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DECAY ESTIMATES FOR A PERTURBED TWO-TERMS SPACE-TIME1

FRACTIONAL DIFFUSIVE PROBLEM2

MARCELLO D’ABBICCO AND GIOVANNI GIRARDI3

Abstract. In the present paper we consider the Cauchy-type problem associated to the space-time
fractional differential equation

∂tu+ ∂β
t (−∆)1−βu−∆u = g(t, x), t > 0, x ∈ Rn

with β ∈ (0, 1), where the fractional derivative ∂β
t is in Caputo sense and (−∆)1−β is the fractional Laplace

operator of order 1− β. We provide sufficient conditions on the perturbation g which guarantees that the
solution satisfies the same long-time decay estimates of the case g = 0, assuming initial datum in Hs,m

for some s > 0 and m ∈ (1,∞). We apply the obtained results to study the existence of global-in-time
solutions to the associated nonlinear problems,

∂tu+ ∂β
t (−∆)1−βu−∆u =

{
|u|p,
∇(u|u|p−1),

assuming small initial datum in Hs,m and supercritical or critical powers.

1. Introduction4

We consider the Cauchy-type problem for a fractional differential equation5 {
∂tu+ (−∆)1−β∂βt u−∆u = g(t, x), t > 0, x ∈ Rn,

u(0, x) = u0(x);
(1)

with β ∈ (0, 1). Here ∂βt u denotes the Caputo (left-sided) fractional derivative of order β, with starting6

time 0, with respect to the time variable. Namely, for any given x ∈ Rn, we put ∂βt u(t, x) = (Dβ
0+u(·, x))(t),7

as defined in [18, Section 2.4], that is,8

(Dβ
0+y)(t) = (J1−β

0+ y′)(t) =
1

Γ(1− β)

∫ t

0

y′(s)

(t− s)β
ds,

for any t > 0 and y ∈, where J1−β
0+ denotes the Riemann-Liouville integral of order 1−β and Γ is the Euler9

gamma function. Moreover, for any α > 0 we define the fractional Laplace operator (−∆)α : Hs,m →10

Hs−2α,m, m ∈ (1,∞), as (−∆)αf = F−1(|ξ|2αf̂), where F is the Fourier transformation (in S ′), and11

f̂ = F (f) denotes the Fourier transform of f (see [12] for an introduction to fractional Laplace operator).12

The fractional differential operator L := ∂t+∂
β
t (−∆)1−β −∆ is scale-invariant, or “quasi-homogeneous”13

of type (1, 1, 1/2) (see [11, Definition 2.2]), that is,14

L
(
u
(
λ ·, λ 1

2 ·
))
(t, x) = λ(Lu)

(
λt, λ

1
2x
)
,

for any λ > 0, t > 0 and x ∈ Rn. This property of L implies a lack of oscillations in the fundamental15

solution to the homogeneous problem16 {
∂tu+ (−∆)1−β∂βt u−∆u = 0, t > 0, x ∈ Rn,

u(0, x) = u0(x),
(2)
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2 M. D’ABBICCO AND G. GIRARDI

that is, (1) with g = 0. In turn, this provides the Lm well-posedness of the problem. On the other hand,1

the fundamental solution gains some limited smoothing effect by its parabolic nature, so that the solution2

u ∈ C([0,∞), Hs,m) verifies the following decay estimate (see later, Proposition 3.1)3

∥u(t, ·)∥Ḣs,m ≤ C (1 + t)−
s
2 ∥u0∥Hs,m for any s ∈ (0, 2β]. (3)

The restriction s ≤ 2β is due to the fact that the smoothing effect for the fundamental solution to (2) is4

limited to 2β derivatives (see later, (8)). This smoothing effect appears in many other evolution models5

(see, for instance, damped evolution models in [5,26]). However, in those cases no restriction on s appears:6

more derivatives always brings more decay rate in time, as per the heat equation.7

The fractional nature of the problem makes less obvious to deal with the perturbation term on the8

right-hand side g(t, x), since Duhamel’s principle does not apply in the standard way (see, for instance, [18,9

Example 4.9] for a simpler equation, see also [29]).10

Having this in mind, we look for sufficient conditions on g(t, x) which guarantee that the solution to (1)11

remains in C([0,∞), Hs,m) and that ∥u(t, ·)∥Ḣs,m has a decay rate t−
s
2 as t goes to infinity.12

As an example of an application of the obtained decay estimates for the perturbed equation (1), we13

investigate the semilinear problem14 {
∂tu+ (−∆)1−β∂βt u−∆u = f(u), t > 0, x ∈ Rn,

u(0, x) = u0(x),
(4)

where f(u) = |u|p with p > 1, or, more in general,15

|f(u)− f(v)| ≤ C |u− v|(|u|p−1 + |v|p−1), (5)

for some constant C > 0 independent on u and v. It is well-known that such nonlinear perturbation may16

cause the solution to blow-up in finite time, when p is smaller than some critical power, usually called17

Fujita exponent. Nevertheless, for p larger than Fujita exponent, global-in-time solutions exist, provided18

that initial data are sufficiently small, in some space. Fujita exponents have been determined for fractional19

partial differential equations in several papers, see for instance [8] for the fractional wave-diffusive equation20

and [7] for the fractional subdiffusive equation.21

1.1. Main Results. We here summarize the main results which we will prove in the paper, outlining the22

ideas of the proofs, for the ease of reading. The solution to (1) may be written in the form23

u(t, x) = K0(t, ·) ∗(x) u0 +
∫ t

0

K1(t− τ, ·) ∗(x) g(τ, ·) dτ, (6)

where the expression of FKj , j = 0, 1, may be explicitly obtained, see later, (26).24

We stress that the classical Duhamel’s principle does not apply to fractional equations (see, for instance,25

[29]); as a consequence, the kernel K1 related to the right-hand side term in (1) is different from the26

kernel K0 related to the initial datum u0; in particular, the two different kernels have different smoothing27

properties (see Remark 2.2).28

To estimate u, we get an integral representation formula for FKj , j = 0, 1. In particular, we derive the29

sharp estimate (see (27) and (28)):30

|FKj(t, ξ)| ≈ ⟨t|ξ|2⟩−β−j , j = 0, 1. (7)

In order to apply the Fourier multiplier theory, in particular, Mikhlin-Hörmander theorem (see later,31

Corollary 2.4), we also prove the following estimate which involves the derivatives of FKj(t, ξ), with32

respect to ξ.33

Lemma 1.1. Let K0 and K1 be as in (6). Then it holds34

|∂γξ K̂0(t, ξ)| ≲ ⟨
√
t ξ⟩−2β |ξ|−|γ| (8)

and35

|∂γξ K̂1(t, ξ)| ≲ ⟨
√
t ξ⟩−2β−2|ξ|−|γ| (9)

for any γ ∈ Nn, with γ ≥ 0.36
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Thanks to (8) in Lemma 1.1, it is immediate to prove the Lm well-posedness of the homogeneous1

problem (2), and get the decay rate2

∥u(t, ·)∥Ḣs,m ≤ C (1 + t)−min{ s
2 ,β} ∥u0∥Hs,m ,

for any s > 0 (see later, Proposition 3.1).3

However, in view of (6), the fact that K1 has different properties with respect to K0, in particular, it4

has better smoothing properties (see Remark 2.2), makes interesting to study sufficient conditions on g5

which guarantee that this perturbation does not influence the behavior of the solution.6

A sufficient condition on the perturbation g which guarantees that the solution u to (1) remains in7

C([0,∞), Hs,m) may be easily given.8

Proposition 1.2. Let n ≥ 1, m ∈ (1,∞), s ∈ R, and u0 ∈ Hs,m. Assume that g ∈ L1
loc([0,∞), Hs,m) or9

that g ∈ Lr
loc([0,∞), Hs−2b,m) with b ∈ (0, 1), for some r > 1/(1− b). Then u ∈ C([0,∞), Hs,m).10

Remark 1.1. The mechanism which regulates the interplay between integrability in time and regularity11

in space assumed for g in Proposition 1.2 may be understood noticing that, in view of (9), “a gain of 2b12

derivatives in space may be obtained paying a singularity in time t−b as t→ 0”.13

The strict inequality in the condition r > 1/(1 − b) in Proposition 1.2 is related to the lack of Hardy-14

Littlewood-Sobolev inequality for L1. Indeed, the Hardy-Littlewood-Sobolev inequality (see [18, Lemma15

2.1(b)])16

∥J1−b
0+ h∥Lr∗ ([0,t]) ≤ C(r, b, t) ∥h∥Lr([0,t]), with

1

r∗
=

1

r
+ b,

holds for any h ∈ Lr([0, t]), with r ∈ (1,∞), provided that r∗ > 1, that is, r > 1/(1 − b). The inclusion17

Lr∗([0, t]) ⊂ L1([0, t]) guarantees the integrability of J1−b
0+ h over [0, t] for any t > 0.18

To understand how Lemma 1.1 comes into play, it is useful to split the integral in (6) in two intervals.19

In §3, using Corollary 2.4, we will be able to prove the following.20

Lemma 1.3. Let b ∈ [0, 1). Assume that g ∈ L1
loc([0,∞), Hs,m) if b = 0, or that g ∈ Lr

loc([0,∞), Hs−2b,m),21

for some r > 1/(1− b), if b ∈ (0, 1). Then22 ∫ t

(t−1)+

∥K1(t− τ, ·) ∗ g(τ, ·)∥Hs,m dτ ≤ C

∫ t

(t−1)+

(t− τ)−b ∥g(τ, ·)∥Hs−2b,m dτ, (10)∫ t−1

0

∥K1(t− τ, ·) ∗ g(τ, ·)∥Hs,m dτ ≤ C

∫ t−1

0

∥g(τ, ·)∥Hs−2−2β,m dτ, for t > 1, (11)

where C > 0 is independent on g and t.23

The proof of Proposition 1.2 easily follows from Lemma 1.3 (see §3 for the details).24

Due to the diffusive nature of the equation, it is expected that when s > 0, the homogeneous quantity25

∥u(t, ·)∥Ḣs,m decays as t → ∞. We show that this decay rate is t−min{ s
2 ,β} under suitable assumptions26

on g. We stress that the fact that the decay rate is not faster than t−β is related to the partial, polynomial,27

smoothing effect that appears for this equation, see (7), if we compare it with the heat equation, for instance28

(whose fundamental solution has exponential decay, e−t|ξ|2). This phenomenon also appears in the sub-29

diffusive case (19), treated in [7], even replacing the Caputo derivative ∂βt with the Riemann-Liouville30

fractional derivative; in [7] the homogeneity properties of problem (19) allows to investigate more general31

Lp − Lq decay estimates for the solution ṽ, for 1 ≤ p ≤ q ≤ ∞; however, due to the limited smoothing32

effect the restriction n(1/p− 1/q) < 2 appears, and then the decay rate t−
nα
2 ( 1

p−
1
q ) of ∥ṽ(t, ·)∥Lq can not33

be faster than t−α. We mention that problem (19) with α ∈ (1, 2) is studied in [8].34

In order to obtain the desired decay rate for the solution to (1), we may replace (11) by an estimate of35

the integral for the homogeneous quantity36

∥K1(t− τ, ·) ∗ g(τ, ·)∥Ḣs,m ,

when s > 0. We have the following.37



4 M. D’ABBICCO AND G. GIRARDI

Lemma 1.4. Let s > 0 and assume that g ∈ L1
loc([0,∞), Hs−2−2β,m). Then1 ∫ t−1

0

∥K1(t− τ, ·) ∗ g(τ, ·)∥Ḣs,m dτ

≤ C

∫ t−1

0

(t− τ)−min{ s
2 ,1+β} ∥g(τ, ·)∥Hs−2−2β,m dτ,

(12)

where C > 0 is independent on t and g. Moreover, assume that s ∈ (0, 2 + 2β) and let q ∈ (1,m] and2

g ∈ L1
loc([0,∞), Hs+a−2−2β,q), where3

a = n

(
1

q
− 1

m

)
, is such that s+ a ≤ 2 + 2β. (13)

Then, additional decay may be produced replacing (12) by the estimate4 ∫ t−1

0

∥K1(t− τ, ·) ∗ g(τ, ·)∥Ḣs,m dτ

≤ C

∫ t−1

0

(t− τ)−min{ s+a
2 ,1+β} ∥g(τ, ·)∥Hs+a−2−2β,q dτ,

(14)

We stress that (12) corresponds to (14) with a = 0. We always fix a = 0 in (14) if s ≥ 2 + 2β.5

Thanks to Lemmas 1.3 and 1.4, we are able to prove our main result (see §3 for the details).6

Theorem 1.5. Let n ≥ 1, m ∈ (1,∞) and s ≥ 0. Assume that g ∈ L1
loc([0,∞), Hs,m) or that g ∈7

Lr
loc([0,∞), Hs−2b,m) with b ∈ (0, 1), for some r > 1/(1 − b). If s < 2 + 2β, possibly also assume8

that g ∈ L1
loc([0,∞), Hs−2−2β+a,q) for some q ∈ (1,m] with a = a(n,m, q) defined by (13) such that9

s+ a ≤ 2 + 2β, otherwise fix a = 0. Assume that10

A = sup
t≥0

(1 + t)min{ s
2 ,β}

∫ t

(t−1)+

(t− τ)−b ∥g(τ, ·)∥Hs−2b,m dτ, (15)

and11

B = sup
t≥1

tmin{ s
2 ,β}

∫ t−1

0

(t− τ)−
s+a
2 ∥g(τ, ·)∥Hs−2−2β+a,q dτ, (16)

are finite. Then the unique solution u ∈ C([0,∞), Hs,m) verifies the decay estimate12

∥u(t, ·)∥Ḣs,m ≤ C(1 + t)−min{ s
2 ,β}(∥u0∥Hs,m +A+B), (17)

for any t ≥ 0, where C > 0 is independent of t, u0, g, A and B.13

The fact that the solution is in C([0,∞), Hs,m) in Theorem 1.5 is guaranteed by Proposition 1.2.14

1.2. Application of Theorem 1.5. In §4 we will apply Theorem 1.5 to obtain global-in-time existence15

results for the correspondent semilinear Cauchy-type problem (4). In particular, we have in mind to16

apply Theorem 1.5 for functions g for which some decay estimate holds. In view of this, we provide some17

concrete examples of assumptions on a polynomial decay rate on g to estimate the quantities A and B18

in (15) and (16). Estimates of integrals as in the forthcoming Examples 1.2 and 1.3 are standard in dealing19

with integral terms coming from the application of Duhamel’s principle, especially in the application to20

nonlinear problems. An earlier version of these estimates goes back to [25]. For the ease of reading, we21

collect those integral estimates in Lemmas 3.2 and 3.3, in §3.22

Example 1.1. Assume that the estimate23

∥g(τ, ·)∥Hs−2b,m ≤ C (1 + τ)−min{ s
2 ,β}
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holds for any τ ≥ 0, for some b ∈ (0, 1) and C > 0. Then the quantity A in (15) is finite. More precisely,1

one may estimate A ≤ 2C/(1− b). Indeed, if t ≥ 1, we may estimate2 ∫ t

t−1

(t− τ)−b (1 + τ)−min{s/2,β} dτ ≤ t−min{s/2,β}
∫ t

t−1

(t− τ)−bdτ

=
1

1− b
t−min{s/2,β} ≤ 2

1− b
(1 + t)−min{ s

2 ,β}.

On the other hand, if t ≤ 1, then we may estimate3 ∫ t

0

(t− τ)−b (1 + τ)−min{s/2,β} dτ ≤
∫ t

0

(t− τ)−b dτ =
1

1− b
t1−b

≤ 1

1− b
≤ 2

1− b
(1 + t)−min{ s

2 ,β}.

Example 1.2. Assume that s ∈ [0, 2) and that the estimate, possibly singular at τ = 0,4

∥g(τ, ·)∥Hs−2−2β+a,q ≤

{
C τ−1+ a

2 if s ≤ 2β,
C τ−1+ s+a

2 −β if s ∈ (2β, 2),

holds for any τ > 0, for some C > 0 and a ∈ (0, 2− s). Then the quantity B in (16) is finite. Indeed (see5

later, Lemma 3.2),6 ∫ t−1

0

(t− τ)−
s+a
2 τ−1+ a

2 dτ ≤ C1 t
− s

2 ,

and7 ∫ t−1

0

(t− τ)−
s+a
2 τ−1+ s+a

2 −β dτ ≤ C1 t
−β ;

here, C1 > 0 depends only on s and a.8

Example 1.3. Assume that the estimate9

∥g(τ, ·)∥Hs−2−2β,m ≤ C (1 + τ)−d,

holds for any τ ≥ 0, for some C > 0 and d > 1. Then, the quantity B in (16) is finite. Indeed (see later,10

Lemma 3.3),11 ∫ t−1

0

(t− τ)−
s
2 (1 + τ)−d dτ ≤ C1(d) t

− s
2 .

Background. A limited smoothing effect phenomenon appears in the following perturbed two-terms dif-12

fusive problem13 {
∂tv + ∂αt v −∆v = f(t, x) t > 0, x ∈ Rn,

v(0, x) = v0(x),
(18)

with α ∈ (0, 1), recently studied by the authors in [10]. However, this model is deeply different from (1).14

First of all, the related homogeneous problem it is not quasi-homogeneous, and it can be shown that15

its asymptotic profile is described by the solution to the same problem where ∂tv is stroken (diffusion16

phenomenon), studied in [7],17 {
∂αt ṽ −∆ṽ = 0 t > 0, x ∈ Rn,

ṽ(0, x) = ṽ0(x),
(19)

Another crucial difference is that the smoothing effect for the solution operator to (18) is independent of18

the order α of the time fractional derivative: it amounts on 2 derivatives, independently on α.19

Differential equations with fractional in time derivatives are increasingly used to model physical phe-20

nomena in which some memory effect or hereditary process appear, for instance in areas like rheology,21

biology, engineering, mathematical physics, etc. (see for instance [20–23] and the reference given therein).22

One can refer to [18] or [23] for a deep study about the theory of time fractional derivatives. Also non-23

local in space operators are experiencing many applications in different subjects, such as, among others,24
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crystal dislocation [14,24], fluid mechanics [2, 4, 30]. The use of fractional calculus introduced several new1

mathematical challenges; an open problem in this field is finding some effective tools for writing explicit so-2

lutions to fractional ordinary differential equations. This latter issue becomes even more challenging if the3

equation contains multiple fractional in time derivatives. In the literature other authors have investigated4

the existence of solutions to the Cauchy-type problem associated to some multi-terms fractional partial5

differential equations, in suitable functional spaces. For instance, the study of the following two-term time6

fractional diffusion-wave equation was already faced7

b1∂
δ1
t w + b2∂

δ2
t w − c2∆w = F (t, x, w), t > 0, x ∈ Rn, (20)

for b1, b2 ∈ R, δ1, δ2 > 0 and F ≡ 0 or F nonlinear, under given assumptions on the exponents δ1 and δ28

and on the function F . An extended review about this problem can be found for instance in [27,28], where9

the existence of upper viscosity solutions to (20) is discussed. Also the study of the Hs well-posedness10

for multi-point value problems for fractional partial differential equations like (1) was already treated, for11

instance, in [16]. Some results about the well-posedness and regularity of solutions to (20) and more general12

models in bounded domains are discussed for instance in [1,3, 6, 13,32]. The problem of finding a suitable13

representation of solution is strictly related to solving fractional ordinary differential equations in the form14

∂δ1t w + λ∂δ2t w + µw = 0, (21)

for λ, µ ∈ R. An exact solution to the initial value problems associated to (21) can be expressed in terms15

of generalized Mittlag-Leffler type functions (see [19]). In some special case the analytical solutions to such16

equations can be derived by using the Laplace transform method (see, for instance [15]).17

In the study of our problem, we can rely on a representation formula for the solution to (1); in particular,18

we have an integral representations of the kernels which allows us to investigate suitable pointwise estimates,19

essential for applying tools from Fourier multipliers theory.20

Notation. For any s ∈ R and q ∈ (1,∞) we define the Bessel potential space21

Hs,q =
{
f ∈ S ′ : ⟨ξ⟩sf̂ ∈ Lq

}
,

equipped with the norm ∥f∥Hs,q = ∥F−1(⟨ξ⟩s f̂)∥Lq . Here the symbol ⟨ξ⟩ denotes the quantity
√
1 + |ξ|2.22

Namely, Hs,q is the image of Lq via the application of the Bessel potential, with its induced norm. For23

integer values of s ≥ 1 and for any q ∈ (1,∞), Hs,q = W s,q, the classic Sobolev space of functions in Lm24

with their derivatives up to order s. For all s ≥ 0, q ∈ (1,∞), and f ∈ Hs,q, we define the homogeneous25

quantity ∥f∥Ḣs,q = ∥(−∆)
s
2 f∥Lq .26

In this paper, f ≲ g means that f ≤ Cg for some constant C > 0, and f ≈ g means that f ≲ g ≲ f .27

2. Proof of Lemma 1.128

In order to prove Lemma 1.1, we first need to obtain an appropriate expression for the kernels K0 and29

K1 in (6). Applying the Fourier transform to problem (1) we obtain the following Cauchy-type problem30

for a parameter dependent fractional differential equation31 {
∂tû+ |ξ|2−2β

∂βt û+ |ξ|2û = ĝ(t, ξ), t > 0,

û(0, ξ) = û0(ξ),
(22)

with ξ ∈ Rn. Since the left-hand side of the equation in (22) is scale-invariant, we make the change of32

variable r = t|ξ|2, setting y(t|ξ|2) = û(t, ξ), so that the equation becomes33

|ξ|2(y′ +Dβ
0+y + y) = ĝ(r|ξ|−2

, ξ).

Letting c0 = û0(ξ) and f(r) = |ξ|−2
ĝ(r|ξ|−2

, ξ) for any ξ ̸= 0, problem (22) gives us34 {
y′ + Dβ

0+y + y = f(r), r > 0,

y(0) = c0.
(23)

We are now in the position to apply the following result.35
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Lemma 2.1 (see Lemma 1 in [10]). Assume that y = y(r) solves the Cauchy-type problem (23). Then1

y(r) = c0G0(r) +

∫ r

0

G1(r − ρ)f(ρ) dρ,

where G0 and G1 have the following integral representations:2

G0(r) =
sin(βπ)

βπ

∫ ∞

0

e−xr xβ−1 φ(x) dx (24)

G1(r) =
sin(βπ)

βπ

∫ ∞

0

e−xr xβ φ(x) dx (25)

for any r ≥ 0, with3

φ(x) =
1

(1− x)2 + x2β + 2(1− x)xβ cos(βπ)
.

Taking f(r) = |ξ|−2
ĝ(r|ξ|−2

, ξ) as in (23), by the change of variable ρ = τ |ξ|2, we get4 ∫ r

0

G1(r − ρ)f(ρ) dρ = |ξ|−2
∫ r

0

G1(r − ρ)ĝ(ρ|ξ|−2
, ξ) dρ

=

∫ r|ξ|−2

0

G1(r − τ |ξ|2)ĝ(τ, ξ) dτ

=

∫ t

0

G1((t− τ)|ξ|2)ĝ(τ, ξ) dτ,

where in the last equality we replaced r = t|ξ|2. We conclude that formula (6) holds for problem (1) with5

K0 and K1 satisfying6

K̂0(t, ξ) = G0(t|ξ|2), and K̂1(t, ξ) = G1(t|ξ|2), (26)

where G0 and G1 are as in (24) and (25). In particular, we may write K̂0(t, ξ) and K̂1(t, ξ) in integral7

form.8

In order to prove Lemma 1.1, we first look for an asymptotic estimate for the integral in (24) and (25),9

as r → ∞. We employ the following version of Watson’s lemma ( [31, p.133]) for nonsmooth functions,10

whose straightforward proof we provide for the ease of reading.11

Lemma 2.2. Let φ ∈ L1
loc([0,+∞)), with φ(x) e−Mx in L1, for some M ≥ 0. Assume that φ is continuous12

at 0, with φ(0) ̸= 0. Then13 ∫ ∞

0

e−xr xβ−1 φ(x) dx = Γ(β) r−β(φ(0) + o(1)), as r → ∞,

for any β > 0, where Γ is the Euler gamma function. The integral above is defined for any r ≥M .14

Proof. We preliminarily notice that the integral is defined for any r ≥ M , due to the fact that φ is15

continuous at 0 and β > 0, so that e−x(r−M) xβ−1 φ(x) is in L1.16

We fix ε > 0. Let δ > 0 be such that |φ(x)− φ(0)| < ε for any x ∈ (0, δ). We first notice that17 ∫ δ

0

e−xr xβ−1 dx = r−β

∫ δr

0

e−x xβ−1 dx = r−βΓ(β)− r−β

∫ ∞

δr

e−x xβ−1 dx

= r−β Γ(β) + O(e−δr).

Similarly,18 ∫ ∞

δ

e−xr xβ−1 |φ(x)| dx =

∫ ∞

δ

e−x(r−M) xβ−1 ψ(x) dx = O(e−δr),

where we put ψ(x) = |φ(x)| e−Mx, which we assumed to be in L1. Therefore, we proved that19 ∣∣∣ ∫ ∞

0

e−xr xβ−1 φ(x) dx− φ(0) Γ(β) r−β
∣∣∣ ≤ εΓ(β) r−β + O(e−δr),
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and this concludes the proof.1

It is clear that G0 and G1 in (24) and (25) verify the assumptions of Lemma 2.2 with M = 0, since φ2

is continuous and in L1, due to3

φ(x) ≤ 1

(1− cos(βπ))((1− x)2 + x2β)
,

and φ(0) = 1. Therefore, G0(r) and G1(r) are bounded and4

Gj(r) = r−β−j Γ(β + j)
sin(βπ)

βπ
, as r → ∞, j = 0, 1.

In particular,5

G0(r) ≈ ⟨r⟩−β , (27)

G1(r) ≈ ⟨r⟩−1−β . (28)

We can now prove Lemma 1.1.6

Proof. [Proof of Lemma 1.1] By the homogeneity of K̂0 and K̂1, it is sufficient to prove (8) and (9) for7

t = 1.8

For γ = 0 the proof follows by Lemma 2.2, see (27), (28). In order to prove the result for |γ| ≥ 1 we9

notice that10

G
(k)
j (r) =

sin(βπ)

βπ

∫ ∞

0

e−xrxβ+k+j−1φ(x) dx, j = 0, 1,

for all k ∈ N. Thus, by applying again Lemma 2.2 we get11

rkG
(k)
j (r) = r−β−j Γ(β + k + j)

sin(βπ)

βπ
, as r → ∞, j = 0, 1.

In particular,12

rk|G(k)
j (r)| ≲ ⟨r⟩−β−j , j = 0, 1,

and then,13

|∂γξ K̂0(1, ξ)| ≲
|γ|∑

k=⌈|γ|/2⌉

G
(k)
j (|ξ|2)|ξ|2k−|γ| ≲ ⟨ξ⟩−2β−2j |ξ|−|γ|

.

This concludes the proof.14

2.1. Multiplier estimates. Thanks to Lemma 1.1, we may apply Mikhlin-Hörmander multiplier theorem.15

Definition 2.3. For any 1 ≤ p ≤ q ≤ ∞ we denote by Mq
p the space of the Fourier transforms T̂ of16

tempered distributions T which satisfies17

∥T ∗ f∥Lq ≲ ∥f∥Lp ,

for all f in the Schwartz space S(Rn). The space Mq
p is endowed with the “multiplier norm”18

∥T̂∥Mq
p
:= sup

{
∥F−1(T̂F(f))∥q : f ∈ S(Rn), ∥f∥p = 1

}
.

In particular, we set Mp :=Mp
p . The elements in Mq

p are called multipliers of type (p, q).19

The multiplier norm is invariant by translation and has the following behavior with respect to dilations:20

∥m(t·)∥Mq
p
= t−n( 1

p−
1
q ) ∥m∥Mq

p
. (29)

Thanks to representation (26) we can use the homogeneity of the kernels G0 and G1; then, for any21

1 ≤ p ≤ q ≤ ∞ and σ ∈ R, we get22

∥K̂i(t, ·)|ξ|σ∥Mq
p
= t−

n
2 (

1
p−

1
q )−

σ
2 ∥K̂i(1, ·)|ξ|σ∥Mq

p
, i = 0, 1, (30)

for any t ≥ 0. The Mikhlin-Hörmander theorem in its simplest form states that if23

|∂γξm(ξ)| ≤ C |ξ|−|γ|
, |γ| ≤ 1 + [n/2],
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then m ∈Mp for any p ∈ (1,∞).1

As an immediate consequence of Lemma 1.1 and identity (30), by applying Mikhlin-Hörmander theorem,2

we get the following result.3

Corollary 2.4. Let p ∈ (1,∞) and b1, b2 ≥ 0. Then4

∥K̂0(t, ·)|ξ|b1⟨ξ⟩b2∥Mp
≤ Ct−

b1
2 (1 + t−

b2
2 ), if b1 + b2 ≤ 2β, (31)

∥K̂1(t, ·)|ξ|b1⟨ξ⟩b2∥Mp
≤ Ct−

b1
2 (1 + t−

b2
2 ), if b1 + b2 ≤ 2β + 2, (32)

for some constant C > 0.5

Proof. Since Mp multiplier norms are invariant by dilation and K̂j(t, ξ) = K̂j(1, ξ
√
t), we get6

∥K̂j(t, ·)|ξ|b∥Mp
= t−

b
2 ∥K̂j(1, ·)|ξ|b∥Mp

. (33)

However, ⟨ξ⟩b2 is not homogeneous, so to use (33), we first estimate7

∥K̂j(t, ·)|ξ|b1⟨ξ⟩b2∥Mp ≤ C
(
∥K̂j(t, ·)|ξ|b1∥Mp + ∥K̂j(t, ·)|ξ|b1+b2∥Mp

)
,

where we used that8

m(ξ) =
⟨ξ⟩b2

1 + |ξ|b2

is in Mp for any p ∈ (1,∞) (for instance, by Mikhlin-Hörmander theorem). Therefore, we obtain9

∥K̂j(t, ·)|ξ|b1⟨ξ⟩b2∥Mp ≤ C t−
b1
2

(
∥K̂j(1, ·)|ξ|b1∥Mp + t−

b2
2 ∥K̂j(1, ·)|ξ|b1+b2∥Mp

)
,

and the proof follows by Mikhlin-Hörmander theorem.10

In order to obtain estimates in the Mq
p norm, with 1 < p < q <∞, one may combine Mikhlin-Hörmander11

theorem with Hardy-Littlewood-Sobolev theorem.12

Definition 2.5. Let σ ∈ (0, n/2). We define the Riesz potential of order 2σ as13

I2σf(x) = F−1
(
|ξ|−2σ

f̂(ξ)
)
(x) ≡ Cn,σ

∫
Rn

f(y)

|x− y|n−2σ
dy.

The Hardy-Littlewood-Sobolev theorem states that if f ∈ Lp for some p ∈ (1, n/2σ), then I2σf ∈ Lp∗
14

where15

1

p
− 1

p∗
=

2σ

n
, and ∥I2σf∥Lp∗ ≲ ∥f∥Lp . (34)

2.2. Additional remarks on the kernels K0 and K1. In the following, we compare the kernels of our16

two-terms problem with the kernels of the fractional diffusion problem.17

Remark 2.1. Let w = w(t, x) be the solution to the linear Cauchy-type problem18 {
(−∆)1−β∂βt w −∆w = g(t, x) t > 0, x ∈ Rn,

w(0, x) = w0(x).
(35)

and K†
0 , K

†
1 the corresponding kernels. As in [7] it is easy to show that K̂†

0(t, ξ) = Eβ,1(−|ξ|2βtβ), where19

Eβ,1 is the Mittag-Leffler function of indexes β and 1 (see [18]). Thus, the kernel K̂†
0 has the same scaling20

properties of K̂0, that is K̂†
0(t, ξ) = K̂†

0(t|ξ|
2
, 1). As a consequence, if we consider the difference of the two21

kernels K0(t, ·) and K†
0(t, ·) we do not gain any additional decay for t → ∞; namely, for β > 1/4 in low22

space dimension n < 4β we have23

∥|ξ|s(K̂0(t, ·)− K̂†
0(t, ·))∥M2

1
= t−

n
4 − s

2 ∥K0(1, ·)−K†
0(1, ·)∥Ḣs

≈ t−
n
4 − s

2 ≈ ∥|ξ|sK0(t, ·)∥M2
1
,
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for any s ∈ [0, 2β − n/2), since the difference K0(1, ·)−K†
0(1, ·) is not trivial. In the previous line we used

the property M2
1 = M∞

2 = (L2)′ = L2. It is easy to show that if g = 0, u0 ∈ L1 ∩ L2 and the moment
condition

M =

∫
Rn

u0(x) dx ̸= 0,

holds, following as in [10, Theorem 2], the asymptotic profiles of the solution to (2), and to (35) with1

w0 = u0, are described by MK0(t, x) and MK†
0(t, x), respectively, in the sense that2

∥(K0(t, ·) ∗ u0)−MK0(t, ·)∥L2 = o(t−
n
4 ), ∥(K†

0(t, ·) ∗ u0)−MK†
0(t, ·)∥L2 = o(t−

n
4 ).

As a consequence, we obtain that3

lim
t→∞

t
n
4 ∥u(t, ·)− w(t, ·)∥L2 = lim

t→∞
t
n
4 ∥(K0(t, ·) ∗ u0)− (K†

0(t, ·) ∗ u0)∥L2

= |M | tn
4 ∥K̂0(t, ·)− K̂†

0(t, ·)∥L2

= |M | ∥K̂0(1, ·)− K̂†
0(1, ·)∥L2 ̸= 0.

Thus, u does not behave asymptotically like w. This fact supports the idea that the presence of the integer4

order derivative ∂tu in the Cauchy-type problem (1) does not produce the same effects as in the fractional5

damped heat equation (18).6

Remark 2.2. We stress that the difference in the smoothing properties of the two kernels K0 and K1 can7

be motivated looking at the smoothing effects for the Cauchy-type problem (35): it is easy to derive the8

identities K†
0 = H0 and K†

1 = I2(1−β)H1, where H0 and H1 are the kernels of the following subdiffusive9

problem10 {
∂βt v + (−∆)βv = I2(1−β)g(t, x)

v(0, x) = w0(x),
(36)

which is obtained by problem (35) applying the Riesz potential I2(1−β) of order 2(1 − β) to both sides of11

the equation. In particular, for any p ∈ (1,∞) we have that |ξ|αK̂†
0 = |ξ|αĤ0 ∈ Mp for any α ∈ [0, 2β];12

whereas, being |ξ|αĤ1 ∈ Mp for all α ∈ [04β], we derive |ξ|αK̂†
1 ∈ Mp for any α ∈ [0, 2 + 2β]. The study13

of problem (36) may be tackled more in details following the approach used in [7].14

3. Proofs of Proposition 1.2 and Theorem 1.515

We may now employ Corollary 2.4 to prove the desired estimates for the solution to (1).16

We first consider the homogeneous problem (2).17

Proposition 3.1. Let n ≥ 1 and s ∈ R. Assume that u0 ∈ Hs,m for some m ∈ (1,∞). Then the solution18

u ∈ C([0,∞), Hs,m) to (2) verifies the estimate19

∥u(t, ·)∥Hs,m ≤ C ∥u0∥Hs,m , (37)

for some C > 0 independent of u0 and t. Moreover, if s > 0 then we have the decay estimate20

∥u(t, ·)∥Ḣs,m ≤ C t−min{ s
2 ,β} ∥u0∥Hs,m , (38)

for any t ≥ 1.21

Proof. Applying (31) with b1 = b2 = 0, we immediately derive (37) by22

∥u(t, ·)∥Hs,m ≤ ∥K̂0(t, ·)∥Mm ∥u0∥Hs,m ≤ C ∥u0∥Hs,m .

Let s > 0 and t ≥ 1. Applying (31) with b2 = 0, and setting b1 = s if s ≤ 2β, or b1 = 2β otherwise, we get23

∥u(t, ·)∥Ḣs,m ≤ ∥|ξ|sK̂0(t, ·)∥Mm ∥u0∥Lm ≤ C t−
s
2 ∥u0∥Lm , if s ≤ 2β,

∥u(t, ·)∥Ḣs,m ≤ ∥|ξ|2βK̂0(t, ·)∥Mm
∥|ξ|s−2β

u0∥Lm ≤ C t−β∥u0∥Hs−2β,m , if s > 2β.

The proof of (38) follows. The proof of the continuity is standard.24



11

To deal with the solution to (1) we shall now also consider the integral containing K1 in (6) and prove1

Lemmas 1.3 and 1.4.2

Proof. [Proof of Lemma 1.3] We first prove (10). Due to t− τ ≤ 1, using (32) with b1 = 0 and b2 = 2b,3

we estimate4

∥K1(t− τ, ·) ∗(x) g(τ, ·)∥Hs,m ≤ ∥⟨ξ⟩2bK̂1(t− τ, ·)∥Mm
∥g(τ, ·)∥Hs−2b,m

≤ C(t− τ)−b∥g(τ, ·)∥Hs−2b,m ,

for any b ∈ [0, 1). The assumption b < 1 guarantees that (t − τ)−b is integrable over [t − 1, t]. Moreover,5

2b < 2 < 2 + 2β. This proves (10).6

To prove (11), we use (32) with b1 = 0 and b2 = 2 + 2β, so that7

∥K1(t− τ, ·) ∗(x) g(τ, ·)∥Hs,m ≤ ∥⟨ξ⟩2+2βK̂1(t− τ, ·)∥Mm∥g(τ, ·)∥Hs−2−2β,m

≤ C ∥g(τ, ·)∥Hs−2b,m ,

since t− τ ≥ 1. This proves (11).8

The proof of Proposition 1.2 follows combining Proposition 3.1 and Lemma 1.3.9

Proof. [Proof of Proposition 1.2] By Hölder inequality, we estimate10 ∫ t

(t−1)+

(t− τ)−b∥g(τ, ·)∥Hs−2b,m dτ ≤

{
C t−b ∥g∥Lr([t−1,t],Hs−2b,m) if t ≥ 1,
C t1−

1
r−b ∥g∥Lr([0,t],Hs−2b,m) if t ∈ (0, 1).

Moreover, for t > 1, we just estimate11 ∫ t−1

0

∥g(τ, ·)∥Hs−2−2β,m dτ ≤ ∥g∥L1([0,t−1],Hs−2−2β,m).

The continuity is a standard consequence of the fact that g ∈ Lr
loc(R+, H

s−2b,m); indeed, for a sequence th12

in R+ we get:13

th → t⇒
∫ t

th

(t− τ)−b∥g(τ, ·)∥Hs−2b,m dτ

≤ C |t1− 1
r−b − t

1− 1
r−b

h | ∥g∥Lr([th,t],Hs−2b,m) → 0,

if b ∈ (0, 1), and14

th → t⇒
∫ t

th

∥g(τ, ·)∥Hs,m dτ ≤ C ∥g∥L1([th,t],Hs,m) → 0,

if b = 0, due to the absolute continuity of the Lebesgue measure. If th > t, we just replace [th, t] by [t, th].15

16

Now we fix s > 0 and we prove Lemma 1.4.17

Proof. [Proof of Lemma 1.4] First, let s+a ≤ 2+2β. By using (32) with b1 = s+a and b2 = 2+2β−s−a,18

we may estimate19

∥K1(t− τ, ·) ∗(x) g(τ, ·)∥Ḣs,m

≤ ∥⟨ξ⟩2β+2−s−a|ξ|s+a
K̂1(t− τ, ·)∥Mm

∥F−1(|ξ|−a⟨ξ⟩s−2β−2+aĝ(τ, ·))∥Lm

≤ C(t− τ)−
s+a
2 ∥F−1(|ξ|−a⟨ξ⟩s−2β−2+aĝ(τ, ·))∥Lm .

We stress that the fact that s+a is the power of |ξ| and not of ⟨ξ⟩ is crucial to produce the decay (t−τ)− s+a
2 ,20

since t− τ ≥ 1. Finally, we may estimate21

∥F−1(|ξ|−a⟨ξ⟩s−2β−2+aĝ(τ, ·))∥Lm = ∥Iaf∥Lm ≤ C∥f∥Lq = C∥g(τ, ·)∥Hs−2β−2+a,q ,

where Iaf = F−1(|ξ|−a
f) is the Riesz potential of f = F−1(⟨ξ⟩s−2β−2+aĝ(τ, ·)), thanks to Hardy-22

Littlewood-Sobolev theorem, see (34). This proves (14) when s+ a ≤ 2 + 2β.23
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In the case s > 2 + 2β, using (32) with b1 = 2 + 2β and b2 = 0, we may estimate1

∥K1(t− τ, ·) ∗(x) g(τ, ·)∥Ḣs,m ≤ ∥|ξ|2+2β
K̂1(t− τ, ·)∥Mm

∥F−1(|ξ|s−2−2β
ĝ(τ, ·))∥Lm

≤ C(t− τ)−1−β∥g(τ, ·))∥Ḣs−2−2β,m .

This concludes the proof of (12).2

Remark 3.1. Following the proof of (12), we see that ∥g(τ, ·)∥Hs−2β−2+a,q may be replaced by the homoge-3

neous quantity ∥g(τ, ·)∥Ḣs−2β−2,m when s > 2 + 2β. Similarly, if s > 2b, we may estimate4

∥K1(t− τ, ·) ∗(x) g(τ, ·)∥Ḣs,m ≤ ∥|ξ|2bK̂1(t− τ, ·)∥Mm∥g(τ, ·)∥Ḣs−2b,m

≤ C(t− τ)−b∥g(τ, ·)∥Ḣs−2b,m ,

and using this when dealing with ∥u(t, ·)∥Ḣs,m , instead of relying on (10).5

Theorem 1.5 may then be modified accordingly, using the homogeneous quantity ∥g(τ, ·)∥Ḣs−2b,m in (15),6

when s > 2b, and the homogeneous quantity ∥g(τ, ·)∥Ḣs−2β−2,m in (16), when s > 2 + 2β.7

The proof of Theorem 1.5 follows combining Propositions 3.1 and 1.2 with (10) and (14).8

Proof. [Theorem 1.5] For any t ≥ 1, using (6), we obtain9

∥u(t, ·)∥Ḣs,m ≤ C t−min{ s
2 ,β} ∥u0∥Hs,m + C

∫ t

t−1

(t− τ)−b∥g(τ, ·)∥Hs−2b,m dτ

+ C

∫ t−1

0

(t− τ)−
s+a
2 ∥g(τ, ·)∥Hs−2−2β+a,q dτ

≤ C1 (1 + t)−min{ s
2 ,β}

(
∥u0∥Hs,m +A+B

)
.

For t ≤ 1, using (6), we obtain10

∥u(t, ·)∥Ḣs,m ≤ C ∥u0∥Hs,m + C

∫ t

0

(t− τ)−b∥g(τ, ·)∥Hs−2b,m dτ

≤ C1

(
∥u0∥Hs,m +A

)
.

This concludes the proof.11

Remark 3.2. We stress that many other estimates for the solution to (1) may be proved using (10), (11)12

and (14), which are consequences of Lemma 1.1. For instance, one may be interested into have a bounded13

solution to (1), in the sense that ∥u(t, ·)∥Hs,m is bounded with respect to t. In this case, the assumption14

of Theorem 1.5 may be relaxed. Assuming that15

A0 = sup
t≥0

∫ t

(t−1)+

(t− τ)−b ∥g(s, ·)∥Hs−2b,m dτ, (39)

and16

B0 = sup
t≥1

∫ t−1

0

(t− τ)−
s+a
2 ∥g(τ, ·)∥Hs−2−2β+a,q dτ, (40)

are finite, the following estimate immediately follows by (10) and (11):17

∥u(t, ·)∥Hs,m ≤ C(∥u0∥Hs,m +A0 +B0), (41)

for any t ≥ 1, where C > 0 is independent of t, u0, A0 and B0.18
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3.1. Proof of the integral estimates in Examples 1.2 and 1.3. The estimates provided in Exam-1

ples (1.2) and (1.3) are consequences of variants of a well-known result for integrals related to the application2

of Duhamel’s principle (an earlier version of this estimate goes back to [25]). For the ease of reading, we3

provide statements and proofs.4

Lemma 3.2. Let a1, a2 ∈ [0, 1). Then the following estimate holds5 ∫ t

0

(t− τ)−a1τ−a2 dτ ≤ C t1−a1−a2 ,

for any t ≥ 1, where the constant C = C(a1, a2) > 0 is independent of t ≥ 1.6

Proof. It is convenient to split the integral into7

I1 =

∫ t
2

0

(t− τ)−a1τ−a2 dτ,

I2 =

∫ t

t
2

(t− τ)−a1τ−a2 dτ.

The first integral may be estimated as8

I1 ≤ 2a1 t−a1

∫ t
2

0

τ−a2 dτ =
2a1+a2−1

1− a2
t1−a1−a2 ,

and by a change of variable we also find9

I2 =

∫ t
2

0

(t− τ)−a2τ−a1 dτ ≤ 2a1+a2−1

1− a1
t1−a1−a2 .

This concludes the proof.10

The function τ−a2 shall be replaced by (1 + τ)−a2 to avoid the singularity at τ = 0, when a2 ≥ 1. In11

particular, we have the following.12

Lemma 3.3. Let a1 ∈ [0, 1) and a2 > 1. Then the following estimate holds13 ∫ t

0

(t− τ)−a1(1 + τ)−a2 dτ ≤ C t−a1 ,

for any t ≥ 1, where the constant C = C(a1, a2) > 0 is independent of t ≥ 1.14

Proof. As in the proof of Lemma 3.2, we split the integral into15

I1 =

∫ t
2

0

(t− τ)−a1(1 + τ)−a2 dτ,

I2 =

∫ t

t
2

(t− τ)−a1(1 + τ)−a2 dτ.

The integral I1 may now be estimated as16

I1 ≤ 2a1 t−a1

∫ t
2

0

(1 + τ)−a2 dτ =
2a1

a2 − 1
t−a1

(
1− (2/(t+ 2))a2−1

)
≤ 2a1

a2 − 1
t−a1 .

To estimate the integral I2 we proceed as in the proof of Lemma 3.2, and we get17

I2 ≤ 2a2 (t+ 2)−a2

∫ t
2

0

τ−a1 dτ =
2a1+a2−1

1− a1
(t+ 2)−a2t1−a1 ≤ 2a2

1− a1
t−a1 .

This concludes the proof.18
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4. Application to a nonlinear problem1

In order to look for the existence of global-in-time solution to (4), we first provide a nonexistence result.2

Namely, according to the integrability of the initial datum u0, we find that no global-in-time solution to (4)3

exist, even in a weak sense, if the power nonlinearity in (4) is too small.4

Theorem 4.1. Let u0 ∈ Lm for some m ∈ (1,∞) which satisfies5

u0(x) ≥ ε0(1 + |x|)− n
m (ln(e+ |x|))−1, (42)

for some ε0 ∈ (0, 1). Then, if there exists a global-in-time weak solution to (4) with f = |u|p, then6

p ≥ 1 + 2m/n.7

On the other hand, if u0 ∈ L1 satisfies8 ∫
Rn

u0(x) dx > 0, (43)

and problem (4), with f = |u|p, admits a global-in-time weak solution, then p > 1+2/n if β ∈ (0, 2/(n+2)],9

or p ≥ 1 + 2/n if β ∈ (2/(n+ 2), 1).10

We postpone the proof of Theorem 4.1 to §5.11

The fact that global-in-time solutions may exist for critical nonlinearities p = 1 + 2m/n, when initial12

datum is in Lm with m > 1, is expected and confirmed by the forthcoming Theorem 4.2, which provides13

some existence result in this critical case, under additional assumptions on the space dimension n and14

on β. In the case of L1 initial datum, the existence of global-in-time solutions is excluded by Theorem 4.2,15

but only in the case β ∈ (0, 2/(n + 2)]. The existence of global-in-time solutions for supercritical powers16

is guaranteed again by Theorem 4.2 (see Remark 4.1). In the case β ∈ (2/(n+ 2), 1), we are not aware if17

the case of critical power nonlinearity belongs to the existence or to the nonexistence range.18

Theorem 4.2. Let m ∈ (1,∞) and fix a space dimension n < 2m, and a regularity s ∈ (n/m, 2).19

Let p ≥ 1 + 2m/n if 1 + 2m/n ≥ 1/β, and p > 1/β otherwise. Then, there exists ε0 > 0 such that if20

u0 ∈ Hs,m, with ∥u0∥Hs,m ≤ ε0, (44)

there is a uniquely determined solution u ∈ C([0,∞), Hs,m) to (4) with f = |u|p. Moreover, the solution u21

satisfies the following decay estimates:22

∥u(t, ·)∥Ḣκ,m ≤ C (1 + t)−min{κ
2 ,β}∥u0∥Hs,m , κ ∈ [0, s], (45)

where C > 0 is independent of t > 0.23

Remark 4.1. As a corollary of Theorem 4.2, if the initial datum is in Hs,1 for a sufficiently large s, then24

Theorem 4.2 may be applied for any m ∈ (1,∞) in space dimension n = 1, 2, so that the global-in-time25

small data solutions exist if p > max{1 + 2/n, 1/β} in space dimension n = 1, 2.26

We stress that we do not expect that the existence exponent max{1 + 2m/n, 1/β} in Theorem 4.2 is27

critical when 1+2m/n < 1/β. More precisely, we expect that for any m ∈ (1,∞) it is possible to prove the28

existence of global-in-time solutions with small datum in Hs,m for p > p̃(n,m, β) with p̃(n,m, β) < 1/β if29

1 +
2m

n
<

1

β
.

However, proving a general result would be rather technical, so we only discuss a simple scenario in30

Proposition 4.3.31

This very peculiar effect shows that working with L1 regularity of the datum or, more in general, Lm32

regularity, with m close to 1, is not the best possible choice to find global-in-time small data solutions.33

This is due to the asymmetry in the Duhamel’s principle for fractional equations, that is, K1 has better34

smoothing properties than K0 (see also Remark 2.2).35

Proof. [Theorem 4.2] We consider the evolution space X = C([0,∞), Hs,m) and the norm36

∥u∥X = sup
t≥0

sup
κ∈[0,s]

(1 + t)min{κ
2 ,β}∥u(t, ·)∥Ḣκ,m .
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Applying the fractional Sobolev embedding or Gagliardo-Nirenberg inequality (see, for instance, [17]) we1

conclude that if u ∈ X then2

∥u(τ, ·)∥Lr ≲ (1 + τ)−min{n
2 (

1
m− 1

r ),β}∥u∥X , (46)

for any r ∈ [m,∞), since3

Hκ,m ↪→ Lr, ∥h∥Lr ≤ C ∥h∥Ḣκ,m , κ = n

(
1

m
− 1

r

)
,

and n/m < s. Let us define the operator4

N : u ∈ X(T ) 7→Nu(t, x) = K0(t, ·) ∗(x) u0 + Fu(t, x),

Fu =

∫ t

0

K1(t− τ, ·) ∗(x) f(u(τ, ·)) dτ.
(47)

Applying Proposition 3.1, we find that5

∥K0 ∗(x) u0∥X ≤ C1 ∥u0∥Hs,m ,

for some C1 > 0. We will prove that6

∥Fu− Fv∥X ≤ C2 ∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
, (48)

for some C2 > 0. We now want to prove thatN is a contraction on a closed ball BR = {u ∈ X : ∥u∥X ≤ R},7

provided that R is sufficiently small. Let us fix R = 2C1 ∥u0∥Hs,m . Estimate (48) proves that F is a8

contraction with constant L < 1/2 on BR if R is a sufficiently small, namely, 2C2R
p−1 < 1/2. This9

provides the smallness condition on ∥u0∥Hs,m = R/(2C1). Now N maps BR onto BR and is a contraction,10

as well. Therefore there exists a unique fixed point, that is, a unique weak solution u, in X. Moreover,11

u ∈ BR, that is, ∥u∥X ≤ R = 2C1 ∥u0∥Hs,m , and this implies estimates (45).12

It remains to prove (48). For any u and v in X(T ) we define13

g(τ, x) = f(u(τ, x))− f(v(τ, x)).

As a consequence of (46) and (5) we obtain14

∥g(τ, ·)∥Lm ≤ ∥(u− v)(τ, ·)∥Lmp

(
∥u(τ, ·)∥p−1

Lmp + ∥v(τ, ·)∥p−1
Lmp

)
≲ (1 + τ)−pmin{ n

2m (1− 1
p ),β}∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
.

Similarly,15

∥g(τ, ·)∥Lq ≤ ∥(u− v)(τ, ·)∥Lqp

(
∥u(τ, ·)∥p−1

Lqp + ∥v(τ, ·)∥p−1
Lqp

)
≲ (1 + τ)−pmin{n

2 (
1
m− 1

qp ),β}∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
,

= (1 + τ)−min{ n
2m (p−1)− a

2 ,pβ}∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
,

provided that a = n(1/q − 1/m) is sufficiently small, that is, q is sufficiently close to m, in particular,16

qp ≥ m. We may now apply Theorem 1.5.17

We distinguish two cases. We first assume that pc = 1 + 2m/n verifies pc ≥ 1/β. It is clear that18

min
{ n

2m
(p− 1), pβ

}
≥ min

{ n

2m
(pc − 1), pcβ

}
= min {1, pcβ} = 1,

due to the assumption pc ≥ 1/β. Similarly,19

min
{ n

2m
(p− 1)− a

2
, pβ
}
≥ 1− a

2
.

Due to the assumption κ ≤ s < 2, letting b = s/2 ∈ (0, 1), we get20

∥g(t, ·)∥Hκ−2b,m ≤ ∥g(t, ·)∥Hs−2b,m = ∥g(t, ·)∥Lm

≤ (1 + t)−1∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
,
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and (1 + t)−1 ≤ (1 + t)−min{κ
2 ,β}. Therefore, we may estimate the quantity A in (15) (see Example 1.1)1

by2

A ≤ 4

2− s
∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
.

We also assume that a > 0 is sufficiently small to get s+ a < 2 as well. Therefore,3

∥g(t, ·)∥Hκ−2−2β+a,q ≤ ∥g(t, ·)∥Hs−2−2β+a,q ≤ ∥g(t, ·)∥Lq

≤ t−(1−
a
2 )∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
,

for any κ ≤ s. Applying Theorem 1.5 (see Example 1.2), we get the desired estimate4

∥Fu(t, ·)− Fv(t, ·)∥Ḣκ,m ≤ C(1 + t)−min{κ
2 ,β}∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
,

for any κ ≤ s.5

Now let pc < 1/β. In this case, we fix a = 0. Now for any p > 1/β,6

min
{ n

2m
(p− 1), pβ

}
= d(p) > 1,

since p > pc as well. Therefore,7

∥g(t, ·)∥Hκ−2−2β,m ≤ ∥g(t, ·)∥Hκ−2b,m ≤ ∥g(t, ·)∥Lm

≤ t−d(p)∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
,

for any κ ≤ s and for b = 1 − s/2. Applying Theorem 1.5 (see Examples 1.1 and 1.3), we get again the8

desired decay estimate.9

This concludes the proof.10

4.1. A variant of Theorem 4.2 in space dimension n = 1, 2. It is easy to see that the range in which11

the existence exponent is 1 + 2m/n may be enlarged taking smaller q. In the following result, we discuss12

the case of low space dimension n = 1, 2, in which it is possible to choose q close to 1 as one desires.13

Proposition 4.3. Let n = 1, 2, and m ∈ (1,∞). Fix s = 2. Assume that14

β pc > 1− n

2

(
1− 1

m

)
. (49)

Then for all p ≥ pc there exists ε0 > 0 such that if (44) holds and f(u) satisfies (5), for any δ ∈ (0, 2−n/m)15

there is a uniquely determined solution u to (4) which belongs to C([0,∞), H2−δ,m).16

Proof. [Proposition 4.3] We follow the proof of Theorem 4.2, but now we take q very close to 1. This is17

possible because, on the one hand for any δ ∈ (0, 2− n/m) it holds18

Hκ,m ↪→ Lqp, for all 2− δ > κ = n

(
1

m
− 1

qp

)
and19

κ+ a =
n

q

(
1− 1

p

)
< 2

for any q ∈ (1,m); on the other hand, since (49) holds and p ≥ pc we can fix q ∈ (1,m) sufficiently small20

such that21

βp ≥ 1− a

2
.

Now, noticing also that qp ≥ m, since 2m/n ≥ m we may apply (46) to r = qpc. As a consequence we22

obtain23

∥g(t, ·)∥Lq ≲ (1 + t)−1+ a
2 ∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
.

Moreover, as in the proof of Theorem 4.2 we get24

∥g(t, ·)∥Lm ≲ (1 + t)−pβ∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
;
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thus, since pβ > min{κ/2, β}, letting b = 1−δ/2 we may estimate the quantity A in (15) (see Example 1.1)1

by2

A ≤ 4

δ
∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
.

Applying Theorem 1.5 (see Example 1.2 to estimate the quantity B in (16)), we conclude the proof.3

4.2. Application of the decay estimates to another nonlinear problem. The smoothing effect of4

K1 also allows us to investigate global-in-time existence results for semilinear problems with nonlinear5

terms which are different by the classical |u|p, e.g. f(u,∇u) = ∇(u|u|p−1) with p > 1; for brevity, we6

discuss only the case of space dimension n = 1, fixing β ≥ 1/2 in (4).7

Theorem 4.4. Let m ∈ (1,∞); fix the space dimension n = 1, β ∈ [1/2, 1), and the regularity s = 1.8

Let p ≥ 1 +m. Then, there exists ε0 > 0 such that if9

u0 ∈ H1,m, with ∥u0∥H1,m ≤ ε0, (50)

there is a uniquely determined solution u ∈ C([0,∞), H1,m) to (4) with f = ∇|u|p. Moreover, the solution10

u satisfies the following estimates:11

∥u(t, ·)∥Ḣκ,m ≤ C (1 + t)−
κ
2 ∥u0∥H1,m , κ ∈ [0, 1],

where C > 0 is independent of t > 0.12

Proof. To prove Theorem 4.4, we consider the evolution space13

X = C([0,∞), H1,m),

and the norm14

∥u∥X = sup
t≥0

sup
κ∈[0,1]

(1 + t)
κ
2 ∥u(t, ·)∥Ḣκ,m .

Applying the fractional Sobolev embedding or Gagliardo-Nirenberg inequality we conclude that15

∥u(τ, ·)∥Lr ≲ (1 + τ)−
1
2 (

1
m− 1

r )∥u∥X , (51)

for any u ∈ X and r ≥ m, since16

Hκ,m ↪→ Lr, ∥h∥Lr ≤ C ∥h∥Ḣκ,m , κ =
1

m
− 1

r
< 1.

Moreover, applying Proposition 3.1, being β ≥ 1/2, we get that17

∥K0 ∗(x) u0∥X ≤ C1 ∥u0∥H1,m ,

for some C1 > 0. As in the proof of Theorem 4.2 we consider the operator N : X → X defined as in (47)18

and we prove that for any u, v ∈ X estimate (48) is satisfied for some C2 > 0; as a consequence, we will19

get the existence of a unique weak solution u to (4) in X, provided that ∥u0∥H1,m is sufficiently small. For20

any u and v in X we define21

g(τ, x) = ∇(u(τ, x)|u(τ, x)|p−1)−∇(v(τ, x)|v(τ, x)|p−1),

with p ≥ p̃c := 1 +m. By (51), since it holds

|∇(u|u|p−1)−∇(v|v|p−1)| ≤ |∇(u− v)|(|u|p−1 + |v|p−1) + |∇v||u− v|(|u|p−2 − |v|p−2),

we may fix b = κ/2 and estimate22

∥g(t, ·)∥Hκ−2b,m = ∥g(t, ·)∥Lm

≤ ∥u− v∥Ḣ1,m

(
∥u∥p−1

L∞ + ∥v∥p−1
L∞

)
+ ∥v∥Ḣ1,m∥u− v∥L∞

(
∥u∥p−2

L∞ + ∥v∥p−2
L∞

)
≤ (1 + t)−

1
2−

p−1
2m ∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
,

(52)
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for any κ ∈ [0, 1]; moreover, for any q ∈ (1,m) we have1

∥g(t, ·)∥Hκ−2β−2+a,q ≤ ∥g(t, ·)∥Lq

≤ ∥u− v∥Ḣ1,m

(
∥u∥p−1

Lr(p−1) + ∥u∥p−1
Lr(p−1)

)
+ ∥v∥Ḣ1,m∥u− v∥L∞

(
∥u∥p−2

Lr(p−1) + ∥u∥p−2
Lr(p−1)

)
≤ (1 + t)−

1
2−

1
2 (

p−1
m − 1

r )∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
,

where r ∈ [q,∞) satisfies 1/q = 1/m+ 1/r and a, defined as in (13), is less than 1.2

In particular, as a consequence of (52), we may estimate the quantity A in (15) (see Example 1.1) by3

A ≤ 4 ∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
.

On the other hand, noticing that4

1

2
+

1

2

(p− 1

m
− 1

r

)
≥ 1− a

2
,

for any p ≥ p̃c, we may estimate the quantity B in (16) (see Example 1.2) and apply Theorem 1.5. The5

proof of the desired result follows if the initial datum u0 satisfies condition (50).6

5. Proof of Theorem 4.17

Let us consider the Cauchy-type problem8 {
∂tu+ ∂βt (−∆)1−βu−∆u = |u|p

u(0, x) = u0(x),
(53)

with p > 1 and u0 satisfying condition (42) or (43). For any α > 0 the left-sided and, respectively,9

right-sided Riemann-Liouville fractional integral of order α of a given function f defined on [a, b] are given10

by11 (
Jα
a+f

)
(t) =

1

Γ(α)

∫ t

a

f(s)

(t− s)1−α
ds,

and, respectively,12 (
Jα
b−f

)
(t) =

1

Γ(α)

∫ b

t

f(s)

(s− t)1−α
ds,

for any t ∈ [a, b]. Moreover, for any α ∈ (0, 1) we define the left-sided and, respectively, right-sided13

Riemann-Liouville fractional derivatives of order α as14 (RL
Da+f

)
(t) = ∂t

(
J1−α
a+ f

)
(t),

and15 (RL
Db−f

)
(t) = −∂t

(
J1−α
b− f

)
(t).

In the following we employ a modified test function method to prove the desired results; in order to16

treat the nonlocal operators we replace compactly supported test functions by suitable test functions with17

polynomial decay. We first give a definition of global-in-time weak solution.18

Definition 5.1. Let us fix q = n + 2 − 2β; we define the space C∞
q (Rn) as the subspace of infinitely19

differentiable functions φ such that ⟨x⟩qφ is bounded and the function ⟨x⟩q(−∆)σφ is bounded for σ = 1−β20

and σ = 1.21

The following statement guarantees that the space C∞
q (Rn) is not empty (see Corollary 3.1 in [9]).22

Proposition 5.2. Let f(x) = ⟨x⟩−ω, for ω > n, and let σ > 0. We set s = σ − ⌊σ⌋. Then

∀x ∈ Rn : |(−∆)σf(x)| ≤ C⟨x⟩−ωσ ,
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where ωσ = ω + 2σ if σ is an integer, or ωσ = n+ 2s otherwise, and the constant C verifies the following
bound from below:

C = C(n, σ, ω) ≥ (−∆)σf(0) = 22σ
Γ(σ + n/2)

Γ(n/2)

Γ(σ + ω/2)

Γ(ω/2)
.

Remark 5.1. The space C∞
q is a vector space; as a consequence of Proposition 5.2 it is not empty, being

the function φ(x) = ⟨x⟩−ω in C∞
q for any ω ≥ q. Moreover, due to q > n, we get the inclusion

C∞
q ⊂ L∞(Rn, ⟨x⟩q dx) ⊂ L1.

Definition 5.3. We say that u ∈ Lp
loc(R+, L

p(Rn, ⟨x⟩−qdx)) is a global-in-time weak solution if for any1

test function ψ ∈ C1
c ([0,∞)) and φ ∈ C∞

q (Rn), it holds2 ∫
Rn

∫ ∞

0

|u(t, x)|pψ(t)φ(x) dt dx

=

∫
Rn

∫ ∞

0

u(t, x)
(
− ψ′(t)φ(x) +RL Dβ

∞−ψ(t)(−∆)1−βφ(x)− ψ(t)∆φ(x)
)
dt dx

− ψ(0)

∫
Rn

u0(x)φ(x) dx−
(
J1−β
∞− ψ

)
(0)

∫
Rn

u0(x)(−∆)1−βφ(x) dx.

This definition of global-in-time weak solution is motivated by the following result about fractional3

integration by parts which allows to prove that any classical solution of problem (53) is also a weak4

solution in the sense of Definition 5.3.5

Lemma 5.4. (Lemma 2.7 in [18]) Let b > 0, f ∈ Lp1([0, b]), f ∈ Lp2([0, b]), and either p1, p2 ≥ 1 such6

that 1/p1 + 1/p2 < 1 + γ, or p1, p2 > 1 and 1/p1 + 1/p2 = 1 + γ. Then, we have the following:7 ∫ b

0

(Jγ
0+f)(t)g(t) dt =

∫ b

0

f(t)(Jγ
b−g)(t) dt.

Proof. [Theorem 4.1] Let u be a global-in-time nontrivial weak solution to (53), in the sense of Definition8

5.3. We introduce ψ ∈ C1([0,∞)), a non-increasing function, such that suppψ ⊂ [0, 1] and9

ψ(t) =

{
1 if t ∈ [0, 1/2),

c0(1− t)ℓ+1 if t ∈ [1− ε, 1),

for some c0 > 0, ℓ > 1/(p− 1) and ε > 0 arbitrarily small. On the other hand, we fix φ ∈ C∞
q defined as

φ(x) = ⟨x⟩−n−2(1−β). For any R ≥ 1 and η > 0 we define

ψR(t) = ψ(R−ηt), φR(x) = φ(R−1x).

According to Definition 5.3 we have that10

IR :=

∫ ∞

0

∫
Rn

|u(t, x)|pψR(t)φR(x) dx dt

=

∫
Rn

∫ ∞

0

u(t, x)
(
− ψ′

R(t)φR(x) +
RL Dβ

∞−ψR(t)(−∆)1−βφR(x)

− ψR(t)∆φR(x)
)
dt dx

− ψR(0)

∫
Rn

u0(x)φR(x) dx−
(
J1−β
∞− ψR

)
(0)

∫
Rn

u0(x)(−∆)1−βφR(x) dx.

We preliminary notice that11

ψ′
R(t) = R−ηψ′(R−ηt), RLDβ

∞−ψR(t) = R−βη
(RL

Dβ
∞−ψ

)
(R−ηt),

(J1−β
∞− ψR)(t) = Rη(1−β)(J1−β

∞− ψ)(R
−ηt),

and12

(−∆)1−βφR(x) = R−2(1−β)(−∆)1−βφ(R−1x), (−∆)φR(x) = R−2(−∆)φ(R−1x).
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We set
k0 := (J1−β

∞− ψ)(0) ∈ R+;

thus, we conclude1

IR = −R−η

∫
Rn

∫ ∞

0

u(t, x)ψ′(R−ηt)φ(R−1x) dt dx

−R−2

∫
Rn

∫ ∞

0

u(t, x)ψ(R−ηt)∆φ(R−1x) dt dx

+R−βη−2(1−β)

∫
Rn

∫ ∞

0

u(t, x)(RLDβ
∞−ψ)(R

−ηt)(−∆)1−βφ(R−1x) dt dx

−
∫
Rn

u0(x)φ(R
−1x) dx− k0R

(η−2)(1−β)

∫
Rn

u0(x)(−∆)1−βφ(R−1x) dx.

(54)

By Hölder inequality, we derive2

R−η

∫
Rn

∫ ∞

0

|u(t, x)||ψ′(R−ηt)|φ(R−1x) dt dx

≤ CI
1
p

RR
−η

(∫
Rn

∫ ∞

0

|ψ′(R−ηt)|p
′
ψ(R−ηt)−

p′
p φ(R−1x) dt dx

) 1
p′

≤ CI
1
p

RR
(n+η)/p′−η ≤ IR

3p
+
C

p′
Rn+η−ηp′

,

(55)

3

R−2

∫
Rn

∫ ∞

0

|u(t, x)|ψ(R−ηt)|∆φ(R−1x)| dt dx

≤ CI
1
p

RR
−2

(∫
Rn

∫ ∞

0

ψ(R−ηt)|∆φ(R−1x)|p
′
φ(R−1x)−

p′
p dt dx

) 1
p′

≤ CI
1
p

RR
(n+η)/p′−2 ≤ IR

3p
+
C

p′
Rn+η−2p′

,

(56)

and4

R−βη−2(1−β)

∫
Rn

∫ ∞

0

|u(t, x)||(RLDβ
∞−ψ)(R

−ηt)||(−∆)1−βφ(R−1x)| dt dx

≤ CI
1
p

RR
−βη−2(1−β)

(∫
Rn

∫ ∞

0

|(RLDβ
∞−ψ)(R

−ηt)|p′ |(−∆)1−βφ(R−1x)|p′

ψ(R−ηt)
p′
p φ(R−1x)

p′
p

dt dx

) 1
p′

≤ CI
1
p

RR
(n+η)/p′−βη−2(1−β) ≤ IR

3p
+
C

p′
Rn+η−(βη+2(1−β))p′

,

(57)

provided that5

(ψ′)ψ− 1
p ≤ C, |(RLDβ

∞−ψ)|ψ
− 1

p ≤ C, (58)
for some constant C > 0, and6

|(−∆)1−βφ|φ− 1
p ∈ Lp′

, |∆φ|φ− 1
p ∈ Lp′

, φ ∈ L1. (59)

Indeed, being supp (ψ), supp (ψ′), and supp
(RL

Dβ
∞−ψ

)
included in [0, 1], estimates (58) and (59) are7

sufficient to guarantee the boundness of the integral terms in (55), (56) and (57).8

Being ψ ∈ C1([0, 1]) it follows that for any γ ∈ [0, 1] the test function ψ′ belongs to the weighted space9

Cγ([0, 1]), i.e. tγψ′ belongs to C([0, 1]); as a consequence RLDβ
1−ψ =C Dβ

1−ψ = J1−β
1− ψ′ is continuous in10

[0, 1] (see Lemma 28(a) in [18]); then, both ψ′ and RLDβ
1−ψ =RL Dβ

∞−ψ are uniformly bounded in [0, 1];11

moreover, there exists cε > 0 such that ψ(t) > cε uniformly in [0, 1− ε]; thus, condition (58) trivially holds12

in [0, 1− ε]. Else, in the interval (1− ε, 1) we have13

|ψ′(t)ψ(t)−
1
p | ≲ (1− t)ℓ−

ℓ+1
p ,



21

and, by property 2.1 in [18],1 ∣∣∣(RL

Dβ
∞−ψ

)
(t)ψ(t)−

1
p

∣∣∣ = C(1− t)ℓ+1−β− ℓ+1
p ,

for some constant C > 0 independent of t ∈ [0, 1]; thus, choosing ℓ ≥ 1/(p − 1) condition (58) is satisfied2

also for t ∈ [1− ε, 1], for a suitable C > 0. Furthermore, by Proposition 5.2 we know3

|(−∆)1−βφ|φ− 1
p ≤ φ

1
p′ = ⟨x⟩−

n+2−2β
p′ ∈ Lp′

,

and4

|∆φ|φ− 1
p ≲ ⟨x⟩−

n+4−2β
p′ ∈ Lp′

;

finally, by Remark 5.1 we know φ ∈ L1.5

Moreover, if u0 ∈ Lm with m ∈ (1,∞) and condition (42) holds, for any R > 1 we have6 ∫
Rn

u0(x)φR(x) dx ≥
∫
|x|≤R

u0(x) dx

≥ Cε0

∫
|x|≤R

(1 + |x|)− n
m (ln(e+ |x|))−1 dx

≥ Cε0R
n(1− 1

m )(ln(e+R))−1,

(60)

where the constant C > 0 does not depend on R; moreover, applying the Hölder inequality we can estimate7

R(η−2)(1−β)

∫
Rn

|u0(x)(−∆)1−βφ(R−1x)| dx

≤ R(η−2)(1−β)∥u0∥Lm

(∫
Rn

⟨R−1x⟩−(n+2(1−β))m′
dx

) 1
m′

≤ Rn(1− 1
m )+(η−2)(1−β)∥u0∥Lm ,

(61)

being m′ the the conjugate exponent of m, i.e. 1/m+ 1/m′ = 1.8

If p < 1 + 2m/n there exists δ > 0 sufficiently small such that p < 1 + (2− δ)m/n; let us fix η = 2− δ.9

Collecting together estimates (55), (56), (57), (60) and (61), by (54) we obtain10

IR ≲ Rn(1− 1
m ) ln(e+R)−1

((
R

n
m−(2−δ)(p′−1) + k0R

−δ(1−β)∥u0∥Lm

)
ln(e+R)− ε0

)
;

the contradiction follows taking R→ ∞.11

If m = 1, taking η = 2 we get12

IR +

∫
Rn

u0(x)φ(R
−1x) dx

+ k0

∫
Rn

u0(x)(−∆)1−βφ(R−1x) dx ≲ Rn+2−2p′
;

since u0 ∈ L1 we have13

lim
R→∞

∫
Rn

u0(x)
(
φ(R−1x) + k0(−∆)1−βφ(R−1x)

)
dx

=
(
1 + k0(−∆)1−βφ(0)

) ∫
Rn

u0(x) dx = K̄ > 0,

as a consequence of assumption (43); in particular, (−∆)1−βφ(0) > 0 can be explicitly evaluated (see14

Proposition 5.2). Thus, on the one hand, applying the monotone convergence theorem for any p < 1+2/n15

we get16

0 = lim
R→∞

Rn+2−2p′
≳ lim

R→∞
IR + K̄ =

∫ ∞

0

∫
Rn

|u(t, x)|p dx dt+ K̄,

which is impossible since K̄ > 0.17
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On the other hand, for p = pc we get1

lim
R→∞

IR =

∫ ∞

0

∫
Rn

|u(t, x)|pc dx dt ≤ C,

for some constant C > 0 independent of R, that is u ∈ Lpc([0,∞)× Rn).2

Now, we repeat the same reasoning used in subcritical case, fixing η = 2 and replacing the test function φR3

by the test function φRK = ⟨R−1K−1x⟩−n−2(1−β), for a given constant K >> 1. Being supp (ψ′) ⊂ [1/2, 1]4

we find5

IR +

∫
Rn

u0(x)φ(R
−1K−1x) dx

+ k0

∫
Rn

u0(x)(−∆)1−βφ(R−1K−1x) dx

≲ Ĩ
1
pc

R K
2n

n+2 + I
1
pc

R K− 4
n+2 + I

1
pc

R K− 4
n+2+2β ,

where

ĨR :=

∫ ∞

0

∫
Rn

|u(t, x)|pψ̃R(t)φR(x) dx dt, ψ̃R(t) =

{
0 if t ∈ [0, R/2),

ψR(t) otherwise.

In particular, being u ∈ Lp([0,∞)× Rn) it holds ĨR → 0 as R → ∞. If both R and K tend to infinity we6

get7

0 < ∥u∥Lp([0,∞)×Rn) +
(
1 + k0(−∆)1−βφ(0)

) ∫
Rn

u0(x) dx

< ∥u∥Lp([0,∞)×Rn) lim
K→∞

(
K− 4

n+2 +K− 4
n+2+2β

)
.

If β < 2/(n+ 2) we get a contradiction.8
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