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Numerical schemes that guarantee the preservation of flow properties as prescribed by physical 
laws, ensure high-fidelity results and improved computational robustness. This work presents 
a highly accurate entropy conserving/stable solver for the solution of the compressible Euler 
equations. The method uses a modal Discontinuous Galerkin approximation and takes advantage 
of both entropy variables and the Direct Enforcement of Entropy Balance (DEEB), proposed by 
Abgrall [1] to fulfill the second law of thermodynamics at the discrete level. Thanks to the use of 
an orthonormal modal basis, the cost of adding the DEEB correction to the spatially discretized 
equations is negligible. Entropy variables are used directly, as unknowns, or to assemble the 
discrete operators while solving for the conservative variables. In the latter case, the conservative 
variables are “converted” into the entropy ones through an 𝐿2 “entropy projection”. If this 
strategy is coupled with DEEB, a very efficient alternative to the direct use of the entropy variables 
is obtained, with a dramatic improvement in robustness over the direct use of the conservative 
variables. For the time integration both an explicit Strong Stability Preserving Runge-Kutta 
scheme and the implicit Generalized Crank-Nicolson method are considered. The latter allows 
for the construction of a discrete entropy conservative/stable scheme both in space and time to 
be used as a reference. Convergence and conservation properties are demonstrated together with 
robustness and computational efficiency on a suite of two-dimensional test cases, showing that 
by coupling DEEB with entropy projection the solver robustness is improved while not affecting 
the stability limit.

1. Introduction

In this contribution we report on the development and assessment of a high-order, modal Discontinuous Galerkin (DG) method 
for the simulation of multi-scale compressible flow phenomena. The solver is designed to be efficient and guarantee entropy con-
servation/stability at the discrete level, which for fluid mechanics means following the second law of thermodynamics, i.e. physical 
entropy must not be destroyed over time.
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Since the seminal work of Hughes et al. [2] there has been a significant surge of interest, within the computational fluid dynamics 
community, in devising numerical solvers for the governing equations of fluid mechanics able to satisfy an additional scalar equation 
for the entropy. In the framework of Finite Element Methods, the need to adopt a scheme based on entropy variables [2,3], and 
exactly integrate the variational formulation, directed the research mostly toward the development of nodal and collocated methods.

The representation of the numerical solution in a suitably chosen set of quadrature points allows for the definition of Summation 
by Parts (SBP) operators [4], a finite difference construct that accurately discretizes spatial derivatives and enforces integration 
by parts to hold at the discrete level also. This approach, coupled with appropriate flux-differencing formulae, was exploited to 
design several entropy stable nodal DG schemes, see [5–10]. Examples of entropy conserving/stable DG formulations using modal 
approximations can be found in the work of Chan [11,12], where conservation is still enforced by means of SBP-like operators and 
adequate flux functions.

In Colombo et al. [13] the modal DG framework presented in this contribution was exploited to construct an entropy conserv-
ing/stable method without posing any constraint on the structure of the numerical scheme. This was achieved by making direct use 
of entropy variables and selecting suitable flux formulae. In this discretization the adoption of hierarchical and orthonormal modal 
basis defined in physical space [14] reduces the elemental mass matrix to the identity when the set of conservative variables is 
used. However, when a different set of variables is considered, e.g. the entropy ones, the local mass matrix becomes full and couples 
all degrees of freedom (DOFs) of the different equations. In such case, the cost of its assembly and inversion drastically reduces 
the overall performance of the scheme. Inspired by the work of Chan et al. [15], to eliminate this cost while preserving the good 
properties of entropy conserving/stable schemes, we propose an efficient alternative where the non-stationary term is expressed in 
conservative form, while the evaluation of the spatial discrete operator uses the 𝐿2-projection of the conservative variables on the 
entropy ones. In any case, the computation of the spatial operators with the entropy variables, used either directly or through the 
“entropy projection”, requires the variational formulation to be exactly integrated in order to guarantee entropy conservation/stabil-
ity. From a practical viewpoint this results in a numerical over-integration, i.e. in the use of quadrature rules with a very high degree 
of exactness not known beforehand, causing a significant degradation of the computational performance. As a possible way to avoid 
over-integration, Chen and Shu [8] considered the Direct Enforcement of Entropy Balance (DEEB) approach, firstly developed by 
Abgrall [1] in the general framework of Residual Distribution. Later the approach was extended to DG in [16], while recent applica-
tions/developments in the ADER-DG framework can be found in [17]. In the DEEB algorithm an explicit correction term is added to 
the spatially discretized equations in such a way to remove spurious entropy variations and guarantee entropy conservation/stability.

When the entropy variables are the working set, the correction has the purpose to enforce the validity of the chain rule at the 
discrete level, but as pointed out by Abgrall et al. in [16], DEEB can be generalized to correct any source of spatial entropy error, 
like the projection error between conservative and entropy variables that appears when the conservative variables are the working 
set. The numerical results outlined throughout the paper demonstrate the improved robustness of “pure” and “projected” entropy 
variables over a standard implementation making use of conservative variables and highlight the beneficial role played by DEEB in 
making each set more robust.

For the time integration, both an explicit Strong Stability Preserving Runge-Kutta (SSPRK) scheme [18] and the implicit General-
ized Crank-Nicolson (GCN) [19] method are implemented. Although classical explicit schemes, like the SSPRK, do not ensure a priori 
the conservation of entropy even for smooth solutions, see [20], the coupling with explicit time integrations is here particularly 
attractive as it completely avoids linear algebra. In this work, the GCN is mostly used as a reference to investigate the effects of 
spurious entropy production in time on the robustness, as it leads to a fully discrete entropy conserving/stable scheme.

The paper is organized as follows. In Sec. 2 the governing equations of inviscid fluid dynamics and their link with entropy 
conservation are presented. In Sec. 3 the numerical framework is introduced with details on the implementation of the “entropy 
projection” and DEEB when orthonormal basis functions are used. In Sec. 4 numerical results are presented discussing convergence 
and conservation properties, robustness and computational efficiency, with the underlying purpose of comparing: 𝑖) the direct use of 
the entropy variables with the “entropy projection”; 𝑖𝑖) over-integration with the DEEB approach. Finally, concluding remarks and 
future research directions are given in Sec. 5.

2. The governing equations and the entropy framework

Treating only inviscid flows, our starting point are the compressible Euler equations in their conservative form

𝜕𝜌

𝜕𝑡
+ 𝜕
𝜕𝑥𝑗

(
𝜌𝑢𝑗

)
= 0,

𝜕
𝜕𝑡

(
𝜌𝑢𝑖

)
+ 𝜕
𝜕𝑥𝑗

(
𝜌𝑢𝑗𝑢𝑖

)
= − 𝜕𝑝

𝜕𝑥𝑖
+ 𝜌𝑔𝑖,

𝜕
𝜕𝑡

(𝜌𝐸) + 𝜕
𝜕𝑥𝑗

(
𝜌𝑢𝑗𝐻

)
= 𝜌𝑔𝑖𝑢𝑖,

(1)

where 𝜌 is the fluid density, 𝑝 is the pressure, u =
[
𝑢1,… , 𝑢𝑑

]⊤
is the velocity vector, 𝐸 and 𝐻 are the total energy and enthalpy, 

respectively, and 𝑖, 𝑗 = 1, … , 𝑑, with 𝑑 being the number of geometric dimensions. For a perfect gas 𝑝 = 𝜌𝑅𝑇 , where 𝑅 is the 
specific gas constant and 𝑇 is the thermodynamic temperature. Moreover, the pressure is given by 𝑝 = (𝛾 − 1)

(
𝜌𝐸 − |𝜌𝐮|2∕2𝜌) where 
2

𝛾 = 𝑐𝑝∕𝑐𝑣 is the ratio of gas specific heats, here set to 1.4. Finally, 𝑔𝑖 is the 𝑖-th component of the gravitational acceleration vector 𝐠.
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The system in Eq. (1) can be written in compact form as

𝜕q

𝜕𝑡
+
𝜕F𝑖
𝜕𝑥𝑖

= 𝐛, (2)

with implied summation over the range 𝑖 = 1, … , 𝑑. Here q = [𝜌, 𝜌𝐮, 𝜌𝐸]⊤ is the vector of the conservative variables, F ∈ℝ(2+𝑑)×𝑑 is 
the convective flux function and b =

[
0, 𝜌𝐠, 𝜌𝑔𝑖𝑢𝑖

]⊤
is the possible source term due to the gravitational body force.

The Euler equations account for a well-known feature of nonlinear systems: initially smooth solutions may cease to be differen-
tiable after a finite amount of time, developing discontinuities in the form of shocks. In such cases, solutions to the conservation 
equations exist only in an integral, weak sense with conservation at shock locations expressed by the Rankine-Hugoniot relation. 
These generalized, non-differentiable solutions to systems of conservation equations are known to be non-unique [21] for given 
initial conditions so that suitable constraints must be enforced to single out the physically meaningful ones.

Lax and Friedrichs [22] first outlined a general extension of the conservation system with an additional scalar inequality

𝜕
𝜕𝑡

+
𝜕𝜎𝑖
𝜕𝑥𝑖

≤ 0, (3)

upon the existence of a suitable compatibility condition

𝜕
𝜕𝐪
𝜕𝐅𝑖
𝜕𝐪

=
𝜕𝜎𝑖
𝜕𝐪
, (4)

involving the entropy pair ( , 𝜎𝑖).
Mock [3] later reformulated this framework as a change of variables 𝐯⊤ ≡ 𝜕∕𝜕𝐪 ↦ 𝐪(𝐯)

𝜕𝐪
𝜕𝐯
𝜕𝐯
𝜕𝑡

+
𝜕𝐅𝑖
𝜕𝐪
𝜕𝐪
𝜕𝐯
𝜕𝐯
𝜕𝑥𝑖

= 𝐛 , (5)

where the convexity of  ensured the existence of a one-to-one mapping reducing Eq. (2) into its symmetric form (5). The analytical 
equivalence between Eqs. (2) and (5), coupled with the compatibility condition (4), ensures again the reduction of the mapped 
system to the scalar conservation statement of Eq. (3) upon left multiplication by 𝐯⊤.

For the Euler equations, Harten et al. [23,24] demonstrated that the thermodynamic entropy density behaves exactly as a convex 
generalized entropy function. Hughes et al. [2] later showed that discretizing the Navier-Stokes equations in a Galerkin finite element 
framework, and using entropy variables, naturally induces an implicit resolution of Eq. (3) in integral form.

To maintain an entropy preserving property also at the discrete level, however, appropriate strategies involving specifically 
designed space/time algorithms must be used, see Sec. 3. According to Refs. [23,24,2] and as already reported in [13,19], here the 
following entropy pair is considered

 = −𝜌𝑠
𝛾 − 1

, (6)

𝜎𝑖 = 𝑢𝑖 , (7)

where 𝑠 = ln(𝑝∕𝜌𝛾 ) denotes the specific thermodynamic entropy. Due to the sign assumed by the mathematical entropy  , the 
production of physical entropy 𝑠 corresponds to the destruction of  and viceversa.

By taking the Jacobian of  with respect to the conservative state 𝐪, the set of entropy variables is derived

𝐯 =
[
𝛾 − 𝑠
𝛾 − 1

− 1
2
𝜌|𝐮|2
𝑝
,
𝜌𝑢𝑖
𝑝
, −𝜌
𝑝

]⊤
. (8)

Note that, with this choice, the contribution to Eq. (4) of the gravitational source terms, which is 𝐯⊤𝐛, cancels out.
Finally, the existence of the aforementioned symmetric operators further allows to introduce the entropy potentials, 𝜃 = 𝐯⊤𝐪 − 

and 𝝍 = [𝜓1, … , 𝜓𝑑 ]⊤, where 𝜓𝑖 = 𝐯⊤𝐅𝑖 −𝜎𝑖 and 𝐪⊤ = 𝜕𝜃∕𝜕𝐯, see Refs. [3,25]. The latter were proven to reduce to 𝜃 = 𝜌 and 𝜓𝑖 = 𝜌𝑢𝑖
provided that the entropy variables are in the form presented in Eq. (8).

Some relevant relationships, peculiar to the entropy formulation, are given throughout this paper to clarify the nature of the 
correction introduced by the DEEB. These may be easily extracted from the founding contributions to the entropy framework of 
Refs. [2,23,3,25] but are outlined here in a different form and to provide a base for the considerations reported in Sec 3.2. We start 
by noting that computing the divergence of 𝜓𝑖 = 𝐯⊤𝐅𝑖−𝜎𝑖 and taking advantage of the compatibility condition of Eq. (4), from which 
we get 𝜕𝜎𝑖∕𝜕𝑥𝑖 = 𝐯⊤𝜕𝐅𝑖∕𝜕𝑥𝑖, the following relation is obtained

𝜕𝜓𝑖
𝜕𝑥𝑖

= 𝜕𝐯
⊤

𝜕𝑥𝑖
𝐅𝑖. (9)

As it will be clear later, the fulfillment of Eq. (9) plays a crucial role in ensuring the entropy conservation/stability of the DG 
3

discretized Euler equations.
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3. The discrete setting

The DG spatial discretization is built on top of a triangulation ℎ = {𝐾} of the computational domain Ωℎ, approximating the 
physical space Ω ⊂ ℝ𝑑 by means of non-overlapping mesh elements 𝐾 . For the sake of a detailed presentation of the numerical 
method, the Euler equations are written as

P(𝐰)𝜕𝐰
𝜕𝑡

+
𝜕𝐅𝑖(𝐰)
𝜕𝑥𝑖

= 𝐛(𝐰), (10)

where w ∈ ℝ2+𝑑 is the unknown solution vector and P (w) = 𝜕q(w)∕𝜕w ∈ ℝ2+𝑑 ⊗ ℝ2+𝑑 is the Jacobian matrix introduced by the
possible change of variables from the conservative set q to the generic set w.

The weak formulation of Eq. (10) is derived by scalar multiplication with an arbitrary smooth test function 𝚽 ∈ ℝ2+𝑑 , and 
integration over the entire domain Ω

∫
Ω

𝚽⊤P (w) 𝜕w
𝜕𝑡
𝑑Ω− ∫

Ω

(
𝜕𝚽
𝜕𝑥𝑖

)⊤
𝐅𝑖 (w)𝑑Ω+ ∫

𝜕Ω

𝚽⊤𝐅𝑖 (w)𝑛𝑖 𝑑𝜎 − ∫
Ω

𝚽⊤𝐛 (w)𝑑Ω= 0, (11)

where integration by parts was exploited and {𝑛𝑖}𝑑𝑖=1 identifies the outward-oriented, unit normal vector to the boundary 𝜕Ω. As 
highlighted by Hughes et al. [2], by choosing 𝐰 ≡ 𝐯, and with no a priori assumption on 𝚽, the weak formulation implies the integral 
version of Eq. (3) and induces the global constraint

𝑑
𝑑𝑡 ∫

Ω

(𝐰)𝑑Ω ≤ 0. (12)

To proceed with the discretization of Eq. (11) the continuous vector functions 𝐰 and 𝚽 are replaced with finite element approxi-

mations 𝚽ℎ, 𝐰ℎ ∈
[ℎ]𝑑+2, where

ℎ = {𝜙 ∈𝐿2(Ω) ∶ 𝜙|𝐾 ∈ ℙ𝑘𝑑 (𝐾) , ∀𝐾 ∈ℎ} (13)

is the set of piecewise-continuous, 𝑘-th degree, 𝑑-dimensional polynomial functions with compact support on 𝐾 . As a modal basis for 
this polynomial space, the set of orthonormal and hierarchical functions {𝜙𝑗}

𝑁𝑑𝑜𝑓
𝑗=1 defined in the physical space according to Bassi et 

al. [14] is used. Each component 𝑤ℎ,𝜅 , 𝜅 = 1, … , 2+𝑑 of the numerical solution wℎ is then expressed, in terms of the elements of the 
global vector 𝐖 of the unknown DOFs, as 𝑤ℎ,𝜅 = 𝜙𝑗𝑊𝜅,𝑗 , 𝑗 = 1, … , 𝑁𝑑𝑜𝑓=

∏𝑑
𝑚=1(𝑘 +𝑚)∕𝑚, ∀𝐾 ∈ℎ. For the sake of presentation, 

the set of mesh faces ℎ = 0
ℎ

⋃𝑏
ℎ
, partitioned in the subsets of internal 0

ℎ
and boundary 𝑏

ℎ
faces, is introduced. Let us further 

identify with 𝐾 = {𝐹 } the set of faces 𝐹 belonging to the element 𝐾 , ∀𝐾 ∈ℎ. Ultimately, the DG discretization of the governing 
equations consists in seeking, for 𝑙 = 1, … , 2+𝑑, the elements of 𝐖 such that∑

𝐾∈ℎ ∫𝐾
𝜙𝑖 𝑃𝑙,𝜅

(
wℎ

)
𝜙𝑗
𝑑𝑊𝜅,𝑗

𝑑𝑡
𝑑Ω −

∑
𝐾∈ℎ ∫𝐾

𝜕𝜙𝑖
𝜕𝑥𝑛
𝐹𝑙,𝑛

(
wℎ

)
𝑑Ω

+
∑
𝐹∈ℎ ∫𝐹

�𝜙𝑖� 𝐹𝑙
(
w±
ℎ
, 𝑛𝐹 ,𝑛

)
𝑑𝜎 −

∑
𝐾∈ℎ ∫𝐾

𝜙𝑖𝑏𝑙
(
wℎ

)
𝑑Ω= 0, (14)

for 𝑖, 𝑗 = 1, … , 𝑁𝑑𝑜𝑓 and where repeated indices imply summation over the ranges 𝜅 = 1, … , 𝑑 + 2 and 𝑛 = 1, … , 𝑑. In Eq. (14) 𝐅̂ is 
the numerical flux function that replaced the convective physical flux 𝐅 in normal direction and {𝑛𝐹 ,𝑖}𝑑𝑖=1 is the uniquely defined 
unit vector normal to 𝐹 . The jump operator �◦� = ◦+ − ◦− is also introduced to account for the discontinuities of functions at each 
mesh face 𝐹 ∈ 𝜕𝐾+ ∩ 𝜕𝐾−. Concerning the numerical flux function, Tadmor [25–27] provided the following analytical condition

�𝐯⊤ℎ � 𝐅̂(𝐯±
ℎ
, 𝑛𝐹 ,𝑖) − �𝜓𝑖(𝐯ℎ)�𝑛𝐹 ,𝑖 = 0, (15)

entailing a global entropy space conservation property. This is strictly true provided the adoption of entropy-conserving fluxes, such 
as the Ismail and Roe formulation [28]. On the other hand, choosing an entropy-stable flux, e.g. the Godunov flux [29], the above 
relation holds in its inequality form (≥) with the interface discontinuities acting as spatial sources that contribute as a negative rate 
of variation of  .

Note that from here on, the source term 𝐛 is excluded for brevity as it does not affect the presentation of the entropy projection 
and the Direct Enforcement of Entropy Balance.

3.1. Entropy projection

Before discussing the implementation of the DEEB approach, the projection of variables operator is presented here. The matrix 
P(wℎ) significantly affects the amount of operations required by the numerical solution procedure; this is due to the introduced 
modification to the identity structure of the elemental mass matrix in Eq. (14). To avoid its assembly and inversion, while preserving 
4

the entropy conservation/stability property obtained from the direct use of entropy variables, the “entropy projection” strategy from 
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Chan et al. [15] is investigated. This approach seeks the solution for the conservative variables while evaluating the spatial discrete 
operators with the element-wise 𝐿2-projection of the conservative variables on the entropy ones. In this way Eq. (14) can be rewritten 
as ∑

𝐾∈ℎ ∫𝐾
𝚽ℎ⊤

𝜕qℎ
𝜕𝑡
𝑑Ω −

∑
𝐾∈ℎ ∫𝐾

(
𝜕𝚽ℎ
𝜕𝑥𝑖

)⊤
F𝑖
(
v∗ℎ

)
𝑑Ω+

∑
𝐹∈ℎ ∫𝐹

�𝚽⊤ℎ � F̂
(
v∗±
ℎ
, 𝑛𝐹 ,𝑖

)
𝑑𝜎 = 0, (16)

where 𝑖 = 1, … , 𝑑. As a result a standard conservative method (for mass, total energy and momentum) is retained, whereas the 
resolution for an arbitrary set 𝐰ℎ would introduce a relaxation of such property to the limit of Δ𝑡 → 0, see Sec. 4.1. The entropy 
projection can be considered as the best polynomial approximation of vℎ, which would naturally be rational for qℎ ∈ ℙ𝑘

𝑑
(ℎ). 

Operatively, the entropy projection is given by

∫
𝐾

𝚽⊤ℎv∗ℎ𝑑Ω= ∫
𝐾

𝚽⊤ℎv
(
qℎ

)
𝑑Ω, (17)

that reduces, thanks to the orthonormality of the shape functions, in computing the degrees of freedom (DOFs) for the projected v∗
ℎ

𝑉 ∗
𝜅,𝑗 = ∫

𝐾

𝜙𝑗𝑣𝜅
(
𝐪ℎ

)
𝑑Ω, (18)

where 𝜅 = 1, … , 𝑑 + 2 and 𝑗 = 1, … , 𝑁𝑑𝑜𝑓 .

3.2. Direct enforcement of entropy balance

In a general DG framework, the evolution equation for the entropy can be derived by substituting the shape functions 𝚽ℎ with 
v∗
ℎ

in Eq. (14), i.e.

∑
𝐾∈ℎ ∫𝐾

v∗⊤ℎ P
(
wℎ

) 𝜕wℎ
𝜕𝑡
𝑑Ω −

∑
𝐾∈ℎ ∫𝐾

𝜕v∗⊤
ℎ

𝜕𝑥𝑖
F𝑖
(
wℎ

)
𝑑Ω+

∑
𝐹∈ℎ ∫𝐹

�v∗⊤ℎ � F̂
(
wℎ

±, 𝑛𝐹 ,𝑖
)
𝑑𝜎 = 0. (19)

From this, exploiting the relations

∑
𝐾∈ℎ ∫𝐾

v∗⊤ℎ P
(
wℎ

) 𝜕wℎ
𝜕𝑡
𝑑Ω=

∑
𝐾∈ℎ ∫𝐾

𝜕 (
wℎ

)
𝜕wℎ

𝜕wℎ
𝜕𝑡
𝑑Ω, (20)

∑
𝐾∈ℎ ∫𝐾

𝜕v∗⊤
ℎ

𝜕𝑥𝑖
F𝑖(wℎ)𝑑Ω=

∑
𝐾∈ℎ ∫𝐾

𝜕𝜓𝑖(wℎ)
𝜕𝑥𝑖

𝑑Ω=
∑
𝐹∈ℎ ∫𝐹

�𝜓𝑖(wℎ)�𝑛𝐹 ,𝑖 𝑑𝜎, (21)

∑
𝐹∈ℎ ∫𝐹

�v∗⊤ℎ � F̂
(
wℎ

±, 𝑛𝐹 ,𝑖
)
𝑑𝜎 =

∑
𝐹∈ℎ ∫𝐹

�vℎ(𝐰ℎ)⊤� F̂
(
wℎ

±, 𝑛𝐹 ,𝑖
)
𝑑𝜎, (22)

the following implicitly resolved entropy equation may be obtained

∑
𝐾∈ℎ ∫𝐾

𝜕 (
wℎ

)
𝜕wℎ

𝜕wℎ
𝜕𝑡
𝑑Ω +

∑
𝐹∈ℎ ∫𝐹

[
�vℎ(𝐰ℎ)⊤� F̂

(
wℎ

±, 𝑛𝐹 ,𝑖
)
− �𝜓𝑖(wℎ)�𝑛𝐹 ,𝑖

]
𝑑𝜎 = 0 . (23)

As long as the numerical flux satisfies Tadmor’s condition of Eq. (15), entropy is conserved/dissipated over time by Eq. (23). However, 
the identities (20)− (22) generally hold true only in a continuous setting, and the passage from Eq. (19) to Eq. (23) is exact in the 
discrete framework only if the following conditions are met:

1. the entropy variables are used as the working set so that v(wℎ) and v∗
ℎ

are “interchangeable”;
2. the time discretized LHS of Eq. (20) results in a “correct” discretization of the time derivative of  ;
3. all the integrals are evaluated exactly.

The first condition requirement is a direct consequence of ensuring for Eq. (21) the validity of Eq. (9) at the discrete level, which is 
true when both vℎ and 𝐅𝑖 are computed as a function of the same set of (polynomial) variables. As the term 𝜕v∗

ℎ
∕𝜕𝑥𝑖 appears on the 

LHS of Eq. (21), the sole viable option is to set 𝐰ℎ = 𝐯ℎ = 𝐯∗
ℎ
. Similarly, for Eq. (22) to be satisfied the identity 𝐯∗

ℎ
= 𝐯ℎ(𝐰ℎ) should 

hold at each Gauss point.
An analogous reasoning applies to the second condition. The LHS of Eq. (20) is a “correct” discretization of the time derivative of 

(𝐰ℎ) if and only if

∗⊤ 𝜕𝐪(𝐰ℎ) 𝜕𝐰ℎ 𝜕(𝐰ℎ) 𝜕𝐰ℎ
5

𝐯ℎ 𝜕𝐰ℎ 𝜕𝑡
=

𝜕𝐰ℎ 𝜕𝑡
, (24)
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i.e.

𝐯∗⊤ℎ =
𝜕(𝐰ℎ)
𝜕𝐪(𝐰ℎ)

(25)

so that the chain rule

𝜕(𝐰ℎ)
𝜕𝐰ℎ

=
𝜕(𝐰ℎ)
𝜕𝐪(𝐰ℎ)

𝜕𝐪(𝐰ℎ)
𝜕𝐰ℎ

, (26)

holds at the discrete level. Together with the obvious choice 𝐰ℎ = 𝐯ℎ, this requirement is also fulfilled by the conservative set 
𝐰ℎ = 𝐪ℎ, where 𝐏(𝐰ℎ) = 𝐈.

Indeed, Eq. (17) makes the temporal discretization of the unsteady term ∫𝐾 𝐯∗⊤
ℎ
(Δ𝐪ℎ∕Δ𝑡)𝑑Ω equivalent to ∫𝐾 𝐯(𝐪ℎ)⊤(Δ𝐪ℎ∕Δ𝑡)𝑑Ω, 

with 𝐯(𝐪ℎ)⊤ = 𝜕(𝐪ℎ)∕𝜕𝐪ℎ, as Δ𝐪ℎ lays in the polynomials space of the solutions. In other words, the conservative set of variables 
provides a reliable approximation of the entropy time derivative in the implicitly solved entropy equation. It is worth noting that exact 
evaluation of the 𝐿2-projection is not mandatory, as this result remains valid when both sides of Eq. (17) are consistently evaluated 
using the same Gauss quadrature rule.

In general, a time-integration scheme guarantees the full conservation (using the entropy-conserving flux) of (𝐰ℎ) only when

𝜕(𝐰ℎ)
𝜕𝐰ℎ

Δ𝐰ℎ
Δ𝑡

=
Δ(𝐰ℎ)

Δ𝑡
, (27)

and hence only as Δ𝑡 → 0 a general scheme becomes entropy conserving and stable, provided an appropriate numerical flux is chosen. 
It is worth noting that a similar phenomenon impacts the conservation of “standard” quantities like mass, energy, and momentum 
when the discretized scheme incorporates the Jacobian matrix 𝐏(𝐰ℎ) of the change of variables, as illustrated in Eq. (14). In the 
literature, there are few exceptions of fully discrete entropy conservative schemes such as, for example, relaxation Runge-Kutta 
methods [30] and the Generalized Crank-Nicolson [19,31] later introduced in Sec. 3.3.

Finally, the last condition highlights that, in the discrete setting, the use of the Gauss theorem to pass from the volume to the 
surface integral in Eq. (21) is only valid if all the integrals are computed exactly. From a practical perspective, this translates into the 
need for over-integration using appropriate quadrature rules, cf. [13]. Unfortunately, over-integration implies using quadrature rules 
with a very high degree of exactness, not known a priori, dramatically impacting the computational cost.

A very appealing strategy to avert the use of entropy variables and over-integration while preserving entropy conservation/stability 
properties is represented by the Direct Enforcement of Entropy Balance (DEEB) [1,16].

This approach adds a correction term to the governing equations that formally results from an optimization problem. In particular, 
its optimal nature lies in its minimization of the norm of the correction associated with each degree of freedom.

With the inclusion of the DEEB term, Eq. (16) becomes

∑
𝐾∈ℎ ∫𝐾

𝚽⊤ℎP
(
wℎ

) 𝜕wℎ
𝜕𝑡
𝑑Ω −

∑
𝐾∈ℎ ∫𝐾

(
𝜕𝚽ℎ
𝜕𝑥𝑖

)⊤
F𝑖
(
wℎ

)
𝑑Ω

+
∑
𝐹∈ℎ ∫𝐹

�𝚽⊤ℎ � F̂
(
wℎ

±, 𝑛𝐹 ,𝑖
)
𝑑𝜎 +

∑
𝐾∈ℎ

𝛼𝐾
∫𝐾 𝚽⊤ℎ v

∗
ℎ 𝑑Ω

∫𝐾 v
∗⊤
ℎ v

∗
ℎ 𝑑Ω

= 0,

(28)

where 𝛼𝐾 is the elemental correction factor and v∗ℎ = v∗
ℎ
− v∗

ℎ,0, with v∗
ℎ,0 being the mean value of v∗

ℎ
. In Eq. (28) the role of the 

term 
(∫𝐾 𝚽⊤ℎ v

∗
ℎ 𝑑Ω

)
∕ 
(∫𝐾 v

∗⊤
ℎ v

∗
ℎ 𝑑Ω

)
is to distribute the correction as uniformly as possible among all the DOFs. In the present 

implementation, taking advantage of the orthonormality of the shape functions, this contribution to the correction term can be 
greatly simplified as

∫𝐾 𝜙𝑖𝜙𝑗𝑉 ∗
𝜅,𝑗𝑑Ω

∫𝐾 𝜙𝑗𝑉 ∗
𝑠,𝑗𝜙𝜄𝑉

∗
𝑠,𝜄𝑑Ω

=
𝑉

∗
𝜅,𝑖

𝑉
∗
𝑠,𝜄𝑉

∗
𝑠,𝜄

, (29)

with 𝜅, 𝑠 = 1, … , 2 + 𝑑 and 𝑖, 𝑗, 𝜄 = 1, … , 𝑁𝑑𝑜𝑓 , where repeated indices imply summation. To put it in clearer terms: 𝑖) the correction 
is applied to all equations except for those associated to the first test function, for which 𝑉

∗
𝑘,1 = 0, guaranteeing the conservation of 

mean flow quantities; 𝑖𝑖) the numerator of Eq. (29) includes the DOF associated with the test function of the equation to be solved, 
while the denominator is composed by the global sum of all the squared DOFs. When dealing with solutions where the out-of-mean 
degrees of freedom are null, the correction term in Eq. (29) becomes an indeterminate form. Since in this situation 𝛼𝐾 should 
converge to zero, in the code implementation the correction is omitted when the denominator is lower than 10−14 .

Following the work of Abgrall [1] the elemental correction term can be expressed in explicit form as

𝛼𝐾 =
∑ [

v(wℎ)⊤ − v∗⊤
]
F̂
(
wℎ

±, 𝑛𝐹 ,𝑖
)
𝑑𝜎 +

(
𝜕v∗
ℎ
)⊤

F𝑖
(
wℎ

)
𝑑Ω −

∑
𝜓𝑖(wℎ)𝑛𝐹 ,𝑖 𝑑𝜎, ∀𝐾 ∈ℎ. (30)
6

𝐹∈𝐾 ∫𝐹
ℎ ∫

𝐾
𝜕𝑥𝑖 𝐹∈𝐾 ∫𝐹
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By adding and subtracting ∫𝐾 (
𝜕v(wℎ)∕𝜕𝑥𝑖

)⊤
F𝑖
(
wℎ

)
𝑑Ω = ∫𝐾 𝜕𝜓𝑖(wℎ)∕𝜕𝑥𝑖𝑑Ω to the RHS of Eq. (30) the different sources of error 

that 𝛼𝐾 is delegated to correct can be distinguished

𝛼𝐾 =
∑
𝐹∈𝐾 ∫𝐹

[
v(wℎ)⊤ − v∗⊤ℎ

]
F̂
(
wℎ

±, 𝑛𝐹 ,𝑖
)
𝑑𝜎

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
projection error of v in the surface integral

+ ∫
𝐾

[(
𝜕v∗
ℎ

𝜕𝑥𝑖

)⊤
−
(
𝜕v(wℎ)
𝜕𝑥𝑖

)⊤]
F𝑖
(
wℎ

)
𝑑Ω

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
projection error of v in the volume integral

+ ∫
𝐾

𝜕𝜓𝑖
(
wℎ

)
𝜕𝑥𝑖

𝑑Ω −
∑
𝐹∈𝐾 ∫𝐹

𝜓𝑖(wℎ)𝑛𝐹 ,𝑖 𝑑𝜎

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
integration error

.

(31)

Although the definition of 𝛼𝐾 applies to any possible set of working variables, the contribution of the two distinct sources of error 
depends on the specific set under consideration. If the convective flux function is evaluated with v in polynomial form, i.e. if the 
entropy variables are the working set, then the first two terms of Eq. (31) cancel out as v(vℎ) ≡ v∗

ℎ
. In this case 𝛼𝐾 is (ℎ2𝑘+𝑑 ) upon 

adoption of Gauss quadrature formulas able to integrate exactly polynomials of order 2𝑘, as it is usually done in the present modal 
DG framework. When integrals are computed with quadrature rules of very high accuracy, the last term in Eq. (31) also becomes null. 
For conservative variables used as working set, this is possible even without over-integration since the mass flux 𝜓𝑖 is a polynomial 
function of degree 𝑘. In this case 𝛼𝐾 is a (ℎ𝑘+𝑑 ) term, due to the projection error.

In Ref. [8] Chen and Shu question the reliability of the correction term due to the denominator of the spreading term being 
of order (ℎ2), despite 𝛼𝐾 being of higher order. They express a concern that the correction could potentially compromise the 
consistency of the method. However, Chen and Shu were able to determine the optimal order of convergence, which was found to be 
𝑘 + 1 for the two-dimensional Burger equation through numerical analysis. In Sec. 4.1, we will also verify the optimal convergence 
rate for the Euler equations. To demonstrate the conservation/dissipation of entropy guaranteed by DEEB, the explicit correction is 
added to Eq. (19)

∑
𝐾∈ℎ ∫𝐾

v∗⊤ℎ P
(
wℎ

) 𝜕wℎ
𝜕𝑡
𝑑Ω −

∑
𝐾∈ℎ ∫𝐾

(
𝜕v∗
ℎ

𝜕𝑥𝑖

)⊤
F𝑖
(
wℎ

)
𝑑Ω

+
∑
𝐹∈ℎ ∫𝐹

�v∗⊤ℎ � F̂
(
wℎ

±, 𝑛𝐹 ,𝑖
)
𝑑𝜎 +

∑
𝐾∈ℎ

𝛼𝐾
∫𝐾 v∗⊤

ℎ
v
∗
ℎ 𝑑Ω

∫𝐾 v
∗⊤
ℎ v

∗
ℎ 𝑑Ω

= 0.

(32)

Since 
(∫𝐾 v∗⊤

ℎ
v
∗
ℎ 𝑑Ω

)
∕ 
(∫𝐾 v

∗⊤
ℎ v

∗
ℎ 𝑑Ω

)
= 1, Eq. (32) reduces to Eq. (23) and if the numerical flux satisfies Tadmor’s condition the 

scheme is entropy conserving/stable, net of the possible error introduced in the time integration. In conclusion, the DEEB algorithm 
can ideally fix the behavior of the implicitly resolved entropy equation for any choice of 𝐰ℎ. However, 𝛼𝐾 only corrects the spurious 
entropy production/dissipation of the spatial operators and does not act on the unsteady term of Eq. (19), so that only for 𝐰ℎ = 𝐯ℎ
or 𝐰ℎ = 𝐪ℎ the term 

∑
𝐾∈ℎ ∫𝐾

(
𝜕(𝐰ℎ)∕𝜕𝑡) 𝑑Ω is “correctly” represented in Eq. (32). For this reason, we focus on these two sets 

together with a “mixed” formulation given by the “entropy projection” discussed in Sec. 3.1, while the use of the DEEB on other sets 
𝐰ℎ is left for future investigations.

3.3. Time integration

By numerically computing the volume and surface integrals in Eq. (28) and assembling all the elemental contributions, the system 
of Ordinary Differential Equations (ODEs) governing the evolution in time of the discrete solution can be written as

𝐌𝐏 (𝐖) 𝑑𝐖
𝑑𝑡

+𝐑 (𝐖) = 𝟎, (33)

where the global matrix 𝐌𝐏 is block diagonal and responsible for coupling the DOFs within each element upon the choice of non-
identity transformation 𝐪 ↦𝐰(𝐪). The nonlinear system of ODEs (33) is here integrated in time using both an explicit Strong Stability 
Preserving Runge-Kutta (SSPRK) [18] scheme and the implicit “entropy conserving” Generalized Crank-Nicolson (GCN) [32] method. 
7

As far as the explicit scheme is concerned, the five-stages third order scheme of Spiteri and Ruuth [18] is used
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𝐘𝑖 =𝐖𝑛 +Δ𝑡
𝑖−1∑
𝑗=1
𝑎𝑖𝑗𝐑̃

(
𝐘𝑗

)
,

𝐖𝑛+1 =𝐖𝑛 +Δ𝑡
𝑠∑
𝑗=1
𝑏𝑗𝐑̃

(
𝐘𝑗

)
,

(34)

with

𝐑̃(𝐖) =𝐌𝐏(𝐖)−1𝐑, (35)

where 𝑠 is the number of stages and 𝑎𝑖𝑗 , 𝑏𝑗 are the real coefficients reported in [18]. For the sake of compactness, we refer to this 
scheme as SSPRK35. No control over the entropy production/dissipation, nor any positivity-preserving limiter for the thermodynamic 
quantities is enforced for the time advancement of the solution. Notice that the possible dependence of 𝐌𝐏 on 𝐖 implies, even for the 
explicit scheme, a matrix assembly at each time step and a significant overhead due to its inversion at each stage, whose number of 
operations scales as 𝑘3𝑑 . For this reason, the use of the conservative variables for the working set, possibly in an “entropy projection” 
context, is very enticing for the computational cost of the method as 𝐌𝐏 reduces to the identity and is not involved in the solution 
process.

Regarding the GCN, as this method has been the focus of a dedicated paper [19], only a brief summary of the algorithm is reported 
here. The scheme may be thought of as the entropy projection method of Eq. (16), in which 𝐯∗

ℎ
is computed from ∫𝐾 𝚽⊤ℎ𝐯

∗
ℎ
𝑑Ω =

∫𝐾 𝚽⊤ℎ𝐯
𝑛+1∕2𝑑Ω, where the intermediate entropy state 𝐯𝑛+1∕2(𝐪𝑛

ℎ
, 𝐪𝑛+1
ℎ

) is the nonlinear vector function derived by Gouasmi et al. [31]
to satisfy the constraint

(𝐯𝑛+1∕2)⊤(𝐪𝑛+1
ℎ

− 𝐪𝑛ℎ) = (𝐪𝑛+1
ℎ

) − (𝐪𝑛ℎ). (36)

The 𝐯𝑛+1∕2 function bypasses the need for numerical quadrature as requested in the seminal work of LeFloch et al. [32]. Thanks to 
the last identity, the discretized unsteady term

∫
𝐾

𝚽⊤ℎ
𝐪𝑛+1
ℎ

− 𝐪𝑛
ℎ

Δ𝑡
𝑑Ω, (37)

reduces, in the implicitly solved entropy equation, to

∫
𝐾

(𝐪𝑛+1
ℎ

) − (𝐪𝑛
ℎ
)

Δ𝑡
𝑑Ω, (38)

which is a conservative discretization of the time derivative of the entropy function.
Using the DEEB correction together with the GCN, the resulting discretization is entropy conserving/stable at the discrete level 

both in space and time. The scheme is also conservative in a “standard” sense, see Sec. 3.1, being the time derivative expressed for 
𝐪ℎ.

To conclude, for both temporal integrators the time step size is evaluated as Δ𝑡 =min𝐾∈ℎ (Δ𝑡𝐾 ), where Δ𝑡𝐾 = CFL(ℎ𝐾∕𝜆𝐾 ) is 
calculated by assuming a fixed value (for the whole simulation) of the CFL number. The elemental convective eigenvalue is computed 
from the cell mean values as 𝜆𝐾 =

√
𝛾𝑝𝐾,0∕𝜌𝐾,0 + |𝐮𝐾,0| and the characteristic element size is defined as ℎ𝐾 = 𝑑|𝐾|∕|𝜕𝐾|, where |𝐾| is the cell area/volume, |𝜕𝐾| is the measure of its boundary and 𝑑 is the number of geometric dimensions.

4. Numerical results

The numerical experiments presented in this section consider the solution of the Euler equations using as unknown: 𝑖) the set of 
conservative variables, 𝑐𝑣; 𝑖𝑖) the set of entropy variables, 𝑒𝑣; 𝑖𝑖𝑖) the set of conservative variables but using the projected entropy 
ones for the assembly of the discrete operators, 𝑐𝑣2𝑒𝑣. The influence of performing over-integration (OI) or not (NOI) and of directly 
enforcing the entropy balance (DEEB) are evaluated for all the sets. In the following, for the sake of synthesis in presenting the 
results, the superscripts NOI, OI or DEEB are applied to the acronym identifying the strategy, e.g. 𝑐𝑣2𝑒𝑣DEEB. For NOI simulations 
the degree of exactness of the Gaussian quadrature formulae used to evaluate integrals in Eqs. (17), (28) and (30) is 𝑘𝑞 = 2𝑘 𝑚 + 𝑗, 
where 𝑘 is the polynomial degree of the numerical approximation, 𝑚 is the geometrical order of the element and 𝑗 is the polynomial 
degree of the Jacobian of the mapping (from reference to physical space). For triangles one has 𝑗 = 2𝑚 − 2, while 𝑗 = 2𝑚 − 1 and 
𝑗 = 𝑚 − 1 for quadrangles and for edges, respectively. This definition of 𝑘𝑞 corresponds to ⌈(𝑘𝑞 + 1)∕2⌉𝑑 quadrature points and 
guarantees the exact volume and surface integration of polynomials of order 2𝑘 independently from the element shape. For the OI 
simulations the degree of exactness is arbitrarily set equal to 𝑘𝑞 = 30. Such over-integration level seems excessive, especially at the 
lower polynomial orders. However, the convective fluxes are rational functions of both the conservative and the entropy variable 
sets, thus it is impossible to know a priori the 𝑘𝑞 value required to reduce the integration error to machine precision. For this 
reason, for example, the entropy conservation/stability of the OI 𝑒𝑣 computations is ensured only for very large values of 𝑘𝑞 . This is 
particularly true when the flow field is characterized by large variations of the thermodynamics variables, as in several of our test 
cases. The fixed value 𝑘𝑞 = 30 is chosen for the sake of simplicity and is justified by the fact that it doubles the degree of exactness 
8

associated with OI with respect to NOI at the highest polynomial 𝑘 = 7. This means that cubic functions of the variables are exactly 
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Table 1

IVC – summary of the grids used for the spatial dis-
cretization of the computational domain, composed 
by rectangular (rect), triangular (tri) and curvilin-
ear (curv) elements. rect: Cartesian meshes made 
of quadrangular elements; tri: unstructured meshes 
made of triangular cells; curv: meshes made of 
quadrilaterals with parabolic edges. Grid fineness is 
given in terms of the number of cells with edges 
laying on the domain boundaries in the vertical and 
horizontal directions.

rect tri curv

coarse 25 × 25 10 × 10 25 × 25
medium 50 × 50 20 × 20 50 × 50
fine 100 × 100 40 × 40 100 × 100

integrated, which is more or less the choice reported in several papers for the compressible Euler equations [9,33–36]. In any case, 
the impact of this choice on the performance of OI strategies is basically irrelevant. Over-integrated computations are in fact provided 
for reference only, as their computational cost is always much higher than the other strategies and precludes them from being an 
option for practical applications.

The performance of the method is tested by simulating several two-dimensional inviscid flow problems and focusing on 𝑖) the 
accuracy of the solution, 𝑖𝑖) the conservation of entropy, mass and total energy, 𝑖𝑖𝑖) the robustness and computational efficiency.

4.1. Convergence and conservation properties

To monitor the convergence and the conservation properties of the schemes, the following error measures are defined:

𝜂(◦, ∙𝑟𝑒𝑓 ) = (Ωℎ)−1∕2||◦− ∙𝑟𝑒𝑓 ||𝐿2 , (39)

𝜀(◦, ∙𝑟𝑒𝑓 ) = Ω−1
ℎ

|||||||∫Ωℎ ◦𝑑Ω− ∫
Ωℎ

∙𝑟𝑒𝑓 𝑑Ω
||||||| , (40)

where ◦ and ∙𝑟𝑒𝑓 are the numerical and the reference solutions, respectively. The 𝐿2–projection of the initial solution on the DG 
polynomial space is used as the reference state.

The test case selected as a benchmark is the 2D Isentropic Vortex Convection (IVC) problem, Refs. [37–39]. In this test case, 
an inviscid vortex, initially located at the center of a square domain, is convected diagonally. The doubly-periodic domain justifies 
the choice of this flow case, as it ensures that the integral quantity 𝜌𝑠 is conserved/dissipated if the entropy conservation/stability 
property holds. The initial flow conditions are given, in dimensionless form, by

𝑢1 =
√
𝛾 − 𝛼

2𝜋

(
𝑥2 − 𝑥20

)
𝑒𝛽(1−𝑟

2),

𝑢2 =
√
𝛾 + 𝛼

2𝜋

(
𝑥1 − 𝑥10

)
𝑒𝛽(1−𝑟

2),

𝑝 = 𝜌𝛾 ,

𝜌 =
(
1 − 𝛼

2(𝛾 − 1)
16𝛽𝛾𝜋2

𝑒2𝛽(1−𝑟
2)
) 1
𝛾−1
,

(41)

corresponding to a free stream Mach number equal to 
√
2 and where (𝑥10 , 𝑥20 ) = (5, 5), 𝑟 = ||𝑥𝑖 − 𝑥𝑖0 ||𝐿2 , while the parameters 

determining the strength of the vortex are 𝛼 = 5 and 𝛽 = 1∕2. The [0, 10]2 square computational domain is discretized by means of 
meshes of different type and increasing fineness, see Fig. 1, using 𝑘 = 3, 4 DG approximations. To demonstrate the flexibility of the 
solver, the set of grids includes: 𝑖) Cartesian meshes made of quadrangular elements, 𝑖𝑖) unstructured meshes made of triangular 
cells; 𝑖𝑖𝑖) meshes made of quadrilaterals with parabolic edges. The curved edges are obtained by randomly shifting in the orthogonal 
direction the edge midpoints of a Cartesian mesh. The complete list of grids is collected in Table 1. Simulations are performed up 
to a nondimensional final time 𝑡𝑓 = 10∕

√
𝛾 , corresponding to one period of vortex revolution. Both the temporal schemes described 

in Sec. 3.3, i.e. the explicit SSPRK35 and the implicit GCN, are used to advance the solution in time with the small time step size 
Δ𝑡 = 10−4 𝑡𝑓 (CFL ≈ 9 ⋅ 10−3). For the numerical fluxes, the entropy conserving (EC) function of Ismail and Roe [28] and the entropy 
stable (ES) Godunov flux [29] are employed.

The plots resulting from the spatial convergence study, which refer to the first variable of the unknown solution vector of each 
set of variables, are collected in Fig. 2. For all the solution strategies, the convergence rate globally follows the results of Ref. [13], 
being sub-optimal (𝑘) for the EC case and optimal (𝑘 + 1) for the ES case. The only exception is observed when using the EC flux 
with meshes made of triangular cells, which for the even polynomial degree 𝑘 = 4 recovers the optimal order of convergence of DG 
9

schemes. Note that the values of the error appear different for 𝑐𝑣2𝑒𝑣DEEB and 𝑒𝑣DEEB because they are not evaluated with respect 
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Fig. 1. IVC – 𝑘 = 4 solution on the coarse grids at the final time. For interpretation of the colors in the figure(s) and table(s), the reader is referred to the web version 
of this article.

to the same variable, otherwise they would be practically identical. This convergence test demonstrates that both the use of entropy 
projection and DEEB do not alter the consistency of the method and the expected order of spatial convergence.

A temporal accuracy test is also performed on the coarse Cartesian grid at 𝑘 = 3, using the SSPRK35 for the time discretization. As 
the scope is to highlight the DEEB ability to guarantee entropy conservation, we use the EC flux and monitor the error on the surface 
integral of 𝜌𝑠 = −(𝛾 − 1). As showed in Fig. 3a, the 𝑐𝑣2𝑒𝑣 approach coupled with over-integration or DEEB perfectly conserves 
mass and energy, since the non-stationary term maintains its conservative form, while the error on the entropy converges with the 
order of the temporal scheme. As expected, in the NOI case, the error fails to scale correctly due to the error committed in the 
discrete application of the Gauss theorem, as commented in Sec. 3.2. On the other hand, Fig. 3b shows that the 𝑒𝑣 strategy makes all 
the errors on conservation converge with the order of the temporal scheme, except for 𝜌𝑠 in the 𝑒𝑣NOI case for the same reason as 
before. This behavior is expected as the governing equations in the 𝑒𝑣 case are no longer written in a conservative form due to the 
Jacobian matrix P(vℎ). Fig. 3c instead displays that the 𝑐𝑣 set shares the same trend as the projected entropy variables, with the only 
difference that the error on the entropy does not converge with the order of the temporal scheme even in the OI configuration. The 
reason is that here the error is related to the projection, namely to the fact 𝐯(𝐪ℎ) ≠ 𝐯∗

ℎ
, as explained in Sec. 3.2. To summarize, when 

time integration introduces a negligible error, both entropy-based sets can conserve entropy, mass and energy if over-integration or 
DEEB is used. Otherwise, only mass and energy are conserved. Furthermore, the plots in Fig. 3 reveal that both entropy projection 
and DEEB do not modify the theoretical order of convergence of the temporal scheme.

Finally, interesting results are obtained from the spatial convergence analysis of the entropy conservation error. In this case 
time integration is performed through the GCN scheme to avoid the emergence of the entropy discretization error associated to 
the unsteady term. The results for the 𝑐𝑣2𝑒𝑣 strategy presented in Fig. 4 show a perfect conservation of entropy when the EC flux 
function is used. When using the ES Godunov flux the conservation error decreases very rapidly as the mesh is refined, with an 
estimated order of 2𝑘 + 1. This finding holds true across various time integration schemes and sets of variables. Moreover, a similar 
outcome for 𝜀(𝜌𝑠, 𝜌𝑠𝑟𝑒𝑓 ) is observed when the ES Rusanov flux is used. It is reasonable to expect that these results may extend to 
other numerical flux functions as well.

4.2. Robustness

In this section, the robustness of the method is investigated by considering: 𝑖) two test cases widely used in the Numerical 
Weather Prediction (NWP) community to assess the performance of the solvers for atmospheric dynamics; 𝑖𝑖) two test cases involving 
the instability of an interface between flow regions with significantly different density. All the flow problems exhibit progressively 
smaller scales with spatial and temporal refinement but evolve through very different thermodynamic conditions. While the NWP 
flow problems, i.e. the colliding and rising thermal bubbles cases, involve minimal variations of thermodynamic variables, the 
Kelvin-Helmhotz and the Richtmyer-Meshkov instabilities push the method to conditions in which it is challenging to maintain the 
positiveness of thermodynamic variables. It is important to note that all simulations were performed without adding any artificial 
viscosity term, shock-capturing technique and/or positive-preserving limiter. The NWP test cases are simulated using both the EC 
and the ES flux, whereas in the flows characterized by shear instability we opt just for the ES Godunov flux due to hard numerical 
challenge posed by the latter. Unless otherwise specified, the SSPRK35 scheme is the one employed for the time advancement, with 
a constant CFL = 0.1. Under these conditions, it is clear that the higher 𝑘, the closer we are to the stability limit and the farther we 
get to evaluate accurately enough the integrals in the over-integrated case since 𝑘𝑞 is fixed to 30.

Lastly, it is important to note that for NWP flow problems, the initial conditions and results are be presented using dimensional 
quantities, as is customary in the literature.

4.2.1. The 2D colliding thermal bubbles problem

This flow problem was proposed by Robert [40] and deals with the evolution of two air bubbles, one warmer and the other colder 
10

than the surrounding environment. The hot bubble is larger and lower than the cold one, and during the time evolution, they collide, 
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Fig. 2. IVC – spatial refinement test. Errors 𝜂 on the first variable of vectors q (in 𝑐𝑣2𝑒𝑣 and 𝑐𝑣) and v (in 𝑒𝑣). Simulations integrated in time via the explicit SSPRK35 
with Δ𝑡 = 10−4 𝑡𝑓 .

mix, and move toward the upper part of the computational domain. When dealing with atmospheric flows, two important variables 
to consider are the Exner pressure π and the potential temperature 𝜃, defined as

π =
(
𝑝

𝑝0

) 𝛾
𝛾−1
, 𝜃 = 𝑇

π
, (42)

where 𝑝0 is the reference pressure taken at 𝑥2 = 0 m. As reported by Giraldo and Restelli [41], non-hydrostatic atmospheric flow 
solvers may implement different forms of the inviscid flow governing equations, often using π and/or 𝜃 as an unknown. In NWP, it 
is probably less common to directly solve for mass, momentum, and total energy conservation as it is usually done for aerodynamic 
problems. However, using this formulation has its advantages as it enables conservation up to machine accuracy of these quantities 
and facilitates the implementation of the viscous terms in conservation form [41,42].

In the Colliding Thermal Bubbles (CTB) problem, the flow instability is caused by initial perturbations Δ𝜃𝑐 and Δ𝜃ℎ applied to a 
constant environmental potential temperature 𝜃0, i.e. 𝜃(𝑥1, 𝑥2) = 𝜃0 + Δ𝜃𝑐(𝑥1, 𝑥2) + Δ𝜃ℎ(𝑥1, 𝑥2). The perturbation for both the cold 
(subscript x = 𝑐) and hot (subscript x = ℎ) bubbles is defined as

Δ𝜃 (𝑥 ,𝑥 ) =

{
𝐴x, if 𝑟x ≤ 𝑎x( ) (43)
11

x 1 2
𝐴x𝑒

− 𝑟x−𝑎x
2∕𝑠2x , if 𝑟x > 𝑎x,
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Fig. 3. IVC – temporal refinement test. Errors on the conservation of entropy, mass and energy. Simulations performed using 𝑘 = 3 on the Cartesian 25 ×25 mesh, the 
explicit SSPRK35 scheme and the EC numerical flux.

where 𝑟x =
√(

𝑥1 − 𝑥0x,1
)2

+
(
𝑥2 − 𝑥0x,2

)2
and (𝑥0x,1, 𝑥

0
x,2) is the initial position of the center of the bubble. The flow problem parame-

ters are 𝐴𝑐 = −0.15 K, 𝑎𝑐 = 0 m, 𝑠𝑐 = 50 m, (𝑥0
𝑐,1, 𝑥

0
𝑐,2) = (560, 640) m, 𝐴ℎ = 0.5 K, 𝑎ℎ = 150 m, 𝑠ℎ = 50 m and (𝑥0

ℎ,1, 𝑥
0
ℎ,2) = (500, 300) m. 

The background potential temperature is set to 300 K while the initial pressure distribution is computed as 𝑝(𝑥2) = 𝑝0π(𝑥2)𝛾∕(𝛾−1)
where

π(𝑥2) = 1 − (𝛾 − 1)𝑔
𝛾𝑅𝜃0

𝑥2, (44)

in which 𝑝0 = 100 000 Pa and 𝑅 = 287.058 kJ/kg K. By defining a reference velocity 𝑈0 =
√
𝑅𝜃0 and Froude number 𝐹𝑟0 =𝑈0∕

√
𝑔𝐿𝑥, 

where 𝐿𝑥 is the horizontal extension of the domain, the Exner pressure can be expressed as

π(𝑥2) = 1 − 𝛾 − 1
𝛾

(
1
𝐹𝑟20

)
𝑥2
𝐿𝑥
, (45)

where 𝐹𝑟0 = 2.96286. Finally, the initial temperature distribution is computed as 𝑇 (𝑥1, 𝑥2) = π(𝑥2)𝜃(𝑥1, 𝑥2) and velocity components 
are set to zero. The domain extension is [0, 1000]×[0, 1000] m and is discretized with a Cartesian mesh made of 20×20 cells (Δ𝑥1,2 =
12

50 m).
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Fig. 4. IVC – spatial refinement test for the 𝑐𝑣2𝑒𝑣 strategy. Errors on the conservation of entropy. Simulations integrated in time via the implicit GCN with Δ𝑡 = 10−4 𝑡𝑓 .

Simulations for the 𝑘 = {3, 4, 5, 6, 7} approximations are integrated in time up to 𝑡𝑓 = 600 s. Fig. 5 shows the evolution in time of 
the bubbles for the 𝑘 = 7 solution computed using the 𝑐𝑣2𝑒𝑣DEEB approach and the ES Godunov flux. The overall pattern compares 
qualitatively well with the results of Robert [40] and Yelash et al. [43], while the development of the small-scale structures strongly 
depends on the spatial resolution, as commented by Abdi et al. [44], and as it can be observed by increasing the polynomial degree 
of the approximation for the given mesh, see Fig. 6. Moreover, some oscillating features resembling Gibbs-like phenomena may be 
observed in the reported fields. Clearly, rather than being related to abrupt variations of the evolving quantities, these oscillations 
are caused by the high-order and discontinuous character of the finite element representation. On top of this, it is relevant to 
point out that such oscillations are detectable only when plotting the deviation from the background quantity of interest, involving 
hence variations which are order of magnitudes smaller than the reference value. Indeed, minimal variations of the thermodynamic 
variables over the computational domain characterize the flow case. According to the 𝑘 = 7 approximation at the final time, the 
temperature and density vary by approximately 3% and 8%, respectively, compared to their maximum values across the domain. No 
robustness issues are observed for the simulations performed using the Godunov flux, regardless of the strategy used for the solution, 
i.e. 𝑐𝑣, 𝑒𝑣 or 𝑐𝑣2𝑒𝑣, and the use of DEEB or over-integration. In all the cases, the error in entropy conservation at the end time is 
𝜀(𝜌𝑠, 𝜌𝑠𝑟𝑒𝑓 ) ≈ 10−8.

The solution strategies manifest a remarkably different behavior when using the EC Ismail and Roe numerical flux function. 
Results for the 𝑘 = {3, 4, 5, 6, 7} approximations are summarized in Table 2 in terms of possible simulation crashes and errors in 
entropy conservation. The 𝑒𝑣 and 𝑐𝑣2𝑒𝑣 approaches reveal identical behaviors, with the need for over-integration or DEEB to 
fulfill the entropy conservation over the simulation. The 𝜀(𝜌𝑠, 𝜌𝑠𝑟𝑒𝑓 ) ≈ 10−11 value for the 𝑘 = 7 simulations is due to the use 
of a non-entropy-conserving time integrator and scales with the order of the SSPRK35 scheme as the time step is refined. When 
standard integration (NOI) is used, odd-degree polynomial simulations crash, while even degrees reach the end time but with a 
non-negligible error on entropy conservation (≈ 10−9). Using conservative variables as unknowns works only when combined with 
DEEB. Additionally, when approximating the solution with odd degrees, the value of 𝜀(𝜌𝑠, 𝜌𝑠𝑟𝑒𝑓 ) at the end time is observed to be 
significantly higher than machine precision. Again, this effect is attributed to a temporal integrator that does not conserve entropy. 
Indeed, it has been verified that the error decreases with the order of accuracy of the temporal scheme when the time step is reduced.

The CTB flow problem shows that even when thermodynamic conditions are not severe, using entropy variables or conservative 
variables with entropy projection is better than directly using the conservative set. Additionally, the 𝑐𝑣2𝑒𝑣 strategy performs similarly 
to 𝑒𝑣 but saves many operations as it does not require the inversion of the change-of-variable matrix, as stated in Sec. 3. This makes 
the 𝑐𝑣2𝑒𝑣 approach particularly appealing for production runs.

4.2.2. The 2D rising thermal bubble problem

The flow problem deals with the evolution of an air bubble warmer than the surrounding environment. As the bubble rises, 
it deforms due to the velocity gradients initially generating counter-rotating trailing vortices that break up into smaller structures 
during evolution. Different polynomial approximations, i.e. 𝑘 = {3, 5, 7}, are considered to showcase how high-order accuracy can 
better capture small-scale structures.

The most commonly used setup is the one proposed by Robert in [40]. Several authors have simulated this configuration, e.g. [45,
42,46,47], often with slightly different initial conditions, and a comprehensive review of the literature is given by Andrés-Carcasona 
et al. [48]. As for the CTB, in the rising thermal bubble (RTB) flow problem the flow instability originates from an initial perturbation 
Δ𝜃 applied to a constant environmental potential temperature 𝜃0, i.e. 𝜃(𝑥1, 𝑥2) = 𝜃0 + Δ𝜃(𝑥1, 𝑥2). The variable Δ𝜃 follows Eq. (43)
where (𝑥x,1, 𝑥x,2) = (500, 260) m, 𝐴x = 0.5 K, 𝑎x = 50 m and 𝑠x = 100 m. In this paper, the Gaussian-shaped perturbation originally 
proposed by Robert [40] is used, while some other authors prefer to utilize a cosine-shaped bubble, see [41]. According to the 
13

literature, no distinct differences in the solution are to be expected [48].
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Table 2

CTB – end time in seconds [red and blue] and order of mag-
nitude of 𝜀(𝜌𝑠, 𝜌𝑠𝑟𝑒𝑓 ) [black] of the simulations using the 
EC Ismail and Roe flux. ⋄ if 𝜀(𝜌𝑠, 𝜌𝑠𝑟𝑒𝑓 ) is of the order of the 
machine precision, × if simulation crashed.

Set 𝑘

3 4 5 6 7

𝑐𝑣2𝑒𝑣OI 600 600 600 600 600
⋄ ⋄ ⋄ ⋄ ⋄

𝑐𝑣2𝑒𝑣NOI 417 600 426 600 471
× 10−9 × 10−9 ×

𝑐𝑣2𝑒𝑣DEEB 600 600 600 600 600
⋄ ⋄ ⋄ ⋄ 10−11

𝑒𝑣OI
600 600 600 600 600
⋄ ⋄ ⋄ ⋄ ⋄

𝑒𝑣NOI
417 600 426 600 471
× 10−9 × 10−9 ×

𝑒𝑣DEEB
600 600 600 600 600
⋄ ⋄ ⋄ ⋄ 10−11

𝑐𝑣OI
292 362 291 366 308
× × × × ×

𝑐𝑣NOI
274 342 275 340 297
× × × × ×

𝑐𝑣DEEB
600 600 600 600 600
10−6 ⋄ 10−5 ⋄ 10−4

Table 3

RTB – end time in seconds of the simula-
tions using the EC Ismail and Roe flux.

Set 𝑘

3 5 7

𝑐𝑣2𝑒𝑣OI 1080 1080 1080
𝑐𝑣2𝑒𝑣NOI 528 538 557
𝑐𝑣2𝑒𝑣DEEB 1080 1080 1080

𝑒𝑣OI 1080 1080 1080
𝑒𝑣NOI 528 538 558
𝑒𝑣DEEB 1080 1080 1080

𝑐𝑣OI 476 480 507
𝑐𝑣NOI 483 484 508
𝑐𝑣DEEB 1080 1080 1080

The domain extension is [0, 1000]×[0, 1500] m and is discretized through a Cartesian mesh made of 40×60 cells (Δ𝑥1,2 = 25 m). 
The potential background temperature 𝜃0 is set to 300 K, and the initial pressure and temperature distributions are calculated 
identically to those in Sec. 4.2.1. Simulations are integrated in time up to 𝑡𝑓 = 1080 s. Fig. 7 depicts the evolution in time of the 
warm bubble using the 𝑒𝑣DEEB approach and the ES Godunov flux for the different polynomial approximations. As expected, by 
increasing 𝑘 the evolution of smaller flow structures over time is observed. It is also important to mention that the flow symmetry 
is broken by increasing the polynomial degree. This behavior was also observed by Andrés-Carcasona et al. [48] using different 
numerical methods. We attribute this behavior to the high-accuracy proper to the method, which captures and propagates even the 
slightest numerical perturbations that may occur during the solution process. As for the CTB, minimal changes in the thermodynamic 
variables are measured over the domain. Indeed, according to the ES 𝑘 = 7 final solution (𝑐𝑣2𝑒𝑣DEEB), the temperature and density 
vary by approximately 5% and 12% of their maximum values, respectively. All ES computations reach the final simulation time, 
regardless of the solution strategy and the use of DEEB or over-integration. In contrast, some crashes are registered for the EC 
computations. The results of EC simulations are summarized in Table 3 in terms of elapsed simulation time. As reported for the CTB 
case, the 𝑒𝑣 and 𝑐𝑣2𝑒𝑣 approaches are characterized by an identical behavior, with the need for over-integration or DEEB to complete 
the run. On the other hand, only DEEB enables the run to be completed successfully when seeking the solution for the conservative 
variables and directly using them also for the operator assembly, i.e. in the 𝑐𝑣 strategy. These results confirm the overall potential of 
DEEB in slightly improving computational robustness at negligible cost.

4.2.3. The Kelvin-Helmhotz instability problem

The Kelvin-Helmhotz instability (KHI) problem is featured by two fluids with a velocity shear at their interface. The flow evolution 
14

is governed by the Atwood number 𝐴 = (𝜌2 − 𝜌1)∕(𝜌1 + 𝜌2) ∈ [0, 1), quantifying the density difference between fluid 1 and 2. Notice 
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Fig. 5. CTB – time evolution of the Δ𝜃 contours using the ES Godunov flux, 𝑐𝑣2𝑒𝑣DEEB , 𝑘 = 7 solution. For the frame 𝑡 = 0 s half of the computational mesh is 
superimposed.

that when 𝐴 = 0 the two fluids have the same density, while for 𝐴 → 1 their density ratio tends to infinity. The Atwood number can 
be considered as a measure of how critical the flow problem is. Indeed 𝐴 is directly linked to the instability driving force and the 
Mach number, with the initial flow condition becoming supersonic for 𝐴 = 0.75. Following the work of Chan et al. [15], the flow is 
initialized as

𝑢1 =
(
𝑓 (𝑥2) −

1
2

)
,

𝑢2 =
1
10

sin(2𝜋𝑥1),

𝑝 = 1,

𝜌 = 𝜌1 + 𝑓 (𝑥2)
(
𝜌2 − 𝜌1

)
,

(46)

where 𝜌1 = 1 and 𝑓 (𝑥2) = (1∕2)[tanh(15𝑥2 + 7.5) − tanh(15𝑥2 − 7.5)] is a smoothing function to avoid field discontinuities.
The computational domain is a [−1, 1]2 square with doubly-periodic boundary conditions, discretized with 𝑘 = {1, … , 7} DG 

approximations on a set of 16 × 16 (coarse) and 32 × 32 (fine) grids of different type, i.e. Cartesian, with triangular cells and with 
curved edges. The triangular elements are obtained by cutting in half the quadrangles of the Cartesian mesh. All the simulations 
are integrated in time up to 𝑡𝑓 = 14. Fig. 8 shows the density contours for the 𝑘 = 7 approximation on the coarse meshes. It is not 
surprising that, for this type of intrinsically under-resolved flow problems, the solutions significantly vary depending on the type of 
mesh used.

The robustness of the different solution strategies is extensively tested for the cases 𝐴 = [0.33, 0.75]. Moreover, similar to Chan et 
al. [15], the conditions 𝐴 = [0.33,0.57,0.75,0.86,0.89,0.92,0.95] are simulated with 𝑘 = 3 on the fine mesh and 𝑘 = 7 on the coarse 
15

one. To give a quantitative measure of robustness, a Completion Index (CI) is defined as
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Fig. 6. CTB – Δ𝜃 contours using the ES Godunov flux, 𝑐𝑣2𝑒𝑣DEEB , 𝑘 = 3 − 6 solutions.

CI =

∑𝑁𝑡𝑜𝑡
𝑗=1 (𝑡𝑒𝑛𝑑 )𝑗
𝑁𝑡𝑜𝑡 𝑡𝑓

, (47)

where 𝑁𝑡𝑜𝑡 is the total amount of polynomial approximations or Atwood numbers analyzed and (𝑡𝑒𝑛𝑑 )𝑗 indicates the end time for the 
simulation at a specific 𝑘 or 𝐴. Essentially, CI summarizes the time interval successfully integrated across all polynomial degrees. 
The bar charts in Fig. 9 show the completion index for the lowest Atwood number case and the three solution strategies, i.e. 𝑐𝑣, 
𝑐𝑣2𝑒𝑣, 𝑒𝑣. Details on the final execution time for the Cartesian mesh and the grid made of triangles are tabulated for each 𝑘 value in 
Tables 4 and 5. The results for the mesh with curved edges are not displayed since they overlap with those of the Cartesian mesh.

For the meshes made of quadrangles, the 𝑐𝑣2𝑒𝑣 and 𝑒𝑣 strategies completed the whole set of simulations, whereas 𝑐𝑣 experienced 
few crashes. Computations on the triangular elements emphasize the beneficial effect of directly enforcing the entropy balance. 
DEEB allows nearly matching the robustness of the over-integrated cases for 𝑒𝑣 and 𝑐𝑣2𝑒𝑣 and surpasses it when directly using the 
conservative set, 𝑐𝑣. It should be noted that in Fig. 9b, the slightly lower confidence interval (CI) for triangular elements as shown 
by 𝑐𝑣2𝑒𝑣DEEB when compared to 𝑐𝑣2𝑒𝑣OI can be erratic and must be interpreted with caution. In fact, this could be considered an 
outlier caused by an unlucky single crash for the highest polynomial degree case. The charts portrayed in Fig. 10 refer to the KHI 
simulations with the highest Atwood number, i.e. 𝐴 = 0.75. Additionally, Tables 6 and 7 contain, for the same case, details on the 
computations carried out with the Cartesian meshes and the grids made of triangular cells. The entropy set 𝑒𝑣 is the most robust 
when coupled with over-integration or DEEB, but a comparable performance is obtained when using the projected entropy variables 
𝑐𝑣2𝑒𝑣 with DEEB. The performance is dramatically better in these cases than directly using conservative variables, 𝑐𝑣. However, 
DEEB positively affects 𝑐𝑣 by allowing us to compute the solution for values of 𝑘 larger than those obtained without it.

The influence of the Atwood number on robustness is summarized in Figs. 11 and 12 through the CI for the polynomial degrees 
16

𝑘 = 3 and 𝑘 = 7, respectively.
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Fig. 7. RTB – Δ𝜃 contours using the ES Godunov flux, 𝑒𝑣DEEB , 𝑘 = {3,5,7} solutions.

For the fourth-order simulations (𝑘 = 3), DEEB allows to successfully run up to 𝐴 = 0.75 with 𝑐𝑣2𝑒𝑣 and 𝐴 = 0.89 with 𝑒𝑣. When 
𝑒𝑣 is coupled with over-integration, the 𝐴 = 0.95 simulation can even be performed. When considering the eighth-order (𝑘 = 7) 
computations in Fig. 12, it becomes evident that for a specific approach, the differences between DEEB, NOI, and OI lessen as the 
Atwood number rises. Hence, it becomes challenging to classify these strategies in terms of robustness. As expected though, we can 
observe that the performance of 𝑐𝑣 declines sooner, at 𝐴 = 0.57, than 𝑐𝑣2𝑒𝑣 and 𝑒𝑣. Overall, the DEEB correction applied to 𝑒𝑣 and 
𝑐𝑣2𝑒𝑣 allows to achieve a similar robustness to that guaranteed by OI.

Since DEEB acts as a source term added to the discretized governing equations, it is also worth to investigate its possible effect 
17

on the stability limit. For this purpose, we test whether or not the use of DEEB affects the maximum value of CFL that allows for the 
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Fig. 8. KHI – density contours for the coarse grids at final time, 𝐴 = 0.33, 𝑒𝑣DEEB , 𝑘 = 7 solution.

Table 4

KHI, 𝐴 = 0.33 – end time of the simulations.

Set 𝑘

1 2 3 4 5 6 7

16 × 16 grid (rect)

𝑐𝑣2𝑒𝑣OI 14 14 14 14 14 14 14
𝑐𝑣2𝑒𝑣NOI 14 14 14 14 14 14 14
𝑐𝑣2𝑒𝑣DEEB 14 14 14 14 14 14 14

𝑒𝑣OI 14 14 14 14 14 14 14
𝑒𝑣NOI 14 14 14 14 14 14 14
𝑒𝑣DEEB 14 14 14 14 14 14 14

𝑐𝑣OI 13.9 14 14 3.8 14 14 14
𝑐𝑣NOI 14 14 14 14 14 14 14
𝑐𝑣DEEB 14 14 14 14 14 14 14

32 × 32 grid (rect)

𝑐𝑣2𝑒𝑣OI 14 14 14 14 14 14 14
𝑐𝑣2𝑒𝑣NOI 14 14 14 14 14 14 14
𝑐𝑣2𝑒𝑣DEEB 14 14 14 14 14 14 14

𝑒𝑣OI 14 14 14 14 14 14 14
𝑒𝑣NOI 14 14 14 14 14 14 14
𝑒𝑣DEEB 14 14 14 14 14 14 14

𝑐𝑣OI 14 14 5.9 8.2 6.0 14 5.3
𝑐𝑣NOI 14 14 14 14 14 14 14
𝑐𝑣DEEB 14 14 14 14 14 14 14

Fig. 9. KHI, 𝐴 = 0.33 – robustness comparison for the different solution strategies. The completion index covers the range 𝑘 = 1,… ,7.

successful run of the KHI case. Progressively larger values of the CFL are then used for computations with all the strategies, i.e. 𝑒𝑣, 
𝑐𝑣 and 𝑐𝑣2𝑒𝑣, until a simulation crash occurs. Two flow configurations, characterized by 𝐴 = 0.2 and 𝐴 = 0.7, are chosen to test the 
18

CFL stability. All the simulations are performed using a 𝑘 = 3 approximation and the 16 × 16 Cartesian grid, providing a reasonable 
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Table 5

KHI, 𝐴 = 0.33 – end time of the simulations.

Set 𝑘

1 2 3 4 5 6 7

16 × 16 grid (tri)

𝑐𝑣2𝑒𝑣OI 14 14 14 14 14 14 14
𝑐𝑣2𝑒𝑣NOI 14 14 14 2.1 14 6.3 3.8
𝑐𝑣2𝑒𝑣DEEB 14 14 14 14 14 14 14

𝑒𝑣OI 14 14 14 14 14 14 14
𝑒𝑣NOI 14 14 14 2.1 14 14 4.1
𝑒𝑣DEEB 14 14 14 14 14 14 14

𝑐𝑣OI 14 14 4.7 4.6 4.7 5.7 5.3
𝑐𝑣NOI 14 14 4.9 5.2 5.5 14 5.5
𝑐𝑣DEEB 14 14 14 14 14 14 14

32 × 32 grid (tri)

𝑐𝑣2𝑒𝑣OI 14 14 14 14 14 14 14
𝑐𝑣2𝑒𝑣NOI 14 14 14 5.9 4.2 5.1 3.4
𝑐𝑣2𝑒𝑣DEEB 14 14 14 14 14 14 4.6

𝑒𝑣OI 14 14 14 14 14 14 14
𝑒𝑣NOI 14 14 10.9 5.9 4.2 5.1 3.4
𝑒𝑣DEEB 14 14 14 14 14 14 3.3

𝑐𝑣OI 14 14 5.9 5.6 5.1 5.5 6.0
𝑐𝑣NOI 14 14 14 14 5.9 5.0 5.9
𝑐𝑣DEEB 14 14 14 14 14 7.0 6.7

Table 6

KHI, 𝐴 = 0.75 – end time of the simulations.

Set 𝑘

1 2 3 4 5 6 7

16 × 16 grid (rect)

𝑐𝑣2𝑒𝑣OI 14 14 4.3 3.9 3.9 3.9 4.0
𝑐𝑣2𝑒𝑣NOI 14 14 14 4.3 3.7 3.9 3.8
𝑐𝑣2𝑒𝑣DEEB 14 14 14 5.5 14 3.9 3.8

𝑒𝑣OI 14 14 14 14 4.6 4.7 4.3
𝑒𝑣NOI 14 14 14 5.6 4.1 4.5 3.9
𝑒𝑣DEEB 14 14 14 14 6.5 4.5 3.9

𝑐𝑣OI 1.4 1.5 2.5 2.8 2.8 2.7 2.1
𝑐𝑣NOI 1.5 1.2 2.4 2.9 1.6 3.3 3.2
𝑐𝑣DEEB 14 2.4 2.8 3.2 1.7 3.3 3.2

32 × 32 grid (rect)

𝑐𝑣2𝑒𝑣OI 14 14 4.8 4.6 3.8 3.7 3.6
𝑐𝑣2𝑒𝑣NOI 14 14 14 4.6 4.3 3.8 3.9
𝑐𝑣2𝑒𝑣DEEB 14 14 14 4.6 4.0 3.5 3.9

𝑒𝑣OI 14 14 14 14 14 3.7 3.9
𝑒𝑣NOI 14 14 14 6.5 5.0 3.7 3.9
𝑒𝑣DEEB 14 14 14 14 14 3.7 3.9

𝑐𝑣OI 2.8 2.7 3.1 3.1 3.4 3.3 3.4
𝑐𝑣NOI 4.2 3.0 3.2 3.2 3.6 3.4 3.5
𝑐𝑣DEEB 14 3.0 3.2 3.2 3.6 3.4 3.5

trade-off between spatial resolution and computational complexity. For the 𝐴 = 0.2 case, all the approaches are able to reach the 
simulation end time, regardless of the DEEB, up to CFL = 0.5. The non-alteration of the CFL upper bound by the DEEB further 
emerges from the 𝐴 = 0.7 results. Indeed, net of the robustness differences between the different sets, with or without DEEB: 𝑖) 𝑐𝑣2𝑒𝑣
runs to simulation end time up to CFL = 0.3; 𝑖𝑖) 𝑒𝑣 runs to simulation end time up to CFL = 0.4; 𝑖𝑖𝑖) 𝑐𝑣 crashes from CFL = 0.2
onwards. To summarize, we can infer that utilizing the DEEB has no detectable adverse impact on the stability of the numerical 
schemes.

4.2.4. The Richtmyer-Meshkov instability problem

The Richtmyer–Meshkov Instability (RMI) [49,50] is a flow phenomenon occurring in engineering applications, like inertial 
confinement fusion, as well as in astrophysical problems, like supernovae detonation. The phenomenon is characterized by shock 
19

waves hitting a stratified fluid.
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Table 7

KHI, 𝐴 = 0.75 – end time of the simulations.

Set 𝑘

1 2 3 4 5 6 7

16 × 16 grid (tri)

𝑐𝑣2𝑒𝑣OI 0.0 4.9 3.2 3.6 3.6 2.8 3.1
𝑐𝑣2𝑒𝑣NOI 14 3.6 4.6 2.0 3.2 3.2 3.2
𝑐𝑣2𝑒𝑣DEEB 14 14 14 4.3 3.2 3.5 3.2

𝑒𝑣OI 14 14 14 14 3.8 4.0 3.7
𝑒𝑣NOI 14 3.7 4.6 2.0 3.2 3.4 3.2
𝑒𝑣DEEB 14 14 14 4.5 3.2 3.5 3.2

𝑐𝑣OI 1.3 1.1 1.7 1.9 2.4 2.0 2.5
𝑐𝑣NOI 0.9 0.7 1.7 1.4 1.4 1.5 1.5
𝑐𝑣DEEB 14 2.6 2.4 1.8 1.6 1.5 1.5

32 × 32 grid (tri)

𝑐𝑣2𝑒𝑣OI 14 5.5 4.0 4.0 4.1 3.7 3.4
𝑐𝑣2𝑒𝑣NOI 14 4.0 2.1 3.8 3.7 3.7 3.5
𝑐𝑣2𝑒𝑣DEEB 14 14 14 4.4 3.7 3.7 3.5

𝑒𝑣OI 14 14 14 5.0 4.4 4.0 4.0
𝑒𝑣NOI 14 4.2 2.1 3.9 3.8 3.7 3.0
𝑒𝑣DEEB 14 14 14 4.4 3.7 3.7 3.5

𝑐𝑣OI 1.6 2.0 2.1 2.1 3.5 2.9 3.6
𝑐𝑣NOI 1.1 2.1 2.9 2.1 2.4 3.0 2.9
𝑐𝑣DEEB 14 3.2 3.3 2.2 2.4 2.9 2.9

Fig. 10. KHI, 𝐴 = 0.75 – bar charts for comparing the robustness of the various solution strategies. The completion index covers the range 𝑘 = {1,… ,7}.

Fig. 11. KHI – completion index for increasingly higher Atwood numbers with 𝑘 = 3 on the 32 × 32 grid (rect).

The flow is initialized as

𝑢𝑖 = 0,

𝑝 = 4.9 − 1.95
[
1 + tanh

(
2𝜉1

)]
, (48)
20

𝜌 = 4.22 − 1.985
[
2 + tanh

(
2𝜉1

)
+ tanh

(
2𝜉2

)]
,
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Fig. 12. KHI – completion index for increasingly higher Atwood numbers with 𝑘 = 7 on the 16 × 16 grid (rect).

Fig. 13. RMI – density contours on the coarse grids at final time, 𝑒𝑣DEEB , 𝑘 = 4 solution.

where

𝜉1 = |𝑥2 − 4|− 2,

𝜉2 = 𝑥2 −
[
18 + 2cos(6𝜋𝑥1∕40)

]
.

(49)

Although the original computational domain is a [0, 40∕3] × [0, 40] rectangle, in this work, simulations are run on half of the domain, 
i.e. 𝑥1 ∈ [0, 40∕6], imposing symmetry boundary conditions to save computational time. The halved domain is discretized with a 
8 × 48 (coarse) and a 16 × 96 (fine) grid, composed by the same three element shapes presented in Sec. 4.2.3. Fig. 13 shows the 
density contours on the various coarse meshes. The results have been mirrored with respect to a vertical axis passing through 
𝑥1 = 40∕6 for visual clarity. All the computations are performed integrating the solution in time up to 𝑡𝑓 = 42. As for the KHI flow 
problem, the robustness of the different strategies is investigated through the Completion Index (CI) for 𝑘 = {1, … , 7}. The bar charts 
shown in Fig. 14, along with the data presented in Tables 8 and 9, confirm that the 𝑒𝑣 strategy is the most effective, followed by 
𝑐𝑣2𝑒𝑣 and with 𝑐𝑣 occupying the last place. Again, the trend observed for KHI is confirmed here, with DEEB giving a comparable 
21

performance to that provided by OI for 𝑒𝑣 and improving it for the 𝑐𝑣2𝑒𝑣 set.
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Table 8

RMI – end time of the simulations.

Set 𝑘

1 2 3 4 5 6 7

8 × 48 grid (rect)

𝑐𝑣2𝑒𝑣OI 42 42 42 8.5 8.5 8.5 7.1
𝑐𝑣2𝑒𝑣NOI 42 42 42 42 33.3 8.5 8.6
𝑐𝑣2𝑒𝑣DEEB 42 42 42 42 42 8.6 8.6

𝑒𝑣OI 42 42 42 42 42 42 42
𝑒𝑣NOI 42 42 42 42 33.2 42 24.5
𝑒𝑣DEEB 42 42 42 42 42 42 42

𝑐𝑣OI 42 6.6 6.5 4.2 3.3 2.9 2.5
𝑐𝑣NOI 42 26.5 23.8 4.9 4.5 4.5 4.5
𝑐𝑣DEEB 42 42 5.3 4.9 4.5 4.6 4.5

16 × 96 grid (rect)

𝑐𝑣2𝑒𝑣OI 42 42 42 7.5 7.5 7.5 7.5
𝑐𝑣2𝑒𝑣NOI 42 42 42 42 26.6 8.7 8.7
𝑐𝑣2𝑒𝑣DEEB 42 42 42 42 42 7.9 7.7

𝑒𝑣OI 42 42 42 42 42 42 42
𝑒𝑣NOI 42 42 42 42 25.8 24.7 28.5
𝑒𝑣DEEB 42 42 42 42 42 42 9.6

𝑐𝑣OI 42 7.0 5.7 5.7 3.4 3.2 2.8
𝑐𝑣NOI 42 7.0 6.0 5.7 5.3 4.5 4.5
𝑐𝑣DEEB 42 42 5.8 5.2 4.8 4.5 4.5

Table 9

RMI – end time of the simulations.

Set 𝑘

1 2 3 4 5 6 7

8 × 48 grid (tri)

𝑐𝑣2𝑒𝑣OI 42 42 42 7.3 2.2 2.1 2.0
𝑐𝑣2𝑒𝑣NOI 42 42 42 1.9 1.9 1.3 1.2
𝑐𝑣2𝑒𝑣DEEB 42 42 42 36.7 18.7 7.0 7.0

𝑒𝑣OI 42 42 42 42 42 38.8 41.4
𝑒𝑣NOI 42 42 34.5 1.9 1.9 1.3 1.3
𝑒𝑣DEEB 42 42 42 42 30.1 18.6 7.3

𝑐𝑣OI 4.2 5.3 1.8 1.7 1.6 1.3 1.3
𝑐𝑣NOI 42 27.3 1.9 1.9 1.6 1.5 1.3
𝑐𝑣DEEB 42 42 5.8 5.6 1.8 1.5 1.4

16 × 96 grid (tri)

𝑐𝑣2𝑒𝑣OI 42 42 42 6.1 1.9 1.8 1.5
𝑐𝑣2𝑒𝑣NOI 42 42 27.7 2.0 1.4 1.3 1.3
𝑐𝑣2𝑒𝑣DEEB 42 42 42 42 7.2 6.4 5.4

𝑒𝑣OI 42 42 42 42 42 32.9 7.2
𝑒𝑣NOI 42 42 24.0 2.0 1.4 1.3 1.3
𝑒𝑣DEEB 42 42 42 42 25.4 7.2 6.4

𝑐𝑣OI 24.1 2.2 1.6 1.5 1.3 1.3 1.3
𝑐𝑣NOI 26.0 20.5 1.9 2.0 1.5 1.3 1.3
𝑐𝑣DEEB 42 7.0 5.4 3.4 2.1 1.4 1.4

4.2.5. A few remarks

According to the results presented in the previous sections, a substantial difference in the impact of over-integration is observed, 
resulting in increased robustness for 𝑒𝑣 but potentially weakening both 𝑐𝑣2𝑒𝑣 and 𝑐𝑣, see Figs. 9 and 14. This contrast can be 
explained by considering that although over-integration is always helpful in terms of under-resolution, the positivity of thermo-
dynamic variables is only controlled when entropy variables are used. Indeed, for an ideal gas (𝑝 = 𝜌𝑅𝑇 ), the temperature reads 
𝑇 = −1∕(𝑅𝑣2+𝑑 ), meaning that 𝑣2+𝑑 should cross a vertical asymptote in the 𝑇 − 𝑣2+𝑑 plane to result in negative values of 𝑇 . 
Moreover, pressure is defined as an exponential function of the entropy variables(

1
) 𝛾
𝛾−1

(
𝛾 1 𝑣𝑖+1𝑣𝑖+1

)

22

𝑝 = −
𝑣2+𝑑

exp
1 − 𝛾

+ 𝑣1 − 2 𝑣2+𝑑
𝑖 = 1,… , 𝑑,
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Fig. 14. RMI – bar charts for comparing the robustness of the various solution strategies. The completion index covers the range 𝑘 = {1,… ,7}.

Fig. 15. KHI – end time for 𝑘 = 7 computations on the 16 × 16 grid (rect) and different Atwood numbers. Results tabulated for the CFL value 0.1, the lowered value 
0.002 ≤ CFL− ≤ 0.1, and the CFL− value coupled with the lower bound on the DEEB correction (CFL− , 𝛼𝐾 > 0).

and, as long as 𝑣2+𝑑 is negative, the state is physically consistent. In practice, the intrinsic properties of the entropy set support 
a sort of “weak” positivity constraint on thermodynamic variables. On the contrary, the conservative variables have no built-in 
restrictions on the sign of thermodynamic properties. Thus, with increased quadrature points because of over-integration, there is 
a higher possibility of encountering a point where the solution becomes nonphysical and diverges. This, of course, can also happen 
when adopting the entropy projection strategy.

This section also compares the performance of the proposed strategies to the work of Chan et al. [15]. Their paper considers both 
a nodal and a modal version of an entropy conserving/stable Discontinuous Galerkin Spectral Element Method (DGSEM) developed 
using multidimensional SBP operators, flux differencing, and tensor product basis. A direct comparison is not straightforward since 
differences are not only in spatial discretization but also in time integration, having them implemented an optimized, adaptive fourth-
order nine-stage explicit Runge-Kutta scheme. Although their modal discretization could appear superior to any of our strategies, the 
performance gap can decrease and even reverse with minor tuning, such as adjusting the CFL value. By progressively decreasing 
it, down to a minimum value 0.002, the number of 𝑒𝑣 and 𝑐𝑣2𝑒𝑣 simulations which successfully complete significantly raises. As a 
further improvement, the fix proposed by Abgrall et al. in [16] can be also considered, which retains 𝛼𝐾 only if it is greater than zero. 
This means applying the correction only when the numerical solution evolves against the physics, i.e. “destroying” thermodynamic 
entropy. The enhanced robustness of these variants may be appreciated for the KHI case at different Atwood numbers in Fig. 15. 
When directly using the entropy variables with over-integration (𝑒𝑣OI) and lowering the CFL value to 0.05, the KHI simulation can 
also be completed for the very high Atwood number 0.98 on the 32 × 32 mesh of quadrilaterals using 𝑘 = 3, even without restricting 
𝛼𝐾 to only positive values. Interestingly, when using DEEB correction (𝑒𝑣DEEB), the same simulation runs without needing to lower 
the CFL value from 0.1. The corresponding density contours are illustrated in Fig. 16. The 𝑒𝑣DEEB strategy proves to be as robust 
as the solver proposed by Chan et al. [15] by computing the 𝐴 = 0.75 case on the 16 × 16 grid with 𝑘 = 10. Notice that, as the 
present method uses a Pascal basis, a higher polynomial degree approximation is needed to reasonably match the number of DOFs 
23

with the seventh-order tensor basis approximation used by Chan et al. [15]. To summarize, the findings indicate that a “standard” 
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Fig. 16. KHI – density contours at final time for 𝑘 = 3 computations at 𝐴 = 0.98 on the 32 × 32 grid (rect).

modal DG method utilizing entropy variables and possibly the DEEB correction can compete with some of the newer DG variants, 
i.e. [15]. Specifically, for problems that include small-scale features and large variations in thermodynamic variables, our 𝑐𝑣2𝑒𝑣DEEB
implementation shows similar robustness to the nodal DGSEM. Additionally, the modal variant of the DGSEM [15] with an entropy 
projection aligns with our 𝑒𝑣DEEB version.

4.2.6. GCN results

The SSPRK35 time integrator is not an entropy-conserving/stable scheme, and explicit methods are generally deemed to produce 
spurious entropy, as stated by Lozano in [20]. This could be the reason behind the simulation crashes observed in the previous 
sections. To further investigate this behavior the 𝑐𝑣2𝑒𝑣DEEB approach is combined with the GCN entropy-conserving implicit time 
integrator.

Concerning the KHI flow problem, the GCN allows the use of significantly larger CFL values for low Atwood numbers. We indeed 
report, for the polynomial degree 𝑘 = 3 on the coarse 16 × 16 Cartesian grid, a CFL ≈ 50 at 𝐴 = 0.2 against a maximum value 
CFL = 0.5 for the explicit scheme, see Sec. 4.2.3. As 𝐴 increases, i.e. for larger values of the instability-driving density gradient, 
the CFL values for the GCN have to be reduced to the same level as those set for explicit computations. For 𝐴 = 0.7 the maximum 
value of CFL for the implicit integrator is reduced to 1.2, while the upper limit of SSPRK35 for the same case is 0.3. When further 
increasing the Atwood number and the level of spatial resolution, an even stronger reduction in the stability limit is observed. To 
allow the GCN to run up to end time at 𝐴 = 0.75 with 𝑘 = 7 on the Cartesian 16 × 16 mesh, the CFL have to be reduced to 0.05, 
with the SSPRK35 scheme running at CFL = 0.025. A similar behavior is observed for the RMI problem. On the Cartesian 8 ×48 grid, 
using a fixed CFL = 0.1 value, the GCN successfully complete the simulation up to 𝑘 = 6, whereas the explicit scheme diverges for 
𝑘 > 5. However, for 𝑘 = 7 both time integrators can run up to end time only if CFL is reduced to 0.05.

In the Authors opinion, the comparison between SSPRK and GCN shows that explicit time integration results in minimal pro-
duction of spurious entropy when the time step size is small enough. This is because the entropy conservation error for SSPRK35 is 
(Δ𝑡3), cf. Sec. 4.1, thus preventing the spurious production in time of  to overwhelm or balance the  destruction proper of the 
spatial discretization. This observation, coupled with the strong time-step limitation for high Atwood numbers, which affects both 
explicit and implicit patterns, suggests that simulation crashes are to be attributed to the occurrence of negative values of thermody-
namic variables. It should be noted that even though GCN is an entropy-preserving integrator, it cannot guarantee the positivity of 
thermodynamic states. In some cases, reducing the time step size is the only option to avoid negative values.

4.3. Computational efficiency

In the previous section the use of entropy projection and DEEB have been shown to be in favor of computational robustness. 
The total CPU time taken to simulate the KHI with 𝑘 = {1, … , 7} is measured to estimate the computational efficiency of different 
solution strategies. To ensure the completion of the simulations for each polynomial degree, the low Atwood number 𝐴 = 0.2 is 
considered. Table 10 and Fig. 17 show the overhead to assemble and invert P(vℎ) for the set 𝑒𝑣, which is (𝑘3𝑑 ), cf. Sec. 3.3. The 
comparison between 𝑐𝑣2𝑒𝑣DEEB and 𝑐𝑣NOI reveals that the strategy based on direct use of conservative variables is subjected to a 
40% slowdown when implementing entropy projection and DEEB correction. Roughly half of this overhead can be attributed to the 
entropy projection while the rest is likely due to the more complicated evaluation of the residual vector because of the mathematical 
form of the entropy variables. Assembling the DEEB correction comes at a negligible expense, thanks to the orthonormal basis detailed 
in Sec. 3.2. The relative cost of projecting variables and assembling the DEEB term decreases when discretizing the Navier-Stokes 
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equations, as additional terms (viscous fluxes) need to be evaluated in the residual function. As expected, over-integration results in 
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Fig. 17. KHI, 𝐴 = 0.2 – total CPU time for 𝑘 = {1,… ,7} on the 16 × 16 Cartesian mesh.

Table 10

KHI, 𝐴 = 0.2 – ratio between the CPU time of the different strate-
gies and of 𝑐𝑣2𝑒𝑣DEEB on the 16 × 16 Cartesian mesh. The last 
column considers the overall CPU time for 𝑘 = 1, … , 7.

CPUtime(◦)∕CPUtime(∙) 𝑘 = 1 𝑘 = 4 𝑘 = 7 Total

𝑐𝑣NOI∕𝑐𝑣2𝑒𝑣DEEB 0.8 0.6 0.6 𝟎.𝟔
𝑐𝑣DEEB∕𝑐𝑣2𝑒𝑣DEEB 0.8 0.6 0.8 𝟎.𝟖
𝑐𝑣2𝑒𝑣NOI∕𝑐𝑣2𝑒𝑣DEEB 1.0 1.0 1.0 𝟏.𝟎
𝑐𝑣2𝑒𝑣OI∕𝑐𝑣2𝑒𝑣DEEB 16.1 6.9 3.5 𝟓.𝟔
𝑒𝑣DEEB∕𝑐𝑣2𝑒𝑣DEEB 1.4 6.3 21.0 𝟏𝟑.𝟎
𝑒𝑣OI∕𝑐𝑣2𝑒𝑣DEEB 28.2 43.1 59.6 𝟓𝟎.𝟑

a significant increase in CPU time. Although Table 10 may suggest that this cost decreases as 𝑘 increases, this is an effect of setting 
an arbitrarily fixed degree of exactness, i.e. 30.

5. Conclusions

The article proposes an efficient and highly-accurate modal DG method for the discretization of the Euler equation able to guar-
antee the physical evolution of entropy at the discrete level. The scheme solves the conservative variables but takes advantage 
from entropy projection [45] for the spatial discretization assembly and of an elemental correction term designed by Abgrall [1] to 
directly enforce entropy conservation and avoid over-integration. For the temporal discretization, an explicit Strong Stability Pre-
serving Runge-Kutta scheme and an entropy-conserving implicit time integrator, i.e. the Generalized Crank–Nicolson, are considered, 
showing that the former can conserve entropy in the limit of Δ𝑡 → 0 while the latter results in an entropy-conserving scheme regard-
less of time-step and mesh size. A detailed comparison is presented between the performance and accuracy of the proposed method 
and the direct use of conservative or entropy variables. Coupled with the explicit temporal integrator, the method is found to be an 
excellent compromise between the inherent robustness of entropy variables and the low computational complexity of conservative 
variables, due to the use of an orthonormal basis defined on the mesh space. The numerical results also show that neither entropy 
projection nor DEEB spoil the theoretical spatial/temporal convergence rate.

Future work will be devoted to the extension of the current DG framework to the discretization of the Navier-Stokes equations and 
its application to the scale-resolving simulation of turbulent flows. The implementation of entropy-stable shock capturing techniques 
and positive preserving limiters for the thermodynamic variables will be also investigated to tackle transonic flows problems. Finally, 
GPU implementation will be considered to take advantage of the low computational complexity of the method, paving the way to 
the full exploitation of the new generation of High-Performance Computing platforms.
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