0;
hence,

Hx f (v) = ∂2
x f (v), (480)

which looks exactly as one expects.

To what concerns the operator Π•, we are going to assume that the following commu-
tation property with the ambient metric holds: For every x ∈ M, a ∈ A, u, v ∈ TxM it is
true that

〈Π•x(a, v), w〉A = 〈Π•x(a, w), v〉A. (481)

Let us go into some detail about the practical computation of the operator Π• by
surveying an example related to the Stiefel manifold.

Example 44. The Stiefel manifold embedded in its canonical ambient space endowed with the
Euclidean metric has an orthogonal projector defined by the relation (286), namely [33]:

ΠX(A) := A− 1
2 X(X>A + A>X). (482)

In order to apply the definition (466), let us first take any smooth curve ρX,V(t), with X ∈
St(n, p) and V ∈ TXSt(n, p), and write

ΠρX,V(t)(A) := A− 1
2 ρX,V(t)(ρ>X,V(t)A + A>ρX,V(t)). (483)

Taking the first derivative, side by side, with respect to the parameter t gives:

d
dt

ΠρX,V(t)(A) :=− 1
2 ρ̇X,V(t)(ρ>X,V(t)A + A>ρX,V(t))

− 1
2 ρX,V(t)(ρ̇>X,V(t)A + A>ρ̇X,V(t)).

(484)

Now, setting t = 0 and recalling that ρX,V(0) = X and ρ̇X,V(0) = V yields

Π•X(A, V) = − 1
2 X(V>A + A>V)− 1

2 V(X>A + A>X). (485)
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Let us verify the commutativity property (481). We have

〈Π•X(A, V), W〉A = − 1
2 tr(W>X(V>A + A>V))− 1

2 tr(W>V(X>A + A>X)),

〈Π•X(A, W), V〉A = − 1
2 tr(V>X(W>A + A>W))− 1

2 tr(V>W(X>A + A>X)).
(486)

Notice that the first terms on the right-hand sides of both inner products are null, because
W>X and V>X are skew-symmetric, while the remaining terms may be proven equal by the trace
cyclic permutation property and by symmetry. �

The case of the special orthogonal group is relevant and instructive as well.

Example 45. The special orthogonal group SO(n) embedded into the ambient space A := Rn×n,
endowed with the Euclidean metric, admits the orthogonal projection

ΠR(A) := 1
2 (A− RA>R). (487)

Let us verify that ΠR maps any matrix from A to the tangent space TRSO(n):

R>ΠR(A) + Π>R (A)R = 1
2 R>(A− RA>R) + 1

2 (A− RA>R)>R = 0, (488)

by easy matrix calculations. In addition, let us verify that A−ΠR(A) ∈ NRSO(n):

〈A−ΠR(A), V〉A = tr
(

V>
(

A− 1
2 (A− RA>R)

))
= 1

2 tr
(

V>A + (V>R)A>R
)

= 1
2 tr
(

V>A + (−R>V)A>R
)

= 1
2 tr
(

V>A− A>(RR>)V)
)

= 1
2 tr(V>A− A>V)

= 0.

(489)

To apply the definition (466), let us first take a smooth curve ρR,V(t), with R ∈ SO(n) and
V ∈ TXSO(n), and evaluate

ΠρR,V(t)(A) := 1
2 (A− ρR,V(t)A>ρR,V(t)). (490)

Taking the first derivative, side by side, with respect to the parameter t gives:

d
dt

ΠρR,V(t)(A) := − 1
2 ρ̇R,V(t)A>ρR,V(t)− 1

2 ρR,V(t)A>ρ̇R,V(t). (491)

Setting t = 0 and recalling that ρR,V(0) = R and ρ̇R,V(0) = R yields

Π•R(A, V) = − 1
2

(
VA>R + RA>V

)
. (492)

To end this example, let us verify the commutativity property (481). Let us observe that

〈Π•R(A, V), W〉A = − 1
2 tr(W>VA>R)− 1

2 tr(W>RA>V),

〈Π•R(A, W), V〉A = − 1
2 tr(V>WA>R)− 1

2 tr(V>RA>W).
(493)
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The above expressions may be proven equal by some clever matrix manipulation. For example,
by noticing that W> = −R>WR> and V = −RV>R, one may show that

tr(W>RA>V) = tr((−R>WR>)RA>(−RV>R))

= tr(WA>RV>)

= tr(V>WA>R),

(494)

by repeated application of cyclic permutation invariance.
Let us complete the calculation of the Riemannian Hessian for the special orthogonal group.

According to the Hessian formula (478), we preliminarily need to evaluate

ΠR(Π•R(A, V)) = 1
4

{
(AV> −VA>)R− R(A>V −V>A)

}
,

ΠR(
¯̄ΓR(V, W)) = 0,

(495)

therefore

HR f (V) = 1
2 (∂

2
R f (V)− R (∂2

R f (V))>R)

− 1
4

{
(∂R f V> −V∂>R f )R− R(∂>R f V −V>∂R f )

}
.

(496)

It is easy to verify, by direct calculation, that HR(V) ∈ TRSO(n). �

Let us survey the computation of the Riemannian Hessian on the hypersphere.

Example 46. Let us compute the Riemannian Hessian associated with the hypersphere M := Sp−1

endowed with the canonical metric 〈u, v〉x := u>v, embedded in the ambient space A := Rp

endowed with the metric 〈u, v〉A := u>v. Recall that it holds Πx(a) := (Ip − xx>)a and
Γ̄x(u, v) = −x(u>v).

It is just necessary to compute the derivative Π•x(a, v) and then to make use of the relation-
ship (478). By definition, we have

Π•x(a, v) :=
d
dt

Πρx,v(t)(a)
∣∣∣∣
t=0

= −(xv> + vx>)a. (497)

Ultimately, we obtain

Hx f (v) = (Ip − xx>)(∂2
x f )v− (x>∂x f )v, (498)

which represents the Riemannian Hessian utilized in [61].
It is instrumental to notice that, for a ∈ Rp and v ∈ TxSp−1, the quantity Π•x(a, v) possesses

a radial (normal) component x(v>a) as well as a tangential component v(x>a). Let us verify the
property (481). We have

〈Π•x(a, v), w〉A = −(w>x)(v>a) + (w>v)(x>a),

〈Π•x(a, w), v〉A = −(v>x)(w>a) + (v>w)(x>a).
(499)

The first terms on the right-hand sides are null because v, w ∈ TxSp−1, while the remaining
terms are to one another equal. �

The space of symmetric, positive-definite matrices is interesting to what concerns
Riemannian Hessian.

Example 47. Let us recall that, for the space S+(n), we have chosen GP(W) := P−1WP−1, also
it holds that ¯̄ΓP(V, W) := − 1

2 VP−1W − 1
2 WP−1V, ΠP(A) = 1

2 (A + A>) for any A ∈ GL(n).
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Since ΠP does not explicitly depend on the point P, we may utilize formula (477) to evaluate
the Hessian. �

As a last example, let us compute the Riemannian Hessian of a linear function. In the
familiar Rn case, we should obtain a null Hessian, while in a manifold setting this is easily
guessed not to be the case.

Example 48. Let a smooth manifold M be embedded in an ambient space A and let ` : M→ R de-
note a linear function such that ∂x` = a ∈ A constant and ∂2

x` = 0. Not having assumed anything
else, the Hessian of the function ` should be calculated by means of the expression (476), namely

Hx`(v) = G−1
x

{
Πx

(
∂2

x`(v) + Π•x(∂x`, v)− ¯̄Γx(Πx(∂x`), v)
)}

. (500)

In this case, the Riemannian Hessian reads as

Hx`(v) = G−1
x

{
Πx

(
Π•x(a, v)− ¯̄Γx(Πx(a), v)

)}
, (501)

which clearly varies from point to point on M. �

The property (481) implies that in an inner product such as 〈Hx(v), w〉x the tangent
vector arguments may be swapped, which implies the Riemannian Hessian operator is self-
adjoint, namely

〈Hx(v), w〉x = 〈v, Hx(w)〉x. (502)

This property may be proven directly by the relationship (476); in fact,

〈Hx(v), w〉x = 〈G−1
x (Πx(∂

2
x f (v))), Gx(w)〉A

+ 〈G−1
x (Πx(Π•x(∂x f , v))), Gx(w)〉A

− 〈G−1
x (Πx( ¯̄Γx(Πx(∂x f ), v))), Gx(w)〉A

= 〈Πx(∂
2
x f (v)), w〉A

+ 〈Πx(Π•x(∂x f , v)), w〉A

− 〈Πx( ¯̄Γx(Πx(∂x f ), v)), w〉A

= 〈∂2
x f (v), w〉A + 〈Π•x(∂x f , v), w〉A − 〈 ¯̄Γx(Πx(∂x f ), v), w〉A.

(503)

The first inner product is symmetric in v and w because the ambient Hessian is self-
adjoint, the second term is self-adjoint by the property (481) and the last term is symmetric
in v and w because the Christoffel form commutes with the inner product.

13.2. A Newton-like Optimization Algorithm

Given a function f : M → R, we may define a quadratic approximation at a point
x ∈M in the direction v ∈ TxM as

Q f (x, v) := f (x) + 〈gradx f , v〉x + 1
2 〈Hx f (v), v〉x. (504)

As often recalled, the inner products may be evaluated in terms of ambient metrics
and metric kernel. Therefore, the change in the value of the function f may be evaluated as

Q f (x, v)− f (x) = 〈Gx(gradx f ), v〉A + 1
2 〈Gx(Hx f (v)), v〉A. (505)

In optimization, it is fundamental to find a direction of maximal change from a given
point, which may be determined by solving the following problem in v:

∂

∂v
(Q f (x, v)− f (x)) = 0. (506)
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A consequence of a property shown in the previous subsection, namely that the
Riemannian Hessian is self-adjoint, is that

∂v〈Hx f (v), v〉x = 2 Hx f (v). (507)

Recalling that Gx ◦ Hx f is linear, the Equation (506) hence reads

Gx(gradx f ) + Gx(Hx f (v)) = 0. (508)

Recalling that Gx is invertible, the above relationship simplifies to gradx f + Hx f (v) =
0, which leads to the optimal direction

v = −(Hx f )−1(gradx f ). (509)

Notice that v ∈ TxM, and hence the result is consistent to what was expected. It is the
case to notice that the inverse of the Hessian may be hard to express in closed form; hence,
it is sometimes easier to just set up the (linear) equation Hx(v) = −gradx f and solve it by
any linear-algebra tool.

The optimal direction may be exploited in a Newton-like optimization algorithm
as follows: {

vk = −(Hxk f )−1(gradxk
f ),

xk+1 = expxk
(h vk),

(510)

where k ≥ 0 is an integer step-counter, h > 0 is a step-size and x0 denotes an initial guess.

14. Conclusions

The present paper focused on manifold calculus to describe the system-theoretic prop-
erties of non-linear systems whose states belong to curved manifolds and was conceived as
the first part of a longer tutorial in manifold calculus.

In particular, the present tutorial paper focuses mainly on mathematical definitions
and calculation rules, expressed in the language of embedded manifold calculus, that form
a knowledge base to develop further concepts and applications. A number of manifolds of
interest in applications were covered and a number of examples clarified some collateral,
yet interesting, aspects.

A section of the present paper focuses on the design of a manifold-type system syn-
chronization algorithm based on feedback control and on developing numerical methods
tailored to curved manifolds to implement such systems and algorithms.

Since the present contribution aimed to lay out the basic concepts in manifold
calculus and Lie group theory, it only covers the basis of first-order dynamical sys-
tems and proportional type control. Second-order systems and their control require
advanced notions, such as covariant derivation. Such advanced notions will be covered in
a forthcoming contribution.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Abraham, R.; Marsden, J.; Ratiu, T. Manifolds, Tensor Analysis, and Applications; Springer: Berlin/Heidelberg, Germany, 1988.
2. Arnol’d, V.; Givental’, A. Symplectic geometry. In Dynamical Systems IV: Symplectic Geometry & Its Applications, 2nd ed.; Arnol’d,

V., Novikov, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 4, pp. 1–138.
3. Bloch, A. An Introduction to Aspects of Geometric Control Theory. In Nonholonomic Mechanics and Control; Interdisciplinary

Applied Mathematics; Krishnaprasad, P., Murray, R., Eds.; Springer: New York, NY, USA, 2015; Volume 24.



Symmetry 2021, 13, 2092 92 of 94

4. Bullo, F.; Lewis, A. Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Mechanical Control Systems; Springer:
Berlin/Heidelberg, Germany, 2005.

5. Sastry, S. Geometric Nonlinear Control. In Nonlinear Systems—Analysis, Stability, and Control; Sastry, S., Ed.; Springer Science +
Business Media: New York, NY, USA, 1999; pp. 510–573.

6. Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations,
2nd ed.; Springer: Berlin, Germany; New York, NY, USA, 2006.

7. Ermentrout, G.; Rinzel, J. Beyond a pacemaker’s entrainment limit-phase walk-through. Am. J. Physiol. 1984, 246, R102–R106.
[CrossRef] [PubMed]

8. Schäfer, C.; Rosenblum, M.; Kurths, J.; Abel, H. Heartbeat synchronised with ventilation. Nature 1998, 392, 239–240. [CrossRef]
[PubMed]

9. Blasius, B.; Huppert, A.; Stone, L. Complex dynamics and phase synchronization in spatially extended ecological systems. Nature
1999, 399, 354–359. [CrossRef] [PubMed]

10. Castrejón-Pita, A.; Read, P. Synchronization in a pair of thermally coupled rotating baroclinic annuli: Understanding atmospheric
teleconnections in the laboratory. Phys. Rev. Lett. 2010, 104, 204501. [CrossRef]

11. Ermentrout, B.; Wechselberger, M. Canards, clusters, and synchronization in a weakly coupled interneuron model. SIAM J. Appl.
Dyn. Syst. 2009, 8, 253–278. [CrossRef]

12. Kloeden, P. Synchronization of nonautonomous dynamical systems. Electron. J. Differ. Equ. 2003, 1, 1–10.
13. Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization—A Universal Concept in Nonlinear Sciences; Cambridge University Press:

Cambridge, UK, 2001.
14. Stankovski, T. Tackling the Inverse Problem for Non-Autonomous Systems: Application to the Life Sciences; Springer Theses; Springer:

Berlin/Heidelberg, Germany, 2014.
15. Blekhman, I.; Landa, P.; Rosenblum, M. Synchronization and chaotization in interacting dynamical systems. Appl. Mech. Rev.

1995, 48, 733–752. [CrossRef]
16. Luo, A. A theory for synchronization of dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1901–1951.

[CrossRef]
17. Stoer, J.; Bulirsch, R. Introduction to Numerical Analysis, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2002.
18. Golub, G.; Van Loan, C. Matrix Computations, 3rd ed.; Johns Hopkins: Baltimore, MD, USA, 1996.
19. Higham, N. Computing the polar decomposition—With applications. SIAM J. Sci. Stat. Comput. 1986, 7, 1160–1174. [CrossRef]
20. Fiori, S.; Prifti, S. Exact low-order polynomial expressions to compute the Kolmogoroff-Nagumo mean in the affine symplectic

group of optical transference matrices. Linear Multilinear Algebra 2017, 65, 840–856. [CrossRef]
21. Olver, P. Applications of Lie Groups to Differential Equations, 2nd ed.; Graduate Texts in Mathematics; Springer: Berlin/Heidelberg,

Germany, 2003; Volume 107.
22. Fiori, S. A fast fixed-point neural blind deconvolution algorithm. IEEE Trans. Neural Netw. 2004, 15, 455–459. [CrossRef]
23. Fiori, S. Geodesic-based and projection-based neural blind deconvolution algorithms. Signal Process. 2008, 88, 521–538. [CrossRef]
24. Pajunen, P.; Girolami, M. Implementing decisions in binary decision trees using independent component analysis. In Proceedings

of the International Workshop on Independent Component Analysis and Blind Signal Separation, Helsinki, Finland, 19–22 June
2000; pp. 477–481.

25. Zhu, Y.; Mio, W.; Liu, X. Optimal dimension reduction for image retrieval with correlation metrics. In Proceedings of the
International Conference on Neural Networks (IJCNN 2009), Atlanta, GA, USA, 14–19 June 2009; pp. 3565–3570.

26. Yershova, A.; LaValle, S. Deterministic sampling methods for spheres and SO(3). In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA 2004), New Orleans, LA, USA, 26 April–1 May 2004; Volume 4, pp. 3974–3980.

27. Trendafilov, N.; Lippert, R. The multimode Procrustes problem. Linear Algebra Its Appl. 2002, 349, 245–264. [CrossRef]
28. Vasconcelos, J.; Elkaim, G.; Silvestre, C.; Oliveira, P.; Cardeira, B. Geometric approach to strapdown magnetometer calibration in

sensor frame. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1293–1306. [CrossRef]
29. Viswanathan, S.; Sanyal, A.; Samiei, E. Integrated Guidance and Feedback Control of Underactuated Robotics System in SE(3). J.

Intell. Robot Syst. 2018, 89, 251–263. [CrossRef]
30. Celledoni, E.; Fiori, S. Neural learning by geometric integration of reduced ‘rigid-body’ equations. J. Comput. Appl. Math. 2004,

172, 247–269. [CrossRef]
31. Yoo, J.; Choi, S. Orthogonal nonnegative matrix factorization: Multiplicative updates on Stiefel manifolds. In Proceedings

of the Intelligent Data Engineering and Automated Learning (IDEAL 2008), Daejeon, Korea, 2–5 November 2008; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 140–147.

32. Amari, S.I. Natural gradient learning for over- and under-complete bases in ICA. Neural Comput. 1999, 11, 1875–1883. [CrossRef]
33. Edelman, A.; Arias, T.; Smith, S. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 1998,

20, 303–353. [CrossRef]
34. Eldén, L.; Park, H. A Procrustes problem on the Stiefel manifold. Numer. Math. 1999, 82, 599–619. [CrossRef]
35. Yger, F.; Berar, M.; Gasso, G.; Rakotomamonjy, A. Oblique principal subspace tracking on manifold. In Proceedings of the

2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012;
pp. 2429–2432.

http://doi.org/10.1152/ajpregu.1984.246.1.R102
http://www.ncbi.nlm.nih.gov/pubmed/6696096
http://dx.doi.org/10.1038/32567
http://www.ncbi.nlm.nih.gov/pubmed/9521318
http://dx.doi.org/10.1038/20676
http://www.ncbi.nlm.nih.gov/pubmed/10360572
http://dx.doi.org/10.1103/PhysRevLett.104.204501
http://dx.doi.org/10.1137/080724010
http://dx.doi.org/10.1115/1.3005090
http://dx.doi.org/10.1016/j.cnsns.2008.07.002
http://dx.doi.org/10.1137/0907079
http://dx.doi.org/10.1080/03081087.2016.1209732
http://dx.doi.org/10.1109/TNN.2004.824258
http://dx.doi.org/10.1016/j.sigpro.2007.08.014
http://dx.doi.org/10.1016/S0024-3795(02)00253-7
http://dx.doi.org/10.1109/TAES.2011.5751259
http://dx.doi.org/10.1007/s10846-017-0547-0
http://dx.doi.org/10.1016/j.cam.2004.02.007
http://dx.doi.org/10.1162/089976699300015990
http://dx.doi.org/10.1137/S0895479895290954
http://dx.doi.org/10.1007/s002110050432


Symmetry 2021, 13, 2092 93 of 94

36. Moakher, M. A differential geometry approach to the geometric mean of symmetric positive definite matrices. SIAM J. Matrix
Anal. Appl. 2005, 26, 735–747. [CrossRef]

37. Smith, S. Covariance, subspace, and instrinsic Cramér-Rao bounds. IEEE Trans. Signal Process. 2005, 53, 1610–1630. [CrossRef]
38. Bonnabel, S.; Sepulchre, R. Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank. SIAM J.

Matrix Anal. Appl. 2009, 31, 1055–1070. [CrossRef]
39. Fiori, S. Extended Hamiltonian learning on Riemannian manifolds: Numerical aspects. IEEE Trans. Neural Netw. Learn. Syst.

2012, 23, 7–21. [CrossRef]
40. Fiori, S.; Kaneko, T.; Tanaka, T. Tangent-bundle maps on the Grassmann manifold: Application to empirical arithmetic averaging.

IEEE Trans. Signal Process. 2015, 63, 155–168. [CrossRef]
41. Stratmann, P.; Lakatos, D.; Albu-Schäffer, A. Neuromodulation and synaptic plasticity for the control of fast periodic movement:

Energy efficiency in coupled compliant joints via PCA. Front. Neurorobot. 2016, 10, 2. [CrossRef]
42. Leonard, N.; Krishnaprasad, P. Control of switched electrical networks using averaging on Lie groups. In Proceedings of the

33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, USA, 14–16 December 1994; pp. 1919–1924.
43. Tapp, K. Matrix Groups for Undergraduates, 2nd ed.; Student Mathematical Library; American Mathematical Society: Providence,

RI, USA, 2016; Volume 79.
44. Arsigny, V.; Pennec, X.; Ayache, N. Bi-Invariant Means in Lie Groups. Application to Left-Invariant Polyaffine Transformations.

2006. Available online: https://hal.inria.fr/inria-00071383 (accessed on 26 October 2021).
45. Amari, S.I. Natural gradient works efficiently in learning. Neural Comput. 1998, 10, 251–276. [CrossRef]
46. Khvedelidze, A.; Mladenov, D. Generalized Calogero-Moser-Sutherland models from geodesic motion on GL+(n,R) group

manifold. Phys. Lett. A 2002, 299, 522–530. [CrossRef]
47. Henderson, H.V.; Searle, S.R. On deriving the inverse of a sum of matrices. SIAM Rev. 1981, 23, 53–60. [CrossRef]
48. Courant, R.; Hilbert, D. Methods of Mathematical Physics, 1st ed.; Interscience Publishers: New York, NY, USA, 1953; Volume I.
49. Del Buono, N.; Lopez, L. Runge-Kutta type methods based on geodesics for systems of ODEs on the Stiefel manifold. BIT Numer.

Math. 2001, 41, 912–923. [CrossRef]
50. Wang, J.; Sun, H.; Fiori, S. Empirical means on pseudo-orthogonal groups. Mathematics 2019, 7, 940. [CrossRef]
51. McGraw, T.; Vemuri, B.; Yezierski, B.; Mareci, T. Von Mises-Fisher mixture model of the diffusion ODF. In Proceedings of the

3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI 2006), Arlington, VA, USA, 6–9 April 2006;
pp. 65–68.

52. Fréchet, M. Les élements aléatoires de nature quelconque dans un espace distancié. Ann. De l’Institut Henri PoincarÉ 1948,
10, 215–310.

53. Karcher, H. Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 1977, 30, 509–541. [CrossRef]
54. Tyagi, A.; Davis, J. A recursive filter for linear systems on Riemannian manifolds. In Proceedings of the 2008 IEEE Conference on

Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [CrossRef]
55. Simoncini, V. Computational methods for linear matrix equations. SIAM Rev. 2016, 58, 377–441. [CrossRef]
56. Oja, E. Simplified neuron model as a principal component analyzer. J. Math. Biol. 1982, 15, 267–273. [CrossRef]
57. Oja, E. Neural networks, principal components, and subspaces. Int. J. Neural Syst. 1989, 1, 61–68. [CrossRef]
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