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ABSTRACT  33 

Background: an increasing number of epidemiological studies highlights a remarkable association 34 

between a diet rich in fruits and vegetables and a lower incidence of different inflammatory-related 35 

pathologies. Berries represent an interesting source of phytochemicals and nutrients, widely 36 

investigated for their role in health promotion and disease prevention.  37 

Scope and approach: the aim of this review was to summarize and update the effect of different 38 

berry extracts, their fractions and single bioactive compounds against the inflammatory status 39 

promoted by the Gram-negative bacteria endotoxin lipopolysaccharide (LPS). The main molecular 40 

mechanisms involved have been elucidated, focusing particular attention on the biological response 41 

evoked in different in vitro and in vivo models. 42 

Key Findings and Cocnlusions: the inhibition of inflammatory response mediated by MAPK and 43 

NF-kB is the main molecular pathway involved in berries anti-inflammatory role, expecially in 44 

grape and blueberry which represent the main investigated fruits, improving antioxidant defence 45 

and exerting beneficial effects in the maintenance of healthy conditions in LPS-treated models. 46 
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 58 

1. INTRODUCTION 59 

An increasing number of epidemiological studies highlights a remarkable association between a diet 60 

rich in fruits and vegetables and a lower incidence of different chronic pathologies, such as obesity, 61 

infections, cancer, cardiovascular and neurodegenerative diseases, in which a sustained pro 62 

inflammatory state is the major contributing factor to their development, progression and 63 

complication (Joseph et al., 2014). Focusing on fruits, it is quite complex to explain their potential 64 

health benefits, given their wide variety available for consumption and their complex composition. 65 

For these reasons, in recent decades, individual subgroups of fruits have been taken into account, in 66 

order to facilitate the observation and promote their specific health benefits. Among these, berries 67 

represent the richest fruits in natural compounds, including minerals, vitamins, dietary fibers and 68 

polyphenolic phytochemicals. In the last few years, these compounds have attracted considerable 69 

attention due to their antioxidant properties, potential in health promotion and disease prevention, 70 

thus improving safety and consumer acceptability (Alvarez-Suarez et al., 2014; Forbes-Hernandez 71 

et al., 2016; Muceniece et al., 2019). In addition, edible berries may represent a potential important 72 

contribution to the intake of fresh fruit for the populations in countries where, as declared by World 73 

Health Organization, there is a limited availability of fruits and vegetables, as in northern latitudes 74 

(Bazzano, 2005). For this reason, in this review we have summarized the latest 10 years 75 

developments on the activities of berries from in vitro (Table 1) and in vivo (Table 2) studies, on 76 

animal and humans, against the inflammatory status and its main related pathologies, with particular 77 

attention on lipopolysaccharide (LPS) as inflammatory agent (Table 1). The research of the article 78 

has been performed using the database PubMed, and typing as keywords “type of berry (i.e. 79 

strawberry) and lps”. Only the studies from 2011 to 2020 has been collected and reported in the 80 

manuscript. 81 

 82 

1.1. OXIDATIVE STRESS AND INFLAMMATION 83 



In physiological conditions, inflammation is the common, protective and temporary response of the 84 

innate immune system to pathogens and injury stimuli (Joseph et al., 2014). On the contrary, the 85 

interaction of the cellular immune system with endogenous or exogenous antigens results in the 86 

generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), leading to 87 

signalling cascades that can result in hyperactivation of inflammatory responses, inducing tissue 88 

damage and oxidative stress phenomena, which represent the main contributing factors to the 89 

development, progression and complication of the most known diseases. Quantifiable inflammatory 90 

responses are characterized by the production of cytokines, which act as signals between immune 91 

cells to coordinate the inflammatory response, and they can play a pro- inflammatory role, such as 92 

interleukin (IL)-1β, IL-6 and tumour necrosis factor-α (TNF-α) or anti- inflammatory role, like IL-93 

10 (Joseph et al., 2014). The central orchestrator of the inflammatory response is nuclear factor 94 

kappa-light-chain-enhancer of activated B cells (NF-kB), a redox-sensitive transcription factor, 95 

responsible of cytokine and other inflammatory molecules production (Joseph et al., 2014). Other 96 

important mediators of inflammation include pattern recognition receptors such as Toll-like 97 

receptors (TLR) and kinases, such as mitogen-activated protein kinase (MAPK).  98 

Inflammation can be elicited by different stimuli, such as endotoxins (i.e., LPS from bacteria), 99 

changes in ROS levels, viruses, fatty acids, cellular redox status, cytokines, growth factors and 100 

carcinogens (Giampieri et al., 2018). The LPS molecule in particular is essential for the viability of 101 

most Gram-negative bacteria, exerting a crucial role in the outer-membrane integrity as a 102 

permeability barrier, protecting bacteria from toxic molecules, bile salts and lipophilic antibiotics 103 

which can be found in several sources, including foods, infections and commensal microbiota 104 

(Mayer et al., 1985). In human body, the main source of LPS is the gut. Even if LPS has a strong 105 

affinity for chylomicrons and is able to cross easily the gastrointestinal mucosa, under physiological 106 

conditions, the intestinal epithelium defends itself from LPS translocation. The absorption of LPS 107 

through the intestinal barrier seems to be enhanced by an high-fat diet: dietary fats in fact deeply 108 

increase LPS absorption through the modification of the gut microbiota, raising the amount of 109 



chylomicrons and increasing the permeability of the gastrointestinal mucosa (Manco et al., 2010). 110 

In this context, LPS can be considered an important factor directly involved in the onset of obesity 111 

induced by a rich-fat diet and type 2 diabetes, as showed in many studies performed on animal 112 

models (Laugerette et al., 2012; Mani et al., 2013) and human subjects (Pendyala et al., 2012, Harte 113 

et al., 2012). For all these reasons, the modulation of the inflammatory response by potential food 114 

components may represent a strategic tool to avoid immune disorders and maintain health and 115 

wellness (Giampieri et al., 2018). 116 

 117 

2. BERRIES  118 

Berries are a common worldwide functional fruit and represent a relevant source of micronutrients 119 

and nonessential phytochemicals, especially polyphenols (Prasain, et al., 2020; Agudelo et al., 120 

2019; Afrin et al., 2016; Mazzoni et al., 2016). In recent decades, berry phenolics have attracted 121 

considerable attention and have been subjected to extensive research due to their antioxidant 122 

properties, their ability to detoxify reactive oxygen and nitrogen species, blocking their production, 123 

and to repair oxidative DNA damage. Interesting results were also obtained in in counteracting 124 

neurodegenerative diseases: dietary intakes of berries were demonstrated to improve memory, 125 

protecting the brain against cognitive loss (Morris et al., 2015). All these effects play a synergistic 126 

and cumulative role in human health promotion and disease prevention, thus improving safety and 127 

consumer acceptability (Afrin et al., 2016; Mazzoni et al., 2016). For these reasons, the 128 

improvement of the nutritional quality of berries has become an innovative quality target of 129 

breeding and biotechnological strategies, with the aim to control or increase the content of potential 130 

health-related compounds in fruits (Mazzoni et al., 2016). 131 

 132 

2.1. BIOACTIVE COMPOUNDS AND ANTIOXIDANT CAPACITY OF BERRIES 133 

A diet rich in antioxidant compounds derived from fruits and vegetables, such as the Mediterranean 134 

one, can strongly influence the susceptibility to oxidative stress, counteracting the reduction of 135 



antioxidant protection that occurs during pathological conditions. Berries, an important fruit in the 136 

Mediterranean diet, are among the richest fruits in nutritive compounds, which possess strong 137 

antioxidant and anti-inflammatory effects that may reduce sensitivity to oxidative stress (Battino et 138 

al., 2019). These fruits are particularly rich in phenolic acids, benzoic acid and derivatives of 139 

cinnamic acid, stilbenes, lignans, flavonoids (including anthocyanins), flavonols and flavanols, 140 

condensed tannins and hydrolyzable tannins, vitamins, folate, alkaloids, carotenoids, xanthones and 141 

polysaccharide (Afrin et al., 2016). The distribution and the type of these different compounds are 142 

affected by different factors, including genetic and environmental factors, chemical structures, 143 

degree of oxidation and substitution patterns of hydroxylation, abilities to exist as stereoisomers, 144 

glycosylation by sugar moieties and other substituents and conjugation to form polymeric 145 

molecules (Seeram, 2006). The comprehension of the link between the antioxidant capacity of 146 

individual components and the bioactivities of different berries may address the biotechnological 147 

improvement of new berry varieties. 148 

 149 

2.2. BIOAVAILABILITY AND METABOLITES OF BERRIES 150 

Taking into account the bioavailability of berries bioactive compounds, it is interesting to underline 151 

that phenolic compounds of berry are able to survive to digestion in the upper digestive tract and 152 

reach different parts of the proximal and distal colon in substantial dose (Wiczkowski et al., 2010). 153 

The bioavailability of anthocyanins is very poor and only trace levels can be identified in plasma 154 

and urine after absorption and excretion (Felgines et al., 2003). Dietary ellagitannins are hydrolyzed 155 

to yield ellagic acid, which is consequently metabolized by colon bacteria to various urolithins, in 156 

the distal part of the small intestine and in the colon (Del Rio et al., 2013). Finally, dietary 157 

antioxidants, like vitamin C and E and few carotenoids are absorbed in the upper segments of the 158 

intestine (Scalbert & Williamson, 2000). 159 

 160 



3. BIOLOGICAL ACTIVITIES OF BERRIES AGAINST LPS-INDUCED STRESS: IN 161 

VITRO AND IN VIVO STUDIES 162 

An increase number of evidences has been focused on determining the possible mechanisms for 163 

counteracting the LPS-mediated inflammatory response. Different in vitro and in vivo models have 164 

assessed the efficacy of the whole berry extracts, fractionated berry extracts, single bioactive 165 

compounds or purified/commercial berries on different LPS-inflammatory models (Table 1).  166 

 167 

 168 

3.1. ELDERBERRY 169 

Elderberry (Sambucus spp.) is a widespread species of the Caprifoliaceae family, which are widely 170 

grown in Europe, Asia, North Africa and North America. Elderberry cultivars contain high 171 

concentrations of anthocyanins and flavonoids, which exhibit antioxidant, cardioprotective, 172 

anticarcinogenic, anti-inflammatory, immunomodulating activity, anti-diabetic, antibacterial, 173 

antiallergic and antiviral properties (Walker et al., 2013; Simonyi et al., 2015). 174 

The phenolic compounds and ethanolic extracts from elderberry pomace showed high 175 

antioxidant and anti-inflammatory responses in human gingival fibroblasts (HGF-1) and human U-176 

937 monocytes, where the pro-inflammatory cytokines, IL-6, IL-8, the matrix metalloproteinases-2 177 

(MMP-2) and MMP-9 were inhibited by methanolic extracts treatment (Walker et al., 2013). In 178 

macrophges obtained from BALB/c mice intraperitoneally injected with 20 mg LPS, methanolic 179 

elderberry extract reduced NO production (Carneiro et al., 2019), while the ethanol crude extracts 180 

from elderberry and the isolated anthocyanins and procyanidins fractions showed strong 181 

complement fixating activity and strong inhibitory activity on NO production in LPS-activated 182 

RAW cells and murine dendritic D2SC/I cells (Ho et al., 2017).  183 

 184 

3.2. WOLFBERRY OR GOJI BERRY 185 



The fruit of Lycium barbarum L. (Solanaceae), usually known as wolfberry or Goji berry, is an 186 

important herbal medicine as well as tonic, used widely in East Asia, with increasingly popularity in 187 

Europe and North America. Lycium barbarum polysaccharides (LBP) is one of the major 188 

ingredients responsible for different biological activities (Teng et al., 2013; Huang et al., 2019).  189 

LBP showed neuroprotective effects against LPS-induced inflammatory injury in mouse 190 

microglial cells, by reducing the levels of caspase 3, TNF-α and heat shock protein (HSP) 60 191 

through the inhibition of NF-kB pathway (Teng et al., 2013). Similarly, neuroprotective effects 192 

have been demonstrated in a rat model of sepsis, where LBP attenuated inflammation injury in the 193 

kidney via the possible regulation of Keap1-Nrf2/ARE signalling (Huang et al., 2019; Wu et al., 194 

2020). The protective effects and potential molecular mechanisms of LBP against LPS-induced 195 

acute respiratory distress syndrome were also detected in mice and in human pulmonary 196 

microvascular endothelial cells, through a reduction in lung inflammation and pulmonary edema in 197 

vivo, significantly reversing the LPS-induced decrease in cell viability, increase in apoptosis and 198 

oxidative stress in vitro (Chen et al., 2018). 199 

The inhibitory effects of L. ruthenicum polysaccharide were investigated on pro-200 

inflammatory mediators in LPS stimulated RAW264.7 macrophages (Peng et al., 2014). The extract 201 

significantly inhibited the production of NO, TNF-α and IL-6 and reduced the expression of 202 

inducible nitric oxide synthase (iNOS), through the inhibition of TLR-4/NF-κB signaling pathways 203 

(Peng et al., 2014). Similar results were obtained with Lycium fruit water extract, in which the anti-204 

inflammatory mechanisms were accomplished by the inhibition of  ERK1/2, p38 and JNK MAPKs 205 

phosphorylation as well as the suppression of nuclear factor of kappa light polypeptide gene 206 

enhancer in B-cells inhibitor, alpha (IκBα) degradation and NF-κB upon LPS stimulation (Oh et al., 207 

2012).  208 

 209 

3.3. ACAIBERRY 210 



Açai (Euterpe oleracea Mart.), one of the most economically significant palm species in the 211 

Brazilian Amazon, has widely attracted the attention of the researchers for its nutritional and 212 

phytochemical composition. Anthocyanin-rich açai pulp fractions have been examined for their 213 

protective effect on LPS-induced oxidative stress and inflammation in BV-2 mouse microglial cells, 214 

highlighting a downregulation of the expression of iNOS, cyclooxygenase (COX) 2, p38-MAPK, 215 

TNF-α and NF-κB in a concentration-dependent manner (Pouolose et al., 2012). Likewise, Açai 216 

polyphenols prevented LPS-induced generation of ROS, mRNA and of pro-inflammatory genes 217 

expression in human vascular endothelial cells (HUVEC) and in colon myofibroblasts CCD-18Co 218 

cells (Noratto et al., 2011; Dias et al., 2015). Similar results were found in an immortalized rat 219 

astrocyte cell line, where Açai extracts down-regulated LPS-induced NF-kB signalling and up-220 

regulated the Nrf2/ARE activities (Ajit, et al., 2016). 221 

  222 

3.4. EMBLIC 223 

Emblic fruit (Phyllanthus emblica L.), known as amla, represents a potential functional food due to 224 

its numerous pharmacological applications, with hydrolyzable tannins and flavonoids that represent 225 

the major bioactive compounds. It is commonly used in the Indian traditional Ayurvedic and unani 226 

medicine literature (Rao et al., 2013). The effects of amla fruit extract have been investigated in 227 

LPS-treated RAW macrophages, amla fruit extract powder decreased ROS production and reduced 228 

NF-kB, iNOS and COX-2 expressions (Sato et al., 2018; Wang et al., 2019). Similarly, the in vivo 229 

anti-inflammatory effects of this berry were tested in a LPS-induced endotoxaemia rat model, in 230 

which oral administration of the amla extract remarkably decreased the serum levels of pro-231 

inflammatory TNF-α and IL-6 cytokines (Rao et al., 2013). 232 

 233 

3.5. LINGONBERRY 234 

Lingonberries (Vaccinium vitis-idaea L.), native to Scandinavia, Alaska and Canada, possess a 235 

complex polyphenolic profile consisting principally of a mixture of flavan-3-ols and 236 



proanthocyanidins with remarkably antioxidant, antimicrobial, antiadhesive, and anti-inflammatory 237 

effects (Kylli et al., 2011; Afrin et al., 2016). Lingonberries crude extract and its proanthocyanidins-238 

rich phenolic fraction showed protective effects against LPS-induced inflammation in RAW 264.7 239 

(Grace et al., 2014, Esposito et al., 2019) and J774 macrophages (Kylli et al., 2011), through the 240 

reduction of NO production and COX-2, iNOS and pro-inflammatory cytokine expressions (Grace 241 

et al., 2014, Esposito et al., 2019). Similar results were also obtained in LPS-induced astrocytic 242 

damage, where lingonberry extract exerted a glioprotective effect through an anti-oxidative 243 

mechanism in both reversal and prevention models, attenuating ROS, nitrite levels and 244 

acetylcholinesterase activity and increasing cellular viability, thiol content and SOD activity, 245 

corroborating the historic use of this berry as medicinally important foods mainly in Alaska Native 246 

communities (Pacheco et al., 2018). 247 

3.6. CHOKEBERRY 248 

Chokeberries (Aronia melanocarpa L.) have attracted substantial attention thank to their high 249 

polyphenolic content, including procyanidins, anthocyanins and phenolic acids. Appel et al. (2015) 250 

investigated the role of polyphenol-rich chokeberry juice concentrate in LPS-treated human primary 251 

monocytes isolated from peripheral blood and RAW264.7 macrophages. The obtained results 252 

indicated that chokeberry extract significantly inhibited the release of TNF-α, IL-6 and IL-8 in 253 

human monocytes and the activation of the NF-κB pathway in macrophages. Similar results were 254 

recently obtained in LPS-treated BV2 cells and in mice received a single intraperitoneal injection of 255 

LPS, where black chokeberry ethanolic extract significantly reduced tissue damage in the 256 

hippocampus by downregulating iNOS, COX-2 and TNF-α levels, highlighting its protective and 257 

anti-inflammatory role against LPS-induced stress (Lee et al., 2018). 258 

 259 

3.7. SEABUCKTHORN 260 

Seabuckthorn (Hippophae rhamnoides L.) is a high-altitude medicinal plant used for a long history 261 

in Tibetan folk medicine (Du et al., 2017) with a large number of nutrients, phytochemicals, and 262 



bioactive substances like vitamin C. Only one study investigated the anti-inflammatory role of this 263 

berry in stress condition, highlighting significant protection against LPS-induced acute lung injury 264 

in mice treated with seabuckthorn berries paste, through maintaining redox homeostasis, with a 265 

mechanism involving Nrf2 nuclear translocation and activation (Du et al., 2017). 266 

 267 

3.8. GRAPE 268 

Grapes (Vitis vinifera L.) represent one of the most popular and consumed berries in the world. 269 

They are particularly rich in phytochemicals, mainly phenolic acids, stilbenes (resveratrol), 270 

anthocyanins, and proanthocyanidins with remarkable antioxidant and anti-inflammatory properties 271 

(Zunino et al., 2014; Afrin et al., 2016). The efficacy of grape, and its different fraction/extract, 272 

against LPS-induced stress has been widely investigated in different in vitro and in vivo models. 273 

Grape seeds procyanidins extract (GSPE) efficiently counteracted the LPS-induced inflammatory 274 

stress in RAW macrophages reducing (i) pro-inflammatory cytokines expression, (ii) NO 275 

production and (iii) NF-𝜅B and MAPK signalling pathway activation (Bak et al., 2013; Perez et al., 276 

2015).  277 

In macrophages and microglia cells, GSPE showed protective effect against LPS-promoted stress, 278 

reducing the LPS-induced TLR-4 activation (Kim et al., 2018). Similar results were obtained in 279 

LPS-treated rat hepatic stellate cell line and human ovarian cancer cells, in which GSPE reduced the 280 

activation of protein kinase B (AKT)/NF-kB and MAPK/ERK pathways, induced by LPS (Zhao et 281 

al., 2013; Jiang et al., 2017). Finally, in rats treated with various doses of GSPE the LPS-induced 282 

inflammation was efficiently reduced by inhibiting iNOS expression and inflammatory cytokines 283 

production, also preventing endotoxin-induced-intestinal inflammation (Pallares et al., 2013; Gil-284 

Cardoso et al., 2019). 285 

Additionally, interesting results were found with grape skin (GSE), grapefruit (GE), grape pomace 286 

(GPCE) and grape powder (GPE) extracts. GSE, GE and GPCE efficiently counteracted the 287 

inflammation in LPS-treated microglia cells, decreasing inflammatory cytokine levels (Pistol et al., 288 



2018); in addition GSE exerted protective effect also in human primary monocytes, reducing LPS-289 

stimulated tissue factor synthesis and fibrin formation in blood cells (Milella et al., 2012). In 290 

Sprague-Dawley rats, red and white GE efficiently counteracted the LPS-induced inflammation 291 

through the inhibition of liver NF-κB, iNOS and COX-2 expression (Nishiumi et al., 2012), 292 

attenuating the increase in serum secretory phospholipase A2 activity and the decrease in 293 

haematocrit level (Tsao et al., 2012). 294 

GPE attenuated LPS-mediated inflammation in macrophages reducing (i) induction of inflammatory 295 

cytokines, (ii) activation of MAPKs, NF-kB and activator protein 1 (AP-1) pathway and (iii) 296 

decreasing the capacity of LPS-stimulated cells to inflame adipocytes and cause insulin resistance 297 

(Overman et al., 2010). Similar results were obtained in In a mouse model of inflammation, where 298 

GPE suppressed the steady-state low levels of LPS-mediated inflammatory signalling, modulating 299 

NF-κB activity and cytokines production (Miller et al., 2018). On the contrary, in LPS-activated 300 

peripheral blood mononuclear cells from obese male and female volunteers, GPE increased the 301 

level of IL-1β and IL-6, suggesting that the grape consumption increased the sensitivity of the 302 

monocyte population to bacterial challenges. The increased sensitivity may represent an important 303 

tool by which fruit consumption could be beneficial to obese individuals which are particularly 304 

exposed to infection risks (Zunino et al., 2014).  305 

Polyphenol fraction from grape and red wine also possessed interesting effect against LPS-induced 306 

inflammation. As showed by Rodriguez-Morgado et al. (2015) and Nicod et al. (2014) these 307 

fractions exhibited anti-inflammatory activities in microglia cells and human intestinal cells, 308 

significantly reducing the level of inflammatory cytokines in both cellular models.  309 

Additionally, different studies investigated the role of single compound extracted from grape 310 

against LPS-induced inflammatory conditions. Among these, resveratrol, a natural polyphenol 311 

present in grape, red wines and contained in various food components, exhibits pleiotropic effects, 312 

being recognised as one of the most promising natural molecules in the prevention and treatment of 313 

chronic inflammatory disease (Panaro et al., 2012). In human chondrocytes resveratrol exerted its 314 



anti-inflammatory effects through the inhibition of different inflammatory mediators, such as 315 

prostaglandin E2 (PGE2), MMP and COX-2 (Wang et al., 2011). In a cortical network created with 316 

neurons and astrocytes, resveratrol treatment counteracted LPS-induced inflammation, reducing 317 

cytokine and iNOS production, thus suggesting a therapeutic potential for this compound in 318 

neurodegenerative diseases accompanied by microglial activation (Gullo et al., 2017). Similar 319 

results were obtained in LPS-treated Caco2 and human colon adenocarcinoma cell lines: in this case 320 

resveratrol significantly attenuated several components of the intestinal cells’ response to pro-321 

inflammatory stimuli (NO production and iNOS and TLR-4 expressions), underlying its potential 322 

therapeutic effect in the treatment of inflammatory bowel diseases (Panaro et al., 2012).  323 

Finally, resveratrol prevented LPS induced uveitis (EIU)-associated cellular and molecular 324 

inflammatory responses, by inhibiting oxidative damage and redox-sensitive NF-kB activation in 325 

male mice (Kubota et al., 2009). Also in rabbit treated with LPS, resveratrol injection efficiently 326 

counteracted the development of inflammatory arthritis, through the reduction of PGE2, MMP-3, 327 

and MMP-13 expressions (Wang et al., 2011). 328 

 329 

3.9. POMEGRANATE 330 

Pomegranate (Punica granatum L.) is commercially cultivated in the Mediterranean region, the 331 

drier regions of Southeast Asia and the United States. It is a polyphenol-rich fruit with potential 332 

anti-inflammatory and antioxidant properties with antitumor, antibacterial, antifungal and antiulcer 333 

potentials (Kumar-Roiné et al., 2009; Mastrogiovanni et al., 2019). Pomegranate exerted also 334 

beneficial role in a wide range of conditions where inflammation is believed to play an essential 335 

role. For example, pomegranate peel fruit extracts reduced NO production and NF-κB and TNF-α 336 

expression in LPS treated-RAW macrophages (Kumar-Roiné et al., 2009). Polyphenols present in 337 

the fruit, in the peel or in the husk extract of pomegranate, showed also anti-inflammatory 338 

properties in RAW macrophages and in colon CCD-18Co myofibroblastic cells, in Caco-2 cells and 339 

also in ex vivo porcine colonic tissue explants, by modulating inflammatory pathways and reducing 340 



the pro-inflammatory gene transcription and protein levels (Du et al., 2019), indicating their 341 

potential use in the treatment of inflammatory colitis disease and in the prevention of intestinal 342 

chronic inflammation (Kim et al., 2017a; Hollebeeck et al., 2012; Mastrogiovanni et al., 2019; Zhao 343 

et al., 2019). Polyphenol rich pomegranate extract efficiently counteracted also the LPS-induced 344 

pancreatitis in mice, through the reduction of TLR4, total NF-κB, IL-6 and TNFα and apoptosis, 345 

with the concomitant upregulation of Nrf2 mediated pathways (Gupta et al., 2019). Interesting anti-346 

inflammatory results were also detected with punicalagin, an ellagitannin isolated from 347 

pomegranate polyphenols, abundant in the fruit husk and juice in significant quantities (Xu et al., 348 

2014; Olajide et al., 2014). In LPS-treated RAW macrophages punicalagin treatment decreased NO 349 

and pro-inflammatory cytokine productions, via the suppression of TLR4-mediated MAPKs and 350 

NF-κB activation (BenSaad et al., 2017; Xu et al., 2014; Du et al., 2019), and with a mechanism 351 

that involved the downregulation of the FoxO3a/autophagy signaling pathway (Cao et al., 2019). 352 

Similar results were obtained in cultured astrocytes and microglial cells, suggesting its potential as a 353 

nutritional preventive strategy in neurodegenerative and neuroinflammatory disorders (Kim et al., 354 

2017b; Olajide et al., 2014). In vivo models confirmed the results obtained in vitro: in LPS-treated 355 

mice punicalagin protected against different pathophysiological conditions, such as acute lung 356 

injury, memory impairment and oxidative stress perturbation in the process of spermatogenesis, 357 

suppressing NF-κB activation, preventing pro-inflammatory cytokine production and improving 358 

antioxidant defences (Peng et al., 2015; Kim et al., 2017b; Rao et al., 2016). Punicalagin also 359 

counteracted inflammation in kidney of LPS-treated rats, reducing oxidative/nitrative stress and 360 

apoptosis, attenuating the histopathological injury and ameliorating the endotoxemic acute damage 361 

(Frouad et al., 2016). 362 

 363 

3.10. BILBERRY 364 

Bilberry fruit (Vaccinium myrtillus L.) is a low-growing ericaceous dwarf sharb which belongs to 365 

the Ericaceae family and has been used in folk medicine for centuries. It has been found in Europe 366 



and north America and it is extensively studied as a source of anthocyanins and phenolic 367 

compounds, which possess protective effects on various pathophysiological conditions (Yao et al., 368 

2010; Afrin et al., 2016). Despite this, to date there are few studies which investigated the role of 369 

this berry in LPS-mediated inflammatory conditions. In murine macrophages and in human 370 

monocytic cell line, bilberry treatments efficiently decreased the expression level of different 371 

inflammatory markers and the NF-kB activation, evoked by LPS treatment (Chen et al., 2008a; 372 

Karlsen et al., 2010). Similar results were found in mice models, where Reecently it has been 373 

showed that bilberry extracts counteracted the LPS-induced liver and eye injuries in mice models, 374 

through the reduction of NO production,  and the suppression of inflammatory markers (Luo et al., 375 

2014) and the promotion of antioxidant defences (Yao et al., 2010). 376 

 377 

 378 

 379 

3.11. STRAWBERRY 380 

Strawberries (Fragaria X ananassa Duch.; family: Rosaceae) represent a remarkable source of 381 

phytochemicals (ellagic acid, anthocyanins, quercetin, and catechin), vitamins (ascorbic acid and 382 

folic acid), mineral and fibers (Afrin et al., 2016). They are produced in the Americas and, in 383 

particular, in the United States, confirming this country as the first manufacturer in the world, 384 

followed by Spain, Japan, Italy, Korea and Poland. Recent studies highlighted the potential role of 385 

strawberries on health promotion and disease prevention with particular attention to the effects 386 

against the most common diseases related to oxidative stress driven pathologies, such as cancer, 387 

cardiovascular diseases, type II diabetes, obesity and neurodegenerative diseases and inflammation 388 

(Giampieri et al., 2018; Amatori et al., 2016; Forbes-Hernandez et al., 2017). In particular 389 

strawberry extract showed protective effect against LPS-induced stress in murine macrophages 390 

(Gasparrini et al., 2017a; Liu et al., 2013; Van de Velde et al., 2019) and human dermal fibroblast 391 

cells (Gasparrini et al., 2017b; Gasparrini et al., 2018), through the reduction of ROS and NO, the 392 



inhibition of pro-inflammatiry cytokines production, the decrease of damage to lipid, protein and 393 

DNA with a concomitant improvement of antioxidant defences and mitochondria functionality, by a 394 

mechanism 5' AMP-activated protein kinase (AMPK)/NF-kB mediated. Interesting data were also 395 

collected with strawberry polysaccharides and hydrosylates: in LPS-treated macrophages, 396 

strawberry maintained health under inflammatory stress, by the inhibition of cytokines secretion 397 

(Liu et al., 2012a; Dia et al., 2014). Similar results were obtained in male Sprague-Dawley rats, 398 

where white strawberry aqueous extract reduced serum level of transaminase, alanine transaminase, 399 

aspartate transaminase, and inflammatory cytokines, also improving GSH/glutathione disulfide liver 400 

ratio, favouring the normalization of oxidative and inflammatory responses after a liver injury 401 

induced by LPS (Molinett et al., 2015). Moreover, serum from strawberry-supplemented older 402 

adults significantly attenuated NO production and iNOS, COX-2, TNF-α expressions in LPS-treated 403 

HAPI cells, suggesting that berry metabolites, present in the circulating blood following ingestion, 404 

may mediate the anti-inflammatory effects of dietary berry fruit (Rutledge et al., 2019). Finally, in 405 

ex vivo peripheral blood mononuclear cells, the production of TNF-α was increased in obese 406 

volunteers consuming strawberries, suggesting that its consumption may increase the immune 407 

response of monocytes in obese people which are at high risk for developing infections (Zunino et 408 

al., 2013). 409 

 410 

3.12. KIWI 411 

Kiwi fruit has been ranked as the second highest antioxidant fruit among commonly consumed 412 

fruits, following plums (An et al., 2016). It is native to northern China and is one of the most 413 

popular fruits in New Zealand, USA and many European countries. It is widely reported as a 414 

functional food and a nutraceutical source with some additional health-promoting properties, such 415 

as anti-allergic, anti-diabetic and anti-inflammatory effects (An et al., 2016; Deng et al., 2016). In 416 

this context kiwi extracts and its fruit seed polyphenols showed interesting activities against LPS-417 



induced inflammation in RAW macrophages, as highlighted by the reduction of ROS, NO and pro-418 

inflammatory cytokines (An et al., 2016; Deng et al., 2016). 419 

 420 

3.13. BLUEBERRY 421 

Bluberries (Vaccinium corymbosum L., family: Aricaceae) are rich in polyphenols, such as 422 

anthocyanins, flavonols, tannins and phenolic acids, which are the main responsible of their 423 

biological activities (Afrin et al., 2016). USA represents, with Canada and Poland, the largest 424 

blueberry-producing countries, and thank to its rapidly production growing, its nutritional values 425 

and benefits for human health are attracting much more interest from the international scientific 426 

communities (Afrin et al., 2016). In the detail, in the last 10 years numerous studies investigated the 427 

role of blueberry extract and its fractions against inflammatory condition mediated by LPS 428 

endotoxin. In microglia and macrophages, blueberry extract counteracted the LPS-mediated 429 

inflammatory response reducing ROS and NO production and pro-inflammatory cytokine 430 

expression, comprising a potential therapeutic tool against comorbidities associated with obesity 431 

development (Zhu et al., 2008; Reyes-Farias et al., 2015; Xie et al., 2011). Positive effects were 432 

observed in human umbilical vein endothelial cells, where blueberry treatment increased LPS-433 

compromised cell viability and phosphoinositide-specific phospholipase C enzyme expression (Lo 434 

Vasco et al., 2017). Interesting results were also obtained in the hippocampal and renal regions of 435 

rats subjected to LPS treatment: in these models blueberries supplementation improved renal 436 

glomerular filtration rate, blood flow vascular resistance and ROS and superoxide production (Nair 437 

et al., 2014), showing beneficial properties against neurodegenerative process and kidney injuries. 438 

Moreover, in LPS-stimulated splenocytes isolated from C57BL/6 mice fed with a high-fat diet with 439 

blueberry, berry supplementation reduced cytokines production, suggesting that dietary blueberry 440 

can buttress T-cell and systemic immune function against high fat diet-obesity-associated insults 441 

(Lewis et al., 2018). Taking into account the different fractions isolated from whole blueberry fruits, 442 

polyphenols and in particular anthocyanins represent the most widely investigated class of 443 



compounds. In RAW macrophages, blueberry polyphenol enriched-fractions efficiently 444 

counteracted the LPS-induced stress mainly reducing NO and inflammatory cytokines, production 445 

and lowering ROS and iNOS levels through the modulation of the NF-kB pathway (Xie et al., 2011; 446 

Carey et al., 2013; Grace et al., 2014; Cheng et al., 2014; Cheng et al., 2016; Su et al., 2017; 447 

Esposito et al., 2019). Similarly in LPS-treated HAPI cells, serum from blueberry-supplemented 448 

older adults significantly attenuated NO production and iNOS, COX-2, TNF-α expressions, 449 

suggesting that berry metabolites, present in the circulating blood following ingestion, may exert 450 

the anti-inflammatory effects of dietary berry fruit (Rutledge et al., 2019). The same results were 451 

found with blueberry anthocyanins extracts, which exerted positive effects in murine macrophages 452 

(Johnson et al., 2013; Lee et al., 2014a; Garcia-Diaz et al., 2015; Xu et al., 2016) and in bone 453 

marrow-derived macrophages prepared from bone marrows isolated from Nrf2 wild-type and Nrf2 454 

knockout mice (Lee et al., 2014a), underlying how their anti-inflammatory effects could be due to 455 

the inhibition of  nuclear translocation of NF-κB independently from the Nrf2-mediated pathways 456 

(Lee et al., 2014a). 457 

 458 

 459 

3.14. MANGOSTEEN 460 

The mangosteen (Garcinia mangostana L., family: Clusiaceae) is recognized as a medicinal plant 461 

thanks to its notable pharmacological effects. It is a tropical evergreen tree, commonly cultivated in 462 

Thailand, Malaysia, and Indonesia. Mangosteen fruit is a rich source of phenolic compounds such 463 

as condensed tannins, anthocyanin and xanthones. Traditionally, mangosteen is famous for its anti-464 

inflammatory properties and it is mainly used for skin infections and wounds treatments (Afrin et 465 

al., 2016). Most of the studies focused their attention on the effect of the principal xanthones 466 

isolated from mangosteen, in particular α, β and γ mangostin. α-mangostin represents the main 467 

constituent of the fruit hull (Franceschelli et al., 2016). It showed protective effect against LPS-468 

induced inflammation in different cellular models: in rat intestinal epithelial cells (Zou et al., 2019), 469 



murine macrophages (Chen et al., 2008b; Gutierrez-Orozco et al., 2013; Mohan et al., 2018), 470 

monocyte-derived (Gutierrez-Orozco et  al., 2013), human macrophages (Bumrungpert et al., 2010) 471 

and in bone marrow-derived dendritic cells (Herrera-Aco et al., 2019), α-mangostin exerted positive 472 

effects through the reduction of pro-inflammatory genes (iNOS, COX-2) and cytokines (IL-6, TNF-473 

α) and their mainstream pathways such as NF-kB and MAPK. Similar effects were obtained in 474 

human adipocyte, where α-mangostin attenuated LPS-mediated inflammation and insulin resistance, 475 

possibly by inhibiting the activation of MAPK, NF-kB and AP-1 (Bumrungpert et al., 2009). 476 

Finally, the same results were detected in human myeloid leukemic cell line, monocyte-like 477 

leukemia cells and colorectal adenocarcinoma cells, in which α-mangostin efficiently counteracted 478 

the inflammatory insult, suggesting its possible use in the development of alternative 479 

pharmacological strategies aimed at reducing the inflammatory process (Franceschelli et al., 2016; 480 

Liu et al., 2012b; Gutierrez-Orozco et al., 2013). Recently, Nava Catorce et al. (Nava Catorce et al., 481 

2016) and Lotter et al., (Lotter et al.,2020) showed that α-mangostin reduced brain levels of pro-482 

inflammatory IL-6,TNF-α, COX-2 and 18 kDa translocator protein in an animal model of peripheral 483 

LPS-induced neuro-inflammation, proposing this natural xanthone as an adjuvant treatment in 484 

preclinical models of Alzheimer’s disease, Parkinson disease, schizophrenia, multiple sclerosis and 485 

other disease with known shared pathology. Interesting results were also obtained with γ-mangostin, 486 

another xanthone isolated from mangosteen fruit. Finally, in LPS-treated macrophages (Chen et al., 487 

2008b; Bumrungpert et al., 2010) and adipocytes (Bumrungpert et al., 2009), γ-mangostin exhibited 488 

anti-inflammatory effects lowering the production of NO, inflammatory cytokines, PGE-2 and 489 

COX-2 and down-regulating NF-kB and MAPK signaling pathways.  490 

 491 

3.15 RASPBERRY 492 

Raspberry (Rubus sp., family: Rosaceae) has recently received much attention from both scientists 493 

and consumers for its health benefits, mainly due to the high amount of ellagic acid that it contains 494 

(Afrin et al., 2016). Various kinds of raspberries can be cultivated all around the world: in fact, it is 495 



possible to distinguish Asian, European, Australian and American raspberry, characterized also by 496 

different colorations, such as black, red and yellow ones (Wu et al., 2019). Taking into account the 497 

anti-inflammatory effect of this berry, interesting results have been obtained with different extracts 498 

of Rubus Coreanus raspberry: in LPS-treated RAW macrophages these extracts showed strong anti-499 

inflammatory effects through the suppression of NF-κB and MAPK activation (Lee et al., 2014b; 500 

Seo et al., 2019), the inhibition of inflammatory mediators such as NO, PGE2 and inflammatory 501 

cytokines productions (Seo et al., 2019) and the augment of phase II antioxidant gene expression 502 

(Kim et al., 2013a). 503 

In the last years, different studies demonstrated the efficacy of diverse raspberry fractions against 504 

LPS stress. Polyphenols, cyanidin and triterpenoid-rich fraction obtained from black raspberry (Kim 505 

et al., 2013b; Jo et al., 2015; Shin et al., 2014), red raspberries anthocyanin-rich fractions  (Li et al., 506 

2014) and different nortriterpenes isolated from raspberry roots (Chen et al., 2015) efficiently 507 

counteracted the inflammation promoted in RAW macrophages, by downregulating pro-508 

inflammatory cytokines production, NO level and suppressing the inflammatory-related pathways. 509 

Interesting results were also obtained by Garcia et al. (Garcia et al., 2017), which showed for the 510 

first time that raspberry metabolites present in the gastrointestinal bio-accessible fraction 511 

significantly inhibited microglial pro-inflammatory activation by LPS, through the inhibition of 512 

ionized calcium binding adaptor molecule 1 (Iba1) expression, TNF-α release and NO production, 513 

revealing that raspberry polyphenols may represent a dietary tool to the retardation or amelioration 514 

of neurodegenerative-related dysfunctions (Garcia et al., 2017).  515 

 516 

3.16. BLACKBERRY 517 

Blackberries (Rubus fruticosus L.) belong to the family of Rosaceae and are widely known for their 518 

high antioxidant capacity due to their content in ellagic acid, tannins, ellagitannins, quercetin, gallic 519 

acid, anthocyanins, and cyanidin (Afrin et al., 2016). Mexico represents the main producer of 520 

blackberries, even if in Europe and United States numerous cultivars have been selected for 521 



commercial cultivation. In addition to its antioxidant role, in the last decade different studies have 522 

investigated the effect of this berry against LPS-mediated inflammation. In J774 (Azofeifa et al., 523 

2013; Choe et al., 2020), bone marrow-derived (Lee et al., 2014a) and RAW LPS-treated 524 

macrophages (Cuevas-Rodriguez et al., 2010; Johnson et al., 2013; Lee et al., 2014a; Garcia-Diaz et 525 

al., 2015; Van de Velde et al., 2019b) blackberry extract and its anthocyanin- and 526 

proanthocyanidins-enriched fractions exerted their anti-inflammatory effects reducing ROS and NO 527 

level and pro-inflammaory cytokines production, at least in part, by inhibiting nuclear translocation 528 

of NF-κB and MAPK activation.  529 

 530 

3.17. CRANBERRY 531 

The cranberry (Vaccinium macrocarpon Aiton, family: Ericaceae), a traditional folk remedy 532 

commonly produced in Canada and in the north-eastern and north-central area of United States, 533 

attracted great attention over the past decade due to its phytochemical content, composed by 534 

flavonol glycosides, anthocyanins, proanthocyanidins, and organic and phenolic acids (Afrin et al., 535 

2016). Cranberry extracts and juice exerted anti-inflammatory effects in human peripheral blood 536 

mononuclear leukocytes (Huang et al., 2009), monocyte cells (Hannon et al., 2016) and murine 537 

macrophages (Van et al., 2009; Grace et al., 2014) targeting specific pathways involved in LPS- 538 

induced inflammation and reducing pro-inflammatory cytokines productions.  539 

Interesting data were also obtained with cranberry non-extractable polyphenols fraction, which 540 

decreased the expression of iNOS, increasing the expression of HO-1 (Han et al., 2019) and with 541 

phenolic and volatile extracts, that reduced NO production when applied before or after LPS 542 

stimulation in RAW macrophages (Moore et al., 2019). Similar results were also found with 543 

polyphenol fraction isolated from cranberry (Kylli et al., 2011; Grace et al., 2014), in particular with 544 

the proanthocyanidins which counteracted the LPS-induced inflammation in murine macrophages 545 

(Madrigal-Carballo et al., 2009; Carballo et al., 2017), reducing iNOS and COX-2 expression 546 

through the inhibition of NF-kB activation. In detail, A-type cranberry proanthocyanidins showed 547 



promising results as potential adjunctive therapies for treating inflammatory conditions, as 548 

highlighted by (i) the inhibition of the LPS-stimulated MMP-mediated tissue destruction in 549 

monocyte-derived macrophages (La et al., 2009), (ii) the decrease of LPS-induced secretion of the 550 

pro-inflammatory mediators IL-1β, TNF-α, IL-6 and IL-8 in monoblastic leukemia-derived 551 

macrophages (Feldman et al., 2012) and (iii) the reduction of the secretion of several cytokines in 552 

an LPS-stimulated 3D co-culture model of oral gingival epithelial cells and fibroblasts (Lombardo 553 

Bedran et al., 2015). Finally, cranberry powder enriched-diet showed beneficial effects in animal 554 

models, providing appropriate antioxidants to counteract the diminished antioxidant status and 555 

modifying serum lipids and the early inflammatory response, in rats and obese mice subjected to 556 

LPS injection (Kim et al., 2011; Kim et al., 2013c; Kim et al., 2014). 557 

 558 

3.18. BLACKCURRANT  559 

Blackcurrant fruit (Ribes nigrum L.; family: Grossulariceae) is commonly rich in phytonutrients, 560 

vitamin C and antioxidants (Afrin et al., 2016). It is native to central Europe and has been used in 561 

traditional oriental medicine for more than 1,000 years. Up to date, few investigations have taken 562 

into account the anti-inflammatory role of blackcurrant against LPS-induced stress. In LPS-treated 563 

macrophages (Desjardins et al., 2012; Menghini et al., 2014; Lee et al., 2014a) and monocytic cell 564 

lines (Lyall et al., 2009) blackcurrant extract and its anthocyanin fraction exerted anti-inflammatory 565 

effects counteracting efficiently pro-inflammatory cytokines production in a dose-dependent 566 

manner, partially by the inhibition of NF-kB activation. Similar data were obtained in mice fed with 567 

blackcurrant powder, which modulated also in vivo the NF-κB signalling, following LPS-induced 568 

stress (Balstad et al., 2010). Finally, interesting results were also highlighted in subjects fed with a 569 

blackcurrant enriched diet: in this case berry consumption reduced TNF-α and IL-6 levels in 570 

peripheral blood of subjects post-exercise, ameliorated the LPS-stimulated inflammatory response 571 

in THP-1 cells, alleviating the general oxidative stress condition (Lyall et al., 2009). 572 

 573 



3.19. BARBERRY 574 

Barberry fruit is distributed in different part of the world, in  Japan and parts of China as Berberis 575 

amurensis, in Argentina and Chile as Berberis microphylla, in Korea as Berberis koreana but the 576 

most common variety is represented by Berberis vulgaris, the European barberry (Reyes-Farias et 577 

al., 2015). In 2015 Reyes-Farias et al. (Reyes-Farias et al., 2015) showed that barberry polyphenol-578 

extract reduced NO secretion, iNOS and TNF-α expressions, concomitantly increasing IL-10 level, 579 

in LPS-induced RAW macrophages. Similarly, in murine peritoneal macrophages barberry extract 580 

strongly suppressed production of NO, ROS, iNOS, inflammatory cytokines as well as chemokines, 581 

also investigating the molecular mechanisms involved, against LPS-stimuli (Sharma et al., 2020).  582 

 583 

3.20. JAMUN BERRY 584 

Eugenia jambolana Lam. is a fruit tree mainly distributed in the tropical and subtropical regions of 585 

the world. The fruit of E. jambolana is a popular edible berry commonly known as Jamun and 586 

widely consumed in India and other parts of the world (Liu et al., 2018). In 2018, Liu et al. (Liu et 587 

al., 2018) showed the protective effects of different phenolic isolated from Jamun seeds in LPS-588 

induced RAW264.7 cell against advanced glycation endproducts activities, mainly through the 589 

reduction of ROS production, demonstrating that phenolics might play an important role in the 590 

hypoglycemia effects attributed to this edible plant. 591 

 592 

3.21. OTHER BERRY 605 

To the best of our knowledge there are no published studies which investigated the effect of 606 

cloudberry, silverberry, white current, artic brumble and rosehip on LPS-stressed in vitro and in 607 

vivo models.  608 

 609 

4. CONCLUSIONS 610 



Berry fruits possess a remarkable amount of nutritive and bioactive compounds, with flavonoids 611 

and anthocyanins the most representative ones. Numerous in vitro and in vivo studies have 612 

highlighted the efficacy of berry extracts and its single fractions or constituents against the 613 

inflammatory status evoked by the endotoxin LPS. Grape, in particular resveratrol, and blueberry 614 

represent the main investigated berry in this sense, even if the mechanisms involved in the 615 

prevention and/or treatment of stress condition are common in all the tested fruit. The inhibition of 616 

MAPK and NF-kB activation, with the consequently reduction of pro-inflammatory cytokines and 617 

NO production, represent the main pathway involved in their anti-inflammatory role, improving 618 

antioxidant defence and providing beneficial effects for the maintenance of healthy conditions in 619 

LPS-treated models. 620 

 621 
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 1260 

7. FIGURE CAPTIONS 1261 

FIGURE 1. Antioxidant and anti-inflammatory effect of berries after LPS-induced stress. 1262 

Berries attenuated the LPS-induced stress through the downregulation of different factors produced 1263 

after the stress stimulus and the upregulation of antioxidant enzymes. LPS: lipopolysaccharide; 1264 

TRL4: toll-like receptor 4; NADPH: nicotinamide adenine dinucleotide phosphate hydrogen; ROS: 1265 

reactive oxygen species; MyD88: myeloid differentiation primary response 88; IκBα: nuclear factor 1266 

of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; NF-κB: nuclear factor kappa-1267 

light-chain-enhancer of activated B cells; MAPK: mitogen-activated protein kinase; SOD: 1268 

superoxide dismutase; Erk1/2: extracellularly-regulated kinase-1 and -2; AP-1: activator protein 1; 1269 

Nrf2: nuclear factor erythroid 2–related factor 2; ARE: antioxidant response element; iNOS: 1270 

inducible nitric oxide synthase; NO: nitric oxide; COX2: cyclooxygenase 2; IL-1: interleukin 1; IL-1271 

6: interleukin 6; TNF-α: tumor necrosis factor alpha 1272 
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TABLE 1. Effects of different berries on LPS-stimulated inflammatory models: in vitro studies. 1278 

Berry Extracts/Fraction/Component 
Dosage of LPS 

induced 

Dosage of berry  and 

testing system 
Biological response Reference 

Elderberry 

Ethanolic extract and the 
isolated anthocyanins and 

procyanidins fractions 

500 ng/mL for 1h 

0.1, 1, 10 and 100 
µg/mL 

(extract) or 0.1, 1, 10, 

and 100 µM (pure 
compounds) 

In vitro: RAW 264.7 

macrophages and 
murine dendritic 

D2SC/I cells 

-↓ ROS and NO (Ho et al., 2017) 

Methanolic extracts 
0.1–10 µg/mL for 

12-24 h 

10 µg/mL for 12-24 h 
In vitro:HGF-1 and 

human U-937 

monocytes. 

-↓ IL-6 and IL-8, 

MMP-2 and MMP-9 

(Walker et al.,  

2013) 

Methanolic extract 0.5 µg/mL for 24 h 

100, 50, 25 and 12.5 
μg/mL for 24 h         

Ex vivo: macrophages 

obtained from 
BALB/c mice 

intraperitoneally 

injected with 20 mg 
LPS 

-↓ NO 
(Carneiro et al., 

2019) 

Wolfberry or Goji 

berry 

LBP 200 ng/mL for 1 h 

0, 200, 400, 600 or 

800 μg/mL for 24 h 
In vitro: BV-2 mouse 

microglial cells 

-↓ NF-κB 

-↓ caspase 3, TNF-α 

and HSP60. 

(Teng et al., 
2013) 

LBP 
5 mg/kg BW i.p. 

injection 

200, 400, 800 mg/kg 

BW for 12 h 

In vivo: Sprague-
Dawley male rats 

-↓ IL-1β, IL-6, IL-8, 

TNF-α, NF-κB, ROS 
and Keap1 in kidneys 

-↑ Nrf2, HO-1, NQO1 

in kidneys 

(Huang et al., 

2019) 

LBP 
5 mg/kg BW i.p. 

injection 

200, 400, 800 mg/kg 

BW for 6, 12, 24, 48 h 

In vivo: Sprague-
Dawley male rats 

-↓ IL-1β, IL-6, IL-8, 

TNF-α, NF-κB and 

ROS levels in serum 
-↓ NF-κB and Keap1 

in kidneys 

-↑ Nrf2, HO-1, NQO1 
in kidneys 

(Wu et al., 

2020) 

LBP 
5 mg/kg BW i.p. 

injection 

200 mg/kg BW for   

24 h 
In vivo: C57BL/6 mice 

-↓ IL-6, TNF-α, lung 

injury and pulmonary 
edema 

(Chen et al., 

2018) 

LBP 
100 ng/mL for 24 

h 

200 μg/mL for 24 h 

In vitro: human 

pulmonary 

microvascular 

endothelial cells 

-↓ apoptosis, ROS, 

NF-κB  

(Chen et al., 

2018) 

Lycium ruthenicum 

polysaccharide 
1 µg/mL for 24 h 

10-80 μg/mL for 24 h 

In vitro: RAW 264.7 

macrophage cells 

-↓ NO, TNF-α, IL-6, 

iNOS 

-↓ TLR-4/ NF-κB 

(Peng et al., 

2014) 

Lycium fruit water extract 
200 ng/mL for 48 

h 

10, 100, 500 and 1000 

μg/mL for 48 h 
In vitro: RAW 264.7 

macrophage cells 

 

-↓ NO,  TNF-α, IL-6, 

iNOS and COX-2. 
-↓p-Erk1/2, p-p38-

MAPK, p-JNK. 

-↓ IκBα, NF-κB 

(Oh et al.,2012) 

Acaiberry 

Freeze-dried açai pulp was 
fractionated using methanol, 

ethanol and acetone 

100 ng/mL 

overnight 

50 μg−10 mg/mL for 

24 h 

In vitro: BV-2 
microglial cells 

-↓ iNOS, COX-2, 
p38-MAPK, TNF-α 

and NF-κB. 

(Poulose et al., 

2012) 

Açai polyphenolics extracts 1 µg/L for 3 h 

5–20 mg gallic acid 

equivalent/L for 24 
and 48 h 

In vitro: HUVEC 

 

-↓ROS 

-↓ NF-kB 
-↓VCAM-1, ICAM-1, 

and E-selectin 

-↑ microRNA-126 

(Noratto et al., 

2011) 

Açai polyphenolics extracts 2 µg/mL for 4 h 

1–10 mg gallic acid 
equivalent/L for 24 

and 48 h 

In vitro: Colon 
myofibroblast CCD-

18Co cells 

 

-↓ROS 

-↓TNF-α, COX-2, 
TLR-4, TNF receptor-

associated factor -6, 

NF-κB, VCAM-1 and 
ICAM-1 

(Dias et al., 

2015) 

Açai extract 100 ng/mL for 6 h 
6.25-50 µg/mL for 6 h 

In vitro: rat astrocyte 

-↓ NF-kB 

-↑ Nrf2 and HO-1 

(Ajit, et al., 

2016) 

ha formattato: Tipo di carattere: Corsivo



(DI TNC1) cell line 

Emblic 

Amla fruit extract 1 µg/mL for 4 h 

3-100 mg/mL for 4 h 

In vitro: human 

umbilical vein 

endothelial cells 

HUVEC and human 
monocytic cells THP-

1 cells. 

-↓ E-selectin and 

tissue factor 
expression 

 

(Rao et al., 
2013) 

Amla fruit powder extracts 5 µg/mL for 6 h. 

0.13–2 mg/mL for 1 h 

In vitro: RAW 264.7 

macrophages 

-↓ ROS, NF-kB, 

iNOS, COX-2 

(Wang et al., 

2019) 

Dried seedless Amla fruits 1 µg/mL for 12 h 

10 µg/mL of fruit 

composition for 3 h 
In vitro: RAW 264.7 

macrophages 

-↓ ROS, TNF-α, 
iNOS, COX-2 

(Sato et al., 
2018) 

Amla fruit extract 2 mg/kg BW 

50 mg/kg BW for 4-24 
h 

In vivo: male Wistar 

rats 

-↓ TNF-α and IL-6 in 

serum 

(Rao et al., 

2013) 

Lingonberry 

Lingonberry crude extract and 

polyphenol-rich fraction 
1 µg/mL for 4 h 

50, 100 and 150 
µg/mL for 5 h 

In vitro: RAW 264.7 

macrophages 

-↓ IL-1β, IL-6, COX-

2, iNOS 
 

(Grace et al., 

2014) 

Lingonberry polyphenol-rich 

fraction (LE), anthocyanin-rich 
fraction (ANC), 

proanthocyanidin-rich fraction 

(PNC) 

50 µg/mL for 24 h 

50 mg for 24 h (LE) 

24-80 mg for 24 h 

(ANC) 
163 mg for 24 h 

(PNC) 

In vitro: RAW 264.7 
macrophages 

-↓ ROS, NO, COX-2, 
iNOS 

 

(Esposito et al., 

2019) 

Lingonberry phenolic extract 10 ng/mL for 24 h 

30 and 100 µg/mL for 

24 h 

In vitro: J774 
macrophages 

-↓ NO, TNF-α, IL-1β, 

IL-6 

(Kylli et al., 

2011) 

Lingonberry extract 

1 µg/mL for 24-48 
h (prevention) 

1 µg/mL for 3 h 

(reversal) 

10-100 µg/mL for  

3 h (prevention) 
24-48 h (reversal) 

Ex vivo: Primary 

astrocytic cultures 
from Wistar rats 

-↓ ROS, NO and 

acetylcholinesterase 

activity 
-↑ viability, thiol 

content and SOD 

(Pacheco et al., 

2018) 

Chokeberry 

Black chokeberry ethanolic 

extract 

500 ng/mL for 48 

h 

30 μg/mL-1mg/mL 

In vitro: BV2 cells 

-↓ NO, iNOS, COX-2, 

IL-1β , TNF-α 

(Lee et al., 

2018) 

Black chokeberry ethanolic 

extract 
250 μg/kg 

50 mg/kg/day for 7 
days 

In vivo: male ICR 

mice received 
a single intraperitoneal 

injection of LPS 

-↓ iNOS, COX-2, 

TNF-α 

(Lee et al., 

2018) 

Polyphenol-rich chokeberry 

juice concentrate 
10 ng/mL for 24 h. 

0.01-0.5% for 30 min 
In vitro: human 

primary monocytes 

isolated from 
peripheral blood 

-↓ TNF-α IL-6, IL-8 

 

(Appel et al., 

2015) 

Polyphenol-rich chokeberry 
juice concentrate 

1 µg/mL for 6 h 
 

0.01-0.5% for 30 min 

In vitro: RAW 264.7 

macrophages 

-↓ NF-κB 
 

(Appel et al., 
2015) 

Seabuckthorn Seabuckthorn berries paste 10 mg/kg BW. 

200, 400 and 800 
mg/kg BW for 7 days 

In vivo: male SPF KM 

mice 

-↓ body weight loss, 

lung tissue, 

microstructure 
lesions, transvascular 

leakage increase, 

malondialdehyde 
augmentation 

-↑ SOD, GPx, Nrf2 

(Du et al., 2017) 

Grape 

GSPE 1 µg/mL for 24 h 

35 µg/mL for 24 h 

In vitro: RAW 264.7 

macrophages 

-↓ ROS, NO, iNOS, 
PGE2, COX-2, TNF-

α, IL-1β, p-p65, p-

pIkBα, p-AKT, p-p38 
p-JNK, p-ERK 

(Bak et al., 
2013) 

GSPE 

 
0.4 µg/mL for 24 h 

12.5-50 µg/mL for 24 

h. 

In vitro: RAW264.7 
macrophages 

-↓ NO production; 
(Perez et al., 

2015) 

GSPE 1 µg/mL for 8 h 

25 μg/mL for 16 h 

In vitro: RAW264.7 
macrophages and 

-↓ TLR-4 activation. 
(Kim et al., 

2016) 



fibroblast-like 

synoviocytes 

GSPE 
1 µg/mL for 30 

min or 24 h 

0-40 µg/mL for 90 

min or 24 h. 
In vitro: rat hepatic 

stellate cell line HSC-

T6 

-↓ AKT, ERK and 

JNK phosphorylation 

-↓ NF-kB 

translocation 
from cytosol to 

nuclear 

(Jiang et al., 

2017) 

GSPE 
1 µg/mL for 30 

min 

0-40 µM for 6 h or 24 

h 

In vitro: human 

ovarian cancer cells 
A2780 and its 

multidrug resistant 

subline A2780/T 

-↓AKT/NF-kB 

pathway 
-↓MAPK/ERK 

pathway 

(Zhao et al., 
2013) 

GSPE 7 mg/kg BW 

50, 75, 100 and 200 

mg/kg/day BW for 15 

days 
In vivo: Wistar female 

rats 

-↓ NO level in the 

plasma, red blood 

cells, spleen, and 

liver; 
-↓ TNF-α and IL-10 in 

plasma; 

-↓ hepatic level of IL-
6, iNOS, glutathione 

disulfide/total 

glutathione 

(Pallares et al., 

2013) 

GSPE 
0.3 mg/kg BW for 

5 days 

75and 375 mg/kg BW 
for 15 days 

In vivo: male Wistar 

rats 

-↓ TNF-α in plasma 

-↓ MPO, COX-2, 

ROS in the small and 
large intestinal 

sections 

(Gil-Cardoso et 

al., 2019) 

GPCE 5 μg/mL for 4 h 

50 μg/mL for 4 h 

In vitro: BV2 
microglia cells 

-↓ NF-κB cytokines, 

chemokines 

(Pistol et al., 

2018) 

GSE 
1 µg/mL for 150-

180 min. 

0-24 µg/mL 

In vitro: human 

peripheral blood 
mononuclear cells 

-↓LPS-stimulated 

tissue factor synthesis 

-↓ tissue factor-

dependent fibrin 

formation 

(Milella et al., 

2012) 

Red and white GE 10 µg/kg BW 

100-500 mg/kg BW 

for 24 h 

In vivo: 

Sprague−Dawley rats 

-↓ NF-κB, iNOS, 

COX-2 in liver 

(Nishiumi et al., 

2012) 

GE 3-15 mg/kg BW 

0, 100, or 300 

mg/kg/day BW for 3 

weeks 
In vivo: 

Sprague−Dawley rats 

-↓ phospholipases A2 
activity in serum; 

- ↑ hematocrit in 

serum 

(Tsao et al., 

2012) 

GPE 
100 ng/ml for 30 

min-3 h 

10, 30 and 100 mg/mL 

for 1 h 

In vitro: human 

macrophages 

 

-↓ TNF-α, IL-6 and 
IL-1β; interferon 

gamma-induced 

protein 10; COX-2; 

-↓ MAPKs, NF-kB 

and AP-1; 

-↓ inflame adipocytes, 

cause insulin 

resistance 

(Overman et al., 

2010) 

GPE 

0.5 mg/kg BW one 

i.p. injection or 

0.25 mg/kg BW 
for 1 week 

4% of diet for 4 weeks 

In vivo: mice 

-↓ NF-κB in whole 

body and 

abdominal/peritoneal 

regions of interest 

-↓ TNF-α, IL-6 serum 

(Miller et al., 

2018) 

GPE 
10 µg/L for 24, 48 

and 72 h 

46 g two times a day, 

for 3 weeks 

Ex vivo: monocyte 

populations in the 

peripheral blood 

mononuclear cells 

obtained from blood 

samples of healthy 

obese male and female 
volunteer 

-↑ IL-1β, IL-6 
(Zunino et al., 

2014) 

Grape polyphenol enzymatic 

extract 

0.01 µg/mL for 1, 

4 and 6 h 

0, 1, 5 and 10 μg/mL 

for 1, 4 and 6 h 

In vitro: N13 

microglia cells 

-↓ iNOS, TNF-α, IL-

1β, ionized calcium-

binding adapter 

molecule 1 and TLR-4 

(Rodriguez-

Morgado et al., 

2015) 

Polyphenolic extracts from red 10 µg/mL for 2 h 50 μM for 4 h -↓ IL-6 (Nicod et al., 
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wine In vitro: Caco-2 cell 2014) 

Resveratrol 1 µg/mL for 18 h 

10 µM for 18 h 

In vitro: human 

chondrocytes 

-↓ PGE2, MMP-3, 

MMP-13, COX-2 

(Wang et al., 

2011) 

Resveratrol 3 µg/mL for 6-12 h 

200 nM for 6-12 h 

Ex vivo: cortical 

networks of neurons, 

astrocytes and 

microglia 

-↓ TNF-α 
(Gullo et al., 

2017) 

Resveratrol 1 µg/mL for 48 h 

30, 40 and 50 mM for 
1 h 

In vitro: Caco-2 and 

human colon 
adenocarcinoma cell 

-↓ NO, iNOS, TLR-4; 

-↓ IkBα degradation 

 

(Panaro et al., 
2012) 

Resveratrol 9 mg/kg BW 

5, 50, 100, or 200 

mg/kg BW at day, for 

5 days 

In vivo: C57BL/6 mice 

-↓ leukocyte adhesion 

to retinal vessels of 
EIU mice; 

-↓ MCP-1 and ICAM-

1 in the retina 

-↓ retinal 8-Oxo-2'-

deoxyguanosine, NF-

kB translocation 

(Kubota et al., 

2009) 

Resveratrol 
10 ng in 100 μL 

PBS 

10 mg/ kg BW, once 
every 2 days, for 6 

days 

In vivo:  New Zealand 

white rabbits 

-↓ inflammatory 

arthritis, PGE2, 

MMP-3, MMP-13 

(Wang et al., 
2011) 

Pomegranate 

Pomegranate fruit extract 10 µg/mL for 24 h 

0.0025, 0.025, 0.25 

and 2.5 g/l for 24 h 
In vitro: RAW 264.7 

macrophages 

-↓ NO production 
(Kumar-Roiné 

et al., 2009) 

Pomegranate peel 
polyphenolics extract 

1 µg/mL for 20 
min or 24 h 

0-100 µg/mL for 1 h 

In vitro: RAW 264.7 

macrophages 

-↓ ROS, TLR-4, 

MAPKs, NF-κB 
-↓ NO, PGE2, IL-1β, 

IL-6, TNF-α 

(Du et al., 2019) 

Pomegranate polyphenolics 

extract 
1 µg/mL for 4-24 h 

5-10 mg/L for 4-24 h 
In vitro: Human colon 

CCD-18Co 

myofibroblastic cells 

 
-↓ ribosomal protein 

S6 kinase beta-1, 

hypoxia-inducible 
factor 1-alpha 

-↑ miR-145 

 

(Kim et al., 

2017b) 

Pomegranate fruit husk 
polyphenolic extract 

1 mg/L for 24 h 

0.02-0.5 mg/mL  

for 1 h 

In vitro: Caco-2 cells 

-↓ IL-6, IL-8, MCP-1 
(Hollebeeck et 

al., 2012) 

Pomegranate peel extract 10 mg/L for 3 h 
0-25 µg/mL for 3 h 

Ex vivo: porcine 

colonic tissue explants 

-↓ CXCL8, IL-1A,  

IL-6 

(Mastrogiovanni 

et al., 2019) 

Pomegranate peel 

polyphenolics extract 
100 µg/mL 24 h 

0-100 µg/mL for 24 h 

In vitro: Caco-2 cells 

-↑ tight junction 
protein expression 

level 

(Zhao et al., 

2019) 

Polyphenol rich pomegranate 

extract 

100 μg/kg BW i.p. 

injection, twice 

weekly, for 4 
weeks 

0.2 ml of 0.2% POMx 

via oral gavage (daily) 
for 4 weeks 

In vivo. male swiss 

albino mice 

-↓ ROS, TLR-4,  NF-

κB, IL-6, TNF-α, 
BAX 

-↑ Nrf2, Bcl-2, heme-

oxygenase-1 

(Gupta et al., 

2019) 

Punicalagin 1 µg/mL for 24 h 

50, 100, 150, 200 

μg/mL for 2 h 

In vitro: RAW 264.7 
macrophages 

-↓ NO, PGE2, IL-6 
(BenSaad et al., 

2017) 

Punicalagin 1 µg/mL for 24 h 

25, 50, or 100 μM for 

1 h 

In vitro: RAW 264.7 

macrophages 

-↓ TLR-4, MAPKs,  

NF-κB 

-↓ NO, PGE2, IL-1β, 

IL-6, TNF-α 

(Xu et al., 2014) 

Punicalagin 
1 µg/mL for 20 

min or 24 h 

0-50 µg/mL for 1 h 

In vitro: RAW 264.7 

macrophages 

-↓ ROS, TLR-4, 

MAPKs, NF-κB 
-↓ NO, PGE2, IL-1β, 

IL-6, TNF-α 

(Du et al., 2019) 

Punicalagin 
1 µg/mL for 30 

min or 24 h 

0-50 µM for 1 h 

In vitro: RAW 264.7 

macrophages 

-↓ NO, IL-6, TNF-α, 

MAPKs, NF-κB, 

FoxO3a 

(Cao et al., 

2019) 

Punicalagin 1 µg/mL for 24 h 

10, 20, 50 µM for 24 h 

In vitro: Primary 

astrocyte and 
microglial BV-2 cell 

-↓ NF-kB, iNOS, 

COX-2, ROS, NO, 
TNF-α, IL-1β 

-↓ amyloid beta1-42 

generation 

(Kim et al., 

2017) 



-↓ amyloid precursor 

protein, beta-secretase 

1 

Punicalagin 10 ng/mL for 24 h 

5–40 µM for 24 h 

In vitro: Rat primary 

mixed glial cell 
cultures  

-↓ NF-κB, IL-6, TNF-

α, PGE2 

(Olajide et al., 

2014). 

Punicalagin 
20 mg/kg BW for 

7 h 

12.5, 25, 50 mg/kg 

BW for 1 h 

In vivo: Male BALB/c 

mice 

-↓ NF-kB, TLR-4, 

TNF-α, IL-6, IL-1β, 

myeloperoxidase in 

lung 

(Peng et al., 

2015) 

Punicalagin 
250 µg/kg 7 times 

a day, for 1 week 

1.5 mg/kg BW at day 

for 4 weeks 
In vivo: Male 

imprinting control 

region mice 

-↓ memory 

impairment 
-↓ NF-kB in brain 

-↓ amyloid beta1-42 

generation in brain 

-↓ amyloid precursor 

protein, beta-secretase 

1 in brain 

(Kim et al., 

2017) 

Punicalagin 
600 µg/kg BW at 

day, for 7 days 

9 mg/kg BW at day, 

for 7 days 

In vivo: Male ICR 

mice 

-↑ Nrf2, GSH, SOD, 
catalase in testes 

-↑ fertility indices 

(Rao et al., 

2016) 

Punicalagin 5 mg/kg BW 
50 mg/kg BW, for 2 h 

In vivo: Rats 

-↓ serum creatinine 

and neutrophil 

gelatinase-associated 

lipocalin 

-↓ IL-18, TNF-α, IL-

6, MDA, NO, 
Bax/Bcl2 ratio, iNOS, 

caspase 3, caspase 8 

and caspase 9 in 
kidneys 

-↓ histopathological 

injury and molecule-1 
expression in kidneys. 

(Fouad et al., 

2016) 

Bilberry 

Bilberry extracts 40 ng/mL for 6 h. 
75 µg/mL for 30 min 
In vitro: RAW 264.7 

macrophages 

-↓ TNF-α, IL-1β, IL-

6, COX-2, 
prostaglandin-

endoperoxide 

synthase, tenascin C, 
CCL22, interferon 

gamma inducible 

protein 11 and 47 

(Chen et al., 

2008a) 

Bilberry polyphenols 1 µg/mL for 6 h 

1-50 µg/mL for 30 

min 

In vitro: human 
monocytic cell line 

-↓ NF-κB 
(Karlsen et al., 

2010) 

Bilberry extract 

1 mg/kg BW on 

the 2nd and 7th day 

of bilberry 
treatment 

50, 100, 20 mg/kg at 
day for 7 days 

In vivo: Mice 

-↓ plasma alanine 

transaminase, 

aspartate 
transaminase; 

-↓ liver NOS, TNF-α, 

IL-1β, IL-6, NF-κB, 
MDA, NO 

(Luo et al., 

2014) 

Bilberry extract  100 mg for 24 h 

50, 100, 200 mg/kg 

BW at day for 5 days 
In vivo: Male BALB/C 

mice 

-↓ eye NO, MDA 

-↑ eye ORAC, GSH, 

SOD, vitamin c, GPx 

(Yao et al., 
2010) 

Strawberry Strawberry extract 1 µg/mL for 24 h 
100 µg/mL for 24 h 
In vitro: RAW 264.7 

macrophages 

-↓ NF-kB, pIkBα, 

iNOS, TNF-α, IL-1β, 
IL-6, IL-10; 

-↓ ROS, NO; 

-↓protein carbonyl, 

thiobarbituric acid-

reactive substances, 8-
oxoguanine 

glycosylase level; 

-↑ Nrf2, GPx, 
glutathione reductase, 

glutathione trasferase, 

SOD, catalase, heme 
oxygenase-1, GSH; 

-↑ p-AMPK, sirtuin-1, 

peroxisome 
proliferator-activated 

receptor c coactivator 

(Gasparrini et 

al., 2017) 
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1 alpha; 

-↑ mitochondria 

functionality 

Strawberry phenolic-rich 

extract 
5 µg/mL for 48 h 

0, 250, 500, 1000 

µg/mL for 48 h 

In vitro: Mouse 
primary peritoneal 

macrophages 

-↓ TNF-α, IL-1β, IL-

2, IL-4,  IL-6, IL-12, 
IL-10, interferon-γ; 

(Liu et al., 

2013) 

Strawberry crude extract, 

anthocyanin-enriched 

fractions, proanthocyanidin-

enriched fractions 

1 μg/mL for 24 

50 μg/mL for 24 h 

In vitro: RAW 264.7 

mcrophages 

-↓ ROS, NO, iNOS, 

COX-2, IL-1β, IL-6 

(Van de Velde 

et al., 2019b) 

Strawberry extract 10 µg/mL for 24 h 

50, 100, 1000 µg/mL 

for 24 h 

In vitro: Human 

Dermal Fibroblast 

-↑ cell viability; 
-↓ ROS, NO; 

-↑ GSH; 

-↓protein carbonyl, 

thiobarbituric acid-

reactive substances, 8-

oxoguanine 
glycosylase 

(Gasparrini et 

al., 2017b) 

Strawberry extract 10 µg/mL for 24 h 

50 µg/mL for 24 h 

In vitro: Human 

Dermal Fibroblast 

-↑ GPx, GR, GST, 

SOD, catalase; 

-↓ ROS, apoptosis, 

NF-kB, iNOS, TNF-α, 

IL-1β, IL-6, 
hemeoxygenase-1 

-↑ p-AMPK, sirtuin-1, 

peroxisome 
proliferator-activated 

receptor c coactivator 

1 alpha; 
-↑ mitochondria 

functionality 

(Gasparrini et 
al., 2018) 

Strawberry polysaccharides 5 µg/mL for 48 h 

0, 250, 500, 1000 

µg/mL for 48 h 
In vitro: Mouse 

primary peritoneal 

macrophages 

-↓ TNF-α, IL-1β, IL-
6, IL-12, IL-10; 

-↓ Bcl-2, Bak 

(Liu et al., 

2012) 

Strawberry-banana soymilk 

hydrosylates 
1 µg/mL for 24 h 

400 lg hydrolysates/ml 

for 48 h 

In vitro: RAW 264.7 
macrophages 

-↓ NO, TNF-α, IL-1β, 

iNOS, COX-2 

(Dia et al., 

2014) 

Chilean white strawberry 
aqueous extract 

5 mg/kg BW for 3 
h 

4 g/kg BW at day for 

10 days 
In vivo: Male Sprague-

Dawley rats 

-↓ serum 

transaminase, alanine 
transaminase, 

aspartate 

transaminase; 
-↓ serum TNF-α, IL-

1β, IL-6, IL-10; 

-↑ liver 
GSH/glutathione 

disulfide  ratio 

(Molinett et al., 
2015) 

Strawberry serum metabolites 
100 ng/mL for 16 

h 

10% 

serum for 8 h from 
individual subjects fed 

with 24 g/day pf 

blueberry for 90 days. 
In vitro: HAPI rat 

microglial cells 

-↓ NO, iNOS, COX-2, 
TNF-α 

(Rutledge et al., 
2019) 

Freeze-dried strawberry powder 
10 µg/L for 24, 48, 

72 h 

Four servings of 
frozen strawberries 

per day for 3 weeks 

Ex vivo: peripheral 
blood mononuclear 

cells 

-↑ TNF-α 
(Zunino et al., 

2015) 

Kiwi 

Kiwi extracts 
100 ng/mL for 24 

h 

0, 50, 100, and 500 
μg/mL for 24 h 

In vitro: RAW 264.7 

macrophages 

-↓ IL-6, TNF-α, NO (An et al., 2016) 

Kiwi fruit seed polyphenols 1 µg/mL for 1 h 

0, 20, 40, 60 µg/mL 
for 12 h 

In vitro: RAW 264.7 

macrophages 

-↓ IL-1β, TNF-α 
(Deng et al., 

2016) 

Blueberry Blueberry extract 50 ng/mL for 2 h 

50 µg/mL for 1 h 

In vitro: Primary 

mouse microglia 

-↓ TNF-α, IL-6, 

amyloid beta 

aggregation 

(Zhu et al., 
2008) 



Blueberry extract 5 µg/mL for 24 h 

100 µM for 24 h 

In vitro: RAW 264.7 

macrophages 

-↓ NO, iNOS, IL-10, 
TNF-α 

(Reyes-Farias et 
al., 2015) 

Blueberry extract 
100 ng/mL for 16 

h 

1% of diet for 5 weeks 

Ex vivo: 

thioglycollate-elicited 
peritoneal 

macrophages from 

apoE-/- mice 

-↓ TNF-α, IL-6 
(Xie et al., 

2011) 

Blueberry extract 
100 ng/mL for 3, 

6, 24 h 

50 µM for 3, 6, 24 h 

In vitro: human 

umbilical vein 
endothelial cells 

-↑ cell viability, 

phosphoinositide-

specific phospholipase 
C enzyme expression 

(Lo Vasco et al., 

2017) 

Blueberry powder 
10 mg/kg BW, for 

6 h 

2 % of diet, for 2 days, 

once at days 

In vivo: Sprague-

Dawley rats 

-↑ glomerular 

filtration rate, renal 

blood flow in kidney; 

-↓ renal vascular 

resistance, ROS, 

superoxide, TLR4, 
TNF-α, kidney injury 

molecule-1  

(Nair et al., 

2014) 

Freeze-dried whole blueberry 
powder 

1 µg/mL for 24 - 
48 h 

4 % of diet/day, for 8-

12 weeks 

Ex vivo: splenocytes 

isolated from 
C57BL/6 mice 

-↓ IL-1β, IL-6, TNF-α 
(Lewis et al., 

2018) 

Blueberry extract or its 

components (pterostilbene, 
resveratrol, delphinidin-3-O-

glucoside, or malvidin-3-O-

glucoside) 

100 ng/mL 

overnight 

Blueberry extract (0, 

0.25, 0.50, 1.0, 2.0 

mg/mL) or del-3-gluc, 
mal-3-gluc, 

pterostilbene, or 

resveratrol (0, 1, 10, 
20, and 30 μM), for 1 

h 

In vitro: BV-2 murine 
microglial cells 

-↓ NO, iNOS, COX-2, 

TNF-α 

(Carey et al., 

2013) 

Blueberry crude extracts and 
polyphenol-rich fractions 

1 µg/mL for 4 h 

50, 100, 150 μg/mL 

for 1 h 
In vitro: RAW 264.7 

macrophages 

-↓ iNOS, IL-1β, 
COX-2, IL-6 

(Grace et al., 
2014) 

Extractable polyphenols and 
non-extractable polyphenols 

from blueberries 

1 µg/mL for 24 h 

10, 100, 200, 400 

μg/mL for 48 h 

or 

100 μg/mL for 6-72 h 
In vitro: RAW 264.7 

macrophages 

-↓ iNOS, NO, COX-2, 

NF-kB  

(Cheng et al., 

2015) 

Blueberry polyphenol enriched 

extracts, obtained from serum 

of rats fed with blueberry-

enriched diet 

100 ng/mL for 16 

h 

10% of diet for 6 

weeks 

In vitro: RAW 264.7 

macrophages 

-↓ TNF-α, IL-6, NF-

kB (p-NFκBp65; p-

IκBα), MAPK (p-p38 

p-JNK p-Erk1/2) 

(Xie et al., 

2011) 

Blueberry polyphenol-enriched 

fractions 

100 ng/mL for 18 

h 

Different amount of 

phenolic acid (from 

5.4 to 21.8 mg) / 100 g 

fresh blueberry 

equivalent 

In vitro: RAW 264.7 

macrophages 

-↓ TNF-α, IL-6; 

-↓ miR-21, miR-125b, 

miR-146a 

(Su et al., 2017) 

Blueberry polyphenols 1 µg/mL for 24 h 

10, 100, 200, 400 

µg/mL for 48 h 

or 100 µg/mL for 6-72 

h 
In vitro: RAW 264.7 

macrophages 

-↓ IL-1β, IL-6,  

IL-12p35 

(Cheng et al., 

2014) 

Blueberry polyphenol-rich 

fraction (BE), anthocyanin-rih 

fraction (ANC), 

proanthocyanidin-rich fraction 

(PNC) 

50 µg/mL for 24 h 

50 mg for 24 h (LE) 

50-120 mg for 24 h 

(ANC) 

128 mg for 24 h 

(PNC) 

In vitro: RAW 264.7 

macrophages 

-↓ ROS, NO, COX-2, 

iNOS 

 

(Esposito et al., 

2019) 

Blueberry serum metabolites 
100 ng/mL for 16 

h 

10% 

serum for 8 h from 

individual subjects fed 

with 24 g/day pf 

blueberry for 90 days. 

In vitro: HAPI rat 

-↓ NO, iNOS, COX-2, 

TNF-α 

(Rutledge et al., 

2019) 



microglial cells 

Blueberry anthocyanin extracts 1 µg/mL for 24 h 

400, 800, 1200, 1600 

µg/mL for 24 h 

In vitro: RAW 264.7 
macrophages 

-↑ cell viability; 

-↓ NO, PGE2, IL-6, 

IL-1β, interferon-γ, 

COX-2, TNF-α, 

MCP-1, NF-kB 

(Xu et al., 2016) 

Anthocyanin fraction 
100 ng/mL for 3-

24 h 

0-20 µg/mL for 12 h 

In vitro: RAW 264.7 

macrophages 

-↓ TNF-α, NF-kB,  

IL-1β 

(Lee et al., 

2014a) 

Anthocyanin-enriched fractions 

from blueberry beverages 
1 µg/mL for 24 h 

100 µM C3G for 24 h 
In vitro: RAW 264.7 

macrophages 

-↓ NO, TNF-α, NF-kB 
(Garcia-Diaz et 

al., 2015) 

Anthocyanins and 

proanthocyanidins from 

fermented blueberry beverages 

1 µg/mL for 24 h 

25, 50, or 100 µM 
C3G (for 

anthocyanins) or with 

epicatechin (for 
proanthocyanidins) 

equivalents for 24 h 

In vitro: RAW 264.7 

macrophages 

-↓ NO, iNOS, COX-2, 
NF-kB 

(Johnson et al., 
2013) 

Anthocyanin fraction 100 ng/mL for 3 h 

20 µg/mL for 12 h 

In vitro: Bone 

marrow-derived 
macrophages prepared 

from bone marrows 

isolated from Nrf2 

wild-type and Nrf2 

knockout mice 

-↓ ROS, IL-1β 
(Lee et al., 

2014a) 

Mangosteen 

α-mangostin, γ-mangostin 
500 ng/mL for 18 

h 

3-25 µM for 18 h 
In vitro: RAW 264.7 

macrophages 

-↓ NO, iNOS, COX-2, 

PGE2 

(Chen et al., 

2008b) 

α-mangostin 10 μg/ml for 24 h 

2.5-10 μM for 1 h 

In vitro: IEC-6, rat 
intestinal epithelial 

cells 

-↓ apoptosis, NO, 

PGE2, IL-6, TNF-α, 

IL-1β, TLR4, NF-kB 

(Zou et al., 
2019) 

α-mangostin 5 ng/mL for 16 h 
10 µM for 2 h 

In vitro: RAW 264.7 

macrophages 

-↓ NO 
(Gutierrez-

Orozco et al., 

2013) 

α-mangostin 

10 ng/mL, 1-10 

µg/mL for 30 min, 

4-20 h  

0-14 µg/mL for 30 
min, 4-20 h 

In vitro: RAW 264.7 

macrophages 

-↓ NO, iNOS, NF-kB,  

TNF-α, IL-6, PGE2 

(Mohan et al., 

2018) 

α-mangostin 
100 ng/mL for 10 

h 

4.5 µM for 4 h 
In vitro: monocyte-

derived macrophages 

-↓ TNF-α 
(Gutierrez-

Orozco et al., 

2013) 

α-mangostin, γ-mangostin 
100 µg/mL for 30 

min or 3 h 

3, 10, or 30 µmol/L 

for 2 h 
In vitro: human 

macrophages 

-↓ IL-6, TNF-α, 
interferon gamma-

induced protein 10, p-

MEK, p-JNK, p-ERK, 
p-p38, NF-kB 

(Bumrungpert et 
al., 2010) 

α-mangostin, γ-mangostin 
10 µg/L for 3 or 8 

h 

3 µmol/L for 24 h 
In vitro: human 

adipocytes 

-↓ IL-1β, IL-6, IL-8, 

TNF-α, MCP-1, TLR-

2; 
-↓ p-JNK, p-ERK, p-

p38, NF-Kb, p-c-Jun, 

IκBα, NF-kB; 
-↑ glucose uptake,  

peroxisome 

proliferator-activated 
receptor gamma, AP-1 

(Bumrungpert et 

al., 2009) 

α-mangostin 
100 ng/mL for 4-

24 h 

0-10 μg/mL for 4-24 h 

Ex vivo: Murine bone 
marrow-derived 

dendritic cells 

generated from the 
bone marrow cells of 

the tibia and femur of 

7 to 8 week old male 
BALB/c mice fed with 

α-mangostin  

-↓ INF-γ, IL-12, TNF-

α, IL-6 

-↑ IL-10 

(Herrera-Aco et 
al., 2019) 

α-mangostin 10 µg/mL for 24 h 

1, 5, 10, 50, and 100 
µM for 24 h 

In vitro: U937cells 

and monocytes from 
peripheral blood 

mononuclear cells 

-↓ NO, iNOS, NF-kB, 

sirtuin-1, COX-2, 

PGE2 

(Franceschelli et 

al., 2016) 
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α-mangostin 0.1 ng/mL for 4 h 

6, 12 nM for 4 h 

In vitro: human 
myeloid leukemic cell 

line U937 

-↓ TNF-α, IL-4, p-

ERK, p-JNK, p-p38, 

p-EIK1, p-MAPK 
kinase 3/MAPK 

kinase 6, p- signal 

transducers and 
activators of 

transcription-1, p-c-

Fos, p-c-Jun 

(Liu et al., 
2012c). 

α-mangostin 0.1 ng/mL for 4 h 

10 µM for 4 h 

In vitro: THP-1 

monocyte-like 
leukemia 

-↓ IL-8 
(Gutierrez-

Orozco et al., 

2013) 

α-mangostin 
100 ng/mL for 16 

h 

10 µM for 1 h 

In vitro: HT-29 
colorectal 

adenocarcinoma cells 

-↓ IL-8 

(Gutierrez-

Orozco et al., 

2013) 

α-mangostin 
2 mg/kg BW, 3 

daily injections at 

24 h-intervals 

40 mg/kg BW, at day 

for 14 days 

In vivo: female 
C57BL/6J mice 

-↓ brain IL-6, COX-2, 

translocator protein, 
ionized calcium-

binding adapter 

molecule 1 

(Nava Catorce 

et al., 2016). 

α-mangostin and ground 
dried pericarp Garcinia 

mangostana Linn 

100 μg/kg BW 
administered 

subcutaneously 

20 mg/kg or 50 mg/kg 

BW for 15 days 

In vivo: Sprague–
Dawley rats 

-↓ TNF-α, IL-6, 
depressive 

behavuiours 

(Lotter et al., 

2019) 

Raspberry 

Different raspberry extracts 
1 µg/mL for 20 

min, 4 h or 18 h 

400 μg/mL for 24 h 

In vitro: RAW 264.7 
macrophages 

-↓ NO, iNOS, PGE2, 

COX-2, IL-1β, IL-6, 

TNF-α 
-↓ NF-kB, p-p38, p-

JNK, p-ERK 

(Lee et al., 

2014b) 

Different raspberry extracts 1 µg/mL for 18 h 

25-400 μg/mL for 1 h 

In vitro: RAW 264.7 

macrophages 

-↓ NO, iNOS, COX-2, 

IL-1β, IL-6, TNF-α,p-

IkB-α 

(Sao et al., 

2019) 

Unripe raspberry fruit aqueous 

extract 

100 ng/mL for 30 

min or 14 h  

250-500 μg/mL for 4 

h 

In vitro: RAW 264.7 

macrophages 

-↓ NO and ROS 

production 
-↓ NF-kB IL-1β,  

TNF-α, iNOS 

-↑ phase II antioxidant 

gene expression 

(heme oxygenase-1, 

glutamate cysteine 

ligase, and 

peroxiredoxin-1)  

(Kim et al., 

2013b) 

Polyphenols from unripe fruit 

of black raspberry 
0.1 µg/mL for 24 h 

0-100 μg/mL for 24 h 
In vitro: RAW 264.7 

macrophages 

-↓ NO, PGE2, IL-1β, 
IL-6, IL-10, TNF-α, 

iNOS, COX-2 

(Kim et al., 

2013a) 

Triterpenoid-rich fraction from 
black raspberry 

1 µg/mL for 24 h 

25, 50, 100 μg/mL for 

1 h 
In vitro: RAW 264.7 

macrophages 

-↓ NO, PGE2, IL-1β, 
IL-6, TNF-α, iNOS, 

COX-2 

-↓ NF-kB, pIkBα,  

p-p38, p-JNK, p-ERK 

(Shin et al., 
2014) 

Different black raspberry 

fractions 

100 ng/mL for 15 

h 

100, 300, 500 μg/mL 

for 15 h 

In vitro: RAW 264.7 
macrophages 

-↓ IL-6, IL-1β, TNF-

α, iNOS, COX-2 

-↓ p-STAT3, p-p38, 
p-JNK, p-ERK 

(Jo et al., 2015) 

Red raspberries anthocyanin-
rich fractions 

1.5 µg/mL for 1-24 
h 

0-200 µg/mL for 12-

24 h 
In vitro: RAW 264.7 

macrophages 

-↓ NO, iNOS, COX-2, 

IL-1β , IL-6; 
-↓ NF-kB, AP-1, 

IkBα, p65, JNK. 

(Li et al., 2014) 

Different nortriterpenes isolated 

from raspberry roots 
1 µg/mL for 24 h 

4 and 20 µM for 24 h 

In vitro: RAW 264.7 
macrophages 

-↓ TNF-α, IL-6, IL-1β 

production 

(Chen et al., 

2015) 

Gastrointestinal bioaccessible 

fraction of raspberry 

300 ng/mL for 2, 

4, 6, 24 h 

1.25 μg of gallic acid 

equivalents/mL for 2, 
4, 6, 24 h 

In vitro: N9 microglial 

cells 

-↓ cell death,  

-↓ Iba1 and TNF-α 

expression and NO 

production 

(Garcia et al., 

2017) 

Blackberry 

Blackberry extract 
10 ng/mL for 10 or 

24 h 

12.5-25-50-100 

µg/mL for 4 or 24 h 

In vitro: J774A.1 
murine macrophage  

-↓ NO production, 

iNOS and IL-6 levels 

(Azofeifa et al., 

2013) 

Seed flour extract 10 ng/mL for 4 h 

0.4 mg flour eq/ml for 

48 h 

In vitro: J774 mouse 
macrophages 

-↓ IL-1β 
(Choe et al., 

2020) 
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Anthocyanin fraction 100 ng/mL for 3 h 

20 µg/mL for 12 h 

In vitro: Bone 

marrow-derived 
macrophages prepared 

from bone marrows 

isolated from Nrf2 
wild-type and Nrf2 

knockout mice 

-↓ ROS, IL-1β 
(Lee et al., 

2014a) 

Anthocyanin fraction 
100 ng/mL for 3-

24 h 

0-20 µg/mL for 12 h 
In vitro: RAW 264.7 

macrophages 

-↓ TNF-α, NF-kB,  

IL-1β 

(Lee et al., 

2014a) 

Total polyphenolic, 
anthocyanin and 

proanthocyanidin rich fractions 

1 µg/mL for 24 h 

0.5, 5 and 50 μM 
equivalents of 

cyanidin-3-Oglucoside 

or catechin for 24 h 
In vitro: RAW 264.7 

macrophages 

-↓ NO, iNOS, COX-2 

and PGE2 level 

(Cuevas-
Rodriguez et al., 

2010) 

Anthocyanin-enriched fractions 

from blackberry beverages 
1 µg/mL for 24 h 

100 µM C3G for 24 h 

In vitro: RAW 264.7 
macrophages 

-↓ NO, TNF-α, NF-kB 
(Garcia-Diaz et 

al., 2015) 

Anthocyanins (ANC) and 

proanthocyanidins (PNC) from 

fermented blackberry beverages 

1 µg/mL for 24 h 

25, 50, or 100 µM 

C3G (for ANC) or 

with 

epicatechin (for PAC) 

equivalents for 24 h 
In vitro: RAW 264.7 

macrophages 

-↓ NO, iNOS, COX-2, 
NF-kB 

(Johnson et al., 
2013) 

Blackberry crude extract, 

anthocyanin-enriched 
fractions, proanthocyanidin-

enriched fractions 

1 μg/mL for 24 

50 μg/mL for 24 h 

In vitro: RAW 264.7 

macrophages 

-↓ ROS, NO, iNOS, 
COX-2, IL-1β, IL-6 

(Van de Velde 
et al., 2019b) 

Cranberry 

Cranberry extract 
25 ng/mL for 6-16 

h 

0-100 µg/mL for 6-16 

h 

In vitro: human 

peripheral blood 

mononuclear 

leukocytes 

-↓ TNF-α, IL-6, IL-

1β, COX-2 

(Huang et al., 

2009) 

Cranberry extract or cranberry 

juice powder 
10 ng/mL for 6 h 

0-100 µg/mL for 16 h 

In vitro: THP-1human 

monocyte cells 

-↓ TNF-α, interferon‐

induced protein with 

tetratricopeptide 

repeats 1 and 3, 

macrophage 

scavenger receptor 1 

and colony‐
stimulating factor 2 

expression 

(Hannon et al., 

2016) 

Different fraction (80% 

ethanol; water-soluble 

polysaccharide; polyphenolic 

and ETOAc/H2O) 

1 µg/mL overnight 

50-100-500 µg/mL for 

5 h 

In vitro: RAW 264.7 

macrophages 

-↓ IL-1β, IL-6, TNF-α 
(Van et al., 

2009) 

Cranberry crude extract and 

polyphenol-rich fraction 
1 µg/mL for 4 h 

50, 100 and 150 

µg/mL for 5 h 

In vitro: RAW 264.7 

macrophages 

-↓ IL-1β, IL-6, COX-

2, iNOS 

(Grace et al., 

2014) 

Non-extractable polyphenols 

fraction 
1 µg/mL for 24 h 

2-12 µg gallic acid 
eq/mL for 24 h  

In vitro: RAW 264.7 

macrophages 

-↓ iNOS, p50/PARP 

-↑ HO-1, Nrf2 

(Han et al., 

2019) 

Phenolic and volatile extracts 
100 ng/mL for 24 

h 

0.45-1.8 µg/g volatile 

fraction for 1 h 

636-159 µg/g phenolic 
fraction for 1 h 

In vitro: RAW 264.7 

macrophages 

-↓ NO 
(Moore et al., 

2019) 

Phenolic extracts 10 ng/mL for 24 h 

30 or 100 µg/mL for 

24 h 

In vitro: J774 
macrophages and 

human THP-1 

promonocytes 

-↓ NO, iNOS, COX-2, 
IL-6, IL-1β, TNF-α 

(Kylli et al., 
2011) 

Cranberry proanthocyanidins 100 ng/mL for 4 h 0.5–2.0% v/v for 2 h -↓ iNOS, COX-2 
(Madrigal-

Carballo et al., 

2009 

Proanthocyanidins fraction 100 ng/mL for 4 h 
 different ratio (0.5:1.0 

to 2.0:1.0) 

In vitro: RAW 264.7 

-↓ COX-2, iNOS 

expressions 

(Carballo et al., 

2017) 



macrophages 

A-type cranberry 

proanthocyanidins 
1 µg/mL for 1-24 h 

25-50-100 µg/mL for 

1-2 h 

In vitro: monocyte-

derived macrophages 

-↓ NF-kB 

-↓ MMP-1, MMP-3, 

MMP-7, MMP-8, 

MMP-9, MMP-13 

(La et al., 2009) 

A-type cranberry 

proanthocyanidins 
1 µg/mL for 24 h 

25-50 µg/mL for 2 h 

In vitro: monoblastic 

leukemia-derived 

macrophages 

-↓ IL-1β, TNF-α, IL-

6, IL-8 

(Feldman et al., 

2012) 

A-type cranberry 

proanthocyanidins 
1 µg/mL for 24 h 

25-50 µg/mL for 2 h 

In vitro: a 3D co-
culture model of 

gingival epithelial 

cells and fibroblasts 

-↓ granulocyte 
colony-stimulating 

factor, CXC-

chemokine ligand 1, 
IL-6, IL-8, interferon-

γ inducible 

protein-10, monocyte 

chemoattractant 

protein-1 expressions 

(Lombardo 
Bedran et al., 

2015) 

Cranberry powder 
0.5 mg/kg BW for 

12 h 

5 or 10 % of 

atherogenic diet for 6 

weeks 
In vivo: Sprague-

Dawley rats 

-↑ plasma antioxidant 

status and total 

phenolics and 

flavonoid content 

-↑ SOD activity in 

erythrocytes 

-↓ serum 
thiobarbituric acid-

reactive substances 

content 

(Kim et al., 

2014) 

Cranberry powder 
0.5 mg/kg BW for 

18 h 

5-10 % of the diet for 
6 weeks 

In vivo: Sprague-

Dawley rats 

-↑ serum HDL level 
-↓ serum total 

cholesterol, CRP, IL-

1β, IL-6 levels 

(Kim et al., 

2011) 

Cranberry powder 
0.5 mg/kg BW for 

18 h 

5-10 % of the diet for 

6 weeks 

In vivo: obese diabetic 

homogeneous 

C57BL/KsJ-db/db 
mice 

-↑ serum HDL level, 

antioxidant capacity 

-↓ serum total 

cholesterol, 

atherogenic index, 

glucose, insulin, GPx, 
carbonyl content 

levels 

(Kim et al., 

2013c) 

Blackcurrant 

Blackcurrant extract or 
cyanidin-3-O-ge lucoside 

1 µg/mL for 24 h 

0, 5 and 25 µg/mL for 

2 h 

In vitro: monoblastic-

leukemia derived 
macrophage-like cells 

-↓ IL-6 
(Desjardins et 

al., 2012) 

Blackcurrant-enriched 

formulation 
1 µg/mL for 24 h 

10-50-150 µg/mL for 

24 h 

In vitro: U937 

macrophages 

-↓ PGE2, ROS, IL-6, 

IL-8, TNF-α 

(Menghini et al., 

2014) 

Anthocyanin fraction 100 ng/mL for 3 h 

20 µg/mL for 12 h 

In vitro: Bone 

marrow-derived 

macrophages prepared 

from bone marrows 

isolated from Nrf2 

wild-type and Nrf2 

knockout mice 

-↓ ROS, IL-1β 
(Lee et al., 

2014a) 

Anthocyanin fraction 
100 ng/mL for 3-

24 h 

0-20 µg/mL for 12 h 

In vitro: RAW 264.7 

macrophages 

-↓ TNF-α, NF-kB,  

IL-1β 

(Lee et al., 

2014a) 

Anthocyanin-rich extract 
500 ng/mL for 1-

24 h 

5-50 ng/mL for 30 
min 

In vitro: monocytic 

THP-1 cells 

-↓ TNF-α, IL-6,  

p-NF-kB 
-↑ IkBα 

(Lyall et al., 

2009) 

Diluted plasma isolated from 

blood collected preexercise and 

immediately postexercise from 
subject fed with blackcurrant-

enriched diet 

50 ng/mL for 3, 6, 

or 24 h 

25 % in cell media for 
30 min 

In vitro: monocytic 

THP-1 cells 

-↓ TNF-α, IL-6 
(Lyall et al., 

2009) 

Freeze-dried whole fruit extract 
500 ng/mL for 24 

h 

48 g (4 capsules, 2 

before and 2 after 
exercise) 

Ex-vivo: peripheral 

blood collected prior 
to and immediately 

postexercise 

-↓ TNF-α, IL-6 
(Lyall et al., 

2009) 



Blackcurrant powder 
2.5 mg/kg BW for 

6 h 

180 g/kg of diet for 7 

days 

In vivo: C56/BL6 
transgenic mice 

-↓ NF-kB activation 

in different organs 

(Balstad et al., 

2010) 

Barberry 

Barberry polyphenol-extract 5 µg/mL for 24 h 

100 µM for 24 h 

In vitro: RAW 264.7 
macrophages 

-↓ NO, iNOS, IL-10, 

TNF-α 

(Reyes-Farias et 

al., 2015) 

Barberry extract 1.5 µg/mL for 16 h 

50, 100, 200 µg/mL 

for 12 h 
In vitro murine 

peritoneal 
macrophages 

-↓ NO, iNOS, TNF-α, 

IL-6, IL-1β, IFN-ɣ, 

RANTES, MCP-1, 

NF-Kb, p-c-Jun,p-

ERK, p-JNK 
-↑ Nrf2, heme 

oxygenase-1, IL-10 

(Sharma et al., 

2018) 

Jamun berry Jamun phenolics extract 1 µg/mL for 12 h 

20 µM for 24 h 

In vitro: RAW 264.7 

macrophages 

-↓ ROS 
(Liu et al., 

2018) 
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Elderberry 
Methanolic extract 0.5 µg/mL for 24 h 

100, 50, 25 and 12.5 
μg/mL for 24 h         

Ex vivo: macrophages 

obtained from 

BALB/c mice 

intraperitoneally 

injected with 20 mg 

LPS 

-↓ NO 
(Carneiro et al., 

2019) 

Wolfberry or Goji 

berry 

LBP 
5 mg/kg BW i.p. 

injection 

200, 400, 800 mg/kg 
BW for 12 h 

In vivo: Sprague-
Dawley male rats 

-↓ IL-1β, IL-6, IL-8, 

TNF-α, NF-κB, ROS 

and Keap1 in kidneys 

-↑ Nrf2, HO-1, NQO1 

in kidneys 

(Huang et al., 

2019) 

LBP 
5 mg/kg BW i.p. 

injection 

200, 400, 800 mg/kg 
BW for 6, 12, 24, 48 h 

In vivo: Sprague-

Dawley male rats 

-↓ IL-1β, IL-6, IL-8, 
TNF-α, NF-κB and 

ROS levels in serum 

-↓ NF-κB and Keap1 
in kidneys 

-↑ Nrf2, HO-1, NQO1 

in kidneys 

(Wu et al., 

2020) 

LBP 
5 mg/kg BW i.p. 

injection 

200 mg/kg BW for   

24 h 

In vivo: C57BL/6 mice 

-↓ IL-6, TNF-α, lung 

injury and pulmonary 

edema 

(Chen et al., 
2018) 

Emblic Amla fruit extract 2 mg/kg BW 

50 mg/kg BW for 4-24 
h 

In vivo: male Wistar 

rats 

-↓ TNF-α and IL-6 in 

serum 

(Rao et al., 

2013) 

Lingonberry Lingonberry extract 

1 µg/mL for 24-48 

h (prevention) 
1 µg/mL for 3 h 

(reversal) 

10-100 µg/mL for  

3 h (prevention) 

24-48 h (reversal) 
Ex vivo: Primary 

astrocytic cultures 

from Wistar rats 

-↓ ROS, NO and 
acetylcholinesterase 

activity 

-↑ viability, thiol 
content and SOD 

(Pacheco et al., 
2018) 

Chokeberry 
Black chokeberry ethanolic 

extract 
250 μg/kg 

50 mg/kg/day for 7 
days 

In vivo: male ICR 
mice received 

a single intraperitoneal 

injection of LPS 

-↓ iNOS, COX-2, 
TNF-α 

(Lee et al., 
2018) 

Seabuckthorn Seabuckthorn berries paste 10 mg/kg BW. 

200, 400 and 800 

mg/kg BW for 7 days 
In vivo: male SPF KM 

mice 

-↓ body weight loss, 
lung tissue, 

microstructure 

lesions, transvascular 
leakage increase, 

malondialdehyde 

augmentation 
-↑ SOD, GPx, Nrf2 

(Du et al., 2017) 

Grape GSPE 7 mg/kg BW 50, 75, 100 and 200 -↓ NO level in the (Pallares et al., 
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mg/kg/day BW for 15 

days 

In vivo: Wistar female 
rats 

plasma, red blood 

cells, spleen, and 

liver; 
-↓ TNF-α and IL-10 in 

plasma; 

-↓ hepatic level of IL-
6, iNOS, glutathione 

disulfide/total 

glutathione 

2013) 

GSPE 
0.3 mg/kg BW for 

5 days 

75and 375 mg/kg BW 
for 15 days 

In vivo: male Wistar 

rats 

-↓ TNF-α in plasma 

-↓ MPO, COX-2, 

ROS in the small and 
large intestinal 

sections 

(Gil-Cardoso et 

al., 2019) 

Red and white GE 10 µg/kg BW 

100-500 mg/kg BW 
for 24 h 

In vivo: 

Sprague−Dawley rats 

-↓ NF-κB, iNOS, 

COX-2 in liver 

(Nishiumi et al., 

2012) 

GE 3-15 mg/kg BW 

0, 100, or 300 
mg/kg/day BW for 3 

weeks 

In vivo: 
Sprague−Dawley rats 

-↓ phospholipases A2 

activity in serum; 
- ↑ hematocrit in 

serum 

(Tsao et al., 
2012) 

GPE 

0.5 mg/kg BW one 

i.p. injection or 

0.25 mg/kg BW 
for 1 week 

4% of diet for 4 weeks 

In vivo: mice 

-↓ NF-κB in whole 

body and 
abdominal/peritoneal 

regions of interest 

-↓ TNF-α, IL-6 serum 

(Miller et al., 

2018) 

GPE 
10 µg/L for 24, 48 

and 72 h 

46 g two times a day, 
for 3 weeks 

Ex vivo: monocyte 

populations in the 
peripheral blood 

mononuclear cells 

obtained from blood 
samples of healthy 

obese male and female 

volunteer 

-↑ IL-1β, IL-6 
(Zunino et al., 

2014) 

Resveratrol 3 µg/mL for 6-12 h 

200 nM for 6-12 h 

Ex vivo: cortical 

networks of neurons, 
astrocytes and 

microglia 

-↓ TNF-α 
(Gullo et al., 

2017) 

Resveratrol 
10 ng in 100 μL 

PBS 

10 mg/ kg BW, once 
every 2 days, for 6 

days 

In vivo:  New Zealand 
white rabbits 

-↓ inflammatory 

arthritis, PGE2, 

MMP-3, MMP-13 

(Wang et al., 
2011) 

Pomegranate 

Polyphenol rich pomegranate 

extract 

100 μg/kg BW i.p. 
injection, twice 

weekly, for 4 

weeks 

0.2 ml of 0.2% POMx 

via oral gavage (daily) 

for 4 weeks 
In vivo. male swiss 

albino mice 

-↓ ROS, TLR-4,  NF-

κB, IL-6, TNF-α, 

BAX 
-↑ Nrf2, Bcl-2, heme-

oxygenase-1 

(Gupta et al., 

2019) 

Punicalagin 
20 mg/kg BW for 

7 h 

12.5, 25, 50 mg/kg 

BW for 1 h 

In vivo: Male BALB/c 

mice 

-↓ NF-kB, TLR-4, 

TNF-α, IL-6, IL-1β, 

myeloperoxidase in 

lung 

(Peng et al., 

2015) 

Punicalagin 
250 µg/kg 7 times 
a day, for 1 week 

1.5 mg/kg BW at day 
for 4 weeks 

In vivo: Male 

imprinting control 
region mice 

-↓ memory 

impairment 

-↓ NF-kB in brain 

-↓ amyloid beta1-42 
generation in brain 

-↓ amyloid precursor 

protein, beta-secretase 

1 in brain 

(Kim et al., 
2017) 

Punicalagin 
600 µg/kg BW at 

day, for 7 days 

9 mg/kg BW at day, 

for 7 days 

In vivo: Male ICR 

mice 

-↑ Nrf2, GSH, SOD, 

catalase in testes 

-↑ fertility indices 

(Rao et al., 

2016) 

Punicalagin 5 mg/kg BW 
50 mg/kg BW, for 2 h 

In vivo: Rats 

-↓ serum creatinine 

and neutrophil 

gelatinase-associated 

lipocalin 

-↓ IL-18, TNF-α, IL-

6, MDA, NO, 

Bax/Bcl2 ratio, iNOS, 

(Fouad et al., 

2016) 
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caspase 3, caspase 8 

and caspase 9 in 

kidneys 
-↓ histopathological 

injury and molecule-1 

expression in kidneys. 

Bilberry Bilberry extract 

1 mg/kg BW on 

the 2nd and 7th day 

of bilberry 
treatment 

50, 100, 20 mg/kg at 
day for 7 days 

In vivo: Mice 

-↓ plasma alanine 

transaminase, 

aspartate 
transaminase; 

-↓ liver NOS, TNF-α, 

IL-1β, IL-6, NF-κB, 
MDA, NO 

(Luo et al., 

2014) 

Strawberry 

Chilean white strawberry 
aqueous extract 

5 mg/kg BW for 3 
h 

4 g/kg BW at day for 

10 days 
In vivo: Male Sprague-

Dawley rats 

-↓ serum 

transaminase, alanine 
transaminase, 

aspartate 

transaminase; 
-↓ serum TNF-α, IL-

1β, IL-6, IL-10; 

-↑ liver 
GSH/glutathione 

disulfide  ratio 

(Molinett et al., 
2015) 

Freeze-dried strawberry powder 
10 µg/L for 24, 48, 

72 h 

Four servings of 

frozen strawberries 
per day for 3 weeks 

Ex vivo: peripheral 

blood mononuclear 
cells 

-↑ TNF-α 
(Zunino et al., 

2015) 

Blueberry 

Blueberry extract 
100 ng/mL for 16 

h 

1% of diet for 5 weeks 

Ex vivo: 
thioglycollate-elicited 

peritoneal 

macrophages from 
apoE-/- mice 

-↓ TNF-α, IL-6 
(Xie et al., 

2011) 

Blueberry powder 
10 mg/kg BW, for 

6 h 

2 % of diet, for 2 days, 
once at days 

In vivo: Sprague-
Dawley rats 

-↑ glomerular 

filtration rate, renal 

blood flow in kidney; 
-↓ renal vascular 

resistance, ROS, 
superoxide, TLR4, 

TNF-α, kidney injury 

molecule-1  

(Nair et al., 

2014) 

Freeze-dried whole blueberry 

powder 

1 µg/mL for 24 - 

48 h 

4 % of diet/day, for 8-
12 weeks 

Ex vivo: splenocytes 

isolated from 
C57BL/6 mice 

-↓ IL-1β, IL-6, TNF-α 
(Lewis et al., 

2018) 

Mangosteen 

α-mangostin 
100 ng/mL for 4-

24 h 

0-10 μg/mL for 4-24 h 

Ex vivo: Murine bone 
marrow-derived 

dendritic cells 

generated from the 
bone marrow cells of 

the tibia and femur of 

7 to 8 week old male 
BALB/c mice fed with 

α-mangostin  

-↓ INF-γ, IL-12, TNF-

α, IL-6 

-↑ IL-10 

(Herrera-Aco et 
al., 2019) 

α-mangostin 
2 mg/kg BW, 3 

daily injections at 

24 h-intervals 

40 mg/kg BW, at day 

for 14 days 

In vivo: female 

C57BL/6J mice 

-↓ brain IL-6, COX-2, 

translocator protein, 
ionized calcium-

binding adapter 

molecule 1 

(Nava Catorce 

et al., 2016). 

α-mangostin and ground 

dried pericarp Garcinia 

mangostana Linn 

100 μg/kg BW 

administered 

subcutaneously 

20 mg/kg or 50 mg/kg 

BW for 15 days 

In vivo: Sprague–
Dawley rats 

-↓ TNF-α, IL-6, 

depressive 

behavuiours 

(Lotter et al., 

2019) 

Cranberry Cranberry powder 
0.5 mg/kg BW for 

12 h 

5 or 10 % of 

atherogenic diet for 6 

weeks 

In vivo: Sprague-
Dawley rats 

-↑ plasma antioxidant 

status and total 
phenolics and 

flavonoid content 

-↑ SOD activity in 
erythrocytes 

-↓ serum 

thiobarbituric acid-
reactive substances 

content 

(Kim et al., 
2014) 
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Cranberry powder 
0.5 mg/kg BW for 

18 h 

5-10 % of the diet for 

6 weeks 

In vivo: Sprague-
Dawley rats 

-↑ serum HDL level 

-↓ serum total 

cholesterol, CRP, IL-
1β, IL-6 levels 

(Kim et al., 

2011) 

Cranberry powder 
0.5 mg/kg BW for 

18 h 

5-10 % of the diet for 
6 weeks 

In vivo: obese diabetic 

homogeneous 
C57BL/KsJ-db/db 

mice 

-↑ serum HDL level, 

antioxidant capacity 
-↓ serum total 

cholesterol, 

atherogenic index, 
glucose, insulin, GPx, 

carbonyl content 

levels 

(Kim et al., 

2013c) 

Barberry 

Barberry polyphenol-extract 5 µg/mL for 24 h 

100 µM for 24 h 

In vitro: RAW 264.7 

macrophages 

-↓ NO, iNOS, IL-10, 
TNF-α 

(Reyes-Farias et 
al., 2015) 

Barberry extract 1.5 µg/mL for 16 h 

50, 100, 200 µg/mL 

for 12 h 
In vitro murine 

peritoneal 

macrophages 

-↓ NO, iNOS, TNF-α, 

IL-6, IL-1β, IFN-ɣ, 

RANTES, MCP-1, 

NF-Kb, p-c-Jun,p-
ERK, p-JNK 

-↑ Nrf2, heme 

oxygenase-1, IL-10 

(Sharma et al., 

2018) 
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