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Featured Application: This work aims to review the use of ROS2 as middleware to integrate het-
erogeneous hardware and software components in order to enable fixed-base robots to perform
complex tasks by increasing their autonomy and flexibility. It shows how the open-source frame-
work can be used in industry to overcome the limitations of commercially available cobots. An
extensive review of the features and tools currently provided by ROS2, as well as its main fields
of application, is provided. Moreover, as a proof of concept, a high-level modular architecture
to increase autonomy in industrial operations is first proposed and then applied to one of the
various commercially available industrial cobots.

Abstract: Future challenges in manufacturing will require automation systems with robots that are
increasingly autonomous, flexible, and hopefully equipped with learning capabilities. The flexibility
of production processes can be increased by using a combination of a flexible human worker and
intelligent automation systems. The adoption of middleware software such as ROS2, the second
generation of the Robot Operating System, can enable robots, automation systems, and humans
to work together on tasks that require greater autonomy and flexibility. This paper has a twofold
objective. Firstly, it provides an extensive review of existing literature on the features and tools
currently provided by ROS2 and its main fields of application, in order to highlight the enabling
aspects for the implementation of modular architectures to increase autonomy in industrial operations.
Secondly, it shows how this is currently potentially feasible in ROS2 by proposing a possible high-
level and modular architecture to increase autonomy in industrial operations. A proof of concept is
also provided, where the ROS2-based framework is used to enable a cobot equipped with an external
depth camera to perform a flexible pick-and-place task.

Keywords: Robot Operating System 2 (ROS2); Robot Operating System (ROS); collaborative robotics;
industrial robotics; flexibility; autonomy

1. Introduction

Achieving high levels of autonomy for robotic systems, especially in manufacturing,
is a current challenge for the industry. The reasons can be many and often with significant
impacts on business productivity. The industry’s current need is to move from traditional
production systems to so-called cyber-physical systems (CPSs) to improve overall produc-
tivity, reduce environmental impact, and enable more human-centered production—in
other words, to promote more sustainable economic development. In these systems, soft-
ware, robots, sensors, machines, and/or devices cooperate with each other to achieve the
desired result. Robots are required to participate in CPSs [1–3]. The high heterogeneity
of the devices comprising CPS systems requires expertise in various scientific domains,
making the development of CPS a resource and time-consuming process. Conversely,
despite the extensive use of new enabling technologies, humans are always involved at
different levels of production processes and can interact physically with systems, e.g., by
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loading or unloading parts from machines, or by interacting through interfaces, e.g., by
intervening in the production schedule. In addition, global competition, rapidly evolving
markets, and mass customization will replace traditional mass production, requiring new
production challenges such as increased product variability and quality [4], and the need to
reduce production and delivery times for both SMEs [5] and large companies [6]. All these
challenges will require automation systems with robots that are increasingly autonomous,
flexible, and hopefully equipped with learning capabilities. While humans are flexible and
adaptable by nature and thus able to react to both small disturbances and large changes,
the same does not apply to robots or traditional automation systems. The flexibility of
production processes can be increased by using a combination of a flexible human worker,
preferably with assessable performance [7], and collaborative robots (cobots) [8]. Although
robots have gradually replaced humans in performing simple repetitive tasks in dangerous
environments [9], cobots and robot automation are usually limited to monotonous and
structured tasks (i.e., pick and place, grasping, moving workpieces, welding, and painting),
while robots employed in assembly processes require dexterous human assistance, and for
complex assembly tasks, workers still rely on manual operations. Mixed human–machine
industrial environments, where operations can be performed differently, i.e., collaboratively,
cooperatively, or individually, depending on production needs, require non-traditional
perception, planning, and control systems. To ease the integration of collaborative robots
into intelligent automation systems, it has become very useful to resort to middleware
platforms that enable hardware abstraction and communication between heterogeneous de-
vices and components. Robot Operating System (ROS), developed and managed by Open
Robotics [10] has become a de facto standard in academia and research for many robotic
systems for at least a decade. Its second version ROS2 [11], was subsequently developed
to fill the gaps in ROS, identified by industry and academia. As a result, the adoption of
middleware paves the way for the use of ROS2-based architectures in real-world industrial
automation systems to leverage robots, automation systems, and humans to work together
on tasks that require greater adaptability and flexibility.

In this context, this paper has a twofold objective: (a) starting from an extensive review
of existing literature, the features and tools currently provided by ROS2, as well as its main
fields of application, are examined, with the aim of highlighting the enabling aspects for
the implementation of modular architectures to increase autonomy in industrial operations;
(b) it is shown how this is currently potentially feasible in ROS2 by proposing a possible
high-level modular architecture to increase autonomy in industrial operations, supporting
the conceptualization with a proof of concept developed on one of the various commercially
available industrial cobots. Although the approach is general for robots, in this work, the
applications will focus on robotic manipulators and, in particular, on collaborative robots
(cobots), for which demand is expected to increase in the manufacturing sector in large
and especially small- and medium-sized enterprises, for which it is particularly relevant to
ensure flexibility with reduced cost and setup time achievable with increased autonomy.
A further reason to address autonomy issues using cobots lies in being able to apply
them even in tasks involving the presence of humans, as well as in understanding and
overcoming some of their limitations due to their inherent safety systems.

Cobots can indeed operate safely in close proximity to humans, although they gener-
ally move more slowly than their industrial counterparts. Despite their greater proximity,
with regard to safety, cobots do not require additional information from humans in case
of new or unknown events, as they are designed for safety and can stop without harming
humans in the event of contact. However, the inherent characteristics of cobots alone
are not enough to require robots and humans to work together or in close proximity to
perform more complex tasks such as assembly or other operations that require adaptability
and flexibility. In tasks requiring a high degree of adaptability, cobots must become fully
independent in adapting to different scenarios or tasks in handling interaction with both
humans and dynamic environments.
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To cope with these demands, capabilities of environment perception, object recognition,
trajectory planning, and re-planning are required in a dynamic and changing environment,
even with possible human interaction. These features are not yet all available simultane-
ously in collaborative robots. In addition to a hardware platform to perform tasks safely, a
cobot also needs a complex software architecture that incorporates algorithms that enable
it to act possibly autonomously. Furthermore, as perception technologies improve, artificial
intelligence would have the potential to help robots and humans work together on physical
tasks, such as assembly. It follows that a single technology, be it robotics, rather than AI,
sensors, or intelligent automation, is not sufficient on its own to guarantee high levels of
adaptability. A middleware is needed to enable interaction and communication between
them. The use of perception technologies, together with learning techniques and especially
a middleware layer that orchestrates actions and information, has the potential to help
robots and humans work together on complex physical tasks, such as assembly or others.
This could help meet the challenge of customized production.

Hence, this paper deals with the use of ROS2 as middleware to integrate hetero-
geneous hardware and software components in order to enable commercially available
fixed-base robots to perform complex tasks by increasing their autonomy and flexibility.
Specifically, the main twofold objectives above mentioned can be further detailed as fol-
lows: (a.1) provide an overview of the aspects of ROS2 most widely addressed in literature;
(a.2) provide an extensive survey of the features and tools provided by ROS2 that can be
used to implement high-level modular architectures, given the lack of dedicated literature
on the topic; (b.1) propose an high-level modular architecture to enhance the autonomy of
fixed-base cobots; and (b.2) show a proof of concept of an ROS2-based framework to enable
a cobot equipped with an external depth camera to perform a flexible pick-and-place task.

The remainder of the paper is organized as follows to address these specific objec-
tives: Section 2 gives a literature review on ROS2, Section 3 describes the architecture for
increasing autonomy, Section 4 deepens the architecture implementation in ROS2, Section 5
presents an application case study, and Section 6 concludes the paper.

2. Related Work
2.1. ROS: Origin, Potential, and Limits

The ROS framework has been widely used in academia and research for nearly fif-
teen years, since the original paper [12] was published by the robotics incubator Willow
Garage [13], which developed it almost entirely from scratch and has maintained it with
the OSRF (Open-Source Robotics Foundation) [10] since 2007. It has been used to orches-
trate heterogeneous systems and tasks in a variety of robotics applications to simulate
and implement complex control, planning, and coordination tasks. Autonomy has been
essential in both robotics and automotive; since the 2007 DARPA Urban Challenge [14],
autonomous driving has attracted attention and helped spread the growing development
of new solutions in both fields. ROS open-source middleware has undergone rapid de-
velopment [15] and has been widely used for robotics applications, autonomous systems,
and intelligent machines. This has happened mainly thanks to both the set of libraries
useful for many types of robots (e.g., Open-Source Computer Vision (OpenCV) [16,17]
and Point Cloud Library (PCL) [18]), and the ecosystem of algorithm packages for sensors,
control, and connection made available by community contributions that help to improve
productivity [19].

Although ROS solves many of the complexity problems inherent in robotics, it is
nevertheless lacking in several aspects, such as lacking real-time execution requirements,
running only on a few OSs (operative systems), not being able to guarantee deadlines or
process synchronization nor fault-tolerance, and having no built-in security mechanisms.
As research uses ROS for increasingly complex tasks, the foundations of the ROS research
platform began to show its limitations. However, industrial robotics, whether mobile or
manipulative, can also benefit from the adoption of ROS solutions in industrial environ-
ments to enable intelligent and flexible automation that can tackle not only standard and
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repetitive tasks, but also complex and dynamic tasks, which are still ongoing challenges
for the factories of the future. Examples are cooperative mobile manipulators where it
is necessary to coordinate the moving base, manipulator, and interaction forces with the
moved objects, which for complex tasks may require nonlinear controls as in [20] with
guaranteed execution times [21].

2.2. ROS2: Origin and Performance Analysis

To overcome the limitations of ROS and meet the needs of both the industry and
the broader ROS community by providing features such as higher efficiency, reliability,
security, and real-time processing, after an initial announcement in 2014, in 2018 Open
Robotics released ROS2 [11,22], the second generation of ROS. Given the intrusive nature
of the changes required to achieve these benefits, in order to keep ROS working and to
be unaffected by the new developments, the ROS community decided to redesign the
middleware from scratch.

One of the most significant changes in ROS2 is the switch from the TCP/UDP network
protocol used in ROS to DDS (Data Distribution Service) as the default middleware for
communication between nodes. DDS is an industry standard published by the Object
Management Group (OMG) [23] that defines a middleware for real-time and reliable
data distribution according to the publish/subscribe paradigm, thus enabling ROS2 to
meet the safety, security, resilience, and fault-tolerant of distributed systems. Specifically,
ROS2 is compatible with multiple DDS vendors (e.g., the default eProsima [24], RTI [25],
OpenDDS [26], ADLINK [27], and others).

An early study exploring the performance of ROS2 was conducted by Maruyama
et al. [28] and dates back to 2016. The authors conducted proof-of-concept experiments to
clarify the capabilities of ROS2 and evaluated the performance characteristics of DDS [29,30]
in ROS2 in various situations and for different aspects: latency, throughput, number of
threads, and memory consumption. The performance of DDS was further analyzed in [31],
showing that it can be used in some classes of industrial control systems.

In more recent years, numerous research papers have been devoted to the evaluation
of ROS2 performance related to various aspects: DDS, security, and distributed robotic
systems. Without claiming to be exhaustive (a mapping of software engineering research on
ROS can be found in [32]), several attempts to clarify DDS issues can be found in [33], which
conducted analyses on ROS2 and several DDS providers. The authors of [34] evaluated the
response time of processing chains in ROS2, and a latency analysis of ROS2 was provided
in [35]. More recently, in [36], the authors presented an experimental evaluation of the
execution of ROS2’s smallest schedulable entities, namely callbacks. They identified and
showed the differences in callback execution using different executor versions (i.e., the
ROS2 callback scheduler) and illustrate the negative impact of the new executor on the
periodic execution of timer callbacks with a real-world use-case on a multi-agent robotic
system. Distributed robotic systems were addressed in [37,38], which evaluated real-
time ROS2 characteristics for multi-agent robotic systems and control performance in
time-synchronized distributed networks, respectively. In the same domain, the network
performance of ROS2 under varying QoS (quality of service) profiles and security settings
was studied in [39]. Finally, some works related to the security issues of ROS2 can be found
in [40–42]. As addressed in [43,44], finding a trade-off between performance and security
is not an easy task.

Most of these evaluations conclude that an ROS2-based architecture, if properly devel-
oped, can satisfy the real-time constraints that are often required in industrial applications
to meet safety and/or performance goals, unlike the previous ROS version. This is made
possible, at a communication level, by employing DDS that guarantees more stable com-
munications with lower message loss and mainly lower communication latency in both
an idle network environment and with network traffic. In order to meet the constraints
of real time as a whole, the communication level alone is not sufficient; however, ROS2
exhibits real-time performance even in the development environment by supporting RTOS
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(Real-Time Operating System) such as the Linux kernel patched with PREEMPT_RT. The
use of RTOS potentially enables real-time scheduling at both node and callback levels,
ensuring lower task latency (i.e., time spent by the task in the ready state waiting for CPU)
and scheduling jitter (i.e., the unwanted variation of the release times of a periodic task)
and then determining and meeting deadlines. Nevertheless, it is crucial to note that these
real-time capabilities of ROS2 are potential and not guaranteed in every application devel-
oped. It is the developer’s responsibility to ensure the availability of an RTOS underlying
and to manage scheduling effectively using executors.

2.3. ROS2: Industrial Robotics Applications

Regarding the use of ROS2 in industrial robotics tasks to increase autonomy, flexibility,
and human–machine cooperation, in short toward intelligent automation systems, again,
the literature is not very extensive and has focused on solving specific problems. In [45,46],
the challenges of achieving flexible automation in an industrial plant consisting of a collab-
orative robotic assembly station are described. ROS was used to reuse old ROS packages to
integrate smart devices and algorithms, then a communication architecture based on ROS2
with communication bridges was developed to pass messages between ROS and ROS2.
In [47], ROS2 was proposed as a software framework to control the automation equipment
of a reliable and robust automation system consisting of a motion control system (MCS)
and an OpenPLC. A review of ROS2-compatible simulation software for manipulation with
robotic arms, along with a comparison of them, can be found in [48]. A review highlighting
the key changes of ROS2 in robotics is given in [49]. The article also shows through case
studies the influence that ROS2 and its adoption have had in accelerating the development
of real and reliable robotic systems, even in challenging environments. The spread of robots
in unstructured and dynamic environments and the issue of path re-planning are gaining
importance in robotics. Several works in ROS were devoted to this issue (e.g., [50–52] and
references therein), but at present, however, no scientific work seems to be available dealing
with reliable native re-planning tools in ROS2.

Staying within the same application domain but relaxing the constraint of using
ROS2, the literature is more extensive, with several works where architectures/frameworks
enabling robots to perform more advanced tasks through the use of middleware are
proposed. In [53], an application that integrates a 3D perception module, a multi-layer
motion planning module, and a real-time motion control module to autonomously perform
a complex robotic assembly task is proposed without specifying the middleware used
for its implementation. Similarly, in [54], a three-layer architecture (perception, planning,
and control) is introduced for a human–robot cooperative assembly task. Conversely,
other works explicitly specify the use of different middleware for the software design.
In [55], a mobile pick and place in unstructured environments is achieved with a modular
framework built on ROS to facilitate both the porting to other mobile manipulators and the
integration of alternate components for planning, control, grasping, or perception. Other
ROS-based frameworks can be found in [56,57]. They both rely on ROS to integrate several
functionalities and focus on behavior planning but using, respectively, a behavior tree and
Prolog for knowledge-based reasoning.

2.4. ROS2: Other Applications

ROS and its further evolution were also analyzed for automated driving projects
in [58]. In the automotive sector, even more than in robotics, at least two other aspects have
gained relevance, namely communication between real-time systems (e.g., for driver assis-
tance) [59,60] and active vehicle safety systems [61,62] that autonomous driving systems
must take into account. The latter aspect is even more critical for two-, three-, or all-
wheel-drive vehicles that require more complex behavioral models, as discussed in [63–65],
respectively. Thus, the trend is to require software to have an increasing ability to integrate
heterogeneous and real-time systems. Specifically, the AUTOSAR (Automotive Open Sys-
tem Architecture) standard software architecture [66] is proposed in the automotive sector
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to eliminate dependence on hardware and increase software scalability. A comparative
study of ROS2 and AUTOSAR as architectural platforms for future autonomous vehicles
(AVs) was recently addressed in [67], pointing out that some AUTOSAR APIs and service
functionalities can be completely fulfilled by ROS2, even though the standard implementa-
tion of ROS2 does not provide all the automotive functionalities and additional packages
need to be added.

Furthermore, studies on ROS2 can also be found in other domains. For instance, the
use of ROS2 for edge-cloud architectures was analyzed in [68]; in [69], an ROS2-based
distributed control architecture for unmanned aircraft systems (UASs) was proposed; while
in [70], a toolbox for distributed cooperative robotics named ChoiRbot is presented.

Although the still limited literature on ROS2 is mainly concerned with new aspects of
ROS2, an analysis of the requirements and tools of ROS2 for increasing the autonomy of
robots in industrial environments is not as thorough. An architectural and implementation
framework for improving the autonomy and flexibility of industrial robotics using ROS2 is
then provided below.

3. General Architecture for Enhancing Cobot Autonomy

Based on the above state-of-the-art analysis, here, a general high-level and modular
architecture to enhance the autonomy of fixed-base cobots, by integrating environmental
information provided by additional external sensors, is extracted and presented. Specifi-
cally, this section focuses on the main modules that this architecture should provide and on
how they should be interconnected to achieve this goal, while Section 4 will show how to
decline this general framework resorting to ROS2 as the middleware and taking advantage
of the tools it provides. Therefore, here, general information about cobots is included,
but this discussion serves a specific purpose, as it outlines the requirements and features
that middleware must fulfill for the implementation of individual tasks and what aspects
require attention.

3.1. Motivation

The reason behind the need for such an architecture is that the inherent characteristics
of cobots alone are not yet sufficient to perform complex tasks in dynamic industrial
scenarios that require a higher degree of autonomy. This is because industrial collaborative
robots are currently on the market equipped with few exteroceptive sensors, and as a result,
they cannot fully perceive the external environment and thus cannot be used at their full
potential. These limitations are also due to the closed interfaces with limited functionality
that most cobot manufacturers provide for users to control and program their products.
They typically make available both a GUI (graphical user interface), very intuitive and
user friendly but with standard predefined and non-customizable functionalities, and
APIs (application program interfaces), specifically provided for further user-customized
functionalities but to be properly integrated into the user application.

To better understand the limitations of the cobots currently on the market, the fol-
lowing is a brief overview of the main sensors they are equipped with and the typically
available functionality enabled by them:

• Torque and force sensors: These are the sensors that allow collision detection and
subsequent emergency stop of the robot. Typically, the GUI provided by commercial
cobot manufacturers allows users to set safety stop criteria in terms of maximum
values of parameters such as TCP (tool center point) force and joint torques. In this
way, along with speed limitations, collisions are not anticipated and avoided, but they
are made not dangerous. To handle them differently (e.g., with trajectory re-planning),
different sensor types such as vision systems or distance sensors are needed.

• RGB camera: Most collaborative robots are also on the market with models equipped
with an RGB camera mounted on the end of the manipulator (i.e., eye-in-hand arrange-
ment). The integration of this vision system makes it possible to teach the robotic arm
to recognize and grasp specific, identical objects from the same plane. Since depth
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information is not available, it is necessary to manually reprogram the robot if the
objects to be grasped or the plane on which they are located changes. Again, the use
of different types of sensors (e.g., depth cameras) could overcome these limitations.

As a concrete example of the aforementioned, Figure 1 shows sensors integrated into
some commercially available collaborative robots, from which it emerges that, while sensor
types remain consistent, manufacturers can make different choices regarding which and
how many sensors to integrate into their individual products.

(a) Techman TM5-900 (b) Universal Robot UR5/CB3 (c) Universal Robot UR5e

Figure 1. Examples of sensors integrated into commercial cobots.

3.2. Design and Requirements

A system to increase the autonomous capabilities of robots must necessarily be modu-
lar, as it must handle heterogeneous systems. Modules can be associated with the single,
basic tasks that the robot must perform in order to increase its autonomy. Complex tasks
require a high degree of interdependence between these modules. Like most autonomous
systems, the main tasks to be performed by a fixed-base cobot with increased autonomy
are shown in Figure 2 and described below:

1. Perception: The overall architecture needs to use sensors (being exteroceptive or
proprioceptive) to gather the necessary information to become aware of the state both
of the cobot and of the surrounding environment. This task is then responsible for
acquiring and pre-processing these data. The robot state is usually available without
the need for additional sensors in all commercialized cobots, which provide access
to variables such as joint positions, speeds, and torques or the pose of the TCP. With
reference to the latter instead, the often limited environment perception could be
easily enhanced by resorting to vision, distance, and/or proximity sensors, such as
depth cameras, LIDAR, and sonar. Moreover, this task can be performed by either
using a single sensor or by the handling of several, even heterogeneous, sensors,
whose data are integrated by means of sensor fusion algorithms to get a better single
model of the surrounding environment.

2. Recognition: This task goes beyond mere perception, involving higher-level process-
ing and interpretation of the raw data acquired by sensors. As an example, this is a
task dealing with scene understanding, environmental reconstruction, and real-time
object recognition/classification.

3. Behavior planning: This is a task responsible for identifying the type of behavior
and/or the sequence of actions to be performed. It is potentially a highly advanced
task that, however, can be approached at different levels depending on the desired
level of autonomy. At a lower level, there is a fairly standard sequence of actions
required to perform a specific and predefined task with minimal variations to handle
unexpected situations such as obstacles. At the highest level, this allows the robot to
autonomously understand the task to be executed based on the surrounding.

4. Trajectory planning: Another essential part of the robotic system is the path-planning
algorithm that, based on the desired behavior of the cobot, generates a 3D path
of the entire kinematic chain to move the end-effector from the initial pose to the
desired final pose. The planned trajectory must be feasible, satisfying the physical
constraints of the robot, as well as the constraints imposed by the environment due to
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the presence of static obstacles (i.e., fixed and already present in the environment at
the time of planning).

5. Trajectory re-planning: This represents a further fundamental planning module to
increase the robot’s autonomy in case of dynamic obstacles (i.e., moving obstacles
that can appear within the scene at any time). It has two subtasks responsible for
detecting collisions with dynamic obstacles and for avoiding them. Specifically, the
first performs continuous collision checking between the cobot and the surrounding
environment along the path, while the second re-plans a new path to avoid the
detected collisions. This latter can be managed both with a global planner that
plans a new path from the current state to the goal taking into account the updated
environment and, more efficiently, with a local planner that updates the plan only
around the potential detected collision.

6. Motion control: This is the low-level task responsible for executing the trajectory
planned by the high-level tasks on the real cobot, controlling the robot’s actuators to
follow the planned trajectory. Alternatively, it can also handle the execution of this
plan in simulation.

7. Manipulation: This refers to the ways robots physically interact with and modify the
environment and objects around them with a wide range of actions such as grasping,
packaging, assembling, or cutting, depending on the end-effector attached to the end
of the robotic arm. All these actions require an appropriate control of the robot’s end-
effector. This is a task difficult to generalize because it heavily depends on the specific
required manipulation action and on the type of end-effector used to accomplish it.
As an example, the same grasping action for a pick-and-place task can be done both
with suction cups or with a two-finger gripper. This choice, which should be based
on the type of object to be grasped, determines a different tool control interface (e.g.,
suction/release commands instead of open/close) and a different grasp planning
(e.g., suction cups require as contact point a flat facet near the object’s center of mass
to maintain stability, while a two-finger gripper requires two parallel facets at an
appropriate distance).

Figure 2. Main tasks for enhancing cobot autonomy.

Each of these tasks individually handles a specific problem, but none of them alone can
ensure the desired enhanced autonomy achievable only by appropriately interconnecting
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them, for example, as shown in Figure 3, in which task interconnection and consequent
grouping into layers is proposed for a fixed-base robot.

In Figure 3, the starting layer is a perception layer resulting from the combination of
the perception task with the recognition task; the latter, if necessary, interprets the raw data
pre-processed (e.g., filtered and/or fused) by the former to extract the information needed
for the execution of the other tasks.

Figure 3. Main layers and module interconnections of a fixed-base robot.

The planning layer is the core layer of the architecture, responsible for making de-
cisions on how the robot should behave at each level, from the type of action it should
perform (the high-level behavior task) to the details of how the action must be executed in
terms of motion of both the robot and its end-effector (the low-level planning, re-planning
and manipulation tasks) adapting to the current scenario and the surrounding environment.
This layer requires the information provided by the perception layer (and specifically by the
recognition task) and provides as output a motion plan that must satisfy the robot’s physical
limitations, the perceived environmental constraints, and some goals that could be either
predefined or externally requested or inferred from perception. This is the most complex
layer responsible for the logic ensuring the desired higher level of autonomy.To ensure
the highest level of autonomy, the behavior task should not be limited to a predefined
sequence of actions depending on a fixed required goal, but it should use the perception to
decide autonomously both the goal and the best sequence of actions to achieve it. Then,
for each scheduled action, the lower-level planning is entrusted to the other three tasks
and specifically to the planning and re-planning ones, whose close interaction allows the
robot to react to static and/or dynamic obstacles, preventing collisions. Specifically, the
planning task is ideally invoked only once to plan a feasible trajectory from the starting
pose to the goal position required by the current action, while the re-planning task is exe-
cuted continuously to monitor potential collisions and, if necessary, takes action to locally
modify the trajectory, finally invoking the global planner again if the local re-planning fails.
The proposed architecture also includes a manipulation task to emphasize the need for
a particular action, such as manipulation. Even if this action could be managed by the
other modules, a dedicated task should be allocated for it for its complexity and specificity
(e.g., it concerns not only the planning of the robot but also of the end-effector). Further
details on this topic, which will not be explored in this paper for the sake of brevity, can be
found in [71,72].

The last layer is the control layer with the motion control task that ensures the execution
of the plan computed by the planning layer. Where the robot and its end-effector are
provided with high-level interfaces this task can be performed by a mere interface that
sends commands to the robot and its end-effector; otherwise, the implementation of an
appropriate feedback controller is required, which will also require the robot state provided
by the perception layer.
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3.3. Industrial Application Overview

Implementing at different levels the architecture described above, currently nontrivial
or even impossible tasks for commercial cobots become feasible. This section briefly
describes some of the more interesting industrial applications, focusing on those made
possible by the implementation of a perception module that uses depth cameras to perceive
the surrounding environment in 3D. More extensive surveys are available in [9,73,74].
For some specific applications, a single camera may be sufficient, but it could be affected
by occlusion when certain areas in the scene are hidden from the camera’s field of view,
leading to incomplete depth information. Increasing the number of cameras is a simple
and feasible solution, but it involves increasing the complexity of the perception layer [75].

Access to depth information about the surrounding environment and manipulated ob-
jects enables cobots to successfully complete their tasks despite dynamic environments and
changing scenarios. Specifically, the recognition of the spatial pose of the object and of its
size enables tasks such as flexible grasping [76–78] and flexible palletization/packaging [79].
While commercial robots are primarily trained to recognize and grasp specific, identical
objects from the same surface (usually a flat surface), with additional information about
the position and size of objects, these can be used to adapt tasks from static conditions
to changing conditions (e.g., change in the type of object, its spatial location or pallet-
ing/packaging) without the need of manual reprogramming. This obviously requires
adequate development of the perception layer, to perceive and recognize the objects with
which the robot must interact, and of the planning layer (i.e., behavior, planning, and
manipulation) to adapt the robot’s behavior to changes in the properties of these objects.
Similarly, the same depth information, but about the surrounding environment, is the key
to enabling proper trajectory planning that can avoid static obstacles in an unknown and
unstructured environment as well as online trajectory re-planning to deal with dynamic
obstacles [77,80]. Again, the perception layer is essential for reconstructing the external
environment, keeping it up to date, and for estimating the movement of dynamic obstacles,
while the tasks of the planning layers involved are mainly planning and re-planning, which
are responsible for managing static and dynamic obstacles.

Thanks to these enhanced capabilities, enabled by relatively limited additional hard-
ware and a proper middleware implementation, cobots become capable of performing
standard tasks but in a flexible manner, having the ability to adapt to changing scenarios
and to react to dynamic environments. Moreover, this is also the basis for enabling more
complex tasks, for example, in the field of human–robot collaboration (HRC), where direct
interaction between the human operator and the cobot is required. An overview of the main
industrial applications where HRC is advantageous can be found in [73], where standard
tasks such as handling [81], welding [82], and assembly [83] are discussed. Besides these,
there are also other less common tasks whose efficiency can be improved with HRC such
as disassembly with HRCD (human–robot collaborative disassembly) [84]. In general,
applications of this kind require a higher level of autonomy than simple human–robot
Coexistence, in which the human and robot do not work together but only have to share
the same workspace, and thus the human can be treated as a generic obstacle to be avoided.
While this second scenario can be handled with the use of RGB-D cameras that provide
both depth and image information, tasks requiring a more advanced level of HRC [8]
require the integration of other sensors (e.g., wearable sensors [85]) and/or a more complex
implementation of the layers described above [75,86], but can still be made feasible by
adopting the architecture proposed here. In the following, and especially in the case study
described in Section 5, we will focus only on the first type of these applications, i.e., on how
otherwise standard tasks can be made flexible using additional depth information from an
RGB-D camera.
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4. ROS2-Based Architecture for Enhancing Cobot Autonomy: Current Capabilities
and Limitations

Implementation of the modular architecture described above requires the use of
middleware to easily integrate heterogeneous hardware (e.g., different sensors, robots,
and end-effectors), as well as heterogeneous software components (e.g., those needed to
accomplish individual tasks). For this purpose, several open-source robotic frameworks
are available as alternatives to ROS, such as YARP (Yet Another Robot Platform) [87] for
humanoid robots, OROCOS (Open Robot Control Software) [88] originally applied to both
robots and drones [89,90], and MOOS (Mission Oriented Operating Suite) [91], applied to
the domains of mobile robotics and marine vehicles; an overview of the frameworks can be
found in [92]. Each of them has its own characteristics that make it more or less suitable
for specific types of applications. For example, MOOS was originally developed to support
operations with autonomous marine vehicles and continues to be primarily utilized in the
field of marine robotics. OROCOS was created before ROS as a general-purpose framework
for advanced machine and robot control, and it was the go-to framework when real-time
requirements were in place until the development of ROS2. YARP is another framework
older than ROS that has been mainly used in the domain of humanoid robots where
skills such as visual, auditory, and tactile perception and legged locomotion are central,
whereas ROS has a higher focus on mobile robots and provides more tools on navigation
and planning. Moreover, even if both of them are under active development and provide
features for general-purpose robots, ROS supports more robots and remains the most widely
used framework among all of them. As a result, ROS, and in particular ROS2, is proposed
as the most suitable middleware to implement the framework described in Section 3 not
only because of its spread, but also because it provides the features previously described
in Section 2, such as the structured communication layer and hardware abstraction, along
with libraries, tools, and utilities that implement state-of-the-art algorithms and facilitate
functionality (e.g., visualization and debugging) useful to rapidly build robotic applications.
This choice is also motivated by the large and active ROS community that contributes to its
development and maintenance, as well as to the creation and distribution of packages and
resources solving classical problems encountered in robotics applications, including some
of those that the proposed architecture aims to address. The disadvantage of this choice
lies in the fact that ROS2 is relatively recent (the first Ardent distribution was released
in 2017). It has not yet fully replaced its previous version (to which henceforth we will
refer as ROS1 for clarity, using instead ROS to indicate the middleware in general and
regardless of the specific version), and new applications are still being developed in ROS1
because the migration of all the components implemented in ROS1 to ROS2 is ongoing and
documentation about it is still lacking.

This section is devoted to analyzing how ROS2 can be used to develop the proposed
general high-level architecture, showing what is currently implemented and available in
ROS2 for the development of each layer and task and what their potential limitations are,
with an emphasis on similarities and differences from ROS1. The general idea is to have
a single ROS2 application, in which each module in Figure 3 is implemented by one or
more nodes grouped in one or more packages and communicates with others using the
standard communication mechanisms provided by ROS. Specifically, each module exposes
as an interface a set of ROS topics, services, and/or actions to offer information and/or
functionality to other modules and to gather the necessary data and/or request services
from other modules. In the following, each module is analyzed independently while also
dealing with its interfaces exposed to the rest of the ROS application.

In detail, only the basic tasks necessary to achieve a general level of autonomy that
is not strictly task-specific will be explored. Both behavior planning and manipulation,
which are the most task-dependent and the least generalizable in ROS, will therefore not be
thoroughly investigated. They will have to be the subject of further specific investigations.
Indeed, as far as the manipulation task is concerned, ROS offers specific functionalities
worth exploring, but this problem deserves a dedicated investigation given its extent and
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complexity (see, e.g., [72]). Similar reasoning applies to behavior planning, at least when it
is addressed at the highest level and is not limited to predefined sequences of actions (see,
e.g., [93]), as will instead be addressed later.

4.1. Perception

This module is responsible for gathering from the robot and other external sensors
the raw data needed to know the state of the robot and its surroundings. As for the data
to be acquired directly from the robot, manufacturers usually allow access to the robot’s
state, but there is no standard either on the type of information accessed or the interfaces
exposed; they often provide more than one way to obtain the same data. For example, in the
aforementioned OMRON Techman TM-series cobot, variables such as joint angles, speeds
and torques, or TCP pose, can be read either using the Modbus protocol [94], accessing
dedicated registers, or by connecting to a dedicated TCP socket server (i.e., Ethernet Slave)
that allows clients to read the variables specified by the programmer in the dedicated Data
Table and use them for different purposes. For example, in [95], it was used to perform
cobot fault detection by applying signal-based diagnosis [96], while in [97] it was used for
anomaly detection of abnormal cobot behavior. On the other hand, the same cobot does
not make the data from the integrated eye-in-hand RGB camera accessible from the outside.
As a result, generally, the acquisition of the robot’s state cannot be entrusted to standard
ROS packages, and this submodule of the perception task must be handled by a specific
low-level module that serves as the cobot driver, the same module that is also responsible
for sending commands to the physical robot and that will be used in the Section 4.5. Apart
from this hardware-specific part, which is not necessary when working in simulation,
ROS2 provides tools for managing and using the robot’s state that is essentially unchanged
from ROS1. While the use of this information will be addressed in later modules, for the
perception task only, the only aspect to highlight is the need to have an /joint_states topic,
which is the standard ROS interface for publishing the current state of the robot (real or
simulated) [98]. This is an ROS channel where standard sensor_msgs/msg/JointState messages
are sent containing the state of a set of joints (rotating or prismatic) in terms of position,
velocity, and torques applied to the joint. This real-time information, combined with the
prior knowledge of the physical parameters of the robot (i.e., dimensional, geometric,
kinematic, and dynamic parameters) provided to ROS with the unified robot description
format (URDF) [99], is all that is needed to have complete information of the robot’s state
in terms of pose, as will be shown in the recognition module. In summary, the only thing to
be handled in this module, as far as this first part of perception is concerned, is to ensure
the publication of the subject /joint_states. The publisher should be the robot driver of a real
manipulator or the simulator (e.g., Gazebo [100]) in a simulation scenario.

Regarding the perception entrusted to additional external sensors, the same concept
applies, with ROS/ROS2 providing standard interfaces that must be implemented by the
low-level modules handling real/simulated sensors. Again, sensors from different man-
ufacturers, even more if of different types, require hardware-specific drivers that can be
already available (sometimes provided by the same vendors) or to be developed. Despite
the specific implementation, what should be standard in order to exploit existing ROS
functionality are the topics where sensor data are published or rather their message types.
In ROS2, this is ported from ROS1. sensor_msgs is a standard ROS package containing
the definition of many messages relating to sensor devices such as cameras, inertial mea-
surement units (IMUs), and laser range-finders [101]. For example, for an RGB camera,
there is sensor_msgs/msg/Image, a message type intended to contain an uncompressed image
with a header with fields such as timestamp, frame_id of the camera, image dimensions in
pixels and encoding (e.g., rgb8), and a body that is the actual data matrix. Similarly, for
a depth camera there is the message sensor_msgs/msg/PointCloud2 (previous PointCloud is
deprecated since ROS2 Foxy) with information including timestamp, frame_id, dimensions
in pixels (point-cloud data may be organized 2D, i.e., image-like, or 1D, i.e., unordered),
number of fields with their dimensions (e.g., x, y, z coordinates and RGB value) and the
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actual point cloud. The implementation of these topics allows, for example, the immediate
visualization of these RGB and depth data in RViz2 (i.e., the default 3D visualization tool
for ROS2) as shown in Figure 4. Just selecting the desired standard topic enables RViz to
subscribe to it and to display its data in real time.

Figure 4. Visualization of Image and PointCloud2 messages in RViz2.

The last aspect to analyze is the eventual pre-processing of the acquired raw data that
could make use of state-of-the-art algorithms already implemented in ROS. Regarding this,
the porting to ROS2 is still ongoing, and it is still not uncommon to find algorithms working
in ROS1 that are not yet available for ROS2. As an example, the imu_filter_madgwick is a
package available in ROS1 to fuse angular velocities, accelerations, and optionally magnetic
fields from a generic IMU into an orientation given as a quaternion and to publish the
result on a sensor_msgs/msg/Imu topic that was ported to ROS2 Eloquent only in 2020. Thus,
summarizing, the main advantages of using ROS for the perception module are as follows:
standard interfaces allowing, once implemented, to easily replace sensors (e.g., switching
from a virtual sensor to a real one), and the availability of open and customizable packages
to solve standard pre-processing problems and utilities such as RViz. On the other hand,
the main limitation lies in the need for specific and not always available drivers to handle
equally specific hardware, but this is a problem inherent to the absence of standardized
interfaces on cobots and sensors that is not caused by ROS.

4.2. Recognition

The recognition module, being in charge of further processing the pre-processed data
published by the perception module to extract all the information required by the following
tasks, is highly dependent on the features planned for the other modules. Limiting this
analysis to the application on which this work focuses (Section 3.3), recognition is related
to the following aspects:

• Cobot state;
• Environment reconstruction;
• Object recognition/classification.

Concerning the state of the cobot, as anticipated, there is a standard ROS package,
the Robot State Publisher, responsible for publishing the state of the robot, thus making it
available for all the components [99]. Specifically, it retrieves the kinematic tree model of the
robot from the URDF contained in the parameter robot_description, updates it with the joints
state by subscribing to the /joint_states topic, calculates the resulting 3D poses (position
and orientation given as a quaternion) of all the links with the forward kinematics, and
publishes them to tf2 using the /tf topic dedicated to the movable joints. Tf2 is Transform
Library Version 2 (previous tf version is deprecated since ROS1 Hydro), an ROS package
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dedicated to keeping track of multiple coordinate frames over time in a tree structure and
to allow the user to easily perform transformations between these coordinate frames at
any desired time, as long as they are connected in the tree. This last package should be
used to handle not only the robot frames but also the coordinate systems of sensors such as
cameras, where knowing the image reference frame is crucial for its correct interpretation.
The difference is that sensors often involve static coordinate transformations related to
fixed joints that are handled by a different node, static_transform_publisher, published on
a different topic, the /tf_static, but with the same message type. As an example, Figure 5
shows how RViz2 visualizes all the frames in the tree structure, including the one related to
an external camera mounted on an external support.

Figure 5. Visualization of the coordinate frames in RViz2.

More complex but still largely handled by ROS is the environment reconstruction. ROS
provides several functionalities to automatically import information retrieved by the sensor
into the virtual 3D scene where the robot is modeled and that is used for the trajectory
planning [102]. Restricting again to our specific application in which the perception of the
environment is entrusted to a single depth camera in an eye-to-hand arrangement, the
problem is how to update the 3D environment surrounding the cobot using data provided
by an RGB-D camera with the sensor_msgs/msg/PointCloud2 type messages described in
the previous section. On ROS2 this issue is handled by the PointCloud Occupancy Map
Updater. This is a plugin of MoveIt2 (see Section 4.3) that takes as input the standard point-
cloud message mentioned above and uses it to update the representation of the external
environment, knowing the pose of the camera reference frame in the world. In doing so,
the plugin can also eventually apply self-filtering to identify and remove the robot itself
from the point cloud. This process is also called self-identification and is necessary when
the camera is used in an eye-to-hand arrangement that provides a wider viewing angle, but
involves the problem of segmenting the robot from the environment during the point-cloud
processing. This segmentation is required in order to remove the robot shape from the 3D
scene and thus to avoid the robot itself being considered as an obstacle [103]. This can be
accomplished using the robot state (i.e., the above-described combination of URDF and
joint states provided by this module) to know its occupancy space. Figure 6 shows the
effect of this kind of filtering by placing side by side the RGB image, the original point
cloud published by the camera driver, and its filtered version published on a different topic
by the PointCloud Occupancy Map Updater mainly for debugging. Note that in the last figure,
the color scale is associated with the distance of the framed object from the camera.
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(a) RGB image (b) Point cloud (c) Filtered point cloud

Figure 6. Processing the point cloud with self-filtering.

Once the filter is applied, the new filtered point cloud is used to build a 3D occupancy
grid using OctoMap, an ROS library based on octrees and on probabilistic occupancy
estimation [104]. This map, composed of fixed-sized cubes (and settable size) called voxels
that explicitly represent not only occupied space but also free and unknown areas, can
be used to keep the PlanningScene subcomponents related to the external environment
up-to-date. The PlanningScene is the object used in ROS for storing the representation
of both the world around the robot and the state of the robot itself, which are needed
to perform collision checking and to compute motion plans (see Sections 4.3 and 4.4).
Figure 7, on the other hand, shows the operation of the Planning Scene Monitor, which is
a standard ROS2 component, belonging to the MoveIt2 framework (see Section 4.3) but
ported from ROS. It is responsible for maintaining, updating, and publishing the state of
the PlanningScene using different sources of information, including the robot state and the
occupancy map [102]. In particular, the updated PlanningScene is published on the topic
monitored_planning_scene having type moveit_msgs/msg/PlanningScene that is heavily used
by the planning and re-planning modules.

Figure 7. Planning scene monitor [105].
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As an example, Figure 8 shows a PlanningScene reconstructed by combining the prior
knowledge of the environment, the state of the robot, and the occupancy map extracted
from the filtered point cloud obtained from the external camera, as described above.

(a) Real scene (b) Planning scene on RViz2

Figure 8. Reconstruction of the planning scene.

Finally, the problem of object detection must be addressed; it involves using the RGB
image provided by the camera to classify and recognize specific objects in the scene with
which the robot must interact (e.g., to grasp or avoid them), or of which it must be aware of
the presence (e.g., markers or human workers). This problem, unlike the previous ones,
does not have a standard solution even in ROS1. However, there are unofficial GitHub
repositories that deal with it, such as darknet_ros, an ROS package (also tested for ROS2
Foxy) for using YOLOV3 (You Only Look Once Version 3 software library) within ROS [106].
YOLO currently represents a state-of-the-art library for object detection that is known for
its speed and accuracy. This library applies a single fully convolutional neural network
(CNN) to the entire RGB image to detect and classify objects on which its model has been
pre-trained. In particular, the repository [106] makes it easy to configure the trained model
as well as the topic from which images will be taken, and it publishes detection results
on dedicated topics in both image and list form. Already standard, on the other hand, is
the interfacing of ROS with OpenCV, an open-source software library for computer vision,
machine learning, and image processing written in C/C++ also having interfaces in Python
and Java [16,17]. In ROS1, there exists vision_opencv, composed of the packages cv_bridge
(i.e., the bridge between ROS image messages and image representation used by OpenCV)
and image_geometry (i.e., a collection of methods for dealing with image and pixel geometry),
this is the standard that implements this interface, and it is currently reported that it is
partially ported to ROS2, although the main features are already available. Figure 9 shows
an example of image processing to compute the centers of contour/shape regions thanks
to the functions provided by OpenCV, such as apply_canny, which implements the Canny
algorithm for edge detection [107], and findContours, which finds curves on edge joining all
the continuous points with the same color or intensity.

In summary, ROS2 makes available most of the features required by a recognition
module, thanks to the abstraction introduced by the perception module, although not
everything has yet been ported from ROS1, and currently implemented algorithms can be
improved and/or easily replaced thanks to the modularity of ROS.
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(a) RGB image (b) Edges detected by Canny (c) Contours and centers

Figure 9. Example of image processing with OpenCV.

4.3. Trajectory Planning

In ROS2, the trajectory planning module, which is responsible for planning a feasible
global trajectory to move the robot from a starting point to a goal pose, can be implemented
by leveraging MoveIt 2, the direct porting in ROS2 of the previous version MoveIt [102]. It
is a set of ROS packages that constitute a motion planning framework that provides APIs
and graphical tools to help solve standard problems relating to motion planning, collision
avoidance, and also manipulation. Its main strength lies in providing both off-the-shelf
solutions that implement state-of-the-art algorithms and a general framework that can be
customized by developing its own algorithms. The core of this framework is the node
move_group, responsible for pulling all the individual subcomponents together and for
interfacing them with the external world, encompassing, on the one hand, the cobot and
additional sensors (i.e., perception, recognition, and motion control modules) and, on the
other hand, those requiring MoveIt services/actions, i.e., the user, through a dedicated
GUI on RViz2, or the rest of the ROS application (e.g., behavior planning module) through
dedicated interface packages. A simplified schematic of MoveIt2 architecture is shown in
the Figure 10, illustrating how MoveIt services (i.e., user interface) can be called, how the
framework acquires the state of the robot and environment and requests plan execution to
the robot controllers (i.e., robot interface), and some of its main subcomponents. Concern-
ing the latter, we can observe the Planning Scene Monitor described in the previous section,
the Collision Detection, which is responsible for the robot’s self-collision and environment
collision checks, and the Planning Interface, which takes charge of the motion plan request to
move the robot from a start pose to a different one (expressed in joint space or operational
space) and responds with a motion plan result that satisfies all the imposed constraints.
Both the Collision Detection and the Planning Interface components rely on external libraries
to implement collision detectors and motion planners. Specifically, MoveIt provides de-
fault libraries that allow the framework to be easily and quickly tested, which can be
easily customized and/or replaced, making MoveIt highly adaptable. The default motion
planning library is OMPL (Open Motion Planning Library), implementing many state-of-
the-art sampling-based algorithms such as RRT (Rapidly Exploring Random Tree), PRM
(Probabilistic Roadmap Method), EST (Expansive Space Trees), and KPIECE (Kinodynamic
Motion Planning by Interior-Exterior Cell Exploration) [108,109]. Other available planners
are CHOMP (Covariant Hamiltonian Optimization for Motion Planning) [110], STOMP
(Stochastic Trajectory Optimization for Motion Planning) [111], and Pilz Industrial Motion
Planner. Concerning collision detectors, the default is FCL (Flexible Collision Library) [112],
while an available alternative if continuous collision detection is required is the Bullet
library [113]. Finally, it should be noted that, while modification of the motion planner is
relatively straightforward, especially if working with OMPL, replacement of the collision
detector requires modification and recompilation of MoveIt2 packages.
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Figure 10. MoveIt2 architecture.

In conclusion, ROS2 through MoveIt2 offers a powerful framework for motion plan-
ning that, besides being highly modular and customizable, even in its standard imple-
mentation, offers advanced features such as planning to avoid collisions with the external
environment perceived by an exteroceptive sensor like a depth camera. As an example of
this, Figure 11b shows how MoveIt2 plans a feasible trajectory (in gray a snapshot) from
a start state (in green) to a goal state (in orange) in an environment reconstructed in the
form of an OctoMap from the point cloud acquired by a camera (the red voxel) mounted
on an external support above the table. The real environment and the camera positioning
can be seen in Figure 11a. This trajectory planning was achieved by using the default
configuration of MoveIt2, i.e., FCL as the collision detector and RRTConnect as the motion
planner from OMPL, all of which is shown by taking advantage of the MoveIt plugin for
RViz that allows, among other things, the planned trajectory to be graphically displayed
before executing it on the real or simulated robot.

(a) Real scene (b) Trajectory planned in reconstructed scene

Figure 11. Example of trajectory planning.

4.4. Trajectory Re-Planning

The trajectory re-planning module is responsible for detecting collisions with dynamic
obstacles and for modifying the plan to avoid them. It requires more advanced features than
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the previous module because real-time requirements must also be met. In principle, without
these constraints, dynamic obstacles could be handled as static ones, taking advantage of
the MoveIt2 functionalities described in Section 4.3. During the execution of the trajectory,
initially planned by the previous module, the planning scene is kept up to date by the
Planning Scene Monitor, and this information is used by the Collision Detection to check
for collisions between the updated scene and the first subsequent steps of the planned
trajectory. If there is an impending collision, the motion planner is invoked again on the
new scene to generate a new trajectory from the current state to the initial goal. This
type of approach is inapplicable in practice, unless the obstacles are particularly slow,
because scene updating, collision detection, and motion planning are time-consuming
operations. Despite this huge limitation, this was the only available re-planning strategy in
MoveIt [114] and is still the default in MoveIt2 where, however, a new general approach,
Hybrid Planning, is being introduced [115]. This is an already well-established approach
in the ROS community focused on navigation (existing since ROS Navigation Stack for
ROS1) that relies on combining heterogeneous motion planners with different speeds and
scopes in order to make the robot responsive to dynamic environments. Specifically, the
idea is to rely on a slower global motion planner to generate an initial offline motion plan
and on a faster local motion planner to replan when this global solution is invalidated by
the appearance of a new obstacle in the robot’s surroundings. The global planner works
following the standard MoveIt pipeline described in Section 4.3. The novelty concerns the
local planner. It is invoked when the scene is updated due to the appearance of dynamic
obstacles to modify only the global plan, adjusting it on the fly according to real-time
scene information. Because of this, the local planner must meet opposite requirements
compared to the global one, such as determinism, real-time, and low computation time,
while completeness is not required. As a result, the local planner implements different
algorithms, such as potential field planner or model predictive control (MPC). If local
re-planning fails, the global motion planner can be triggered again to achieve the desired
goal. Thus, the hybrid planning approach also requires an Hybrid Planning Manager to
invoke and coordinate the planners based on a customizable event-based logic, as can be
seen from the hybrid planning architecture shown in Figure 12. A noteworthy aspect of this
architecture is that the local planner implementation is based on two plugins: the Trajectory
Operator Plugin, which monitors the global reference trajectory and determines the local
problem, and the Solver Plugin, which solves it based on the local constraints.

Figure 12. Hybrid planning architecture.
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Like everything else in ROS, this architecture is designed to be highly customizable
with each component (i.e., Planning Logic Plugin, Global Planner Plugin, Trajectory Opera-
tor Plugin, and Solver Plugin) that can be completely replaced by a customized version
as long as it offers the required interfaces. At present, both the above-described archi-
tecture and an example demo using currently available plugins are implemented in the
moveit_hybrid_planning package belonging to the main version of MoveIt2. However, there
are not many applications using this new approach that can still be refined. This is therefore
one of the modules with the greatest potential for further development.

4.5. Motion Control

The last module to be investigated is the low-level module that handles the execution of
the plan on the real/simulated robot. This module should also act as the driver of the robot,
providing not only the interface to send commands to the robot and/or to its end-effector
to execute the plan, but also to obtain their status in order to expose it as required by the
perception module. However, since the robot state acquisition has been already addressed
in the perception module, here, we will focus on control, but the concept is the same. As
anticipated in Section 4.1, at least when dealing with real robots, a specific driver is needed
for specific hardware because there are no standard interfaces and different manufacturers
expose different and multiple ways to send commands to their products. As an example,
the already-mentioned OMRON TM-series cobots support an External Script mode, through
which the cobot can receive motion commands from the outside using another socket TCP
server with the dedicated application-level protocol TMSCT. In this case, the motion control
module must take care of translating the plan computed by the higher-level modules into
a sequence of commands recognized by the robot and sending them out. Therefore, it is
clear that the part of this module responsible for the communication with the robot must be
hardware-specific. What can and should be standardized to use existing ROS functions, as
with the perception module, and are the interfaces exposed to other modules? Specifically,
the motion control module must offer the action server invoked by MoveIt controllers to
request the execution of the planned trajectory. The type of this action must be specified in
one of the MoveIt configuration files (i.e., controllers.yaml), along with the controllers [102].
One of the most used actions is FollowJointTrajectory, a standard ROS action defined in
the MoveIt package control_msgs in order to require the execution of a trajectory specified
in the joint space in terms of either positions, velocities, and accelerations, or positions
and effort. Alternatively, other types of controllers are available that deal with single-
point control and are divided into three groups according to the command type in output
(i.e., position_controllers, velocity_controllers and effort_controllers). For example, in the last
group, the controller joint_position_controller receives a position as input and sends an
effort as output to the hardware interface using a PID controller. The choice of the specific
controller must be taken based on the interface available on the specific robot and must be
followed by its implementation on the robot driver.

5. Example of Using the Framework to Increase Cobot Autonomy: A Proof of Concept

In this section, the general architecture described in Section 3 is applied to a specific
case study in order to show with a practical example how the ROS2 features analyzed in
Section 4 can be exploited. The main objective is to enhance the autonomous capabilities
of a fixed-base cobot using a single external depth camera to enable it to autonomously
perform a predefined task (e.g., pick and place) in a dynamic and changing environment.
Taking advantage of the visual and depth information provided by the supplementary
camera, an ROS2 application was developed to make the cobot able to adapt the grip to
different objects to be moved and to adapt the trajectory to the presence of static obstacles
not known in advance. This level of autonomy cannot be achieved just by using standard
GUIs provided by manufacturers, because manual reprogramming would be required for
each change in environmental or working conditions.
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5.1. Hardware and Software Setup

The proposed case study is applied to an OMRON TM5-900 cobot, a 6-DOF (degrees
of freedom) collaborative manipulator of the TM-series produced by Techman Robot and
distributed by OMRON Corporation. This cobot has only an integrated RGB camera
and is a good example of a typical cobot whose degree of autonomy can be improved
by using ROS2 to implement the proposed architecture. For the pick-and-place task
execution, the cobot has been equipped with a two-finger gripper for small components
with an I/O digital interface, specifically the Coact EGP-C from Schunk. The environment
perception is entrusted to a depth camera, namely an Intel RealSense Model D435i, a
compact device integrating, among other things, an RGB camera, a stereo camera, and
an onboard processor. This stereo camera can provide image frames with a maximum
resolution of 1280 × 800 pixels at a maximum frame rate of 30 fps and has a field of view
(FOV) of 87° × 58°. For this proof of concept, we choose to use a single camera in an
eye-to-hand arrangement, mounting it on an external support above a table where the arm
is fixed and at a height of about 81 cm to obtain an overhead view of the cobot’s work
area. Figure 13 shows the hardware setup arranged for the proof of concept and highlights
with dashed colored lines the individual components just described. As for the software
configuration, the ROS2 application was developed using the ROS2 Foxy distribution on a
PC with Ubuntu 20.04 installed, which is the LTS (long-time support) version compatible
with the chosen ROS version.

Figure 13. Hardware setup.

5.2. Software Architecture

To implement the proposed case study, the general architecture in Figure 3 was
declined into a specific software architecture as shown in Figure 14. As mentioned earlier,
only the core modules analyzed in Section 4 were developed, leaving out not only the more
advanced tasks of planning and behavior manipulation, whose basic logic is embedded in
the planning task, but also re-planning. In fact, for this preliminary proof of concept, only
static obstacles were considered because the main objective is not in the planning logic but
in showing a practical example of how the overall architecture can be implemented using
ROS2 on a real system, thus building the basic infrastructure on which future applications
will be developed and offering a proof of its potential.
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Figure 14. Software architecture.

With this in mind, the developed ROS2 application exhibits the behavior represented
by the block diagram from Figure 15 and described in the following. The cobot initially
moves to a predefined position (referred to as Photo_Position), chosen so as not to obstruct
the camera’s field of view. Then, the camera scans the scene to find the object to be grasped
and the static obstacles to avoid. Once their positions and sizes are calculated, the robot
first performs the pick operation, reaching a target pose based on the retrieved object
information, followed by the placing operation, which is planned to navigate around
obstacles that may obstruct its path.

Figure 15. Software flowchart.

The following subsection will explain the implementation of each layer in the software
architecture depicted in Figure 14 in order to achieve the desired behavior.

5.3. Perception Layer Implementation

The perception module is the starting point of the implementation. It is composed of
two nodes: the Camera Driver for the environment perception and the Cobot Driver, which,
in this layer, is responsible for the cobot state acquisition. The first exploits ROS2 packages
provided by camera manufacturers in a GitHub repository to use the Intel RealSense D400
camera series [116], to which the D435i model used here belongs. This driver was used both
as an interface for the depth camera, to easily configure it with a list of available parameters,
to acquire RGB and depth images, and as an interface for the rest of the application, to
publish these data in the standard ROS topics Image and PointCloud2. The example in
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Figure 4 is obtained using this Camera Driver with the Intel RealSense D435i camera. The
Cobot Driver node instead implements the interface towards the TM5-900, and also, in
this case, it leverages the dedicated ROS2 driver provided by the cobot manufacturer as
a GitHub repository [117]. Among the functionalities offered by this driver, there is the
publishing of the standard JointState topic, based on joint data acquired from the cobot using
the already-mentioned socket TCP server Ethernet Slave with the dedicated application-level
protocol TMSTA once the Data Table is appropriately defined from cobot side. Therefore,
the implementation of the perception module became quite simple due to the availability
of ROS2 Foxy-compatible drivers for both the camera and the robot. Otherwise, it would
have been more complex, given the need to develop them from scratch.

Of further interest is the development of the recognition module, at least as far as
the environment around the robot is concerned. In fact, the state of the cobot is handled
in the standard way already discussed by its driver, which also incorporates the URDF
model of the robot. Environment reconstruction, on the other hand, is not handled by
the MoveIt plugin in PointCloud Occupancy Map Updater, but is performed by manually
adding obstacles to the planning scene based on their size, orientation, and center position
information that can be extracted from camera images once their shape is detected with
OpenCV libraries. Indeed, OpenCV is used to process the RGB image acquired when the
robot is in Photo_Position firstly to find the obstacle contours, using the already-mentioned
apply_canny and findContours functions. Subsequently, both the pixel dimensions and
orientation of its smallest bounding rectangle are calculated with the minAreaRect function,
while the pixel corresponding to the obstacle centroid is obtained using image moments
given by a different OpenCV function (i.e., moments). The position of the obstacle’s center in
the cobot reference frame is calculated from the pixel coordinates of the detected centroid,
first determining the spatial position x, y, z on the camera frame of the corresponding pixel
in the point cloud, and then using Tf2 to change the reference frame. A more complex task is
to find the size and orientation of the obstacle from the bounding rectangle returned by the
OpenCV function. Regarding sizes, it is necessary to convert them from pixels to a distance
measure (e.g., centimeters) using both the information about the obstacle’s distance from
the camera (i.e., the z coordinate of its center position in the camera frame) and the size
(centimeters) of the single pixel in the image acquired at a predefined distance. Finally,
the orientation of the obstacle in the cobot’s frame is obtained by the angle of rotation of
the bounding rectangle returned by the same minAreaRect function (i.e., the angle between
the rectangle base and the horizontal axis). In this way, all the information is available to
update the initial scenario by means of PlanningScene, including only the fixed obstacles
(i.e., table and camera support), where the detected static obstacles were added to the scene
as CollisionObject. Figure 16 shows an example of the updated PlanningScene obtained with
this manual procedure, and displays on RViz2 in red color the added obstacle, i.e., the black
box on the real scene.

(a) Real scene (b) Updated PlanningScene

Figure 16. Example of scene reconstruction.
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The same approach used to identify the x, y, z position of the obstacles in the cobot
reference frame can be adopted also to determine the center of the object to be grasped.
This will be used to plan the pick action.

5.4. Planning and Control Layer Implementation

The planning layer relies on the standard planning pipeline provided by MoveIt2 and
implements a basic logic, thus not requiring its division into behavior planning, trajectory
planning, and manipulation. However, this is sufficient to increase the cobot’s level of
autonomy, allowing it to adapt its picking and placing operations to variable but static
scenarios. In particular, this flexibility concerns two aspects that are handled by this layer.
The first is related to the possibility of changing the position and size of the object to be
grasped without the need to manually reprogram the cobot thanks to the identification
of the target pose for the picking action from the information provided by the perception
layer. The second concerns the avoidance of collisions with static but unknown obstacles
in the robot’s workspace. This is ensured by updating the PlanningScene as described
in the previous section and by using it for the trajectory planning of the single actions.
Both aspects can be easily handled by resorting to the standard functionalities offered by
MoveIt2 and described in Section 4.3. In particular, for this preliminary proof of concept,
the default MoveIt2 settings were retained, which include FCL for collision detection and
RRTConnect from OMPL for motion planning.

Lastly, the control layer is devoted to enabling the execution of the planned pick and
place on the real robot. Conceptually, it consists of two nodes, the Cobot Driver, which
here fulfills the task of sending commands to the cobot, and the End Effector Driver to
control the gripper. For the simple gripper here adopted, which only provides a digital I/O
interface that can be connected to the cobot’s control box, the driver relies on that of the
robot, which, among other things, provides read-and-write services to the robot’s digital
channels. The End Effector Driver simply requests these services to send commands for
opening and closing the gripper fingers in order to grasp and release the object during the
pick-and-place actions. Concerning the Cobot Driver, as already anticipated, there is an
off-the-shelf driver provided by Techman that implements the TMSCT protocol to control
the cobot from the outside using the External Script mode. This driver not only offers
other dedicated services to be requested in order to send generic commands to the robot
(including a QueuTag command to monitor the execution of the other commands) but also
directly implements the FollowJointTrajectory action supported by MoveIt. Specifically, this
action server receives in the action goal the trajectory to be executed and translates the
sequence of planned points into a sequence of commands of type PVTPoint, each of them
specifying the target position, velocity, and duration of the movement that the cobot will
execute, and sends them out.

By combining the above-described perception, planning, and control layers, an ROS2
application is developed. It enables the cobot to perform a pick-and-place operation with
a higher level of flexibility and autonomy. An example of the achieved results is shown
in Figure 17. The two subfigures show how the cobot is able to grasp the detected object
(i.e., a small black box in the gripper of the right-hand figure) by reaching the final pose
(the green-colored configuration of the left-hand figure). The planning takes into account
the pose and size of the object and places it in the desired pose (see the orange-colored
configuration). This goal pose is reached while avoiding collisions with external objects
in the environment consisting of both the initial scene (i.e., the tabletop and the camera
support in light gray) and the newly detected obstacle (the large black box in the figure on
the right, corresponding to the red box in the figure on the left).
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(a) Planning Scene on RViz2 (b) Place execution

Figure 17. Example of pick-and-place execution.

6. Conclusions and Future Works

This work analyzes the use of ROS2 as middleware to implement modular and cus-
tomizable architectures aimed at increasing the autonomy and flexibility of commercially
available fixed-base robots, with a particular focus on industrial cobots. In addition to
providing an extensive review of the literature regarding ROS2 and its applications, the
paper surveys what is currently implemented and available in ROS2 for the development
of each module and layer of the proposed high-level architecture, describing their poten-
tial and limitations, with particular emphasis on similarities and differences from ROS1
and highlighting both ready-to-use components and those still in development and/or
requiring custom implementation. A proof of concept is provided using the ROS2-based
framework in a specific case study involving an OMRON TM5-900 cobot equipped with
an external depth camera, in order to show how to exploit the analyzed ROS2 features to
enable the cobot to perform a pick-and-place task with increased autonomy and flexibility.
In the provided case study, the increased flexibility concerns two aspects, i.e., the possibility
to modify the position and size of the object to be grasped without resorting to manual
reprogramming, and the avoidance of collisions with static unknown obstacles in the
robot’s workspace. The aim of this experiment is to demonstrate how even a company
can provide its industrial cobots with greater flexibility, albeit within certain application
limits, only by appropriately combining existing ROS2 features and tools, and how easy
it is to add further customized modules to the basic framework to enable a higher level
of autonomy.

In conclusion, our analysis confirms that ROS2 is a powerful middleware that can
provide companies with all the tools and features needed to implement the architecture
described in Section 3 for enhancing the autonomy and flexibility of cobots on the market
(Section 4) to make them perform non-standard tasks not supported by their manufacturers
without having to start from scratch. Moreover, unlike ROS1, ROS2 was built to be an
industrial framework for use in the production environment (Section 2.2). Despite this, as a
matter of fact, there are still many remaining challenges for its commercial use. The first
is linked to it being open source and constantly evolving, therefore inherently lacking the
reliability of commercial software developers, not supported by customer service, not user
friendly, and consequently not very appealing to companies. A possible solution to this
challenge is represented by ROS-Industrial, which aims to address these issues and dispel
these myths. Another challenge is ensuring real-time performance because, as discussed in
Section 2.2, DDS guarantees them at the communication level, but they must be properly
managed by the developer at system level. Finally, being relatively new, ROS2 is still under
development both in terms of porting of the functionalities previously developed for ROS1
and in the development and/or analysis of new features.
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Regarding future works, they will further explore the potential of the proposed ROS2-
based framework in order to show how to unlock a higher level of flexibility and autonomy
by incorporating less standard and more custom components. Specifically, we plan to
add a re-planning module, to enable the cobot to also handle dynamic obstacles with the
implementation of a proper hybrid planner, and to upgrade the recognition module by
also including object classification capabilities required for the recognition of objects to be
grasped. Moreover, in order to avoid the inevitable blind spots of a single camera and to
achieve complete awareness of the whole robot workspace, the experimental setup could
be enhanced by adding two additional depth cameras, thus resorting to a multi-sensor
architecture that can be managed by the perception layer. Finally, we also plan to analyze
and discuss how to exploit and evaluate ROS2 real-time capabilities within our proposed
framework as they become essential for handling dynamic obstacles.
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46. Erős, E.; Dahl, M.; Hanna, A.; Albo, A.; Falkman, P.; Bengtsson, K. Integrated virtual commissioning of a ROS2-based collaborative
and intelligent automation system. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 407–413.

47. He, J.; Zhang, J.; Liu, J.; Fu, X. A ROS2-Based Framework for Industrial Automation Systems. In Proceedings of the 2022 2nd
International Conference on Computer, Control and Robotics (ICCCR), Shanghai, China, 18–20 March 2022; pp. 98–102.

48. Audonnet, F.P.; Hamilton, A.; Aragon-Camarasa, G. A Systematic Comparison of Simulation Software for Robotic Arm
Manipulation using ROS2. In Proceedings of the 2022 22nd International Conference on Control, Automation and Systems
(ICCAS), Jeju, Republic of Korea, 27–30 November 2022; pp. 755–762.

49. Macenski, S.; Foote, T.; Gerkey, B.; Lalancette, C.; Woodall, W. Robot Operating System 2: Design, architecture, and uses in the
wild. Sci. Robot. 2022, 7, eabm6074. [CrossRef] [PubMed]

50. Tonola, C.; Beschi, M.; Faroni, M.; Pedrocchi, N. OpenMORE: An open-source tool for sampling-based path replanning in ROS.
In Proceedings of the 2023 28th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Sinaia,
Romania, 12–15 September 2023; Volume 1, pp. 1–8.

51. Tonola, C.; Faroni, M.; Beschi, M.; Pedrocchi, N. Anytime Informed Multi-Path Replanning Strategy for Complex Environments.
IEEE Access 2023, 11, 4105–4116. [CrossRef]

52. Wong, C.C.; Chen, C.J.; Wong, K.Y.; Feng, H.M. Implementation of a Real-Time Object Pick-and-Place System Based on a
Changing Strategy for Rapidly-Exploring Random Tree. Sensors 2023, 23, 4814. [CrossRef]

53. Kang, T.; Yi, J.B.; Song, D.; Yi, S.J. High-Speed Autonomous Robotic Assembly Using In-Hand Manipulation and Re-Grasping.
Appl. Sci. 2021, 11, 37. [CrossRef]

54. Zhou, G.; Luo, J.; Xu, S.; Zhang, S. A Cooperative Shared Control Scheme Based on Intention Recognition for Flexible Assembly
Manufacturing. Front. Neurorobotics 2022, 16, 850211. [CrossRef]

55. Chitta, S.; Jones, E.G.; Ciocarlie, M.; Hsiao, K. Mobile Manipulation in Unstructured Environments: Perception, Planning, and
Execution. IEEE Robot. Autom. Mag. 2012, 19, 58–71. [CrossRef]

56. Bagnell, J.A.; Cavalcanti, F.; Cui, L.; Galluzzo, T.; Hebert, M.; Kazemi, M.; Klingensmith, M.; Libby, J.; Liu, T.Y.; Pollard, N.; et al.
An integrated system for autonomous robotics manipulation. In Proceedings of the 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 2955–2962.

57. Diab, M.; Pomarlan, M.; Beßler, D.; Akbari, A.; Rosell, J.; Bateman, J.; Beetz, M. SkillMaN—A skill-based robotic manipulation
framework based on perception and reasoning. Robot. Auton. Syst. 2020, 134, 103653. [CrossRef]

58. Hellmund, A.M.; Wirges, S.; Tas, O.S.; Bandera, C.; Salscheider, N.O. Robot operating system: A modular software framework for
automated driving. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC),
Rio de Janeiro, Brazil, 1–4 November 2016; pp. 1564–1570.

59. Alderisi, G.; Iannizzotto, G.; Bello, L.L. Towards IEEE 802.1 Ethernet AVB for Advanced Driver Assistance Systems: A preliminary
assessment. In Proceedings of the 2012 IEEE 17th International Conference on Emerging Technologies and Factory Automation
(ETFA 2012), Krakow, Poland, 17–21 September 2012; pp. 1–4.

60. Patti, G.; Bello, L.L. Performance Assessment of the IEEE 802.1Q in Automotive Applications. In Proceedings of the 2019 AEIT
International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Turin, Italy, 2–4 July
2019; pp. 1–6.

http://dx.doi.org/10.1177/1729881418770011
http://dx.doi.org/10.1016/j.promfg.2020.01.045
http://dx.doi.org/10.1126/scirobotics.abm6074
http://www.ncbi.nlm.nih.gov/pubmed/35544605
http://dx.doi.org/10.1109/ACCESS.2023.3235652
http://dx.doi.org/10.3390/s23104814
http://dx.doi.org/10.3390/app11010037
http://dx.doi.org/10.3389/fnbot.2022.850211
http://dx.doi.org/10.1109/MRA.2012.2191995
http://dx.doi.org/10.1016/j.robot.2020.103653


Appl. Sci. 2023, 13, 12796 29 of 31

61. Bonci, A.; De Amicis, R.; Longhi, S.; Lorenzoni, E.; Scala, G.A. A motorcycle enhanced model for active safety devices in intelligent
transport systems. In Proceedings of the 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems
and Applications, Auckland, New Zealand, 29–31 August 2016; pp. 1–6.

62. Corno, M.; Panzani, G., Traction Control Systems Design: A Systematic Approach. In Modelling, Simulation and Control of
Two-Wheeled Vehicles; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; Chapter 8, pp. 198–220.

63. Bonci, A.; De Amicis, R.; Longhi, S.; Lorenzoni, E.; Scala, G.A. Motorcycle’s lateral stability issues: Comparison of methods
for dynamic modelling of roll angle. In Proceedings of the 2016 20th International Conference on System Theory, Control and
Computing (ICSTCC), Sinaia, Romania, 13–15 October 2016; pp. 607–612.

64. Dandiwala, A.; Chakraborty, B.; Chakravarty, D.; Sindha, J. Vehicle dynamics and active rollover stability control of an electric
narrow three-wheeled vehicle: A review and concern towards improvement. Veh. Syst. Dyn. 2023, 61, 399–422. [CrossRef]

65. Bonci, A.; Longhi, S.; Scala, G.A. Towards an All-Wheel Drive Motorcycle: Dynamic Modeling and Simulation. IEEE Access 2020,
8, 112867–112882. [CrossRef]

66. AUTomotive Open System ARchitecture—AUTOSAR. Available online: https://www.autosar.org/ (accessed on 11 August 2023).
67. Henle, J.; Stoffel, M.; Schindewolf, M.; Nägele, A.T.; Sax, E. Architecture platforms for future vehicles: A comparison of ROS2

and Adaptive AUTOSAR. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems
(ITSC), Macau, China, 8–12 October 2022; pp. 3095–3102.

68. Zhang, J.; Keramat, F.; Yu, X.; Hernández, D.M.; Queralta, J.P.; Westerlund, T. Distributed Robotic Systems in the Edge-Cloud
Continuum with ROS 2: A Review on Novel Architectures and Technology Readiness. In Proceedings of the 2022 Seventh
International Conference on Fog and Mobile Edge Computing (FMEC), Paris, France, 12–15 December 2022; pp. 1–8.

69. Bianchi, L.; Carnevale, D.; Del Frate, F.; Masocco, R.; Mattogno, S.; Romanelli, F.; Tenaglia, A. A novel distributed architecture for
unmanned aircraft systems based on Robot Operating System 2. IET Cyber-Syst. Robot. 2023, 5, e12083. [CrossRef]

70. Testa, A.; Camisa, A.; Notarstefano, G. ChoiRbot: A ROS 2 Toolbox for Cooperative Robotics. IEEE Robot. Autom. Lett. 2021,
6, 2714–2720. [CrossRef]

71. Brock, O.; Kuffner, J.; Xiao, J., Motion for Manipulation Tasks. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 615–645.

72. Suomalainen, M.; Karayiannidis, Y.; Kyrki, V. A survey of robot manipulation in contact. Robot. Auton. Syst. 2022, 156, 104224.
[CrossRef]

73. Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and
applications. Mechatronics 2018, 55, 248–266. [CrossRef]

74. Taesi, C.; Aggogeri, F.; Pellegrini, N. COBOT Applications—Recent Advances and Challenges. Robotics 2023, 12, 79. [CrossRef]
75. Liu, H.; Wang, L. Collision-free human-robot collaboration based on context awareness. Robot. Comput.-Integr. Manuf. 2021,

67, 101997. [CrossRef]
76. Tavares, P.; Sousa, A. Flexible pick and place architecture using ROS framework. In Proceedings of the 2015 10th Iberian

Conference on Information Systems and Technologies (CISTI), Aveiro, Portugal, 17–20 June 2015.
77. Song, K.T.; Chang, Y.H.; Chen, J.H. 3D Vision for Object Grasp and Obstacle Avoidance of a Collaborative Robot. In Proceedings

of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July
2019; pp. 254–258.

78. Megalingam, R.K.; Rohith Raj, R.V.; Akhil, T.; Masetti, A.; Chowdary, G.N.; Naick, V.S. Integration of Vision based Robot
Manipulation using ROS for Assistive Applications. In Proceedings of the 2020 Second International Conference on Inventive
Research in Computing Applications (ICIRCA), Coimbatore, India, 15–17 July 2020; pp. 163–169.

79. Chiaravalli, D.; Palli, G.; Monica, R.; Aleotti, J.; Rizzini, D.L. Integration of a Multi-Camera Vision System and Admittance Control
for Robotic Industrial Depalletizing. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; Volume 1, pp. 667–674.

80. Lee, C.C.; Song, K.T. Path Re-Planning Design of a Cobot in a Dynamic Environment Based on Current Obstacle Configuration.
IEEE Robot. Autom. Lett. 2023, 8, 1183–1190. [CrossRef]

81. Ende, T.; Haddadin, S.; Parusel, S.; Wüsthoff, T.; Hassenzahl, M.; Albu-Schäffer, A. A human-centered approach to robot gesture
based communication within collaborative working processes. In Proceedings of the 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 3367–3374.

82. Hollmann, R.; Rost, A.; Hägele, M.; Verl, A. A HMM-based approach to learning probability models of programming strategies
for industrial robots. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK,
USA, 3–7 May 2010; pp. 2965–2970.

83. Krüger, J.; Lien, T.; Verl, A. Cooperation of human and machines in assembly lines. CIRP Ann. 2009, 58, 628–646. [CrossRef]
84. Hjorth, S.; Chrysostomou, D. Human–robot collaboration in industrial environments: A literature review on non-destructive

disassembly. Robot. Comput.-Integr. Manuf. 2022, 73, 102208. [CrossRef]
85. Çoban, M.; Gelen, G. Realization of human-robot collaboration in hybrid assembly systems by using wearable technology. In

Proceedings of the 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey,
25–27 October 2018; pp. 1–6.

86. Hmedan, B.; Kilgus, D.; Fiorino, H.; Landry, A.; Pellier, D. Adapting Cobot Behavior to Human Task Ordering Variability for
Assembly Tasks. Int. FLAIRS Conf. Proc. 2022, 35, 1–6. [CrossRef]

http://dx.doi.org/10.1080/00423114.2022.2046810
http://dx.doi.org/10.1109/ACCESS.2020.3002685
https://www.autosar.org/
http://dx.doi.org/10.1049/csy2.12083
http://dx.doi.org/10.1109/LRA.2021.3061366
http://dx.doi.org/10.1016/j.robot.2022.104224
http://dx.doi.org/10.1016/j.mechatronics.2018.02.009
http://dx.doi.org/10.3390/robotics12030079
http://dx.doi.org/10.1016/j.rcim.2020.101997
http://dx.doi.org/10.1109/LRA.2023.3236577
http://dx.doi.org/10.1016/j.cirp.2009.09.009
http://dx.doi.org/10.1016/j.rcim.2021.102208
http://dx.doi.org/10.32473/flairs.v35i.130645


Appl. Sci. 2023, 13, 12796 30 of 31

87. YARP—Yet Another Robot Platform. Software for Humanoid Robots: The YARP. 2023. Available online: https://yarp.it/latest/
(accessed on 11 August 2023).

88. Orocos—Open Robot Control Software. The Orocos Project. 2023. Available online: https://orocos.org/ (accessed on 11 August 2023).
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