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Abstract: The environmental policy of the European Union is boosting the development of
renewable energies. Among these, bioenergy holds the main share and is expected to
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supply chain. This is achieved also with an enhanced fuel quality control and a better
matching with the energy conversion systems. For solid biofuels, moisture content is
the main quality parameters, influencing the sustainability of the whole energy system.
With the aim to provide a real-time and portable tool for moisture measurement, a
hand-held near infrared spectrometer was tested on a dataset of 817 woodchip
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used to compare the estimation of three alternative prediction models and the standard
oven dry method. Results show a satisfactory reliability with R  2  ranging from 0.86 to
0.89 depending on the model. A single measure can be acquired in few seconds, and
the potential to deploy the non-destructive analysis directly at the fuel storage (yard)
and at different steps of the supply chain discloses a wide range of options to efficiently
control fuel quality.
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Dear editor, dear reviewers,  

first of all, thanks for the time dedicated to evaluate and improve our manuscript.  

Below you will find your comments listed in order of reviewer (with the numbering that appeared to us).  

Each comment had been assigned to a progressive ISSUE-number and addressed by a discussion/answer 

reported below. 

Reviewer 1 

 

1.1. Maybe some information on how the different fuel samples (e.g. poplar wood, agricultural 

residues, coniferous wood, etc.) are distributed among the MC classes are available? If so, it could 

be of interest to compare if there is some clustering of some fuels in certain MC classes (e.g. 

poplar in the MC class > 60%)? Maybe the difference the authors identified for the three models in 

different MC classes might somewhat be related to the fuel type? If possible, please add some 

information to the text. 

 

DISCUSSION TO ISSUE 1.1:  

We agree with the reviewer: this aspect is highly important (at least in potential). Yet, the specific 

info about the type of different biofuel analysed was available just for few samples. In order to 

have a reliable dataset, this info should be transmitted by the wood chips producers to the power 

plant and from this to the biomass laboratory. At present a reliable tool for such data exchange is 

missing. Additionally, the description would be subjectively reported by the chipper operator, who 

is often working with a mix of raw materials. As a result, given the reliability and inconsistence of 

these information for the whole dataset, we preferred not take it into account on the few samples 

where it was available.  

As it would be very useful to include these variables into the models, we will seek for the 

possibility to address them in future researches. As suggested, a brief explanation has been added 

in the manuscript (lines 125-128, 177-178, and 268-270, but also 391-393). 

 

 

1.2. "A portable NIR spectroscope was used to estimate moisture content of biomass fuels" 

"Validity, accuracy and precision of 3 prediction models were compared" 

"Moisture content estimation with portable NIR is reliable, fast and non-destructive" 

"Results of the prediction models differed mostly on extreme moisture content values" 

"NIR spectroscopy is highly suitable to analyze fuel quality along the supply chain" 

 

DISCUSSION TO ISSUE 1.2 

Thanks for checking also this part of the submission (few reviewers pay attention to highlight or 

other elements besides the manuscript). We agree with the suggested changes and included them 

in the new highlights.  

 

 

1.3. Also, the title uses the term "wood chips" while in the text, the term "woodchips" is used. 

 

DISCUSSION TO ISSUE 1.3 

This is a good point. In order to clarify which alternative was more appropriate we checked the 

previous publications of FUEL and found 82 occurrences for “woodchips” and 670 for “wood 

Detailed Response to Reviewers



chips”. As a result, we used “wood chips” throughout the manuscript. 

 

 

1.4. The introduction gives a good idea on why the study is important. During reading, I was 

wondering, if the term "portable NIR device" just relates to the portability (i.e. for handling of the 

sensor in the field) or if it also relates to a rather low-cost device. Many NIR devices are very 

expensive and maybe their costs would be too much for medium sized wood chip producers? In 

line 85 to 91, you also give the idea of implementing a portable device into a chipper. Thus, this 

device would not be "portable" anymore. Maybe, you can specify in the introduction if "portable 

device" refers only to handling or also to the costs (and/or robustness) of the instrument? 

 

DISCUSSION TO ISSUE 1.4 

This issue was raised also by another reviewer, highlighting how unclear we were regarding the 

description of the device.  

For “portable” we meant a light, small sized and rugged device with internal battery. This makes it 

possible to operate the NIR sensor indifferently in laboratory, in the fuel yard or in the forest 

(among other settings). We integrated the text to make it more clear and added a couple of 

images (lines 156-157). As stated in the additional text, the model used is interfaced to a rugged 

tablet via USB connection, but a Bluetooth model is also available (lines 137-139). We also added 

the cost of the device. Although it is difficult to define a unique value with dealers (there is always 

a kind of bargaining involved) we reported the cost faced by our laboratory: 10,000 €. In our 

experience with power plants, this can be regarded as an average cost: cheaper solutions are 

available, but also much more expensive sensors can be deployed (about 60-70,000 € for magnetic 

resonance).  

As you correctly state, once the NIR is deployed on a chipper, it is no longer “portable”. Our 

sentence was misleading as we meant that once that the models are developed, these can be 

deployed in NIR sensors (portable or not) at different stages of the supply chain.  

We changed accordingly the sentence (lines 92-94)  

 

 

1.5. Line 65: "…wind that generally leads to MC increase." 

 

DISCUSSION TO ISSUE 1.5 

We apologize. The sentence had a typo error, making it unpleasant to read. Additionally, the 

“wind” factor listed after rain and snow was confusing as these are cause of MC increase, while 

the former reduces it. The sentence has been slightly corrected accordingly.   

 

 

1.6. Line 67: Please give information what the effects of an "unstable and inefficient firing process" are, 

e.g. increased gaseous and particulate emissions due to cooling of the combustion chamber, etc.  

 

DISCUSSION TO ISSUE 1.6  

The sentence has been integrated as requested (lines 67-69).  

 

 

1.7. Line 72: "…according to biomass quality."  

 

DISCUSSION TO ISSUE 1.7 

Thanks for identifying this typo error. The sentence had been completed.  



 

 

1.8. Line 94: please add the abbreviation KPI to the text the first time you use "key performance 

indicators"  

 

DISCUSSION TO ISSUE 1.8 

KPI abbreviation had been added at the first appearance of the definition of "key performance 

indicators". 

 

 

1.9. What size does the power plant (in kW heat and electricity output) have? Do you have some idea 

on the overall demand of wood fuels per year?  

 

DISCUSSION TO ISSUE 1.9:  

The key figures of the power plant had been added in the text (line 120).  

 

 

1.10. Can you please give a rough estimate for the individual size of the wood chip samples (line 110 to 

118)? And could you please give the size of the woodchip tray (length x width x height in Figure 1)? 

How thick was the layer of wood chips in the tray and what was the distance between measuring 

points? How important is the angle of the instrument above the woodchips?  

 

DISCUSSION TO ISSUE 1.10: 

Samples had an approximate fresh weight of 500 g, the figure had been added in the initial 

description of the samples (line 129). The size of the tray had been added in the description of the 

analysis procedure (line 149) as well as the depth of the wood chips layer and the reading angle. 

 

 

1.11. Line 110 to 114: Can you allocate the 817 samples to the different fuel types? If so, maybe you 

can also see if the NIR sensor works differently for the different fuels (e.g. conifer wood compared 

to poplar clones)?  

 

DISCUSSION TO ISSUE 1.11: 

As commented above in the issue 1.1, the lack of specific info about the type of different biofuel 

analysed and the possible risk of mixed biomass in the same sample led the authors to not 

consider this descriptive factor. We added it as one of the goals of future researchers and 

developments. 

 

 

1.12. Does the NIR sensor require direct contact to the woodchips? If not, what distance was used 

between woodchips and sensor for the measurement?  

 

DISCUSSION TO ISSUE 1.12: 

As commented in the issue 1.10 considering analysis procedure, in order to reduce light 

interference, the instrument approach requires direct contact to the woodchips if operative 

conditions being optimal. This detail had been added at lines 152-153 of the revised manuscript. 

 

 

1.13. Line 130: "for" instead of "For"  



 

DISCUSSION TO ISSUE 1.13 

The typo error had been corrected as suggested.  

 

 

1.14. Line 132: "by the same operator" instead of "unique operator"  

 

DISCUSSION TO ISSUE 1.14 

Corrected as suggested 

 

1.15. Line 157: please use "Partial Least Square regression (PLS) model" when you mention PLS the first 

time in the text  

 

DISCUSSION TO ISSUE 1.15 

Thanks, we missed the definition of the acronym (too used to it). It had been added to the text.  

 

 

1.16. Line 169: "difference in moisture content"  

 

DISCUSSION TO ISSUE 1.16 

“content” had been added as suggested. 

 

 

1.17. Line 173: italics used for "and MC_ref"  

 

DISCUSSION TO ISSUE 1.17 

The italic format had been brought to normal format for the words "and MC_ref" 

 

 

1.18. Can you provide somewhere in the manuscript some rough estimate on the costs of the portable 

NIR device? For application by the industry, low-cost and robust devices would be required. So this 

information might be of interest to the reader.  

 

DISCUSSION TO ISSUE 1.18:  

The unitary cost of the sensor had been added to its initial description (line 139).  

 

 

1.19. Line 247 to 251: The samples with very high MC > 60% might also be dominated by poplar clones 

from coppice and might not derive e.g. from conifers? Thus, you might have an additional variation 

due to tree species? Maybe some information on the distribution of different woodchip fuels in 

MC classes is available? Where do the fuels with low MC derive from? Is this material stored some 

time before delivery to the plant? I guess this would include natural drying processes but no 

technical drying?  

 

DISCUSSION TO ISSUE 1.19: 

As explained by the authors in issue 1.1 and 1.11, considering the lack of information about biofuel 

type of each sample and its reliable origin for the whole dataset, authors have decided to not take 

into account this matter. Once in the yard the fuel is mixed making impossible to track the storage 

history of single lots. Moreover, the information about storage duration and drying prior to 



delivery to the power plant is held by a plethora of providers: a direct contact with them would be 

necessary in order to collect reliable data. For practical reasons we focused this study on the 

simple MC heterogeneity of wood chips. But further studies including the type of biomass and its 

influence on MC estimation would be extremely valuable, even if quite difficult to establish with 

such a large database. Explanation has been added in the manuscript at lines 125-128 of the 

revised manuscript.  

 

 

1.20. Line 257: I would not consider MOD1 to underestimate samples > 60% MC but that variability 

strongly increases in both directions (over- and underestimation, see also Figure 2). This might also 

relate to tree species, e.g. when poplar might overestimated at high MC but other fuels might be 

underestimated?  

 

DISCUSSION TO ISSUE 1.20: 

Thanks for correcting this statement. You are right, at high MC values MOD1 is basically boosting 

its variability. The text had been revised accordingly (lines 288-290).  

Regarding the possible impact of the species composition, as stated in the previous points, this 

info was not available. From the model development point of view, it would be very useful and we 

hope to include this aspect in our future studies. However, from the practical application point of 

view, we aim at developing a model reliable enough to be operated without this info. This is 

because this data can be reliably collected just at the biomass source (say at the wood chipper), 

and even here it can be tricky if a mixture of species is chipped together.  

 

 

1.21. Figure 4: The central line is not dashed?  

 

DISCUSSION TO ISSUE 1.21 

Correct. The error is due to a change in graphical choice not followed by caption adaptation. The 

caption (now Figure 5) had been corrected accordingly.  

 

 

1.22. Line 326 to 329: This section on the practical applicability could be elaborated in more detail. For 

instance, the process chain can be optimized by measuring a much higher share of MC samples 

from a delivery in a shorter amount of time compared to the usual procedure using a drying 

cabinet and the higher sample number strongly improves the MC determination. I think that is 

what you mean by "avoiding sampling time and minimizing the risk of sampling errors.", but 

maybe describe the benefits from using a NIR sensor on-site in more detail. Also, would you 

consider MC determination using the NIR sensor a good alternative compared to the ISO standard 

method for pricing of the fuels? Moreover, depending on the costs for the sensor, it might be used 

by a high share of different companies but if the sensor is expensive, maybe it is only suitable for 

larger plants?  

 

DISCUSSION TO ISSUE 1.22  

Thanks to rise this point. We agree that the potential of the sensor is enormous. Being portable, 

we can perform a large number of analysis directly on the spot. While this returns a precision 

comparable to the oven method, it avoids the transfer of large quantities of samples. In turn, this 

reduces the risk of laboratory errors and of sample alteration (e.g. drying during shipment). 

Additionally, it provides a MC estimate with a much lower energy requirement (compared to 



hundreds of samples transported and dried in the oven). We further developed these aspects in 

lines 364-371 of the revised manuscript.  

 

 

1.23. Line 339 to 341: Maybe the fuels used to develop the models also were more homogeneous in 

terms of tree species?  

 

DISCUSSION TO ISSUE 1.23: 

The biomass samples used to develop the models were provided the year previous to the study by 

two power plants (including the one providing later the 817 samples used in the study) over a 

similar time frame, thus covering a similar seasonal variability. The two power plants are located in 

the same area and are fed with a similar mix of fuels. Considering this, and since there was no way 

to reliably determine the species composing the samples, we assumed that they had a similar 

homogeneity in MC distribution and species composition. We included this description in lines 

175-181. 

 

 

1.24. If you are considering future studies, you could also be interested in other external effects such as 

tree species, assortment, or different operators. Maybe you could improve your models further if 

you know the fuel type more precisely? Also, in your study, the same operator used the sensor but 

how repeatable would the measurement be if different people use the sensor?  

 

DISCUSSION TO ISSUE 1.24:  

Thanks, the points you rise are both relevant. Regarding the tree species/assortments, we would 

like to include them in the modelling stage as well as in the model validation. Yet, as previously 

mentioned, it is utterly difficult to compose a large dataset of samples covering a wide range of 

variability and having this info available in a reliable way. Generally, the facility manager trusts on 

the provider and the experience of the yard manager to assess the composition of the wood chips. 

Yet, the degree of approximation, acceptable for their purposes, would be excessive for modelling. 

And collecting a relevant number of samples from the wood chipper’s mouth would be costly and 

time demanding (unless one collects a lot of samples of the same biomass).  

As a result, we are still seeking for the practical solution allowing us to gather a large dataset of 

biomass samples with a full and reliable descriptor of species, assortments, storage history, type of 

chipper used, etc.  

Different is the comparison of operators. This is a fairly good point. We will soon set up a study 

comparing the results of several operators using the same hand-held sensor on the same data 

pool. This had been briefly mentioned in the Conclusions (lines 389-393).  

 

 

  



Reviewer 2 

 

2.  

2.1. A language check is recommended as well.  

 

DISCUSSION TO ISSUE 2.1 

Thanks. Indeed, the text needed a fresh-minded revision, which had been conducted thoroughly 

for the whole manuscript.  

 

 

2.2. Several literature is cited, but a bit more specific information about NIR systems operated at 

practice is missing. It is suggested to provide for e.g. 2 examples some basic information about the 

type of material which can be measured, accuracy, performance, limitations etc. to get an idea of 

the current state of the development in NIR moisture measurements. 

 

DISCUSSION TO ISSUE 2.2: 

As suggested, three additional references about the optimal NIR application on natural biomass to 

assess moisture content had been added in the manuscript at lines 77-79 and 81-82.  

 

 

2.3. Line 97: What are such factors others than the desired ones? Please elaborate this a bit more e.g. 

in the text before.  

 

DISCUSSION TO ISSUE 2.3 

We revised the text as suggested. The “other factors”, now called “non-controlled factors” are in 

this case mainly trees species and woody assortments used for the production of wood chips (lines 

104-105).  

  

 

2.4. Line 110-118: Make clear, which samples have been used for the measurements and built the 

basis for the results presented later for the different models MOD 1 - MOD 3. How large was one 

sample? Were these samples of mixed materials (different tree types)? Did they contain bark, 

leaves, needles because someone would expect that this makes an important difference for the 

accuracy etc. of the NIR and the model results?  

 

DISCUSSION TO ISSUE 2.4 

As stated in section 2.4 of the manuscript, the models were developed on different sets of 

industrial woodchip samples. These were provided by two power plants, including the one that 

provided (in a second moment) the 817 samples used for this study. The text had been revised in 

order to better clarify the origin of the different datasets used for model building and for the 

present study.  

 

Unfortunately, data regarding the specific species and assortment composition of the wood chips 

was not available (this observation was made also by Reviewer 1). The samples used for model 

building and for this study were provided by power plants that receive fuel from several 

contractors. These may generically provide a descriptive of the feedstock. Yet, this description is 

always very vague and available just for a restricted number of samples. This is enough for the 



purposes of the power plants, but we considered this info of a quality and consistency not 

sufficient for model building nor for the following validity analysis.  

Including these details in future studies is among our plans, as reported in the integrated 

Conclusions.  

On the other hand, the purpose of the research was first to develop and the to test robust models 

that can provide a reliable response even without information regarding the nature of the wood 

chips (as long as they are uncontaminated biomass). In fact, very rarely the biomass manager of the 

facility will have access to this info (composing species, assortments, etc.) for the incoming 

biomass. Thus, the practical objective was to develop a fast method that can provide a MC estimate 

with good approximation even without any further data regarding the fuel.  

 

 

2.5. Line 117, 118, 134: Standards should be included into the list of references.  

 

DISCUSSION TO ISSUE 2.5: 

As suggested, standard have been included in the list of references and in bibliography. 

 

2.6. Line 121: More information about the used system is required here such as the name of the 

producer, country of origin, model no.. Furthermore, what means portable? Is it a handheld device 

or do you need a transport equipment for moving? If easy handling is later an important KIP, some 

information about size, weight, energy supply are required here. Maybe a picture of this system 

could answer all these questions. Furthermore, when it comes later to the application of the 

calculation models: Are these models implemented into the device, can you choose between 

them, or do you need to transfer the raw data to a computer for subsequent calculation of the 

MC?  

 

DISCUSSION TO ISSUE 2.6: 

As suggested, more information about the instrument had been added at lines 134-139 and two 

pictures had been added as Figure 1.  

All the models are run simultaneously on the table interfaced with the sensor, showing in real time 

the three MC estimates. A brief description had been added in lines 173-174.  

 

 

2.7. Fig 1: How large is the woodchip tray and how much material (e.g. volume) is required for one 

measurement? How large is one measuring spot on the tray? Please provide more information to 

make it possible for the reader to get a decent idea about the procedure applied. 

 

DISCUSSION TO ISSUE 2.7: 

Thanks for highlighting this important missing info. It was pinpointed also by another reviewer and 

it was definitely too relevant to be omitted.  

The size of the tray and the depth of the layer had been added in lines 149-150. Samples had a 

mass of about 500 g (added in the previous description of the samples, line 129). The measuring 

spot covers an area of about 250 mm2 (line 154).  

 

 

2.8. Line 148 and following: Are all samples (n= 817 right?) just measured once and the resulting data 

has been analysed later applying the 3 different models? This would be important to know for the 

later statistical analysis.  

 



DISCUSSION TO ISSUE 2.8 

The spectra had been acquired once with the procedure described in lines 150-152. The models 

provided in real time the three MC estimates (integrated in the manuscript in lines 173-174). 

 

 

2.9. Line 156 and 160: Different sample numbers are given here than in Line 110. Where does these 

samples come from? What kind of material was used here? Are these just sub-samples from the 

earlier mentioned 817 samples?  

 

DISCUSSION TO ISSUE 2.9 

As mentioned in lines 175-179 of the original manuscript, the samples used for model building 

were a different set of industrial wood chips. We integrated the description of these datasets of 

samples (lines 185-195). 

 

2.10. Line 157: MC, is it wet or dry based?  

 

DISCUSSION TO ISSUE 2.10 

That’s a good point. It should be always clarified when dealing with MC of wood/biomass. In our 

case we are considering MC on wet basis as this is the common “language” of our biomass users. 

We specified it on line 131. 

 

 

2.11. Fig. 3 Units at the x/y axis are missing. Is the error in %MC or in %of the total?  

 

DISCUSSION TO ISSUE 2.11 

Also a good point! The units had been added to the figure (now Figure 4) as well as the type of 

average error we are talking about: the % of the bias over the measured MC. 

 

 

2.12. Line 281: Other-non portable technologies: Please deliver more information about what 

technologies do you mean here and provide more information about the specific differences (e.g. 

precise numbers). Otherwise, this discussion sounds quite speculative.  

 

DISCUSSION TO ISSUE 2.12 

We integrated the sentence with the specific technologies involved (line 319).  

 

 

2.13. Fig. 4 It looks like if there are some letters missing at the right side of the legends due to the 

cutting of the images.  

 

DISCUSSION TO ISSUE 2.13 

Indeed the legend had been cut off. We revised the original images and loaded new ones with the 

complete legend (now figure 5).  

 

 

2.14. Please revise and be more specific. What do you mean with very dry or very wet samples (Line 

338)? A range should be given here. Finally, the influence of different raw materials is not clear. 

Does it work with all types and qualities of wood (including bark, needles and impurities such as 

sand)? What could be further limitations? Please elaborate this a bit more.  



 

DISCUSSION TO ISSUE 2.14 

We detailed the extremes for very wet and very dry MC (line 378). Conclusions had been 

integrated with further analysis of potential limitations and need of further research to address 

the possible influence of impurities and/or specific assortments such as bark, leaves or needles.   

 

  



Reviewer 3 

3.  

3.1. I suggest to add one sentence providing a strong rationale for the study, not only based on its 

application but in the fact that has not been yet done by previous authors (not at least in this 

detail).  

 

DISCUSSION TO ISSUE 3.1 

Thanks for the suggestion. We added a brief text highlighting this aspect (lines 97-98) 

 

 

3.2. L45 and on. (1st P). The paragraph seems long in excess. L54 cut be the start of a new paragraph, 

as well as L66.  

 

DISCUSSION TO ISSUE 3.2 

Thanks for revising this detail. The manuscript had been modified accordingly.  

 

 

3.3. L125 The integration time...  

 

DISCUSSION TO ISSUE 3.3 

Corrected as suggested.  

 

 

3.4. L130 replicates For... (something is missing)  

 

DISCUSSION TO ISSUE 3.4 

Thanks for identifying this error. Writing and rethinking a manuscript always generates a plethora 

of such incomplete or truncated sentences. The sentence had been revised and corrected.   

 

 

3.5. L138 Precision test (?) Precision assessment (?) 

 

DISCUSSION TO ISSUE 3.5 

We like the first proposal. This section had been renamed “Precision test” 

 

 

3.6. NIR (acronym) should be properly defined in all captions at tables/figs. Same applies to R&R (fig5 

etc...). In the captions, many capital letters are not required (e.g., "for Deviation values" > "for 

deviation values"). Same for tables (e.g., see Table 4)  

 

DISCUSSION TO ISSUE 3.6 

Please apologize, we did not fully understand this point. NIR acronym had been explained in the 

introduction, and in the rest of the manuscript we just use the acronym to reduce the length of the 

text or the captions. On the contrary, we missed the explanation of the acronym R&R, so we added 

it at its first occurrence (line 235). We also removed as suggested all the unnecessary capital letters 

from the captions of figures and tables. 

 

 



3.7. L153 the analysis use, in general, standard statistical methods, and I doubt about the to specify the 

vendor (MatLab)  

 

DISCUSSION TO ISSUE 3.7: 

The vendor had been removed as suggested. 

 

 

3.8. L158 perhaps would need a more clear explanation of the transformations used at each model  

 

DISCUSSION TO ISSUE 3.8: 

We considered that the main aim of the manuscript is the comparison among the models 

implemented, relating the MC prediction in real application. For this reason, we opted for not 

detailing too much the models’ development. Yet the suggestion makes sense indeed, and we 

opted for a compromise providing additional information about the models’ features in lines 189-

190 and 194-195. 

 

3.9. L168 perhaps the authors could include estimators such as RMSD and similar for a full assessment 

of the deviations between both estimates?  

 

DISCUSSION TO ISSUE 3.9: 

As explained in 3.8 issue, the principal aim is to compare the three models in terms of prediction 

performance. For this reason, authors have decided to focus on the differences between predicted 

moisture content value and the one obtained from standard analysis.  

 

3.10. L240 three decimals is enough  

 

DISCUSSION TO ISSUE 3.10 

Thanks for the suggestion. The figures had been modified accordingly.  

 

 

3.11. MOD1 and MOD2 are heteroscedastic in the predictions, with a larger predictive error in high MC. 

MOD3 seems to not show this trend but at the expense of a lack of linearity in the predictions 

(concave, versus convex in MOD2). I wonder if non-linear models (adding a correction factor for 

large or very small MC) could be of help here, and would avoid the proposed solution (L334). In 

addition, would be beneficial to combine the methods for the estimates used in MOD2 and MOD3 

(some weighted average?) to increase the precision? The range 30-50 is critical, as the authors 

stress. MOD3 seems to deliver more precise predictions in the range 40-50 and MOD2 in the range 

30-40. 

This must be the result of the transformations applied to the spectra, that work in opposite 

directions due to the role of the SNV in correcting the estimates. Maybe the authors could play 

with this, transforming SNV, adding a correcting factor at this stage?). 

 

These are mere suggestions: I understand that the more complexity is added in the model or in the 

previous steps in the data analysis, the more the risk of over-fitting. 

 

DISCUSSION TO ISSUE 3.11: 

The main goal of this manuscript would like to verify the practical application of implemented 

prediction models on laboratory analysis and to test if performances could greatly differ. As 

shown, optimal results but also limited conditions concerned each model. The discussion proposed 



by the revisor is very interesting to overcome the need to operator choice. Further solutions could 

be considered, so as suggested, a test on MOD2 data have been developed to apply different 

correction factors in extreme MC values. Results little improved (from 0.8814 to 0.8905) and 

better correlation has been shown with “stronger” correction (correcting range 10-20 and 50-

70%). The non-linearity models could be related to the lack of adequate number of samples 

corresponding to extreme values that could be led to better performances. Further studies could 

be performed to add samples with higher and lower MC at the present dataset and verify the 

results. For this reason, a comment has been added at lines 303-306.  

 

3.12.  Supplementary data: it is misleading, as the document attached is the captions of the figures. 

 

DISCUSSION TO ISSUE 3.12 

Thanks for highlighting this issue. During the upload of the manuscript and the related files we did 

not find a specific item for captions in the flag menu. We upload the revised material using a 

different identifier.  

 

 



HIGHLIGHTS 

 A portable NIR spectroscope was used to estimate moisture content of biomass fuels  

 Validity, accuracy and precision of 3 prediction models were compared 

 Moisture estimate with portable NIR is reliable, fast and non-destructive 

 Results of the prediction models differed mostly on the extreme moisture content values  

 NIR spectroscopy is highly suitable to analyze fuel quality along the supply chain 
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ABSTRACT 21 

The environmental policy of the European Union is boosting the development of renewable energies. Among 22 

these, bioenergy holds the main share and is expected to further increase. Such development requires a higher 23 

degree of efficiency in the whole supply chain. This is achieved also with an enhanced fuel quality control and 24 

a better matching with the energy conversion systems. For solid biofuels, moisture content is the main quality 25 

parameters, influencing the sustainability of the whole energy system. With the aim to provide a real-time and 26 

portable tool for moisture measurement, a hand-held near infrared spectrometer was tested on a dataset of 817 27 

wood chip samples provided by an industrial facility. A set of key performance parameters were used to 28 

compare the estimation of three alternative prediction models and the standard oven dry method. Results show 29 

a satisfactory reliability with R2 ranging from 0.86 to 0.89 depending on the model. A single measure can be 30 

acquired in few seconds, and the potential to deploy the non-destructive analysis directly at the fuel storage 31 

(yard) and at different steps of the supply chain discloses a wide range of options to efficiently control fuel 32 

quality.    33 

 34 

 35 

 36 

Nomenclature and acronyms  37 

 38 

EU European Union 

KPI Key Performance Indicator 

LVF Linear-variable Filter 

MC Moisture Content 

MOD Model 

NIR Near InfraRed Spectroscopy  

PLS Partial Least Square regression 

RE Renewable Energy 

RMSEP Root mean square error of prediction 

R&R Repeatibility and Reproducibility test 

SEP Standard error of performance 

SNV Standard normal variate 

 39 

 40 

 41 

  42 



 43 

1. Introduction 44 

The recent European Green Deal climate actions boosted the efforts to reduce the emission of climate-altering 45 

pollutants in the European Union (EU). In particular, the “Fit for 55” package sets a maximum emission 46 

threshold to be met by 2030, corresponding to 55% of the figures recorded in 1990. This program involves 47 

particularly the energy sector, which must increase the share of renewable energy (RE) to 40% in the same 48 

time span [1]. A rather ambitious target considering that by 2017 RE provided just 17.6% of the total energy 49 

supply in the EU [2]. Since bioenergy was responsible for over 58.5% of total RE output the present stimulus 50 

is expected to increase up to fivefold the energy consumption of biomass in the next decades, strengthening its 51 

role of RE backbone in the energy mix of the EU [3]. In order to meet the expectations, the bioenergy sector 52 

must seek for a higher degree of efficiency of the whole supply chain.  53 

This requires, among other aspects, a higher quality control of the fuel and a better matching between fuel 54 

properties and energy conversion systems. For solid biofuels, moisture content (MC) is considered as the most 55 

relevant quality factor [4] and a thorough monitoring of MC is the most cost-effective strategy for managing 56 

biofuel procurement in energy facilities, in spite of the investment in time and resources that it requires [5]. In 57 

fact, a high MC has detrimental effects on the whole forest-energy supply chain, beginning with the reduction 58 

of the effective payload of trucks, which decreases the environmental and economic sustainability of biomass 59 

procurement [6,7]. Once in the yard, long-term storage of wood chips with high MC may lead to important 60 

biomass losses due to microbial development [8–10], causing an immediate value loss and an undesired 61 

proliferation of fungal spores in the biomass piles [11]. In some cases, this process can even lead to self-62 

ignition [12], with total destruction of the stored fuel. As a further inconvenience, a high MC strongly reduces 63 

the heating value [13], increasing the biomass required for the same energy output. Additionally, when stored 64 

in open yards the biomass is exposed to uncontrollable factors (e.g. rain, wind, etc.) that generally lead to MC 65 

increase [14,15], but may also dry the stocked fuel if the conditions are favorable [16].  66 

This represents a further challenge as the combustion of biomass with unknown and variable MC leads to 67 

unstable and inefficient firing process, with temperature fluctuations into the furnace that may cause slagging 68 

as well as increased emissions of NOx, CO and PM [17]. This issue can be partially coped with indirect systems 69 



for monitoring and adjusting the combustion performance, based on flue gas analysis [18] or energy output 70 

monitoring [19]. Yet, these systems based on post-combustion parameters are hindered by unavoidable inertia 71 

of reaction, which increases with the size of the furnace. In-line and real-time monitoring of the fuel fed to the 72 

furnace would be a much more effective solution to adjust combustion settings according to biomass quality. 73 

For instance, encouraging results had been obtained for in-line detection of MC with microwave reflection 74 

sensors on sawdust [20]. Another promising technology for fast determination of MC along the biomass supply 75 

chain is near infrared spectroscopy (NIR). It has already proved its potential in characterizing solid fuels on 76 

conveyor belt (in-line) [21], laboratory MC analysis [22] as well as when deployed directly in the field with 77 

portable instruments [23,24]. Overall, NIR technology proved to be reliable in the MC estimate of biofuels 78 

such as wood chips [25],pellets [26], and herbaceous biomass such as bamboo [27]. Additionally, NIR sensors 79 

can provide a wider range of services besides pure MC determination, deploying the same spectra for 80 

quantification of other fuel properties such as calorific value, ash content [28], the type of woody biomass 81 

(broadleaf or conifer) [29] or detecting the presence of herbaceous biomass [30]. In addition, the availability 82 

of portable NIR sensors with real-time measurement, allows to assess the relevant quality parameters and their 83 

spatial patterns directly on the pile or the truckload [31]. This application could strongly improve the MC 84 

control of loose industrial biofuels, as the present biomass sampling procedures struggle to achieve a 85 

compromise between reliability and acceptable costs [32,33]. An issue particularly relevant in regions with a 86 

high variety of woody biomass sources, such as Southern Europe, where these fuels feature very 87 

inhomogeneous characteristics [34–37], leading to an additional effort to control the quality of biomass 88 

feedstock.  89 

Finally, the availability of reliable models for the determination of MC (and other quality parameters) with 90 

NIR sensors would pave the way to several applications falling in the frame of the forthcoming digitalized 91 

bioeconomy. As an example, if installed on wood chippers it would provide real-time information on fuel 92 

quality as currently is done with grain harvesters [38]. Deployed at different steps of the supply chain the 93 

sensor could monitor the quality changes of the produced and stored biomass as well as enhance fuel 94 

combustion if operated at the furnace inlet. Such development requires the identification of adequate hardware 95 

solutions and the development of reliable prediction models to convert the raw spectra in MC figures. 96 



However, in spite of the relevance of this technology for the bioenergy sector, no research has yet focused on 97 

the deployment of hand-held, self-powered NIR sensors for the estimate of the MC of solid biofuels. 98 

Considering the above, the present study aimed to test the performance of a portable NIR spectrometer running 99 

three different MC prediction models, assessing its potential to determine fuel quality with heterogeneous 100 

industrial biomass. Quality assurance was based on three key performance indicators (KPI) according to the 101 

guidelines suggested by Vardeman and Jobe [39]:   102 

- “Validity” is intended as the capacity to provide results that reliably represent the quantity measured, without 103 

the influence of non-controlled factors. In this case, these would be mainly tree species and woody assortments 104 

used for the production of the wood chips. Yet, due to the lack of information regarding the biomass 105 

composition, the unique factor considered to assess the validity of estimate was the influence of the extreme 106 

MC values;  107 

- “Accuracy”, accomplished when the average of values estimated produces the true or correct values of MC 108 

as measured with the reference method; 109 

- “Precision” related to the range of variation observed measuring samples with the same or similar MC values, 110 

which should ideally result in minimum variations; 111 

Considering the industrial focus of the test, an additional KPI was included in the study:  112 

- “Performance” of the analyzer, intended as the effective output of MC estimates per work hour in real work 113 

conditions.  114 

 115 

2. Materials and methods 116 

 117 

2.1 Wood chip samples collection and preparation  118 

The wood chip samples (n = 817) had been provided by a power plant located in Northern Italy from July to 119 

October 2020. The facility has an electricity output of 11.6 MW and consumes about 130,000 t/year. It is fed 120 

with a wide range of fuels, including energy crops (medium rotation coppice of poplar clones), agricultural 121 



residues (mainly from uprooting of pear, apple and peach orchards), river banks maintenance (providing a mix 122 

of broadleaves dominated by willow, poplar and alder) and conifers from a large windthrown area of the Italian 123 

Alps (mainly spruce). Biomass samples were collected in the yard of the power plant according to the sampling 124 

procedure defined by the technical standard ISO 18135:2017 – Sampling of solid biofuels [40]. The 125 

information regarding the type of biomass was available just for few samples. Additionally, this data was 126 

visually assessed by the facility’s yard manager on the pile of wood chips, with a high degree of approximation. 127 

For these reasons, this descriptive data was not considered in the following analysis.  128 

Wood chip samples with an approximate fresh weight of 500 g were delivered to the lab in hermetically sealed 129 

plastic bags to preserve their original characteristics. Here they were prepared according to the technical 130 

standard ISO 18134-1:2015 [41] for the evaluation of MC (always considered on wet basis).   131 

 132 

2.2 Near-infrared data acquisition  133 

NIR analysis was performed in laboratory by means of a portable MicroNIR™ OnSite sensor (Viavi Solutions 134 

Inc., Santa Rosa, CA, USA). Featuring no moving parts it can be regarded as a “rugged” hand-held 135 

spectrometer with high resistance to vibrations, dust and water (IP67). Portability is facilitated by its small size 136 

(4.6 cm of diameter and 19 cm of length), low weight (<300 g) and high battery run time (>10 hours). The 137 

model used is interfaced with a rugged tablet via USB cable (Figure 1), but the same sensor is also available 138 

with wireless Bluetooth® connection. Both models have a cost of about 10,000 €.   139 

The instrument works in the spectral range between 950 and 1650 nm. It is equipped with two small vacuum 140 

tungsten lamps (ø ≈ 4 mm) as radiation source. Dispersion is performed by a linear-variable filter (LVF) 141 

directly connected to a 128-pixel indium gallium arsenide (InGaAs) photodiode array detector. The acquisition 142 

was carried out in reflectance mode. The integration time was 6.7 ms and each spectrum was the average of 143 

100 scans, thus with an acquisition time below 1 second. In order to remove the instrumental and environmental 144 

noise, a dark reference (0% transmittance) and a blank spectrum have been acquired every hour using a 99% 145 

reflectance reference standard (Spectralon). All spectra were collected by operating the sensor at a stable 146 

internal temperature (30 ± 1 °C).  147 



MC of samples was estimated as the average value of ten measurements (replicates). For this purpose, the 148 

sample was carefully distributed on an aluminum tray (30x24x4 cm), creating a uniform layer with a depth of 149 

about 2-2.5 cm . Here the NIR raw data was acquired on a matrix of 9 predefined spots plus a randomly-150 

selected position as depicted in figure 2. The operation was performed manually by a the same operator 151 

throughout the whole study. The sensor was placed directly in contact with the surface of the sample. A 152 

perpendicular position was chosen in order to minimize light interferences and enhance the quality of 153 

acquisition.  Each spot covered an area of about 250 mm2. After spectra acquisition the sample was oven-dried 154 

for MC measurement according to standard ISO 18134-1:2015 [41].  155 

 156 

 157 

 158 

Figure 1: portable MicroNIR™ OnSite sensor application on industrial wood chip pile in power plants (left) and in 159 

laboratory (right).  160 

 161 

Figure 2: 3x3 matrix used for sampling NIR scans on biomass distributed on aluminium tray. 162 



 163 

2.3 Precision test 164 

The precision test aims at assessing the dispersion of measured values. Standard deviation is a good indicator 165 

of this performance, yet a more detailed analysis requires repeated measurements performed on a same group 166 

of samples. Therefore, 30 new wood chip samples provided by the same power plant were used to generate a 167 

dedicated dataset at the end of the main study. The NIR analysis was repeated 5 times on each sample following 168 

the protocol previously described in 2.2. Between each repeated measurement the biomass in the tray was 169 

carefully mixed. Finally, the reference MC of the biomass was determined by means of the oven-drying method 170 

(ISO 18134-1:2015).   171 

 172 

2.4 Prediction models  173 

The spectra acquired on the biomass samples were used to estimate MC by means of three different prediction 174 

models installed on the tablet and run simultaneously at each raw data acquisition providing real-time results. 175 

The models had been previously developed using the spectra acquired on different sets of industrial wood chip 176 

samples provided by two Italian power plants during the routine control of MC of the incoming feedstock. 177 

Although the specific characteristics of the biomass samples were unknown (e.g. tree species, storage time and 178 

conditions, etc.) a wide variability was expected, allowing for the development of robust models. Additionally, 179 

one of these power plants was the same that provided later the 817 samples used for this study. Thus the 180 

datasets deployed to build the models and to perform the analysis were considered similar in terms of fuel 181 

composition and MC variability.  182 

All the computations have been performed in Matlab environment using in-house functions on existing 183 

algorithms. Each prediction model was selected as the best performing of a series of models computed on 184 

the averaged matrices with different pretreatments. The first prediction model (MOD1) was developed on 185 

the spectra of 642 samples with a range of MC values between 4.3% and 49.1%.  A Partial Least Square 186 

regression (PLS) model was used pretreating the spectra with the combination of first derivative (Savitzky-187 

Golay filter, 5-points window, second-order polynomial) and Standard Normal Variate (SNV). The resulting 188 



model features R2=0.94 and RMSEP=2.40%, while RER and RPD values report respectively 23.5 and 4.1, 189 

confirming that it could be considered as a reliable model. The second (MOD2) and the third (MOD3) 190 

prediction models have been developed on the spectra of 212 additional samples (different than the previous 191 

642 samples) with a range of MC values between 15.2% and 64.7%. MOD2 was developed pretreating the 192 

spectra with the second derivative (Savitzky-Golay filter, 5-points window, second-order polynomial) 193 

featuring R2=0.96, RMSEP=1.99%, RER=24.9 and RPD=4.5. MOD3 was developed as the previous one, with 194 

additional SNV pretreatments resulting in R2=0.94, RMSEP=2.44%, RER=19.7 and RPD=3.8. The RMSEP values 195 

of the three models do not show significant differences among each other and  are in line or superior to the 196 

results of other researches estimating MC with NIR spectroscopy in woody materials [42,43] and other 197 

biomasses [44,45].  198 

 199 

2.5 Data analysis 200 

To analyze the accuracy of the NIR analysis and the three models tested, the difference (bias) between the MC 201 

returned by the estimate (MC_nir) and the reference value (MC_ref) was calculated as follows:  202 

Bias = MC_nirim – MC_refi 203 

Where MC_nir is the value returned by the model m for the sample i and MC_ref is the value measured with 204 

oven dry method for the same sample i. 205 

Bias values were first checked with descriptive analysis (Box-Plot) for possible outliers (difference > 1.5 SD). 206 

The first round identified a large number of anomalous values: 87, 93 and 52 respectively for MOD1, MOD2 207 

and MOD3. Since the number of potential outliers was large and no clear pattern or cause of outlier generation 208 

could be identified, a second identification procedure was performed. This was based on the observation of 209 

normal probability plots of bias values: a single outlier was identified in MOD1 (difference > 10 SD) and 210 

removed from the following analysis. The resulting databases were used to assess the key performance 211 

indicators (KPI) of the NIR sensor with the three prediction models as described in the following sections.  212 

 213 



2.5.1 Validity 214 

A general statistical analysis was performed to compare the performance of the three prediction models based 215 

on average, standard deviation, minimum and maximum MC values. In order to better assess the validity of 216 

each model according to the MC level of the sample, the dataset was divided in homogeneous moisture classes, 217 

each with a range of 10 MC percentage points.  218 

Additionally, the validity of the three prediction models was verified through regression analysis, assessing 219 

the linearity of MC values estimated against the values returned by the standard oven-dry method. 220 

 221 

2.5.2 Accuracy 222 

This performance indicator was verified by means of two analyses:  223 

- calculating the Standard Error of Performance (SEP), as described by [46], which also allows for 224 

comparison of the tested NIR models with other MC analyzers:   225 

𝑆𝐸𝑃 = √
1

𝑁 − 1
∑(𝑒𝑖 − 𝑒)̅2
𝑁

𝑖=1

 226 

Where N is the number of samples; ei = (Mreference-Mi) and Mi is the MC measured by the analyzer for the ith sample and Mreference is 227 
the MC determined for the same sample according to the standard method; ē is the average of ei.  228 

 229 

- identifying the Statistical Tolerance Limits. For this analysis, a Shapiro-Wilk test was first performed 230 

for verifying the normal distribution of the bias datasets generated by the three prediction models. 231 

Since just MOD2 data showed a normal distribution, a non-parametric tolerance limit analysis was 232 

performed, considering a confidence level of 90% and capturing 91.5% of population proportion.  233 

 234 

2.5.3 Precision 235 

The precision of the three models was verified by running a Gage Repeatability and Reproducibility (R&R) 236 

test, ANOVA method. This technique is specifically designed for verifying the “Repeatability” and 237 

“Reproducibility” of a measurement conducted with a specific gauging device (Instrument) operated by one 238 



or more operators (Appraiser) on one or more items (Part) [39]. The three prediction models were considered 239 

in the analysis as a different Appraiser, using a single Instrument for measuring 30 Parts (biomass samples) 5 240 

times. With such design it was possible to verify the “Repeatibility” of the analysis (i.e. variation obtained by 241 

repeating a measure with the same instrument). The “Reproducibility” of the measurement, which is the 242 

variation due to different operators, was used to highlight the difference due to the three prediction models. 243 

The ANOVA method without interaction was chosen, as it is considered more robust than the Average and 244 

Range Method against possible interactions between samples and operators.  245 

2.5.4 Performance 246 

The time required for the analysis was measured for each sample (tray). Since a single operator was both 247 

carrying on the MC analysis and recording the time required, the accuracy of the timing was limited, thus a 248 

common desk watch was used to note starting and stopping time of each cycle/sample.    249 

3. Results and Discussion 250 

The average MC of the samples according to the standard method was 37.24%. The dataset had a very wide 251 

range, including very dry (~13%) and very wet (~70%) biomass. Comparing the average MC with the 252 

corresponding values returned by the three prediction models (table 1) differences appear very limited, 253 

confirming the general reliability of NIR sensor and an apparent superiority of MOD3. Yet, individual values, 254 

such as the maximum and minimum moisture levels reported show a high degree of variability.  255 

Table 1: General statistics to compare the MC estimate three prediction models 256 

Value (%) Standard Method MOD1 MOD2 MOD3 

Average 37.24 37.52 38.45 37.29 

SD 8.96 8.14 8.38 8.74 

Min 12.76 17.29 21.64 9.58 

Max 69.31 76.61 75.18 64.18 

Range 56.55 59.32 53.54 54.60 

 257 

The percentage of overestimated and underestimated MC records are reported in table 2 for each prediction 258 

models. Considering absolute values, the average bias is around 2.5% for all models, while the maximum bias 259 

is produced by MOD1 (14.96%). All models show a higher frequency of overestimating occurrences compared 260 

to underestimated ones, but MOD2 is strongly asymmetric with 65.48% of estimations with a positive bias.  261 



Table 2: Resulted values of bias related with each prediction model and their estimation trend   262 

Value (%) MOD1 MOD2 MOD3 

Absolute mean bias 2,60 2,62 2,41 

Max bias 14.96 10.32 11.79 

Min bias 0.01 0.01 0.00 

Overestimated 55.08 65.48 54.59 

Underestimated 44.92 34.52 45.41 

 263 

 264 

3.1 Validity 265 

Considering the regressions of the three prediction models, the estimation capacity is satisfactory, with 266 

coefficient of determination values (R2) ranging from 0.86 to 0.88 (figure 3). Yet, this performance is inferior 267 

to that achieved with a NIR sensor on homogeneous pelletized biomass [47] and even to that of a magnetic 268 

resonance sensor tested with samples featuring a similar variability to the present study [48]. The great 269 

variability was also influenced by the lack of explicit information about biofuel origin and tree species 270 

correspondence, that made harder the investigation on additional classification and MC influence. The bias in 271 

linearity confirms the presence of some disturbance in MC estimation, with MOD3 showing the minimum 272 

deviation from linearity (β = 0.918) to a maximum in MOD1 (β = 0.846).  273 

 274 
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 276 

Figure 3: Relation of MC values estimated by the NIR sensor for MOD1, MOD2 and MOD3 as compared to MC estimated 277 
with standard method.  278 

 279 

Before considering the influence of MC classes on the estimation bias returned by the models it is important 280 

to notice how the frequency of samples in each class is strongly unbalanced. As shown in table 3, 73.7% of 281 

samples are included in the two middle classes, with moisture ranging between 30 and 50%. This distribution 282 

can be considered as well representative of the actual biomass fuel used by the power plants, where extreme 283 

values tend to be exceptions.  284 

Table 3: distribution of samples according to the MC classes  285 

MC class 10-20 20-30 30-40 40-50 50-60 60-70 

Samples (n) 23 138 353 249 42 12 

Samples (%) 2.8 16.9 43.2 30.5 5.1 1.5 

Avg. MC (%) 17.58 25.62 35.55 43.8 54.02 63.69 
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SD 1.96 2.80 2.88 2.61 2.67 2.35 

 286 

Although the general performance of the models is similar when the whole dataset is considered, its validity 287 

has a different pattern when individual MC classes are considered (figure 4).  288 

MOD1 has satisfactory reliability just for the two central MC classes, with an average bias below 0.5%, while 289 

strongly overestimates drier classes and features a very high variability when analyzing samples falling in the 290 

two classes with higher MC.  291 

MOD2 highly overestimates (over 3%) for MC content lower than 30%, while shows a high reliability for all 292 

other MC levels, with a maximum average bias below 0.7%.  293 

MOD3 has a reverse bias pattern compared to the previous one, with high reliability for lower and middle MC 294 

classes and strong underestimation for the two classes with higher MC.  295 

Considering the relative weight of each class (i.e. the percentage of samples falling in it), MOD3 results to be 296 

the most reliable with 93.4% of estimates with an average bias lower than 0.7%, while MOD2 achieves 80.3% 297 

of estimates within this threshold and MOD1 just 73.7%.  298 

Given the above considerations, MOD3 appears to provide the best performance, even if its capacity to predict 299 

MC of biomass is limited to wood chips with MC lower than 50%. Above this threshold, the analysis would 300 

return a result strongly underestimated. As several models can be run simultaneously, a practical solution to 301 

this issue could be to deploy in parallel two models for spectra interpretation: MOD3 could be used as default 302 

model, but for MC values >50% the estimated value of MOD2 could be considered since it has much higher 303 

reliability with high MC levels, and a similar one with average MC values. As an alternative, a correction 304 

factor could be applied to adjust the result of the models in extreme MC classes. Thus, a preliminary test has 305 

been performed correcting with different factors the values predicted by MOD2 resulting in a minimal 306 

correlation improvement (from 0.88 to 0.89).  307 



 308 

Figure 4: average error of estimate according to MC classes (as measured with standard method). Vertical bars represent 309 
the standard deviation.  310 

 311 

 312 

3.2 Accuracy 313 

The 30 samples used for accuracy determination had MC values ranging from 1 to 52%, thus covering most 314 

of the MC classes featured by the main database. The SEP values for the NIR sensor were 3.5%, 3.1% and 315 

3.0% respectively for MOD1, MOD2 and MOD3. These values are in line with the average SEP reported for 316 

moisture meters based on NIR and Radio Frequency technologies, and are even similar to the SEP of the oven-317 

dry method operated with 100g samples [46]. Other non-portable technologies for MC estimation recently 318 

tested achieved lower SEP values either deploying microwave reflection operated in-line in laboratory 319 

conditions [20] or with magnetic resonance coupled with traditional sampling in industrial environment [48]. 320 

Yet, being fixed equipment those provide a lower sampling flexibility. 321 

Without assuming any particular distribution of the bias values, and with a confidence level of 90%, the 322 

statistical tolerance limits analysis reports that at least 91.5% of the distribution lies between limits with a span 323 

of 11.88, 11.13 and 10.54 percentage points respectively for MOD1, MOD2 and MOD3 (figure 5). This result 324 

further confirms the higher accuracy of MOD3, which also features a mean value of 0.05 against 0.32 and 1.2 325 

respectively for MOD1 and MOD2.  326 
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 330 

Figure 5: Tolerance plot for nonparametric statistical tolerance limits. Green lines report the limits where 91.5% of 331 
observation lie. Red lines represent the desired value (0, central line) and the threshold set (±2.5 points, left and right 332 
lines) 333 

 334 

3.3 Precision 335 

The percent of total variation due to R&R is 24.87% (table 4). Although a threshold of 10% is generally 336 

recommended (in automotive industry measurements), in other conditions with higher expected variability, 337 

values within 30% are still considered acceptable. This is surely true for MC estimation of biomass where a 338 

plethora of uncontrollable factors contribute to reducing the degree of both reproducibility and repeatability of 339 

a measurement. The value achieved is comparable to what Aminti et al. [48] reported while assessing the 340 

influence of calibration on the repeatability of a magnetic resonance MC analyzer.   341 
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Table 4: Gage repeatability and reproducibility report 342 

Measurement Estimated Percent Estimated Percent Percent 

Unit Sigma Total Variation Variance Contribution of R&R 

Repeatability 2.98922 23.8036 8.93545 5.66612 91.63 

Reproducibility 0.903729 7.19653 0.816726 0.5179 8.37 

R & R 3.12285 24.8677 9.75218 6.18402 100.00 

Parts 12.1634 96.8586 147.947 93.816  

Total Variation 12.5579 100.0 157.7   

 343 

In the frame of this study, the R&R analysis highlights the differences among the prediction models in terms 344 

of repeatability, with MOD2 appearing to be the better performing in terms of deviation from average (figure 345 

6). Yet, just 8.37% of the total variance is due to the differences among the prediction models, being the 346 

remaining 91.63% related to the instrument. This result was partially expected, as the specific layout of the 347 

sensor deployed is designed for material more homogeneous than wood chips. In fact, wood surface roughness 348 

is a critical factor influencing the quality and consistency of the NIR spectra even if acquired on solid timber 349 

and polished wood samples [49,50]. Thus, this aspect is magnified when measuring loose, coarse material as 350 

industrial wood chips, leading to a less predictable illumination and reflection geometry which reduces the 351 

overall precision [49].  352 

 353 

Figure 6: R&R plot for deviation values. Points represents a single measurement and are grouped by prediction model 354 
(appraiser). Horizontal red lines show the average measurement for each calibration. Vertical lines connect measurements 355 
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made on the same item: the first line in each box represents the values recorded on sample 1, the second line for sample 356 
2 and so on. 357 

 358 

3.4 Performance 359 

MC measurement with the three prediction models run simultaneously (thus requiring more elaboration time) 360 

took an average of 3 seconds per spectra. A whole sample, assessed with 10 replications, could be measure in 361 

about 30 seconds. In the case of laboratory analysis, sample preparation required an additional minute to 362 

arrange the wood chips on the tray, note the ID of the sample and remove the biomass or place the tray in the 363 

oven. Overall, less than 2 minutes were sufficient to measure MC of a single sample, an analysis time 364 

comparable to that of magnetic resonance sensor [48]. Additionally, the portability of the instrument allows 365 

the operators to measure the biomass directly at the source (e.g. in the yard or on the transport unit), avoiding 366 

the collection and transfer of samples to the laboratory and minimizing the risk of sampling and laboratory 367 

errors. Finally, the real-time response of the portable sensor permits the adoption of an adaptive measurement 368 

approach [31] when deployed in situ (e.g. on piled biomass or directly on the transportation unit before 369 

unloading). A high number of sampling points appropriately selected strongly enhance the overall precision of 370 

MC estimate, making it a competitive option with the current oven-drying method, which features a much 371 

longer response time and requires a higher energy input for transportation and drying of samples.   372 

 373 

 374 

4. Conclusions 375 

 376 

The study demonstrated the reliability of the portable NIR sensor for the determination of MC of industrial 377 

woody fuel. Among the tested prediction models, MOD3 provides the higher level of accuracy and precision. 378 

Yet, the validity of the estimate is lower when dealing with very dry (< 15%) or very wet (> 50%) samples. 379 

This drawback is probably due to the dataset used to build the prediction models: being industrial fuel, the 380 

majority of samples belonged to the average moisture classes, reducing the power of model-training in the 381 

underrepresented extreme classes. While new models based on datasets with more homogeneous distribution 382 

of MC should be developed, the tested prediction models could be still valuable in practical application. In 383 

fact, considering the different performance of the three models at the extreme values, a higher validity could 384 



be achieved by using the portable NIR spectrometer running two prediction models: MOD3 should be used as 385 

the main reference, but when both models return values above 50%, the result of MOD2 should be used, since 386 

this model features a higher validity at high moisture levels. The spectra acquisition is very fast, requiring 387 

about 3 seconds to return the moisture value. This performance is particularly relevant for in-field MC analysis, 388 

where the operator could gather a large quantity of spectra in a short time, reducing sampling costs and 389 

potentially applying adaptive sampling for a better estimate of the bulk quality. Future research should focus 390 

on this latter aspect, addressing the most appropriate sampling protocol for MC determination on stock piles 391 

and in transport units. Additionally, the influence of the type of raw material (e.g. tree species or tree parts) 392 

and the variability due to different operators should be further investigated in order to fully disclose the 393 

potential of this technology in the bioenergy sector. 394 

 395 

 396 
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ABSTRACT 21 

The environmental policy of the European Union is boosting the development of renewable energies. Among 22 

these, bioenergy holds the main share and is expected to further increase. Such development requires a higher 23 

degree of efficiency in the whole supply chain. This is achieved also with an enhanced fuel quality control and 24 

a better matching with the energy conversion systems. For solid biofuels, moisture content is the main quality 25 

parameters, influencing the sustainability of the whole energy system. With the aim to provide a real-time and 26 

portable tool for moisture measurement, a hand-held near infrared spectrometer was tested on a dataset of 817 27 

woodchipwood chip samples provided by an industrial facility. A set of key performance parameters were 28 

used to compare the estimation of three alternative prediction models and the standard oven dry method. 29 

Results show a satisfactory reliability with R2 ranging from 0.86 to 0.89 depending on the model. A single 30 

measure can be acquired in few seconds, and the potential to deploy the non-destructive analysis directly at 31 

the fuel storage (yard) and at different steps of the supply chain discloses a wide range of options to efficiently 32 

control fuel quality.    33 

 34 

 35 

 36 

Nomenclature and acronyms  37 

 38 

EU European Union 

KPI Key Performance Indicator 

LVF Linear-variable Filter 

MC Moisture Content 

MOD Model 

NIR Near InfraRed Spectroscopy  

PLS Partial Least Square regression 

RE Renewable Energy 

RMSEP Root mean square error of prediction 

R&R Repeatibility and Reproducibility test 

SEP Standard error of performance 

SNV Standard normal variate 

 39 
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 41 

  42 



 43 

1. Introduction 44 

The recent European Green Deal climate actions boosted the efforts to reduce the emission of climate-altering 45 

pollutants in the European Union (EU). In particular, the “Fit for 55” package sets a maximum emission 46 

threshold to be met by 2030, corresponding to 55% of the figures recorded in 1990. This program involves 47 

particularly the energy sector, which must increase the share of renewable energy (RE) to 40% in the same 48 

time span [1]. A rather ambitious target considering that by 2017 RE provided just 17.6% of the total energy 49 

supply in the EU [2]. Since bioenergy was responsible for over 58.5% of total RE output the present stimulus 50 

is expected to increase up to fivefold the energy consumption of biomass in the next decades, strengthening its 51 

role of RE backbone in the energy mix of the EU [3]. In order to meet the expectations, the bioenergy sector 52 

must seek for a higher degree of efficiency of the whole supply chain.  53 

This requires, among other aspects, a higher quality control of the fuel and a better matching between fuel 54 

properties and energy conversion systems. For solid biofuels, moisture content (MC) is considered as the most 55 

relevant quality factor [4] and a thorough monitoring of MC is the most cost-effective strategy for managing 56 

biofuel procurement in energy facilities, in spite of the investment in time and resources that it requires [5]. In 57 

fact, a high MC has detrimental effects on the whole forest-energy supply chain, beginning with the reduction 58 

of the effective payload of trucks, which decreases the environmental and economic sustainability of biomass 59 

procurement [6,7]. Once in the yard, long-term storage of woodchipswood chips with high MC may lead to 60 

important biomass losses due to microbial development [8–10], causing an immediate value loss and an 61 

undesired proliferation of fungal spores in the biomass piles [11]. In some cases, this process can even lead to 62 

self-ignition [12], with total destruction of the stored fuel. As a further inconvenience, a high MC strongly 63 

reduces the heating value [13], increasing the biomass required for the same energy output. Additionally, when 64 

storageed in uncovered yards may modify, where the biomass is  exposed to uncontrollable factors such as 65 

rain, snowopen yards the biomass is exposed to uncontrollable factors (e.g. rain, wind, etc.) that and wind 66 

generally lead tos MC increase [14,15], but it may also  also reduce it dry the stocked fuel if the conditions are 67 

favourablefavorable [16].  68 



This represents a further challenge as the combustion of biomass with unknown and variable MC leads to 69 

unstable and inefficient firing process, with temperature fluctuations into the furnace that may cause slagging 70 

as well as increased emissions of NOx, CO and PM  [17]. This issue can be partially coped with indirect 71 

systems for monitoring and adjusting the combustion performance, based on flue gas analysis [18] or energy 72 

output monitoring [19]. Yet, these systems based on post-combustion parameters are hindered by unavoidable 73 

inertia of reaction, which increases with the size of the furnace. In-line and real-time monitoring of the fuel 74 

fed to the furnace would be a much more effective solution to adjust combustion settings according to biomass 75 

quality. For instance, encouraging results had been obtained for in-line detection of MC with microwave 76 

reflection sensors on sawdust [20]. Another promising technology for fast determination of MC along the 77 

biomass supply chain is near infrared spectroscopy (NIR). It has already proved its potential in characterizing 78 

solid fuels on conveyor belt (in-line) [21], laboratory MC analysis [22] as well as used when deployed directly 79 

in the field with portable instruments [23,24] thanks to its compact and handheld features. MC prediction 80 

attained high and reliable performances withOverall,  NIR technology proved to be reliable in the MC estimate 81 

of MC of biofuels such as applications on woody biomass, as woodchipwood chips [25], wood , but also pellets 82 

[26], and herbaceous biomass such as bamboo thanks to efficient bonds detection related to water presence 83 

that affect absorbance [27]. Additionally, NIR sensors can provide a wider range of services besides pure MC 84 

determination, deploying the same spectra for quantification of other fuel properties such as calorific value, 85 

ash content [28], and the type of woody biomass (broadleaf or conifer) [29] or detecting the presence of but 86 

also herbaceous biofuel biomass [30]. In addition, the availability of portable NIR sensors with real-time 87 

measurement, allows to assess the relevant quality parameters and their spatial patterns directly on the pile or 88 

the truckload [31]. This application could strongly improve the MC control of loose industrial biofuels, as the 89 

present biomass sampling procedures struggle to achieve a compromise between reliability and acceptable 90 

costs [32,33]. An issue particularly relevant in regions with a high variety of woody biomass sources, such as 91 

Southern Europe, where these fuels feature very inhomogeneous characteristics [34–37], leading to an 92 

additional effort to control the quality of biomass feedstock.  93 

Finally, the availability of a portable reliable models for for the determination of MC (and other quality 94 

parameters) with NIR tool for the determination of MC (and other quality parameters) of woody biomass 95 

sensors would pave the way to several applications falling in the frame of the forthcoming digitalized 96 
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bioeconomy. As an example, if installed on wood chippers it would provide real-time information on fuel 97 

quality as currently is done with grain harvesters [38]. Deployed at different steps of the supply chain the 98 

sensor could monitor the quality changes of the produced and stored biomass as well as enhance fuel 99 

combustion if operated at the furnace inlet. SYet, such development requires the identification of adequate 100 

hardware solutions and the development of reliable prediction models to convert the raw spectra in MC figures. 101 

However, in spite of the relevance of this technology for the bioenergy sector, no research has yet focused on 102 

the deployment of hand-held, self-powered NIR sensors for the estimate of the MC of solid biofuels.  103 

Considering the above, the present study aimed to test the performance of a portable NIR spectrometer running 104 

three different MC prediction models, assessing its potential to determine fuel quality with heterogeneous 105 

industrial biomass. Quality assurance was based on three key performance indicators (KPI) according to the 106 

guidelines suggested by Vardeman and Jobe [39]:   107 

- “Validity” is intended as the capacity to provide resultsdata that reliably represent the quantity measured 108 

reliably, without the influence of non-controlled factors other than the desired ones. In this case, these would 109 

be mainly tree species and woody assortments used for the production of the wood chips. Yet, due to the lack 110 

of information regarding the biomass qualitycomposition, the unique factor considered to assess the validity 111 

of estimate was the influence of the extreme MC values;  112 

- “Accuracy”, accomplished when the average of values estimated produces the true or correct values of MC 113 

as measured with the reference method; 114 

- “Precision” related to the range of variation observed measuring samples with the same or similar MC values, 115 

which should ideally result in minimum variations; 116 

- “Accuracy”, accomplished when the average of values estimated produces the true or correct values of MC 117 

as measured with the reference method; 118 

Considering the industrial focus of the test, an additional KPI was included in the study:  119 

- “Performance” of the analyzer, intended as the effective output of MC estimates per work hour in real work 120 

conditions.  121 

 122 



2. Materials and methods 123 

 124 

2.1 WoodchipWood chip samples collection and preparation  125 

The woodchipwood chip samples (n = 817) had been provided by a power plant located in Northern Italy from 126 

July to October 2020. The facility has an electricity output of 11.6 MW and consumes about 130,000 t/year. It 127 

is fed with consumes a very wide range of fuels, including energy crops (medium rotation coppice of poplar 128 

clones), agricultural residues (mainly from uprooting of pear, apple and peach orchards), river banks 129 

maintenance (providing a mix of broadleaves dominated by willow, poplar and alder) and conifers from a large 130 

windthrown area of the Italian Alps (mainly spruce). Biomass samples were collected in the yard of the power 131 

plant according to the sampling procedure defined by the technical standard ISO 18135:2017 – Sampling of 132 

solid biofuels [40] . The information regarding the type of biomass was available just for few samples. 133 

Additionally, this data was visually assessed by the facility’s yard manager on the pile of wood chips, with a 134 

high degree of approximation. For these reasons, this descriptive data was not considered in the following 135 

analysis.  136 

Great variability among samples has been expected, but the specie and the particle size of each biofuel sample 137 

have not been considered due to the lack of available information and to the huge number of analyzed samples. 138 

Moreover, the possible presence of mixed sample type in the same truck would make the specie classification 139 

not applicable. All theW wood chip samples with an approximate fresh weight of 500 g had beenwere delivered 140 

directly to the lab in hermetically sealed plastic bags to preserve their original characteristics. In order to 141 

maintain their representativeness, biomass was collected according to the sampling procedure defined by the 142 

technical standard ISO 18135:2017 – Sampling of solid biofuels [40] . The samplesHere they  hadwere been 143 

prepared according to the technical standard ISO 18134-1:2015 [41] for the evaluation of MC (always 144 

considered on wet basis). according to the technical standard ISO 18134-1:2015 [41].   145 

 146 

2.2 Near-infrared data acquisition  147 
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NIR analysis was performed in laboratory by means of a portable MicroNIR™ OnSite sensor (Viavi Solutions 148 

Inc., Santa Rosa, CA, USA).,  which fFeaturing no moving parts it can be regarded as a “rugged” hand-held 149 

spectrometer with high resistance to vibrations, dust and water (IP67), improving its resistance to dust, water, 150 

and vibrations. PIts portability is confirmedfacilitated by  its little small size (4.6 mcm of diameter and 191 151 

mcm of length), low weight (<300 gr) and by high battery run time (>10 hours). The model used is interfaced 152 

with a rugged tablet via USB cable (Figure 1), but the same sensor is also available with wireless Bluetooth® 153 

connection. Both models have a cost of about 10,000 €.   154 

The instrument works in the spectral range between 950 and 1650 nm., iIt is equipped with two small vacuum 155 

tungsten lamps (ø ≈ 4 mm) as radiation source. Dispersion is and a performed by a linear-variable filter (LVF) 156 

as dispersing element directly connected to a 128-pixel indium gallium arsenide (InGaAs) photodiode array 157 

detector. . The acquisition was carried out in reflectance mode. The iIntegration time was 6.7 ms and each 158 

spectrum was the average of 100 scans, thus with an acquisition time below 1 second. In order to remove the 159 

instrumental and environmental noise, a dark reference (0% transmittance) and a blank spectrum have been 160 

acquired every hour using a 99% reflectance reference standard (Spectralon). All spectra were collected by 161 

operating the sensor at a stable internal temperature (30 ± 1 °C).  162 

MC of samples was estimated as the average value of ten measurements (replicates). For this purpose, the 163 

sample was carefully distributed on an aluminuma tray (30x24x4 cm), providingcreating a uniform layer with 164 

a depth of about 2-2.5 cm . Here layer to cover the tray base as much as possible, considering the heterogenous 165 

shape of samples, where the NIR raw data was acquired on a matrix of 9 predefined spots plus a randomly-166 

selected position as depicted in figure 12. The operation was performed manually by a the same unique 167 

operator throughout the whole study. The instrument was directly placed in contact with the sample surface to 168 

reduce as possible lights interferences, so better acquisitions were expected when a 90° angle between light 169 

direction and samples has been achieved.The sensor was placed directly in contact with the surface of the 170 

sample. A perpendicular position was chosen in order to minimize light interferences and enhance the quality 171 

of acquisition.  Each spot covered an area of about around 250 mm2. After spectra acquisition the sample was 172 

oven-dried for MC measurement according to standard ISO 18134-1:2015 [41].  173 

 174 
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 175 

176 

 177 

Figure 1: portable MicroNIR™ OnSite sensor application on industrial woodchipwood chip pile in power plants (left) 178 

and in laboratory (right).  179 

 180 



Figure 12: 3x3 matrix used for sampling NIR scans on biomass distributed on aluminium tray. on the woodchip tray 181 

(30x24x4 cm) 182 

 183 

2.3 PTest of precision test 184 

The precision test aims at assessing the dispersion of measured values. Standard deviation is a good indicator 185 

of this performance, yet a more detailed analysis requires repeated measurements performed on a same group 186 

of samples. Therefore, 30 new woodchipwood chip samples provided by the same power plant were used to 187 

generate a dedicated dataset at the end of the main study. The NIR analysis was repeated 5 times on each 188 

sample following the protocol previously described in 2.2. Between each repeated measurement the biomass 189 

in the tray was carefully mixed. Finally, the reference MC of the biomass was determined by means of the 190 

oven-drying method (ISO 18134-1:2015).   191 

 192 

2.4 Prediction models  193 

The spectra acquired on the biomass samples were used to estimate MC by means of three different prediction 194 

models installed on the tablet and run simultaneously at each raw data acquisition providing real-time results. 195 

These The models had been previously developed using the spectra acquired on different sets of industrial 196 

wood chip samples provided to the laboratory by several two Italian power plants during the routine control of 197 

MC of the incoming feedstock. Although the specific characteristics of the biomass samples were unknown 198 

(e.g. tree species, storage time and conditions, etc.) a wide variability was expected, allowing for the 199 

development of robust models. Additionally, one of these power plants was the same that provided later the 200 

817 samples used for this study. Thus the datasets deployed to build the models and to perform the analysis 201 

were considered similar in terms of fuel composition and MC variability.  202 

All the computations have been performed in Matlab environment (ver. 7.10.0, The MathWorks) using in-203 

house functions on existing algorithms.  204 

Each prediction model was selected as the best performing of a series of models computed on the averaged 205 

matrices with different pretreatments. The acquisition was carried out in the reflectance mode and ten 206 
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replicates were acquired for each sample. The first prediction model (MOD1) was developed on the spectra 207 

of 642 samples with a range of MC values between 4.3% and 49.1%.  A Partial Least Square PLS regression 208 

(PLS) model was used pretreating the spectra with the combination of first derivative (Savitzky-Golay filter, 209 

5-points window, second-order polynomial) and Standard Normal Variate (SNV).  The resulting model 210 

features R2=0.94 and RMSEP=2.40%, while RER and RPD values report respectively 23.5 and 4.1, confirming 211 

that it could be considered as a reliable model. The second (MOD2) and the third (MOD3) prediction models 212 

have been developed on the spectra of 212 additional samples (different than the previous 642 samples) 213 

with a range of MC values between 15.2% and 64.7%. MOD2 was developed pretreating the spectra with the 214 

second derivative (Savitzky-Golay filter, 5-points window, second-order polynomial) featuring R2=0.96 and, 215 

RMSEP=1.99%,, while RER=24.9 and RPD=4.5. MOD3 was developed as the previous one, with additional SNV 216 

pretreatments resulting in R2=0.94 and , RMSEP=2.44%,  while RER=19.7 and RPD=3.8. TFor both MOD2 and 217 

MOD3 the application reliability of prediction models was revealed.  Moreover, Thethe RMSEP values of the 218 

three models do not show significant differences among each other and  are in line or superior to the results 219 

of other researches estimating MC with NIR spectroscopy in woody materials [42,43] and other biomasses 220 

[44,45].  221 

 222 

2.5 Data analysis 223 

To analyze the accuracy of the NIR analysis and the three models tested, the difference in moisture content 224 

(bias) between the MC returned by the estimate (MC_nir) and the reference value (MC_ref) was calculated as 225 

follows:  226 

Bias = MC_nirim – MC_refi 227 

Where MC_nir is the value returned by the model m for the sample i and MC_ref is the value measured with 228 

oven dry method for the same sample i. 229 

Bias values were first checked with descriptive analysis (Box-Plot) for possible outliers (difference > 1.5 SD). 230 

The first round identified a large number of anomalous values: 87, 93 and 52 respectively for MOD1, MOD2 231 
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and MOD3. Since the number of potential outliers was large and no clear pattern or cause of outlier generation 232 

could be identified, a second identification procedure was performed. This was based on the observation of 233 

normal probability plots of bias values: a single outlier was identified in MOD1 (difference > 10 SD) and 234 

removed from the following analysis. The resulting databases were used to assess the key performance 235 

indicators (KPI) of the NIR sensor with the three prediction models as described in the following sections.  236 

 237 

2.5.1 Validity 238 

A general statistical analysis was performed to compare the performance of the three prediction models based 239 

on average, standard deviation, minimum and maximum MC values. In order to better assess the validity of 240 

each model according to the MC level of the sample, the dataset was divided in homogeneous moisture classes, 241 

each with a range of 10 MC percentage points.  242 

Additionally, the validity of the three prediction models was verified through regression analysis, assessing 243 

the linearity of MC values estimated against the values returned by the standard oven-dry method. 244 

 245 

2.5.2 Accuracy 246 

This performance indicator was verified by means of two analyses:  247 

- calculating the Standard Error of Performance (SEP), as described by [46], which also allows for 248 

comparison of the tested NIR models with other MC analyzers:   249 

𝑆𝐸𝑃 = √
1

𝑁 − 1
∑(𝑒𝑖 − 𝑒)̅2
𝑁

𝑖=1

 250 

Where N is the number of samples; ei = (Mreference-Mi) and Mi is the MC measured by the analyzer for the ith sample and Mreference is 251 
the MC determined for the same sample according to the standard method; ē is the average of ei.  252 

 253 

- identifying the Statistical Tolerance Limits. For this analysis, a Shapiro-Wilk test was first performed 254 

for verifying the normal distribution of the bias datasets generated by the three prediction models. 255 



Since just MOD2 data showed a normal distribution, a non-parametric tolerance limit analysis was 256 

performed, considering a confidence level of 90% and capturing 91.5% of population proportion.  257 

 258 

2.5.3 Precision 259 

The precision of the three models was verified by running a Gage Repeatability and Reproducibility  (R&R) 260 

test, ANOVA method. This technique is specifically designed for verifying the “RepeatibilityRepeatability” 261 

and “Reproducibility” of a measurement conducted with a specific gauging device (Instrument) operated by 262 

one or more operators (Appraiser) on one or more items (Part) [39]. The three prediction models were 263 

considered in the analysis as a different Appraiser, using a single Instrument for measuring 30 Parts (biomass 264 

samples) 5 times. With such design it was possible to verify the “Repeatibility” of the analysis (i.e. variation 265 

obtained by repeating a measure with the same instrument). The “Reproducibility” of the measurement, which 266 

is the variation due to different operators, was used to highlight the difference due to the three prediction 267 

models. The ANOVA method without interaction was chosen, as it is considered more robust than the Average 268 

and Range Method against possible interactions between samples and operators.  269 

2.5.43 Performance 270 

The time required for the analysis was measured for each sample (tray). Since a single operator was both 271 

carrying on the MC analysis and recording the time required, the accuracy of the timing was limited, thus a 272 

common desk watch was used to note starting and stopping time of each cycle/sample.    273 

3. Results and Discussion 274 

The average MC of the samples according to the standard method was 37.24%. The dataset had a very wide 275 

range, including very dry (~13%) and very wet (~70%) biomass. Comparing the average MC with the 276 

corresponding values returned by the three prediction models (table 1) differences appear very limited, 277 

confirming the general reliability of NIR sensor and an apparent superiority of MOD3. Yet, individual values, 278 

such as the maximum and minimum moisture levels reported show a high degree of variability.  279 

Table 1: General statistics to compare the MC estimate three prediction models 280 

Value (%) Standard Method MOD1 MOD2 MOD3 



Average 37.24 37.52 38.45 37.29 

SD 8.96 8.14 8.38 8.74 

Min 12.76 17.29 21.64 9.58 

Max 69.31 76.61 75.18 64.18 

Range 56.55 59.32 53.54 54.60 

 281 

The percentage of overestimated and underestimated MC records are reported in table 2 for each prediction 282 

models. Considering absolute values, the average bias is around 2.5% for all models, while the maximum bias 283 

is produced by MOD1 (14.96%). All models show a higher frequency of overestimating occurrences compared 284 

to underestimated ones, but MOD2 is strongly asymmetric with 65.48% of estimations with a positive bias.  285 

Table 2: Resulted values of bias related with each prediction model and their estimation trend   286 

Value (%) MOD1 MOD2 MOD3 

Absolute mean bias 2,60 2,62 2,41 

Max bias 14.96 10.32 11.79 

Min bias 0.01 0.01 0.00 

Overestimated 55.08 65.48 54.59 

Underestimated 44.92 34.52 45.41 

 287 

 288 

3.1 Validity 289 

Considering the regressions of the three prediction models, the estimation capacity is satisfactory, with 290 

coefficient of determination values (R2) ranging from 0.86 to 0.88 (figure 32). Yet, this performance is inferior 291 

to that achieved with a NIR sensor on homogeneous pelletized biomass [47] and even to that of a magnetic 292 

resonance sensor tested with samples featuring a similar variability to the present study [48]. The great 293 

variability was also influenced by the lack of explicit information about biofuel origin and tree species 294 

correspondence, that made harder the investigation on additional classification and MC influence. The bias in 295 

linearity confirms the presence of some disturbance in MC estimation, with MOD3 showing the minimum 296 

deviation from linearity (β = 0.9181) to a maximum in MOD1 (β = 0.8460).  297 



 298 

 299 

 300 

Figure 23: Relation of MC values estimated by the NIR sensor for MOD1, MOD2 and MOD3 as compared to MC 301 
estimated with standard method.  302 
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Before considering the influence of MC classes on the estimation bias returned by the models it is important 304 

to notice how the frequency of samples in each class is strongly unbalanced. As shown in table 3, 73.7% of 305 

samples are included in the two middle classes, with moisture ranging between 30 and 50%. This distribution 306 

can be considered as well representative of the actual biomass fuel used by the power plants, where extreme 307 

values tend to be exceptions.  308 

Table 3: distribution of samples according to the MC classes  309 

MC class 10-20 20-30 30-40 40-50 50-60 60-70 

Samples (n) 23 138 353 249 42 12 

Samples (%) 2.8 16.9 43.2 30.5 5.1 1.5 

Avg. MC (%) 17.58 25.62 35.55 43.8 54.02 63.69 

SD 1.96 2.80 2.88 2.61 2.67 2.35 

 310 

Although the general performance of the models is similar when the whole dataset is considered, its validity 311 

has a different pattern when individual MC classes are considered (figure 34).  312 

MOD1 has satisfactory reliability just for the two central MC classes, with an average bias below 0.5%, while 313 

strongly overestimates drier classes and features a very high variability when analyzing underestimates 314 

samples falling in the two classes with higher MC.  315 

MOD2 highly overestimates (over 3%) for MC content lower than 30%, while shows a high reliability for all 316 

other MC levels, with a maximum average bias below 0.7%.  317 

MOD3 has a reverse bias pattern compared to the previous one, with high reliability for lower and middle MC 318 

classes and strong underestimation for the two classes with higher MC.  319 

Considering the relative weight of each class (i.e. the percentage of samples falling in it), MOD3 results to be 320 

the most reliable with 93.4% of estimates with an average bias lower than 0.7%, while MOD2 achieves 80.3% 321 

of estimates within this threshold and MOD1 just 73.7%.  322 

Considering Given the above considerations, MOD3 appears to provide the best performance, even if its 323 

capacity to predict MC of biomass is limited to woodchipswood chips with MC lower than 50%. Above this 324 

threshold, the analysis would return a result strongly underestimated. As several models can be run 325 

simultaneously, a practical solution to this issue wcould be to deploy in parallel two models for spectra 326 



interpretation: MOD3 could be used as default model, but for MC values >50% the estimated value of MOD2 327 

could be considered since it has much higher reliability with high MC levels, and a similar one with average 328 

MC values. As an alternative,  Further chemometric analysis could be developed in order to avoid the necessary 329 

operator choice. Aa correction factor could be considered to verify the potential improvement ofapplied to 330 

adjust the result of the models in extreme MC classes. Thus, a preliminary test has been performed correcting 331 

with different factors the values predicted by MOD2 resulting in predicted MC resultsa minimal correlation 332 

improvement . A little better correlation (from 0.88 to 0.89).  has been achieved, but stronger corrections could 333 

be required. The non-linearity models and the low improvement could be related to the lack of adequate 334 

number of samples corresponding to extreme values and the samples integration could enhance better 335 

performances. 336 

 337 

Figure 34: average error of estimate according to MC classes (as measured with standard method). Vertical bars represent 338 
the standard deviation.  339 

 340 

 341 

3.2 Accuracy 342 

The 30 samples used for accuracy determination had MC values ranging from 1 to 52%, thus covering most 343 

of the MC classes featured by the main database. The SEP values for the NIR sensor were 3.5%, 3.1% and 344 

3.0% respectively for MOD1, MOD2 and MOD3. These values are in line with the average SEP reported for 345 

moisture meters based on NIR and Radio Frequency technologies, and are even similar to the SEP of the oven-346 

-15.00

-10.00

-5.00

0.00

5.00

10.00

10-20 20-30 30-40 40-50 50-60 60-70

A
V

ER
A

G
E 

ER
R

O
R

 (
%

 o
f 

m
ea

su
re

d
 M

C
)

MC CLASSES (% MC)

MOD1

MOD2

MOD3



dry method operated with 100g samples [46]. Other non-portable technologies for MC estimation recently 347 

tested achieved lower SEP values either deploying microwave reflection operated in-line in laboratory 348 

conditions [20] or with magnetic resonance coupled with traditional sampling in the industrial environment 349 

[48]. Yet, , but being fixed equipment those provide a lower sampling flexibility. 350 

Without assuming any particular distribution of the bias values, and with a confidence level of 90%, the 351 

statistical tolerance limits analysis reports that at least 91.5% of the distribution lies between limits with a span 352 

of 11.88, 11.13 and 10.54 percentage points respectively for MOD1, MOD2 and MOD3 (figure 45). This result 353 

further confirms the higher accuracy of MOD3, which also features a mean value of 0.05 against 0.32 and 1.2 354 

respectively for MOD1 and MOD2.  355 

 356 

 357 

90-91.4657 Limits
UTL: 5.78
LTL: -6.10

Nonparametric Tolerance Limits

-17 -7 3 13 23

MOD1

0

30

60

90

120

150

fr
e

q
u

e
n

c
y

90-91.4657 Limits
UTL: 5.78
LTL: -6.10

Nonparametric Tolerance Limits

-17 -7 3 13 23

MOD1

0

30

60

90

120

150

fr
e
q

u
e
n

c
y



358 

 359 

 360 

 361 

90-91.4761 Limits
UTL: 6.87
LTL: -4.26

Nonparametric Tolerance Limits

-10 -6 -2 2 6 10 14

MOD2

0

20

40

60

80

100

fr
e
q

u
e
n

c
y

90-91.4761 Limits
UTL: 6.87
LTL: -4.26

Nonparametric Tolerance Limits

-10 -6 -2 2 6 10 14

MOD2

0

20

40

60

80

100

fr
e
q

u
e
n

c
y

90-91.4761 Limits
UTL: 5.06
LTL: -5.48

Nonparametric Tolerance Limits

-13 -8 -3 2 7 12

MOD3

0

20

40

60

80

100

fr
e
q

u
e
n

c
y

90-91.4761 Limits
UTL: 5.06
LTL: -5.48

Nonparametric Tolerance Limits

-13 -8 -3 2 7 12

MOD3

0

20

40

60

80

100

fr
e
q

u
e
n

c
y



Figure 54: Tolerance plot for nonparametric statistical tolerance limits. Green lines report the limits where 91.5% of 362 
observation lie. Red dashed lines represent the desired value (0, central line) and the threshold set (±2.5 points, left and 363 
right lines) 364 

 365 

3.3 Precision 366 

The percent of total variation due to R&R is 24.87% (table 4). Although a threshold of 10% is generally 367 

recommended (in automotive industry measurements), in other conditions with higher expected variability, 368 

values within 30% are still considered acceptable. This is surely true for MC estimation of biomass where a 369 

plethora of uncontrollable factors contribute to reducing the degree of both reproducibility and repeatability of 370 

a measurement. The value achieved is comparable to what Aminti et al. [48] reported while assessing the 371 

influence of calibration on the repeatability of a magnetic resonance MC analyzer.   372 

Table 4: Gage rRepeatability and rReproducibility rReport 373 

Measurement Estimated Percent Estimated Percent Percent 

Unit Sigma Total Variation Variance Contribution of R&R 

Repeatability 2.98922 23.8036 8.93545 5.66612 91.63 

Reproducibility 0.903729 7.19653 0.816726 0.5179 8.37 

R & R 3.12285 24.8677 9.75218 6.18402 100.00 

Parts 12.1634 96.8586 147.947 93.816  

Total Variation 12.5579 100.0 157.7   

 374 

In the frame of this study, the R&R analysis highlights the differences among the prediction models in terms 375 

of repeatability, with MOD2 appearing to be the better performing in terms of deviation from average (figure 376 

56). Yet, just 8.37% of the total variance is due to the differences among the prediction models, being the 377 

remaining 91.63% related to the instrument. This result was partially expected, as the specific layout of the 378 

sensor deployed is designed for material more homogeneous than woodchipswood chips. In fact, wood surface 379 

roughness is a critical factor influencing the quality and consistency of the NIR spectra even if acquired on 380 

solid timber and polished wood samples [49,50]. Thus, this aspect is magnified when measuring loose, coarse 381 

material as industrial woodchipswood chips, leading to a less predictable illumination and reflection geometry 382 

which reduces the overall precision [49].  383 



 384 

Figure 56: R&R plot for dDeviation values. Points represents a single measurement and are grouped by prediction model 385 
(Aappraiser). Horizontal red lines show the average measurement for each calibration. Vertical lines connect 386 
measurements made on the same item: the first line in each box represents the values recorded on sample 1, the second 387 
line for sample 2 and so on. 388 

 389 

3.43 Performance 390 

MC measurement with the three prediction models run together simultaneously (thus requiring more 391 

elaboration time) took an average of 3 seconds per spectra. A whole sample, assessed with 10 replications, 392 

could be measure in about 30 seconds. In the case of laboratory analysis, sample preparation required an 393 

additional minute to arrange the woodchipswood chips on the tray, note the ID of the sample and remove the 394 

biomass or place the tray in the oven. Overall, less than 2 minutes were sufficient to measure MC of a single 395 

sample, an analysis time comparable to that of magnetic resonance sensor [48]. Additionally, the portability 396 

of the instrument allows the operators to measure the biomass directly at the source (e.g. in the yard or on the 397 

transport unit), avoiding sampling timethe collection and transfer of samples to the laboratory and minimizing 398 

the risk of sampling and laboratory errors. Finally, the real-time response of the portable sensor permits the 399 

adoption of an adaptive measurement approach [31] when deployed in situ (e.g.  on piled biomass or directly 400 

on the transportation unit before unloading). A high number of sampling points appropriately selected strongly 401 

enhance [31], increasing the overall precision of MC estimate, making it a competitive option with the current 402 

oven-drying method, which features a much longer response time and requires a higher energy input for 403 

transportation and drying of samples.   404 
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 405 

 406 

4. Conclusions 407 

 408 

The study demonstrated the reliability of the portable NIR sensor for the determination of MC of industrial 409 

woody fuel. Among the tested prediction models, MOD3 provides the higher level of accuracy and precision. 410 

Yet, the validity of the estimate is lower when dealing with very dry (< 15%) or very wet (> 50%) samples. 411 

This drawback is probably due to the dataset used to build the prediction models: being industrial fuel, the 412 

majority of samples belonged to the average moisture classes, reducing the power of model-training in the 413 

underrepresented extreme classes. While new models based on datasets with more homogeneous distribution 414 

of MC should be developed, the tested prediction models could be still valuable in practical application. In 415 

fact, considering the different performance of the three models at the extreme values, a higher validity could 416 

be achieved by using the portable NIR spectrometer running two prediction models: MOD3 should be used as 417 

the main reference, but when both models return values above 50%, the result of MOD2 should be used, since 418 

this model features a higher validity at high moisture levels. Further chemometric analysis could be developed 419 

in order to avoid the necessary operator choice. A correction factor could be considered to verify the potential 420 

improvement of models in extreme MC classes. Thus, a test has been performed correcting with different 421 

factors the MOD2 predicted MC results. A little better correlation (from 0.88 to 0.89) has been achieved, but 422 

stronger corrections could be required. The non-linearity models and the low improvement could be related to 423 

the lack of adequate number of samples corresponding to extreme values and the samples integration could 424 

enhance better performances.  425 

Nevertheless, tTThe spectra acquisition is very fast, requiring about 3 seconds to return the moisture value. 426 

This performance is particularly relevant for in-field MC analysis, where the operator could gather a large 427 

quantity of spectra in a short time, reducing sampling costs and potentially applying adaptive sampling for a 428 

better estimate of the bulk quality. Future research should focus on tThis latter aspect, should be object of the 429 

future research, addressing the most appropriate sampling protocol for moisture contentMC determination on 430 

stock piles and in transport units. Additionally, the influence of the type of raw material (e.g. tree species or 431 
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tree parts) and the variability due to different operators should be further investigated in order to fully disclose 432 

the potential of this technology in the bioenergy sector. 433 

 434 

 435 
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