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A B S T R A C T

We address an Electric Vehicle Routing Problem with Time Windows (E-VRPTW) considering several real-like
factors in the energy consumption model, e.g., the payload and the vehicle speed. We model E-VRPTW as
a Mixed Integer Linear Program (MILP) where the speeds of vehicles are continuous variables that can vary
between a minimum and a maximum value. Moreover, the proposed MILP formulation is cloneless since it
allows using more than once the same recharging station without introducing dummy copies of it. To efficiently
solve large-sized instances of the problem, we design a Random Kernel Search (RKS) matheuristic approach,
based on the cloneless MILP formulation, that in turn exploits another matheuristic, called Random k-Degree
Search (RkDS), to generate an initial feasible solution. We compare the results produced by a MILP solver using
the MILP formulation with the ones obtained by the RKS on instances up to 100 customers derived from the
benchmark instances of E-VRPTW. We show that the proposed matheuristic outperforms the cloneless MILP
formulation on the medium/large-sized instances and also that it is robust, being not significantly sensitive to
the values of the parameters used by the RkDS to generate the initial solution and to the initial time limit for
the restricted MILP models.
1. Introduction

In the first half of 2021, the sales volume of Electric Vehicles (EVs)
has grown of about 168% with respect to 2020, although the low base
of 2020 (14% less than in 2019) was especially due to the pandemic
(www.ev-volumes.com/). Indeed, the recent policies of the European
Commission (EC) are going to promote the use of Alternative Fuel
Vehicles, like EVs, in place of the traditional Internal Combustion
Engine Vehicles (ICEVs). The aim of the EC is to reduce the GreenHouse
Gas (GHG) emissions, in particular the ones due to the road transport,
that amount to about 70% of the total GHG emissions produced by the
whole transport sector.

In some ways, the EVs may be the answer to the need to reduce
such GHG emissions. From the environmental sustainability standpoint,
in fact, an EV guarantees a significant reduction of the 𝐶𝑂2 emissions,
assuring a total elimination of local emissions due to both NOx and
Pmx. This positively impacts on the citizens quality of life too (social
sustainability). From an economic sustainability perspective, the main-
tenance cost of EVs is by far less than that of ICEVs, resulting in a
cost saving of about 50%. In addition, the cost for kilometer of an
EV is usually by far less than the one of an ICEV; for example, since
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in Italy the energy cost is about 0.20e for KWh against the 1.50e
for liter of gasoline, and that an electric midsize sedan car consumes
about 14 kWh for 100 km, against 4.5 gasoline liters for an internal
combustion one, the cost for 100 km is about 2.8e for the electric
against 6.75e for the internal combustion. Finally, an EV can enter also
the so called Limited Traffic Zones free of charge and this represents
a very significant advantage especially for companies operating in the
Logistics distribution field.

However, despite these advantages, the limited driving range of EVs
still remains an issue to take into account, since they may require to be
recharged also more than once at the Recharging Stations (RSs) along
their trips. This, in fact, together with a poor distribution of the RSs on
the territory, causes the so-called ‘‘range anxiety’’ that over the years
has strongly limited the diffusion of such vehicles (Franke et al., 2016).
Indeed, the possibility of EVs running out of energy to either reach the
closest RS or the depot, requires properly planning in advance their
routes, including possible stops at RSs. The problem of recharging EVs
along their trips is particularly recurrent in the context of the mid-haul
logistics, taken as a reference in this work, since the driving range of
medium-duty EVs is usually not sufficient to cover distances longer
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than 80 kilometers (Schiffer et al., 2021). Such an issue is attracting
the attention of many operations researchers, especially because more
and more logistic companies are opting for electric mobility solutions,
leading to the Electric Vehicle Routing Problem with Time Windows (E-
VRPTW) (Schneider et al., 2014). This problem, in fact, aims at routing
a given fleet of EVs, based at a common depot, in order to serve a
set of geographically distributed customers within their time windows,
allowing possible recharges en-route and minimizing the total distance
traveled. Therefore, a feasible solution for the E-VRPTW consists of a
set of routes, each one performed by an EV that starts from the depot,
serves some customers and returns to the depot within a maximum time
allowed.

However, over the years, several variants of the E-VRPTW have
been addressed especially for properly taking into account the rapid
development of battery technology, e.g., the possibility to partially
recharge and a higher EVs autonomy. In addition, more realistic models
have been also proposed, according to which the energy consumption
depends simultaneously on several aspects. In fact, the maximum dis-
tance an EV can cover without recharging can significantly vary, for
example, according to both its speed (at lower speed the EV range may
be double than that at a higher speed) and the carried load (Xiao et al.,
2019). To the best of our knowledge, Xiao et al. (2019) represents
the first contribution in which the E-VRPTW with a realistic Energy
Consumption Rate (EVRPTW-ECR) is introduced through a linear model
depending on both the load and the vehicle speed, where the latter can
continuously vary between a lower and an upper bound. However, such
a new problem is mathematically modeled by the authors without con-
sidering possible recharges en-route. This may lead to solutions that can
be substantially sub-optimal, as shown by the simple example of Fig. 1
with 6 customers located in two clusters and 3 RSs (including one at the
depot), where the numbers in square brackets beside each customer
indicate their time windows (TWs), the numbers beside each arc the
corresponding length, and the driving range of each vehicle is assumed
to be 110 km. Indeed, the optimal solution obtained not allowing
recharges en-route, depicted in Fig. 1a, requires three vehicles because
the limited driving range does not allow customer C5 to be served in
the same route of customers C4 and C6. In fact, in order to satisfy the
TWs, the customers should be visited according to the sequence Depot,
C6, C4, C5, Depot whose total length is 52+5.8+10+47.43=115.23. On
the other hand, in the optimal solution obtained when recharges en-
route are possible, shown in Fig. 1b, C5 can be served in a longer route
together with C4 and C6 (thanks to the recharge in RS2), thus requiring
only two vehicles.

The contribution of this work is threefold. We model for the first
time the EVRPTW-ECR through Mixed Integer Linear Programming
(MILP) allowing also stops at RSs en-route. Moreover, differently from
most of the models in the EVRP literature, we propose a cloneless
ormulation of the problem, i.e., we avoid cloning RSs to allow each
tation to be possibly visited more than once in the same route or
y different vehicles. Moreover, we design a Random Kernel Search
RKS) matheuristic approach, based on the proposed cloneless formu-
ation, for efficiently addressing the EVRPTW-ECR also on large-sized
nstances. Finally, we report the results of an analysis to evaluate the
ensitivity of RKS to possible variations of some input parameters which
how the robustness of the proposed matheuristic.

The rest of the paper is organized as follows. Section 2 describes the
ain literature contributions on the E-VRPTW and some variants. Sec-

ion 3 provides the problem statement and the notation used. Section 4
ntroduces the cloneless MILP model formulated for the EVRPTW-ECR.
ection 5 outlines the RKS matheuristic, whereas a computational com-
arison between the solutions provided by the MILP cloneless model
nd those of the RKS matheuristic is discussed in Section 6. Moreover,
n Section 6.3, an analysis to evaluate the sensitivity of RKS to possible
ariations of some input parameters is described. Finally, Section 7
2

raws some conclusions.
2. Literature review

The E-VRPTW belongs to the more general class of Vehicle Routing
Problems (VRPs). Readers are refereed to Mor and Speranza (2020)
and Macrina et al. (2020) for very recent reviews respectively on VRPs
and the E-VRPTW.

The E-VRPTW was introduced by the seminal work by Schneider
et al. (2014), where the problem is formulated as a MILP on a com-
plete direct graph, in which the set of vertices includes the depot,
the customers and the clones of the RSs possibly visited en-route by
the EVs for full recharges. Indeed, in order to allow using each RS
more than once in the same route and/or solution, some copies of
it are introduced. The ECR is assumed to be linearly proportional to
the traveled distance and, differently from the Green Vehicle Routing
Problem (Erdoğan and Miller-Hooks, 2012) in which the refueling time
is assumed to be constant, in Schneider et al. (2014) the refueling time
is considered a function of the state of charge (SOC), leading to a more
complex decision problem. For addressing the E-VRPTW also on large-
sized instances, the authors design a Variable Neighborhood Search
(VNS) hybridized with a Tabu Search (TS) metaheuristic.

Starting from this work, several other papers have been published in
the literature over the years, addressing the E-VRPTW and its variants.
For example, Felipe et al. (2014) study an E-VRPTW allowing both
partial recharges and multiple recharging technologies. For this new
variant of the problem, they develop constructive and local search
heuristics used in a non-deterministic Simulated Annealing framework.
Under the assumption of partial recharges, in Bruglieri et al. (2015)
the authors develop a VNS based matheuristic in which the amount
recharged at each station is a variable of the decision process. In
particular, the authors solve the E-VRPTW from a time-effective per-
spective, minimizing the total time spent by each EV outside the
depot. Desaulniers et al. (2016) proposed exact branch-price-and-cut
algorithms for four variants of the E-VRPTW, allowing either at most
one full/partial recharge per route or multiple full/partial recharges per
route. In Keskin and Çatay (2016), an E-VRPTW allowing also partial
recharges at RSs is solved through an ALNS, which is shown to be
effective in finding high quality solutions on the considered benchmark
instances. The time-effective E-VRPTW proposed in Bruglieri et al.
(2015) is addressed in Bruglieri et al. (2017) through a three-steps
matheuristic able to outperform the VNS based matheuristic especially
on medium-sized instances. In Goeke (2019), the E-VRPTW is addressed
under the assumption that each request consists in moving a commodity
from a pickup to a delivery point allowing also partial recharges at RSs.
For this new variant, the author designs a granular TS. Recently, in Löf-
fler et al. (2020), an ALNS hybridized with a granular TS is designed
to solve the E-VRTW with single recharge, allowing the possibility of
both full and partial recharges. The proposed approach is shown to find
optimal or near-optimal solutions on the set of benchmark instances
introduced by Schneider et al. (2014) with up to 100 customers.

A VRPTW with heterogeneous fleet (i.e., made up by both EVs and
ICEVs) is addressed in Hiermann et al. (2016) with the aim of modeling
the decisions regarding the fleet size and the route planning, including
also possible stops at RSs. For this new problem, the authors propose
both a branch-and-price approach and a heuristic method that com-
bines an ALNS with an embedded local search and labeling procedure.
In Shao et al. (2017), an E-VRTPW with variable travel time is solved
through a dynamic Dijkstra algorithm used to find the shortest path
between two nodes in the routes determined by a genetic algorithm. A
VRPTW with both EVs and ICEVs is studied in Macrina et al. (2019)
allowing also partial recharges and limiting the pollution emissions
due to the ICEVs. This new variant of the problem is solved through
an Iterated Local Search metaheuristic on the benchmark instances
in Schneider et al. (2014) with up 100 customers.

Since 2017, some papers started to deal with also nonlinear charging
functions, considered more realistic than the linear one (Montoya et al.,

2017). In particular, in Montoya et al. (2017), a hybrid metaheuristic is
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Fig. 1. Solution comparison on a simple instance.
developed, combining simple components taken from the literature and
some others specifically proposed for the new variant. In Froger et al.
(2019), two MILP formulations are proposed and shown to be more ef-
fective than the already existing one. In particular, the authors propose
an arc-based tracking of the time and the SOC (rather than the tradi-
tional node-based tracking). Moreover, in order to avoid having dummy
copies of RSs, their first formulation is indeed a path-based model. They
also develop an exact labeling algorithm to find the optimal charging
decisions on the given routes. In Koç et al. (2019), instead, a variant
of the E-VRPTW with nonlinear charging function is introduced con-
sidering the possibility of sharing RSs, assuming that some companies
may take advantage to jointly invest in such infrastructures. Therefore,
the resulting new problem, solved through a multistart heuristic, aims
at both deciding the location and technology of the RSs and planning
3

the routes for each company. An efficient linearization method for the
concave nonlinear charging function is presented in Zuo et al. (2019),
where the problem is then modeled through MILP. In Lee (2021),
an algorithm for minimizing both the total travel and charging times
without any approximation of the charging time function is developed.
In particular, an extended charging stations network is built such that a
path on it corresponds to a route on the original one. Then, the resulting
problem on this extended network is optimally solved by a branch-and-
price method. An E-VRP with load-dependent discharge and non-linear
charging is introduced in Kancharla and Ramadurai (2020), allowing
multiple visits at the same RS by creating dummy copies of it. In
addition, an ALNS is designed which outperforms the already existing
solution approach in 63% of the 80 instances used. Finally, in Karakatič
(2021), the author addresses a multi-depot E-VRPTW with nonlinear
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charging function and cargo capacity constraints, presenting a genetic
algorithm for minimizing simultaneously the driving times, the number
of stops at RSs en-route and finally, the time of recharging.

Regarding the EVRPTW-ECR, to the best of our knowledge, Goeke
and Schneider (2015) is the first literature contribution in which a real-
istic ECR is considered. In particular, the authors address an E-VRPTW
with a mixed fleet, composed by both EVs and conventional internal
combustion vehicles. Concerning the EVs, they consider possible stops
en-route at the RSs with a linear recharging model and in their ECR
model they incorporate some real factors like speed, gradient and cargo
load. Moreover, they assume that the vehicle speed is constant and
dependent on the arcs since they want to avoid taking into account also
the traffic conditions which the vehicle speed can depend on. However,
in some papers, e.g., Demir et al. (2014), the average vehicle speed on
each arc is modeled as a decision variable without considering also the
traffic conditions. Also Lin et al. (2016) consider possible stops en-route
at the RSs with a linear recharging model and include real factors in
the ECR model, e.g., the payload and the vehicle speed. The vehicle
speed is still assumed to be dependent on the arc but constant, and
a linear energy cost function simpler than the one already adopted
in Barth et al. (2005), Barth and Boriboonsomsin (2009) and Bektaş
and Laporte (2011), is used for including the vehicle load effect on the
battery consumption. In Zhang et al. (2018), an E-VRPTW, aimed at
minimizing the ECR, is studied and modeled as a non-linear program,
in which the vehicle speed depending on the arc is constant and also
dummy copies of each RS are introduced. In Joo and Lim (2018), an
energy efficiency routing problem is solved through an Ant Colony
Optimization approach. The authors include some real factors in the
proposed ECR, e.g., the vehicle speed and the gradient of the road,
resulting in a new energy consumption model that takes into account
the discharge and the recuperation phase, but they do not consider
possible stops en-route at RSs. In Pelletier et al. (2019), an E-VRPTW
with energy consumption uncertainty is addressed, assuming that the
ECR is a function of an amount of uncertainty due to both endogenous
factors (e.g., the driver behavior) and exogenous factors (e.g., the
weather and the road condition). This new variant is then formulated
through robust MILP, and in order to solve also large-sized instances, a
LNS based heuristic approach is also developed. In Basso et al. (2019),
a new energy consumption model is proposed including topography,
speed, acceleration and powertrain efficiency. However, the authors
still maintain both dummy copies of the RSs to allow multiple visits
and a constant vehicle speed. Recently, in Ferro et al. (2020) a model
for EVRPTW-ECR is introduced, assuming time-of-use energy prices as
well as a complex energy consumption model, which takes into account
the contribution of speed, load, terrain gradient and starts and stops.
In addition, the model assumes the speed of the vehicles on the arcs
not fixed, but it can vary among a given discrete set of values. A MILP
formulation using clones of the RS is presented which is able to solve
instances up to 15 customers. Finally, in Xiao et al. (2019), an ECR
is modeled as function of the vehicle speed and load. The authors
formulate the resulting EVRPTW-ECR through MILP, assuming that
the vehicle speed is not constant but a continuous decision variable.
Two linearization methods (both inner and outer approximation) are
adopted for treating the nonlinear relationship between the vehicle
speed and the travel time. However, the possibility of having recharges
en-route at RSs is not considered.

To the best of our knowledge, the present work represents the
first contribution in which the EVRPTW is addressed by considering
simultaneously several aspects:

• the need of using a realistic ECR depending on both the vehicle
speed and load;

• vehicle speed as a continuous variable in the decision process;
• possible stops at the RSs are permitted en-route.
4

a

In addition, in this paper we introduce a mathematical formulation
for the EVRPTW-ECR that does not contain dummy copies of the RSs,
although more than one stop at the same RS is allowed in the same
route and/or solution.

Regarding the proposed RKS, our matheuristic contains three main
contributions, compared to the versions already proposed in the liter-
ature. First of all, the way to find an initial solution. Indeed, we do
not take advantage of the solution obtained by solving the continuous
relaxation of the problem since, as known, it is not useful for the
VRPs (Archetti et al., 2021), in general. In fact, we design a new
matheuristic, called Random k-Degree Search (RkDS), to initialize RKS,
showing that it is able to efficiently find initial solutions. Secondly, at
each iteration, our RKS adopts randomness for generating the buckets.
Finally, RKS also adapts the bucket dimension, in particular adjusting it
according to the difficulty of solving the restricted MILP, evaluated in
terms of total computational time required by the solver. To the best of
our knowledge, this is the first Kernel Search approach exploiting such
two kinds of mechanisms for identifying the buckets.

3. Problem statement and notation

The EVRPTW-ECR consists in routing a homogeneous fleet of EVs
to serve a set 𝑁 of customers starting from and returning to a depot.
Each customer 𝑖 ∈ 𝑁 has an associated demand 𝑄𝑖, a service time 𝐺𝑖
and must be visited by a single vehicle which starts to serve 𝑖 within the
time window [𝐸𝑖, 𝐿𝑖]. Each EV has a maximum battery capacity 𝐵 and a
maximum load capacity 𝛤 . We assume that the battery charging of EVs
occurs at constant current, so that the battery level increases linearly
with time during charging (Kisacikoglu et al., 2011). This assumption
is justified by the fact that the number of recharging cycles, and so
the battery life, is significantly increased when the battery operates
at constant current (Schuster et al., 2015). Hence, we assume the
consequent reduction of the driving range of EVs is an acceptable trade-
off with respect to the environmental and recycling costs of exhausted
battery (Lander et al., 2021). The linear charging and discharging
behavior of the battery can be imposed by setting an allowed range for
the battery SOC. In particular, we assume that the percentage of battery
capacity can range in [𝜎, 𝛾], where 𝜎 and 𝛾 represent the minimum
nd maximum allowed percentage battery capacity, respectively, that
ay depend on the kind of battery considered. In addition, we suppose

hat the EVs leave the depot with the battery charged to percentage
. We assume that the ECR function, 𝐸𝐶𝑅(𝑣, 𝑓 ), depends on both the
V speed 𝑣 and load 𝑓 which are continuous decision variables. We
emark that in practice an average speed on each arc can be imposed
o each vehicle, e.g., thanks to a driver-assistance system (ADAS) as
n Wu et al. (2015), So et al. (2020) or using an autonomous vehicle. In
articular, we consider the ERC function 𝐸𝐶𝑅(𝑣, 0) with no load (𝑓 = 0)
s giving the percentage of battery consumed per kilometer, computed
s 𝐸𝐶𝑅(𝑣, 0) = 𝑃𝐵∕𝑣 ⋅ 𝐵, where 𝑃𝐵 is the battery power needed to
ravel one kilometer at speed 𝑣 and 𝐵 the maximum battery capacity.
ote that 𝑃𝐵 is computed as in Goeke and Schneider (2015) with the
ssumption of constant speed and disregarding the gradient of terrain.
s already proposed in Xiao et al. (2019), 𝐸𝐶𝑅(𝑣, 0), i.e., the ECR as a

unction of the speed and with zero load, can be in general linearized
ith a set 𝐻 of secant lines as 𝑒 ≥ 𝑘̂ℎ𝑣+ 𝑏̂ℎ, ℎ ∈ 𝐻 , where 𝑒 represents

he percentage of battery consumed per kilometer, and each secant ℎ to
he ECR function is defined by a pair of constants (𝑘̂ℎ, 𝑏̂ℎ), specifying the
lope and intercept. Besides, for each additional unit of carried load, it
s assumed that the ECR of the EVs increases by a constant rate, 𝜙, so
hat the overall ECR is given by 𝐸𝐶𝑅(𝑣, 𝑓 ) = 𝐸𝐶𝑅(𝑣, 0) + 𝜙 ⋅ 𝑓 .

A set 𝑆 of RSs where EVs can recharge along their trips is available.
e assume that at most a single battery recharge may be needed
hen traveling between two consecutive customer nodes. We know the
istance 𝐷𝑖𝑗 between each pair of customers 𝑖, 𝑗, and both a lower and
n upper speed limit, denoted by 𝑉 𝑚𝑖𝑛 and 𝑉 𝑚𝑎𝑥, respectively.
𝑖𝑗 𝑖𝑗
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Similarly to ECR, also the non-linear time-speed relation is lin-
earized as in Xiao et al. (2019), where two possible methods, based
on either tangent or secant lines, have been proposed and tested. In
particular, we consider a set 𝑃 of tangent lines, computing 𝑡 ≥ 𝐷(𝑘̃𝑝𝑣+
𝑏̃𝑝), 𝑝 ∈ 𝑃 , being 𝑡 the travel time, 𝐷 the traveled distance, and each
line 𝑝 identified by a slope intercept pair (𝑘̃𝑝, 𝑏̃𝑝), since this kind of
inearization has been shown to outperform the one based on secant
ines (Xiao et al., 2019).

The objective of EVRPTW-ECR consists in minimizing the total
ravel cost, including the fixed cost 𝐹 of using each EV, the cost of
he energy consumed en-route depending on the total traveled distance
hrough the coefficient 𝐶𝐸 , and the drivers’ wage cost considered
roportional to the total duration of the routes with the coefficient 𝐶𝑇 .

4. A cloneless mathematical model

In this section we introduce a MILP formulation for the EVRPTW-
ECR. The proposed formulation is defined as cloneless since it avoids
to use the clones of the stations to model the possibility to visit the
same RS more than once in the same solution and/or route. However,
a certain level of duplication exists also in our model since each link
(𝑖, 𝑗) is replaced with a set of links, each one corresponding to a possible
detour to a charging station. Compared to a classical formulation with
clones of the stations, our formulation has three advantages. First, the
number of routing variables visiting a RS does not depend on how many
times a RS can be visited by an EV. Whereas, the classical formulation
with clones requires to compute an upper bound 𝑈 on the number of
times a RS could be visited by an EV since each RS must be cloned 𝑈
times, for each EV. Second, in our formulation the number of routing
variables visiting a RS does not depend on the fleet size, whereas in the
classical formulation it depends on an upper bound, 𝑚, on the fleet size
since each RS must be cloned 𝑚𝑈 times. Third, our formulation allows
significantly reducing these variables thanks to the introduction of the
concept of non dominated RSs (Section 4.1) that cannot be applied in
the classical formulation with clones of the RSs.

The cloneless formulation is defined considering a multigraph 𝐺𝑀 =
(𝑁0, 𝐴𝑀 ) derived from the road network graph 𝐺 = (𝑁0, 𝐴), where
𝑁0 = 𝑁 ∪ {0}, combining each arc (𝑖, 𝑗) ∈ 𝐴 with the subsets 𝑆𝑖𝑗 of
RSs that can be reached with a feasible detour when traveling from 𝑖
to 𝑗. Specifically, we assume that at most one recharge between two
customers may be required, since this lends itself well to the context
of the mid-haul logistics taken as reference in this work. In particular,
𝐴𝑀 = {(𝑖, 𝑗, 𝑠) ∶ (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 ∪ {𝑛}}, where (𝑖, 𝑗, 𝑠) denotes the
path connecting the two customer nodes 𝑖 and 𝑗 with the intermediate
stop at RS 𝑠. The definition of 𝐴𝑀 also includes a possible intermediate
stop at a fictitious node 𝑛, where 𝑛 = |𝑁0| + 1, to denote with (𝑖, 𝑗, 𝑛)
the direct path from 𝑖 to 𝑗 without any recharging stop. Moreover,
we indicate by 𝛿−𝑗 the set of arcs entering in node 𝑗 (backward star),
i.e., 𝛿−𝑗 = {(𝑖, 𝑗) ∶ (𝑖, 𝑗) ∈ 𝐴} and by 𝛿+𝑖 the set of arcs exiting from node
𝑖 (forward star), i.e., 𝛿+𝑖 = {(𝑖, 𝑗) ∶ (𝑖, 𝑗) ∈ 𝐴}.

In the following we report the sets of indices, the parameters and
the variables used in the cloneless formulation.

Sets

- 𝑁 set of customer nodes;
- 𝑁0 = 𝑁∪{0} set of customer nodes including the depot (denoted

by 0);
- 𝐴 = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑁0, 𝑖 ≠ 𝑗} set of arcs that can be traversed by

EVs;
- 𝐴′ = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗} ⊂ 𝐴, set of arcs connecting customer

nodes;
- 𝑃 set of tangent lines for the times-speed linearization;
- 𝐻 set of secant lines for the ECR linearization;
- 𝑆 set of RS including the depot that can be used as RS;
- 𝑆𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴 set of all intermediate RS where a vehicle can stop
5

when traveling from 𝑖 to 𝑗;
- 𝑆′
𝑖𝑗 = 𝑆𝑖𝑗 ∪ {𝑛}, (𝑖, 𝑗) ∈ 𝐴 set of all intermediate RS for arc (𝑖, 𝑗),

including the fictitious RS 𝑛;
- 𝐴𝑀 = {(𝑖, 𝑗, 𝑠) ∶ (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆′

𝑖𝑗} set of paths connecting pairs
of customer nodes with a possible intermediate stop at a RS;

- 𝐴𝑆 = {(𝑖, 𝑠), (𝑠, 𝑗) ∶ (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗} set of arcs connecting
customer nodes 𝑖 and 𝑗 with the RS 𝑠 in the possible detours
associated with (𝑖, 𝑗, 𝑠) ∈ 𝐴𝑀 , where 𝑠 ≠ 𝑛.

arameters

- 𝐹 fixed cost per EV;
- 𝐵 maximum battery energy capacity;
- 𝛤 load capacity of EVs;
- 𝐶𝐸 unitary energy cost;
- 𝐶𝑇 unitary cost for time spent in the routes;
- 𝐷𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴 ∪ 𝐴𝑆 length of arcs;
- 𝐺𝑖, 𝑖 ∈ 𝑁 service time at node 𝑖;
- 𝑄𝑖, 𝑖 ∈ 𝑁 demand of node 𝑖;
- [𝐸𝑖, 𝐿𝑖], 𝑖 ∈ 𝑁 time window of node 𝑖;
- 𝑘̃𝑝, 𝑏̃𝑝, 𝑝 ∈ 𝑃 slope and intercept of the 𝑝th tangent line of the

times-speed linearization;
- 𝑘̂ℎ, 𝑏̂ℎ, ℎ ∈ 𝐻 slope and intercept of the ℎth secant line of the

ECR linearization;
- 𝜙 ECR for unit of carried load;
- 𝑉 𝑚𝑎𝑥

𝑖𝑗 , 𝑉 𝑚𝑖𝑛
𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴∪𝐴𝑆 upper and lower bound for the average

speed on arcs;
- 𝛾 and 𝜎 allowed maximum and minimum percentage of battery

capacity;
- 𝑛 = |𝑁0| + 1 index denoting a fictitious null RS.
- 𝜌 time needed for a full battery recharge.

ariables

- 𝑥𝑖𝑗𝑠, (𝑖, 𝑗, 𝑠) ∈ 𝐴𝑀 binary routing variables such that 𝑥𝑖𝑗𝑠 = 1 if
an EV travels on arc (𝑖, 𝑗), with an intermediate stop at RS 𝑠 (if
𝑠 = 𝑛 the vehicle travels directly from 𝑖 to 𝑗); 𝑥𝑖𝑗𝑠 = 0 otherwise;

- 𝑣𝑖𝑗 ≥ 0, (𝑖, 𝑗) ∈ 𝐴 average speed of the EV traveling on arc (𝑖, 𝑗)
connecting directly two customers;

- 𝑣𝑎𝑖𝑗𝑠 ≥ 0, (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 average speed of the EV on arc (𝑖, 𝑠)
when traveling from node 𝑖 to node 𝑗 with an intermediate stop
at RS 𝑠;

- 𝑣𝑏𝑖𝑗𝑠 ≥ 0, (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 average speed of the EV on arc (𝑠, 𝑗)
when traveling from node 𝑖 to node 𝑗 with an intermediate stop
at RS 𝑠;

- 𝑒𝑖𝑗 ∈ [0, 1], (𝑖, 𝑗) ∈ 𝐴 energy consumption, expressed as percent-
age of battery for unit of distance, of an EV traveling on arc (𝑖, 𝑗)
connecting directly two customers;

- 𝑒𝑎𝑖𝑗𝑠 ∈ [0, 1], (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 energy consumption for unit of
distance on arc (𝑖, 𝑠) of an EV traveling from customer node 𝑖 to
customer node 𝑗 with an intermediate stop at RS 𝑠;

- 𝑒𝑏𝑖𝑗𝑠 ∈ [0, 1], (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 energy consumption for unit of
distance on arc (𝑠, 𝑗) of an EV traveling from customer node 𝑖 to
customer node 𝑗 with an intermediate stop at RS 𝑠;

- 𝑡𝑖𝑗 ≥ 0, (𝑖, 𝑗) ∈ 𝐴 travel times spent on arcs (𝑖, 𝑗) directly
connecting customers 𝑖 and 𝑗;

- 𝑡𝑎𝑖𝑗𝑠 ∈ [0, 1], (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 travel times spent on arc (𝑖, 𝑠) by an
EV traveling from customer node 𝑖 to customer node 𝑗 with an
intermediate stop at RS 𝑠;

- 𝑡𝑏𝑖𝑗𝑠 ∈ [0, 1], (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 travel times spent on arc (𝑠, 𝑗) by an
EV traveling from customer node 𝑖 to customer node 𝑗 with an
intermediate stop at RS 𝑠;

- 𝜏𝑖𝑗𝑠 ≥ 0, (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 time spent by an EV to recharge at RS
𝑠 when traveling from customer node 𝑖 to customer node 𝑗;

- 𝑓𝑖𝑗 ≥ 0, (𝑖, 𝑗) ∈ 𝐴 flow variables giving the load of an EV traveling
on arc (𝑖, 𝑗);
- 𝑤𝑖 ≥ 0, 𝑖 ∈ 𝑁 waiting time at customer node 𝑖;
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𝑎

𝑟

𝐷

𝑟
- 𝑎𝑗 ∈ [𝐸𝑗 , 𝐿𝑗 ], 𝑗 ∈ 𝑁 arrival time at customer node 𝑗;
- 𝑟𝑗 ∈ [𝜎, 𝛾], 𝑗 ∈ 𝑁 percentage of battery capacity on arrival at

customer node 𝑗.

Cloneless formulation

in 𝐹 ⋅
∑

𝑗∈𝑁

∑

𝑠∈𝑆′
0𝑗

𝑥0𝑗𝑠 + 𝐵 ⋅ 𝐶𝐸 ⋅
∑

(𝑖,𝑗)∈𝐴

⎛

⎜

⎜

⎝

𝐷𝑖𝑗𝑒𝑖𝑗 +
∑

𝑠∈𝑆𝑖𝑗

(𝐷𝑖𝑠𝑒
𝑎
𝑖𝑗𝑠 +𝐷𝑠𝑗𝑒

𝑏
𝑖𝑗𝑠)

⎞

⎟

⎟

⎠

+

𝐶𝑇 ⋅
⎡

⎢

⎢

⎣

∑

(𝑖,𝑗)∈𝐴

⎛

⎜

⎜

⎝

𝑡𝑖𝑗 +
∑

𝑠∈𝑆𝑖𝑗

(𝑡𝑎𝑖𝑗𝑠 + 𝑡𝑏𝑖𝑗𝑠 + 𝜏𝑖𝑗𝑠)
⎞

⎟

⎟

⎠

+
∑

𝑗∈𝑁
(𝐺𝑗 +𝑤𝑗 )

⎤

⎥

⎥

⎦

(1)

subject to
∑

(𝑖,𝑗)∈𝛿−𝑗

∑

𝑠∈𝑆′
𝑖𝑗

𝑥𝑖𝑗𝑠 = 1 𝑗 ∈ 𝑁 (2)

∑

(𝑖,𝑗)∈𝛿+𝑖

∑

𝑠∈𝑆′
𝑖𝑗

𝑥𝑖𝑗𝑠 = 1 𝑖 ∈ 𝑁 (3)

𝑡𝑖𝑗 ≥ 𝐷𝑖𝑗 (𝑘̃𝑝𝑣𝑖𝑗 + 𝑏̃𝑝) −𝐷𝑖𝑗 (𝑘̃1𝑉 𝑚𝑖𝑛
𝑖𝑗 + 𝑏̃1)(1 − 𝑥𝑖𝑗𝑛) (𝑖, 𝑗) ∈ 𝐴, 𝑝 ∈ 𝑃 (4)

𝑡𝑎𝑖𝑗𝑠 ≥ 𝐷𝑖𝑠(𝑘̃𝑝𝑣𝑎𝑖𝑗𝑠+ 𝑏̃𝑝)−𝐷𝑖𝑠(𝑘̃1𝑉 𝑚𝑖𝑛
𝑖𝑠 + 𝑏̃1)(1−𝑥𝑖𝑗𝑠) (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 , 𝑝 ∈ 𝑃

(5)

𝑡𝑏𝑖𝑗𝑠 ≥ 𝐷𝑠𝑗 (𝑘̃𝑝𝑣𝑏𝑖𝑗𝑠+ 𝑏̃𝑝)−𝐷𝑠𝑗 (𝑘̃1𝑉 𝑚𝑖𝑛
𝑠𝑗 + 𝑏̃1)(1−𝑥𝑖𝑗𝑠) (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 , 𝑝 ∈ 𝑃

(6)

𝜏𝑖𝑗𝑠 ≥ 𝜌(𝛾 − 𝑟𝑖 +𝐷𝑖𝑠𝑒
𝑎
𝑖𝑗𝑠) − 𝜌(1 − 𝑥𝑖𝑗𝑠) (𝑖, 𝑗) ∈ 𝐴, 𝑖 ≠ 0, 𝑠 ∈ 𝑆𝑖𝑗 (7)

𝜏0𝑗𝑠 ≥ 𝜌𝐷0𝑠𝑒
𝑎
0𝑗𝑠 − 𝜌(1 − 𝑥0𝑗𝑠) 𝑗 ∈ 𝑁, 𝑠 ∈ 𝑆0𝑗 (8)

𝑎𝑗 ≥ 𝐸0 + 𝑡0𝑗 − (𝐸0 +
𝐷0𝑗

𝑉 𝑚𝑖𝑛
0𝑗

)(1 − 𝑥0𝑗𝑛) 𝑗 ∈ 𝑁 (9)

𝑗 ≥ 𝐸0+𝑡𝑎0𝑗𝑠+𝑡𝑏0𝑗𝑠+𝜏0𝑗𝑠−(𝐸0+
𝐷0𝑠

𝑉 𝑚𝑖𝑛
0𝑠

+
𝐷𝑠𝑗

𝑉 𝑚𝑖𝑛
𝑠𝑗

+𝜌)(1−𝑥0𝑗𝑠) 𝑗 ∈ 𝑁, 𝑠 ∈ 𝑆0𝑗

(10)

𝑎𝑗 ≥ 𝑎𝑖 + 𝑡𝑖𝑗 + 𝐺𝑖 +𝑤𝑖 − 𝐿0(1 − 𝑥𝑖𝑗𝑛) (𝑖, 𝑗) ∈ 𝐴′ (11a)

𝑎𝑗 ≤ 𝑎𝑖 + 𝑡𝑖𝑗 + 𝐺𝑖 +𝑤𝑖 + 𝐿0(1 − 𝑥𝑖𝑗𝑛) (𝑖, 𝑗) ∈ 𝐴′ (11b)

𝑎𝑗 ≥ 𝑎𝑖 + 𝑡𝑎𝑖𝑗𝑠 + 𝑡𝑏𝑖𝑗𝑠 +𝐺𝑖 +𝑤𝑖 + 𝜏𝑖𝑗𝑠 −𝐿0(1 − 𝑥𝑖𝑗𝑠) (𝑖, 𝑗) ∈ 𝐴′, 𝑠 ∈ 𝑆𝑖𝑗 (12a)

𝑎𝑗 ≤ 𝑎𝑖 + 𝑡𝑎𝑖𝑗𝑠 + 𝑡𝑏𝑖𝑗𝑠 +𝐺𝑖 +𝑤𝑖 + 𝜏𝑖𝑗𝑠 +𝐿0(1 − 𝑥𝑖𝑗𝑠) (𝑖, 𝑗) ∈ 𝐴′, 𝑠 ∈ 𝑆𝑖𝑗 (12b)

𝑒𝑖𝑗 ≥ 𝑘̂ℎ𝑣𝑖𝑗 + 𝑏̂ℎ +𝛷𝑓𝑖𝑗 − (1 − 𝑥𝑖𝑗𝑛) (𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (13)

𝑒𝑎𝑖𝑗𝑠 ≥ 𝑘̂ℎ𝑣
𝑎
𝑖𝑗𝑠 + 𝑏̂ℎ +𝛷𝑓𝑖𝑗 − (1 − 𝑥𝑖𝑗𝑠) (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 , ℎ ∈ 𝐻 (14)

𝑒𝑏𝑖𝑗𝑠 ≥ 𝑘̂ℎ𝑣
𝑏
𝑖𝑗𝑠 + 𝑏̂ℎ +𝛷𝑓𝑖𝑗 − (1 − 𝑥𝑖𝑗𝑠) (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 , ℎ ∈ 𝐻 (15)

𝑗 +𝐷0𝑗𝑒0𝑗 − (1 − 𝑥0𝑗𝑛) ≤ 𝛾 𝑗 ∈ 𝑁 (16)

𝑒𝑎 − (1 − 𝑥 ) ≤ 𝛾 𝑗 ∈ 𝑁, 𝑠 ∈ 𝑆 (17)
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0𝑠 0𝑗𝑠 0𝑗𝑠 0𝑗
𝑗 +𝐷𝑠𝑗𝑒
𝑏
0𝑗𝑠 − (1 − 𝑥0𝑗𝑠) ≤ 𝛾 𝑗 ∈ 𝑁, 𝑠 ∈ 𝑆0𝑗 (18)

𝑟𝑖 ≥ 𝑟𝑗 +𝐷𝑖𝑗𝑒𝑖𝑗 − (1 − 𝑥𝑖𝑗𝑛) (𝑖, 𝑗) ∈ 𝐴′ (19a)

𝑟𝑖 ≤ 𝑟𝑗 +𝐷𝑖𝑗𝑒𝑖𝑗 + (1 − 𝑥𝑖𝑗𝑛) (𝑖, 𝑗) ∈ 𝐴′ (19b)

𝑟𝑖 ≥ 𝜎+𝐷𝑖𝑠𝑒
𝑎
𝑖𝑗𝑠 − (1 − 𝑥𝑖𝑗𝑠) (𝑖, 𝑗) ∈ 𝐴′, 𝑠 ∈ 𝑆𝑖𝑗 (20)

𝑟𝑗 ≥ 𝛾 −𝐷𝑠𝑗𝑒
𝑏
𝑖𝑗𝑠 − (1 − 𝑥𝑖𝑗𝑠) (𝑖, 𝑗) ∈ 𝐴′, 𝑠 ∈ 𝑆𝑖𝑗 (21a)

𝑟𝑗 ≤ 𝛾 −𝐷𝑠𝑗𝑒
𝑏
𝑖𝑗𝑠 + (1 − 𝑥𝑖𝑗𝑠) (𝑖, 𝑗) ∈ 𝐴′, 𝑠 ∈ 𝑆𝑖𝑗 (21b)

𝑟𝑖 ≥ 𝜎 +𝐷𝑖0𝑒𝑖0 − (1 − 𝑥𝑖0𝑛) 𝑖 ∈ 𝑁 (22a)

𝑟𝑖 ≤ 𝜎 +𝐷𝑖0𝑒𝑖0 + (1 − 𝑥𝑖0𝑛) 𝑖 ∈ 𝑁 (22b)

𝑟𝑖 ≥ 𝜎+𝐷𝑖𝑠𝑒
𝑎
𝑖0𝑠 − (1 − 𝑥𝑖0𝑠) 𝑖 ∈ 𝑁, 𝑠 ∈ 𝑆𝑖0 (23)

𝜎 ≤ 𝛾 −𝐷𝑠0𝑒
𝑏
𝑖0𝑠 + (1 − 𝑥𝑖0𝑠) 𝑖 ∈ 𝑁, 𝑠 ∈ 𝑆𝑖0 (24)

𝑉 𝑚𝑖𝑛
𝑖𝑗 𝑥𝑖𝑗𝑛 ≤ 𝑣𝑖𝑗 ≤ 𝑉 𝑚𝑎𝑥

𝑖𝑗 𝑥𝑖𝑗𝑛 (𝑖, 𝑗) ∈ 𝐴 (25)

𝑉 𝑚𝑖𝑛
𝑖𝑠 𝑥𝑖𝑗𝑠 ≤ 𝑣𝑎𝑖𝑗𝑠 ≤ 𝑉 𝑚𝑎𝑥

𝑖𝑠 𝑥𝑖𝑗𝑠 (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 (26)

𝑉 𝑚𝑖𝑛
𝑠𝑗 𝑥𝑖𝑗𝑠 ≤ 𝑣𝑏𝑖𝑗𝑠 ≤ 𝑉 𝑚𝑎𝑥

𝑠𝑗 𝑥𝑖𝑗𝑠 (𝑠, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗 (27)

∑

(𝑗,𝑖)∈𝐴
𝑓𝑗𝑖 −

∑

(𝑖,𝑗)∈𝐴
𝑓𝑖𝑗 = 𝑄𝑖 𝑖 ∈ 𝑁 (28)

𝑓𝑖𝑗 ≤ 𝛤
∑

𝑠∈𝑆′
𝑖𝑗

𝑥𝑖𝑗𝑠 (𝑖, 𝑗) ∈ 𝐴 (29)

𝑎𝑗 ∈ [𝐸𝑗 , 𝐿𝑗 ], 𝑤𝑗 ≥ 0, 𝑟𝑗 ∈ [𝜎, 𝛾], 𝑗 ∈ 𝑁

𝑥𝑖𝑗𝑠 ∈ {0, 1}, (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆′
𝑖𝑗

𝑣𝑖𝑗 ≥ 0, 𝑒𝑖𝑗 ∈ [0, 1], 𝑡𝑖𝑗 ≥ 0, (𝑖, 𝑗) ∈ 𝐴

𝑣𝑎𝑖𝑗𝑠 ≥ 0, 𝑣𝑏𝑖𝑗𝑠 ≥ 0, (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗

𝑒𝑎𝑖𝑗𝑠 ≥ 0, 𝑒𝑏𝑖𝑗𝑠 ≥ 0, (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗

𝑡𝑎𝑖𝑗𝑠 ≥ 0, 𝑡𝑏𝑖𝑗𝑠 ≥ 0, (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗

𝜏𝑖𝑗𝑠 ≥ 0, (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆𝑖𝑗

𝑓𝑖𝑗 ≥ 0, (𝑖, 𝑗) ∈ 𝐴

(30)

Objective (1) models the total cost minimization including the total
fixed costs of using EVs, the total cost of energy consumed along the
trips and the total drivers’ wage costs due to the total time spent
in the routes, respectively. Constraints (2) and (3) impose that in a
vehicle route a customer node is respectively followed and preceded
by a different customer node or depot, directly or with an intermediate
stop at an RS.

Constraints (4)–(6) determine the travel time of vehicles. In particu-
lar, (4) consider the time needed to directly travel between a customer
node or depot to a different customer node or depot, whereas (5)
and (6) determine the travel time for the two paths (upstream and
downstream, respectively) connecting two nodes with an intermediate
stop at an RS. All these constraints exploit the piecewise linearization
of the time-speed relationship by using a set of tangent lines to inner
approximate the nonlinear curve 𝑡𝑖𝑗 = 𝐷𝑖𝑗∕𝑣𝑖𝑗 . Note that we consider
the first tangent line, denoted by 𝑝 = 1, since this approximates the
longest travel time associated with the lowest speed.

The two constraints (7) and (8) allow the computation of the time
spent by a vehicle at an RS to recharge the battery after visiting a

customer or after leaving the depot, respectively. Note that we assume
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full recharges up to the allowed maximum percentage of battery 𝛾, and
that the recharging time depends on the residual percentage of battery
of the vehicle on its arrival at the RS.

The constraints (9) and (10) give the arrival time at first customer
node after a direct trip from depot and when the EV stops at an
intermediate RS after leaving the depot, respectively.

The two pairs of constraints (11a)–(11b) and (12a)–(12b) determine
the arrival time at customer nodes when the vehicle directly travels
between two customer nodes and when it stops at an intermediate RS,
respectively.

Constraints (13) provides the percentage of energy consumption for
unit of distance when the vehicle travels directly between two nodes
(customers or depot), whereas (14) and (15) give the consumption rates
for the two stretches in case of an intermediate stop at an RS.

The next set of constraints are introduced to compute the remaining
energy level on the arrival at a customer node 𝑗 or depot in the
following different cases. In constraints (16), 𝑗 is directly reached from
the depot. When 𝑗 is reached from the depot with an intermediate stop
at RS 𝑠, (17) ensure that 𝑠 is reachable from the depot and (18) provide
the residual energy level at 𝑗. Constraints (19a) and (19b) model the
residual energy level for the direct travel between two customer nodes.
Constraints from (20) to (21b) are related to travels between two
customer nodes with an intermediate stop at RS: (20) ensure that the RS
is reachable from the starting node, whereas (21a) and (21b) provide
the energy rate on the arrival at the ending node. Finally, (22a) and
(22b) consider the direct return to the depot from a customer node,
and (23) and (24) the return to the depot with an intermediate stop at
a RS.

Constraints from (25) to (27) set the lower and upper bound for
the speed of vehicles; in particular, (25) specify the speed bounds for
the vehicle directly traveling on an arc (𝑖, 𝑗) ∈ 𝐴, whereas (26) and
(27) consider the speed bounds on the two stretches connecting two
nodes with an intermediate stop at an RS. It is worth remarking that
the vehicle speed on each arc represents an average value on the roads
belonging to the shortest path linking two nodes. In addition, in the
proposed MILP model, such paths (𝑖, 𝑗, 𝑠), for each station 𝑠, are further
distinguished into upstream and downstream stretches (𝑖, 𝑠) and (𝑠, 𝑗),
respectively.

Constraints (28) are the flow conservation that guarantee the sat-
isfaction of the customer demand. Constraints (29) connect flow vari-
ables with routing variables, imposing that the vehicle capacity is not
exceeded. Finally, constraints (30) specify the nature of the variables.

It is worth noting that the pairwise constraints (11a)–(11b), (12a)–
(12b), (19a)–(19b), (21a)–(21b) and (22a)–(22b) impose satisfying the
related conditions for equality.

4.1. Computation of non-dominated RS sets 𝑆𝑖𝑗

The proposed MILP model is based on the computation of the set
𝑆𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 of all the feasible RSs that may be advantageous to visit,
going from 𝑖 to 𝑗. In Algorithm 1, the steps for computing this set are
described, where we denote by 𝑒𝑚𝑖𝑛𝑖𝑗 the minimum energy consumption
for unit of distance to go from 𝑖 to 𝑗, given by 𝑒𝑚𝑖𝑛𝑖𝑗 = 𝑘̃1𝑉 𝑚𝑖𝑛

𝑖𝑗 + 𝑏̃1 +𝛷𝑄𝑗
(we consider the first secant line since this approximates ECR from the
lowest speed).

More specifically, the stations that cannot be reached from node 𝑖 or
from which it is not possible to reach node 𝑗 even with the allowed full
recharge are removed from 𝑆𝑖𝑗 , at step 5. Then, for each pair of stations
𝑠′ and 𝑠′′ in 𝑆𝑖𝑗 we check if 𝑠′ dominates 𝑠′′ since the former requires
a lower energy consumption than that of the latter, both upstream and
downstream of the station (step 9). If this is the case the station 𝑠′′ is
removed from 𝑆𝑖𝑗 (step 10).

If the minimum speed is the same on all the arcs, step 9 can be
simplified since in this case 𝑒𝑚𝑖𝑛𝑖𝑗 does not depend on arc (𝑖, 𝑗) and
therefore the energy consumptions upstream and downstream of the
7

stations can be compared just comparing the distances of the stations b
from nodes 𝑖 and 𝑗, respectively. Thus, the conditional test of step 9
just becomes

𝐷𝑖𝑠′′ ≥ 𝐷𝑖𝑠′ ∧𝐷𝑠′′𝑗 ≥ 𝐷𝑠′𝑗

Algorithm 1 Computation of sets 𝑆𝑖𝑗 with non uniform minimum
speeds
1: for (𝑖, 𝑗) ∈ 𝐴 do
2: 𝑆𝑖𝑗 ∶= 𝑆;
3: for 𝑠 ∈ 𝑆 do
4: if 𝐷𝑖𝑠𝑒𝑚𝑖𝑛𝑖𝑠 > 𝛾 − 𝜎 ∨𝐷𝑠𝑗𝑒𝑚𝑖𝑛𝑠𝑗 > 𝛾 − 𝜎 then
5: 𝑆𝑖𝑗 ∶= 𝑆𝑖𝑗 ⧵ {𝑠};
6: end if
7: end for
8: for 𝑠′, 𝑠′′ ∈ 𝑆𝑖𝑗 ∶ 𝑠′ ≠ 𝑠′′ do
9: if ((𝑘̃1𝑉 𝑚𝑖𝑛

𝑖𝑠′′ + 𝑏̃1+𝛷𝑄𝑗 )𝐷𝑖𝑠′′ ≥ (𝑘̃1𝑉 𝑚𝑖𝑛
𝑖𝑠′ + 𝑏̃1+𝛷𝑄𝑗 )𝐷𝑖𝑠′ ∧(𝑘̃1𝑉 𝑚𝑖𝑛

𝑠′′𝑗 +
𝑏̃1 +𝛷𝑄𝑗 )𝐷𝑠′′𝑗 ≥ (𝑘̃1𝑉 𝑚𝑖𝑛

𝑠′𝑗 + 𝑏̃1 +𝛷𝑄𝑗 )𝐷𝑠′𝑗 then
10: 𝑆𝑖𝑗 ∶= 𝑆𝑖𝑗 ⧵ {𝑠′′};
11: end if
12: end for
13: end for

4.2. Pre-processing phase

Some preliminary considerations can be carried out for a pre-
processing phase with the aim of a-priori removing useless arcs from
the graph 𝐺 and by consequence from the multigraph 𝐺𝑀 . In particular,
the arcs (𝑖, 𝑗) that violate one of the following conditions can be
removed:

𝑄𝑖 +𝑄𝑗 > 𝛤 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (31)

𝑖 + 𝐺𝑖 +
𝐷𝑖𝑗

𝑉 𝑚𝑎𝑥
𝑖𝑗

> 𝐿𝑗 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (32)

𝐷0𝑖
𝑉 𝑚𝑎𝑥
0𝑖

+
𝐷𝑖𝑗

𝑉 𝑚𝑎𝑥
𝑖𝑗

+
𝐷𝑗0

𝑉 𝑚𝑎𝑥
𝑗0

> 𝐿0 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (33)

Indeed, conditions (31) assures that (𝑖, 𝑗) is removed if and only if the
sum of the demands of the two customers exceeds the vehicle cargo
capacity. Conditions (32) allow to remove (𝑖, 𝑗) if customer 𝑗 cannot be
reached from customer 𝑖 before 𝐿𝑗 , since the time window of customer
𝑗 would be violated. Conditions (33) assures that (𝑖, 𝑗) is removed if it
is not possible to return to the depot within 𝐿0.

5. The Random Kernel Search matheuristic

In this section we introduce a new matheuristic, called Random
Kernel Search (RKS), developed to face the considered EVRPTW-ECR.
This matheuristic is inspired by the Kernel Search Algorithm (KSA), a
general purpose MILP heuristic originally proposed in Angelelli et al.
(2010).

The rationale of KSA is based on the observation that, in general,
only a subset of integer and/or binary variables takes a positive value
in the optimal solution to MILP models. Therefore, the key idea of
KSA is trying to reduce the size of the model by restricting it to a
subset of integer/binary variables that are more likely to be not zero
in the optimal solution. This restricted set of ‘‘promising’’ variables,
denoted by 𝐾, is called Kernel Set (KS). Then, fixing to zero all the
binary/integer variables but the ones in the KS generates a restricted
ILP model, indicated as 𝑀𝐼𝐿𝑃 (𝐾), of smaller size and hence easier

o solve. KSA aims at identifying the KS by iteratively solving a series
f restricted MILP models.

In the following, let us refer to mixed binary programming models
s the one proposed for the EVRPTW-ECR. Let  represent the set of

inary variables generically denoted as 𝑥𝑗 , 𝑗 ∈ . In the basic KSA,
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an initial KS is determined from the solution of the linear relaxation
of the model as 𝐾 = {𝑗 ∶ 𝑥̂𝑗 > 0, 𝑗 ∈ }, where 𝑥̂𝑗 denotes the
alue assumed by the binary variable 𝑥𝑗 in the optimal solution of the
inear relaxation. Then, an initial solution is found solving the restricted
𝐼𝐿𝑃 (𝐾), so determining the initial upper bound 𝑧𝐻 (fixing 𝑧𝐻 = ∞ in

he case of unfeasibility). The binary variables not in 𝐾 are first sorted
n non-decreasing order of their reduced cost and then partitioned into
ubsets 𝐵𝑖, 𝑖 = 1,… , 𝑁𝐵, called buckets, of a fixed cardinality 𝜆𝑏, usually

chosen 𝜆𝑏 = |𝐾|. KSA then iterates the solution of restricted models
𝑀𝐼𝐿𝑃 (𝐾 ∪ 𝐵𝑖), 𝑖 = 1,… , 𝑁𝐵, imposing as additional constraints the
upper bound 𝑧𝐻 as cutoff value for the objective, and the condition
that at least one binary variable in 𝐵𝑖 takes value one in the optimal
solution. If 𝑀𝐼𝐿𝑃 (𝐾 ∪ 𝐵𝑖) has a feasible solution, then 𝑧𝐻 is updated
and 𝐾 is adjusted adding the binary variables in 𝐵𝑖 with value one in
the optimal solution.

KSA has been successfully exploited to face different combinatorial
problems (e.g., Filippi et al., 2016, Labbé et al., 2019, Santos-Peñate
et al., 2020 and Filippi et al., 2021), and also several variants of it
have been proposed in the literature. Among the most recent ones,
in Guastaroba et al. (2017) an adaptive KSA is introduced where the
instances are classified as easy, normal or hard, then adjusting the size
of the KS accordingly and in case of hard instances also performing
some variable fixing. An iterative version of KSA is adopted in Gobbi
et al. (2019) for a multi-service nurse routing problem, where two
complete iterations on the set of buckets are performed, and in Hanafi
et al. (2020) for facing a multi-visit team orienteering problem with
precedence constraints. In particular, in Hanafi et al. (2020), the al-
gorithm can perform multiple iterations over the set of buckets until
a time limit is reached. The algorithm exploits different strategies for
sorting the variables to be included in the buckets, taking into account
some measures related to the considered problem. In addition, the KSA
in Hanafi et al. (2020) also adopts random weights affecting the sorting
and it allows the buckets to partially overlap.

One of the main issue with KSA is that in many problems the
information coming from the solution of the linear relaxation is not
sufficient to properly identify both the initial KS and to sort the
other binary variables into the buckets. However, a few papers in the
literature propose alternative initialization strategies. A KSA for multi-
plant capacitated lot-sizing problem with setup carry-over is presented
in Carvalho and Nascimento (2018), where the initial KS and the set
of bucket are generated selecting a subset of binary variables from a
pool of elite solutions produced by a Lagrangian heuristic. Recently, a
multivehicle inventory routing problem has been considered in Archetti
et al. (2021), where a clear analysis shows how for this problem the
solution of the linear relaxation does not provide useful information
to identify the promising variables and, hence, to generate the initial
kernel and the set of buckets. We can observe that such an analysis
can be extended to the class of vehicle routing problems in a quite
evident way. Therefore, in Archetti et al. (2021), a tabu search is used
to generate solutions from which to learn which binary variables are
more suitable to be included in the initial kernel and in the buckets.

In this paper, we design RKS, which is described in Algorithm 2,
as a new version of KSA, trying to overcome the initialization issue
described above for the EVRPTW-ECR. In addition, RKS incorporates
concepts as dynamic adaptation of the size of the KS and buckets, as
well as randomization and overlap for the bucket generation.

The input of RKS consists of the original cloneless model (provided
in Section 4), 𝑀 , an initial maximum time limit for the solution of the
restricted MILP models, 𝑇 𝑠𝑡𝑒𝑝, the maximum time allowed for finding
an initial solution, 𝑇 𝑖𝑛𝑖, the total maximum allowed time, 𝑇 𝑚𝑎𝑥, the
maximum number of iterations for each fixed KS, 𝐼𝑚𝑎𝑥𝐾 , the minimum
number of iterations during which a binary variable is kept in the
KS, 𝐼𝑚𝑖𝑛𝐾𝑆 , and the maximum number of iterations without improvement
of the current best solution, 𝐼𝑚𝑎𝑥𝑁 . At the beginning of Algorithm 2
(step 2), an initialization matheuristic, called Random k-Degree Search
8

(RkDS) and described in sub- Section 5.1, is used to construct a first 𝑠
feasible solution 𝑥0 within the time limit 𝑇 𝑖𝑛𝑖. If no solution is found,
the algorithm terminates with failure (steps 3–5), otherwise, the initial
upper bound 𝑍𝐻 is set equal to the objective value 𝑍(𝑥0) (step 6). Then,
the initial KS 𝐾 is initialized as the subset of  such that 𝑥0𝑗 = 1 (step
7).

A quantity 𝑝𝑗 is associated with each variable 𝑥𝑗 ∈  whose value
is used to smoothly update 𝐾. In particular, 𝑝𝑗 is initialized equal to
zero for the variables 𝑥𝑗 in the initial 𝐾 and to ∞ for all the others
in  ⧵ 𝐾 (step 8). The value 𝑝𝑗 is relevant only for the variables in
𝐾, since it allows keeping a variable in 𝐾 at least for a minimum
number of iterations 𝐼𝑚𝑖𝑛𝐾𝑆 . Then, a parameter 𝛽, called bucket size factor,
is initialized equal to 2 (step 9). Such a factor is used to determine at
each iteration the size of the bucket as 𝛽 ⋅ |𝐾|, and it is dynamically
adjusted according to how much hard it is solving the restricted MILP.
The maximum time 𝑇 𝑠𝑜𝑙 allowed to the MILP solver for solving 𝑀 at
each iteration is initialized equal to 𝑇 𝑠𝑡𝑒𝑝 (step 10), and the counters of
the total not improving iterations and local not improving iterations,
𝐼𝑁 and 𝐼𝐿𝑁 , respectively, are initialized to zero (step 11).

The main algorithm loop (steps 12–38) iterates until the total time
does not exceed 𝑇 𝑚𝑎𝑥 or until the total number of not improving
iterations does not exceed 𝐼𝑚𝑎𝑥𝑁 . Then, keeping fixed the current KS 𝐾,
an internal loop (steps 13–29) is performed for 𝐼𝑚𝑎𝑥𝐾 iterations. In each
iteration, a new bucket 𝐵 is generated as a subset of 𝛽 ⋅ |𝐾| variables
randomly extracted from  ⧵ 𝐾 (step 14). Then, the reduced MILP
𝑀(𝐾∪𝐵), that is 𝑀 where all the variables in  but the ones in 𝐾∪𝐵 are
fixed to zero, is solved within 𝑇 𝑠𝑜𝑙 (step 15), having added the bucket
constraint, that imposes that at least one variable in 𝐵 must be equal
to 1, and the objective cutoff with the upper bound 𝑍𝐻 . Next, the total
computation time 𝑇 is updated adding the time 𝜏 spent to solve the
restricted MILP (step 16).

If a feasible or optimal solution 𝑥𝑐 is found and the obtained
objective value 𝑍(𝑥𝑐 ) improves the current best solution 𝑍𝐻 (step 17),
then the current best solution 𝑥𝐻 is updated and the two not improving
iterations counters 𝐼𝑁 and 𝐼𝐿𝑁 are reset to zero (step 18), otherwise
both the counters are increased by 1 (step 20). Next, the adjustment of
the size bucket factor 𝛽 is performed (steps 22–28). In particular, if the
MILP solver has terminated with a feasible or not feasible solution not
exceeding 𝑇 𝑠𝑜𝑙, then 𝛽 is increased by 1∕4, otherwise 𝛽 is reduced by
1∕4, provided that 𝛽 never becomes less than 1.

After the completion of the inner loop, a KS update phase is per-
formed. Firstly, the value of 𝑝𝑗 is increased by 1 for all the variables in
the current KS (step 30). Then, the binary variables in 𝐾 with 𝑝𝑗 ≥ 𝐼𝑚𝑖𝑛𝐾𝑆
are removed from 𝐾 (step 31). Note that these are the variables in 𝐾 for
at least 𝐼𝑚𝑖𝑛𝐾𝑆 +1 consecutive KS update phases without assuming value 1
in any of the solutions used to update 𝐾. Afterwards, 𝑝𝑗 is set equal to
zero for all the variables in  such that 𝑥𝐻𝑗 = 1 (step 32). Finally, 𝐾 is
updated including the subset of binary variables in  such that 𝑥𝐻𝑗 = 1
(step 33).

The KS update phase is followed by a possible adjustment of 𝑇 𝑠𝑜𝑙,
which is increased in order to allow a longer maximum computation
time for solving the restricted MILP models whenever the local counter
of the number of iterations without improvement exceeds 𝐼𝑚𝑎𝑥𝐾 (steps
33–37), trying in this way to diversify the solution search. In particular,
if 𝐼𝐿𝑁 > 𝐼𝐾𝑚𝑎𝑥, then 𝑇 𝑠𝑜𝑙 is doubled, otherwise it is reset equal to 𝑇 𝑠𝑡𝑒𝑝.

The final iteration performed by the routine ReOptimizeStations(𝑥𝐻 )
step 40) aims at improving the best solution found after the end of
he main loop. In fact, we observed that such a solution may include
ome stops at stations that are not actually needed, thus leading to
n increase in the total cost. Therefore, ReOptimizeStations consists in
unning the cloneless model by maintaining fixed, for each vehicle, only
he sequence of customers as in solution 𝑥𝐻 . In particular, denoting
ith 𝑥𝐻𝑖𝑗𝑠, (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆′

𝑖𝑗 , the values of the routing variables deter-
ined at the end of the (12)-(39) main loop, we add to the cloneless
odel the following constraints

∑

′
𝑥𝑖𝑗𝑠 = 1 ∀(𝑖, 𝑗) ∈ 𝐴 |∃𝑠 ∈ 𝑆′

𝑖𝑗 , 𝑥
𝐻
𝑖𝑗𝑠 = 1 (34)
∈𝑆𝑖𝑗
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Algorithm 2 Random Kernel Search (RKS)
Input A MILP model 𝑀 , 𝑇 𝑠𝑡𝑒𝑝, 𝑇 𝑖𝑛𝑖, 𝑇 𝑚𝑎𝑥, 𝐼𝑚𝑎𝑥

𝐾 , 𝐼𝑚𝑖𝑛
𝐾𝑆 , 𝐼𝑚𝑎𝑥

𝑁
Output A feasible solution to the MILP model or failure.

1: 𝑥0 = RkDS(𝑀,𝑇 𝑖𝑛𝑖)
2: if 𝑥0 not𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 then
3: return failure
4: end if
5: Set the current upper bound 𝑍𝐻 = 𝑍(𝑥0);
6: Set the initial KS as 𝐾 = {𝑗 ∶ 𝑗 ∈ , 𝑥0𝑗 > 0}
7: 𝑝𝑗 = ∞ ∀𝑗 ∈  ⧵𝐾 and 𝑝𝑗 = 0 ∀𝑗 ∈ 𝐾
8: 𝛽 = 2
9: 𝑇 𝑠𝑜𝑙 = 𝑇 𝑠𝑡𝑒𝑝

10: 𝑇 = 𝑇 𝑖𝑛𝑖

11: 𝐼𝑁 = 𝐼𝐿𝑁 = 0
12: while 𝑇 ≤ 𝑇 𝑚𝑎𝑥 ∧ 𝐼𝑁 < 𝐼𝑚𝑎𝑥

𝑁 do
13: for 𝐼𝐾 = 1 to 𝐼𝑚𝑎𝑥

𝐾 do
14: 𝐵 = RandomSelect ( ⧵𝐾, 𝛽 ⋅ |𝐾|)
15: 𝑥𝑐= Solve(𝑀(𝐾 ∪𝐵), 𝑇 𝑠𝑜𝑙) adding constraints ∑

𝑗∈𝐵 𝑥𝑗 ≥ 1, 𝑍(𝑥) ≤ 𝑍𝐻

16: Update 𝑇 = 𝑇 + 𝜏, where 𝜏 = solution time
17: if (𝑥𝑐 is Feasible ∨ Optimal) ∧ 𝑍(𝑥𝑐 ) < 𝑍𝐻 then
18: 𝑍𝐻 = 𝑍(𝑥𝑐 ); 𝑥𝐻 = 𝑥𝑐 ; 𝐼𝑁 = 𝐼𝐿𝑁 = 0
19: else
20: 𝐼𝑁 = 𝐼𝑁 + 1; 𝐼𝐿𝑁 = 𝐼𝐿𝑁 + 1
21: end if
22: if 𝜏 < 𝑇 𝑠𝑜𝑙 then
23: 𝛽 = 𝛽 + 0.25
24: else if 𝛽 > 1 then
25: 𝛽 = 𝛽 − 0.25
26: else
27: 𝛽 = 1
28: end if
29: end for
30: 𝑝𝑗 = 𝑝𝑗 + 1 ∀𝑗 ∈ 𝐾
31: 𝐾 = 𝐾 ⧵ {𝑗 ∶ 𝑗 ∈ 𝐾, 𝑝𝑗 ≥ 𝐼𝑚𝑖𝑛

𝐾𝑆 }
32: Set 𝑝𝑗 = 0 ∀𝑗 ∈  ∶ 𝑥𝐻𝑗 = 1
33: 𝐾 = 𝐾 ∪ {𝑗 ∶ 𝑗 ∈ , 𝑥𝐻𝑗 = 1}
34: if 𝐼𝐿𝑁 > 𝐼𝑚𝑎𝑥

𝐾 then
35: 𝑇 𝑠𝑜𝑙 = 2 ⋅ 𝑇 𝑠𝑜𝑙, 𝐼𝐿𝑁 = 0
36: else
37: 𝑇 𝑠𝑜𝑙 = 𝑇 𝑠𝑡𝑒𝑝

38: end if
39: end while
40: 𝑥𝐻=ReOptimizeStation(𝑥𝐻 )
41: return 𝑥𝐻

In practice, constraints (34) allow to solve the Fixed-Route Electric
Vehicle Charging Problem (Montoya et al., 2017) associated with the
solution 𝑥𝐻 . Then, the solution found by this final re-optimization is
returned at termination (step 41).

5.1. The Random k-Degree search initialization matheuristic

The RkDS matheuristic, designed to generate an initial feasible
solution for the RKS, operates similarly to the Greedy Random Adaptive
Search Procedure (GRASP) (Feo and Resende, 1995). In particular, it
iterates the solution of restricted MILP problems in which only the
routing variables associated with a subset of arcs selected from the stars
f the nodes are not fixed to zero. RkDS first builds for each customer
ode 𝑖 ∈ 𝑁 the restricted forward and backward stars, respectively
efined as 𝛿+𝑖𝑘 ⊆ 𝛿+𝑖 and 𝛿−𝑖𝑘 ⊆ 𝛿𝑖−, of cardinality up to 𝑘 according

to a greedy criterion. Afterwards, the algorithm iterates, randomly
selecting 𝑘′ arcs, half from 𝛿+𝑖𝑘 and half from 𝛿−𝑖𝑘. Then, it defines and
solves a restricted MILP cloneless model based on the routing variables
associated with the selected arcs, including also other routing variables
as explained in the following. The quantities 𝑘 and 𝑘′ are both fixed
input parameters; in particular, 𝑘′ is even and 𝑘′∕2 is never greater
than 𝑘.
9

i

RkDS, outlined in Algorithm 3, receives in input the maximum
allowed computation time, 𝑇 𝑚𝑎𝑥, the maximum time limit for the
solution of the restricted MILP models, 𝑇 𝑖𝑛𝑖, and the two parameters
𝑘 and 𝑘′. At the beginning (step 1), the algorithm initializes to zero the
total elapsed time 𝑇 𝑒 and the objective value of the best so far solution
𝑍𝐻 to infinity. It is worth noting that, in Algorithm 3, we assume that
𝑇 𝑒 is implicitly updated according to the time spent by the various
steps. Finally, the set 𝑋𝐵 of the routing variables which take value 1
in the best so far solution is initialized as empty set, and all the arcs
belonging to the forward and backward star of the depot are included
in the initial set of the selected arcs 𝐴𝑅

0 .
In step 3, for each customer node 𝑖 ∈ 𝑁 , 𝛿+𝑖𝑘 and 𝛿−𝑖𝑘 are generated

by the routine GenerateRestrictedStars, which first sorts the stars 𝛿+𝑖 and
𝛿−𝑖 according to a greedy criterion and then selects the first 𝑘 arcs from
them. In particular, since the distance is used in this work as greedy
criterion, 𝛿+𝑖 and 𝛿−𝑖 are sorted in non-decreasing order respectively of
𝐷𝑖𝑗 , (𝑖, 𝑗) ∈ 𝛿+𝑖 and 𝐷𝑗𝑖, (𝑗, 𝑖) ∈ 𝛿−𝑖 , and the resulting restricted stars
̂+
𝑖𝑘 and 𝛿−𝑖𝑘 include the first shortest 𝑘 outgoing and incoming arcs.

The routine ComputeArcSelectionProb (step 4) associates with each arc
in the restricted stars a selection probability which is proportional to
the length of the arc. In particular, considering the forward stars, this
routine determines for each node 𝑖 ∈ 𝑁 the longest arc in 𝛿+𝑖 as

(𝑖, 𝑗𝑚𝑎𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
(𝑖,𝑗)∈𝛿+𝑖

𝐷𝑖𝑗 ∀𝑖 ∈ 𝑁 (35)

hen obtains the selection probabilities of the arcs (𝑖, 𝑗) ∈ 𝛿+𝑖 as

𝑖𝑗 = 𝑃𝑖𝑗𝑚𝑎𝑥 ⋅
𝐷𝑖𝑗𝑚𝑎𝑥

𝐷𝑖𝑗
∀𝑖 ∈ 𝑁, (𝑖, 𝑗) ∈ 𝛿+𝑖 ⧵ {(𝑖, 𝑗𝑚𝑎𝑥)} (36)

where

𝑃𝑖𝑗𝑚𝑎𝑥 =
⎛

⎜

⎜

⎝

∑

𝑗≠𝑗𝑚𝑎𝑥∶(𝑖,𝑗)∈𝛿+𝑖

𝐷𝑖𝑗𝑚𝑎𝑥

𝐷𝑖𝑗
+ 1

⎞

⎟

⎟

⎠

−1

∀𝑖 ∈ 𝑁 (37)

Similarly, the selection probabilities of the arcs in the backward
tars are then computed for each customer node. It is worth noting that,
f the cardinality of a restricted star is not greater that 𝑘′∕2, then all its
rcs are included in 𝐴𝑅

0 . This also empties the restricted star that will
ot be considered in the next random selections (steps 5–10).

The main algorithm loop (steps 12–22) is iterated until a feasible so-
ution is found or the maximum allowed computation time is exceeded
step 12). First, the set of random greedy selected arcs 𝐴𝑅 is initialized
qual to 𝐴𝑅

0 (step 13). Afterwards, the random selection of 𝑘′∕2 arcs
rom the restricted stars into the set 𝐴𝑅 takes place for each customer
ode by the routine RandomSelect in steps 14–17. Then, the restricted
odel 𝑀(𝑋(𝐴𝑅) ∪ 𝑋𝐵) is solved within the 𝑇 𝑖𝑛𝑖 time limit (step 18),
here the set 𝑋(𝐴𝑅) includes all the routing variables associated with

he arcs in 𝐴𝑅, that is, 𝑋(𝐴𝑅) = {𝑥𝑖𝑗𝑠 ∶ (𝑖, 𝑗) ∈ 𝐴𝑅, 𝑠 ∈ 𝑆′
𝑖𝑗}. If a

easible solution is found and the returned feasible solution 𝑥𝑐 improves
he best so far solution 𝑥𝐻 , then 𝑥𝐻 is updated and the set 𝑋𝐵 is
edefined as the set of the routing variables 𝑥𝑖𝑗𝑠 equal to 1 in 𝑥𝐻 (step
0). Hence, at each iteration, the restricted model 𝑀 corresponds to
he MILP cloneless model where only the following subsets of routing
ariables are not fixed to zero: the routing variables associated with the
andomly selected arcs from the greedy restricted stars of the customer
odes, the routing variables in 𝑋𝐵 , which represent the memory of the
est so far solution and, finally, all the routing variables associated with
he arcs of the stars 𝛿+0 and 𝛿−0 of the depot.

At the end of the (12–22) loop, the algorithm returns 𝑥𝐻 if a feasible
olution is found, otherwise it returns failure.

. Experimental results

The RKS matheuristic described in Section 5 has been implemented
n Java (in the Eclipse environment) and the cloneless MILP model

ntroduced in Section 4 has been solved by ILOG’s CPLEX Concert
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Algorithm 3 Random k-Degree Search (RkDS)
Input 𝑇 𝑚𝑎𝑥, 𝑇 𝑖𝑛𝑖, 𝑘, 𝑘′
Output A feasible solution 𝑥𝐻 with objective function 𝑧𝐻 to the MILP

model or failure.
1: 𝑇 𝑒 = 0, 𝑍𝐻 = ∞, 𝑋𝐵 = ∅, 𝐴𝑅

0 = 𝛿+0 ∪ 𝛿−0
2: for 𝑖 ∈ 𝑁 do
3: [𝛿−𝑖𝑘, 𝛿

+
𝑖𝑘] =GenerateRestrictedStars(𝛿

−
𝑖 , 𝛿

+
𝑖 , 𝑘)

4: [𝑃 −
𝑖 , 𝑃

+
𝑖 ] = ComputeArcSelectionProb(𝛿−𝑖𝑘, 𝛿

+
𝑖𝑘)

5: if |𝛿−𝑖𝑘| ≤ 𝑘′∕2 then
6: 𝐴𝑅

0 = 𝐴𝑅
0 ∪ 𝛿−𝑖𝑘, 𝛿

−
𝑖𝑘 = ∅

7: end if
8: if |𝛿+𝑖𝑘| ≤ 𝑘′∕2 then
9: 𝐴𝑅

0 = 𝐴𝑅
0 ∪ 𝛿+𝑖𝑘, 𝛿

+
𝑖𝑘 = ∅

10: end if
11: end for
12: while 𝑍𝐻 = ∞ and 𝑇 𝑒 ≤ 𝑇 𝑚𝑎𝑥 do
13: 𝐴𝑅 = 𝐴𝑅

0
14: for 𝑖 ∈ 𝑁 do
5: 𝐴𝑅 = 𝐴𝑅 ∪ RandomSelect (𝑘′∕2, 𝛿−𝑖𝑘, 𝑃

−
𝑖 )

6: 𝐴𝑅 = 𝐴𝑅 ∪ RandomSelect (𝑘′∕2, 𝛿+𝑖𝑘, 𝑃
+
𝑖 )

7: end for
8: 𝑥𝑐= Solve(𝑀(𝑋(𝐴𝑅) ∪𝑋𝐵), 𝑇 𝑖𝑛𝑖)
9: if 𝑥𝑐 is Feasible and 𝑍(𝑥𝑐 ) < 𝑍𝐻 then
0: 𝑍𝐻 = 𝑍(𝑥𝑐 ), 𝑥𝐻 = 𝑥𝑐 , 𝑋𝐵 = {𝑥𝑖𝑗𝑠 ∶ 𝑥𝑐𝑖𝑗𝑠 = 1, (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆′

𝑖𝑗}
21: end if
22: end while
23: if 𝑍𝐻 < ∞ then
24: return 𝑥𝐻

25: else
26: return Failure
27: end if

Technology (version 20.1). The experiments have been carried out on
a computer with a 64-bit operating system, 2.39 GHz processor and
32 GB of RAM using up to 4 threads.

Both the approaches have been tested on two sets of instances with
medium and large size corresponding to 25 and 100 customers, respec-
tively. Both the sets of instances have 21 charging stations, including
also the depot. The large size instances are directly taken from the
EVRPTW benchmark set introduced in the seminal work of Schneider
et al. (2014), that in turn is based on the VRPTW benchmark set defined
by Solomon (1987). The medium size instance set has been derived
from the large size set randomly selecting 25 out of 100 customers.

The instances are divided into three classes, depending on the
geographical distribution of the customer locations: random customer
distribution (R), clustered customer distribution (C), and a mix of
both (RC). Groups R1, C1, and RC1 have a short scheduling horizon,
i.e., more vehicles are required to serve all customers than in R2, C2,
and RC2, which have a long scheduling horizon. The instances within a
group differ in terms of time window density and time window width.
The number of the large-sized instances considered is 30, 5 for each
group. The medium-sized instances are 12 and are obtained from the
first 12 instances of kind R1.

The parameters introduced in Section 4 are fixed as shown in
Table 1, considering an Electric Iveco Daily vehicle for the vehicle
parameters, whereas the other parameters have been fixed as in Xiao
et al. (2019).1

The parameters for the RKS matheuristic are set as shown in Table 2.
We remark that our RKS is always initialized through RkDS and that

the value of 𝑇 𝑖𝑛𝑖 has been chosen after some preliminary experiments
ince we observed that this time was large enough to find an initial
olution of acceptable quality for the considered benchmark. In a
imilar way, the value fixed for 𝑇 𝑠𝑡𝑒𝑝 allows a good tradeoff between

1 RMB indicates the Chinese currency renminbi.
10
Table 1
Vehicle parameters setting.

Parameter Value

𝐹 300 RMB
𝐵 145 kWh
𝛤 4900 kg
𝐶𝐸 = 4 4 RMB/KWh
𝐶𝑇 = 0.3 0.3 RMB/minute
𝑘̃𝑝 , 𝑏̃𝑝 ∀𝑝 ∈ 𝑃 as in Table 3 of Xiao et al. (2019) with 0.1% accuracy
𝑘̂1 (𝐻 = {1}) 8.80472 ⋅ 10−6

𝑏̂1 3.2908 ⋅ 10−3

𝜙 1.60517 ⋅ 10−6

𝑉 𝑚𝑖𝑛
𝑖𝑗 20 Km/h, ∀(𝑖, 𝑗) ∈ 𝐴 ∪ 𝐴𝑆

𝑉 𝑚𝑎𝑥
𝑖𝑗 100 Km/h, ∀(𝑖, 𝑗) ∈ 𝐴 ∪ 𝐴𝑆

𝜎 0.2
𝛾 0.8
𝜌 120 min

Table 2
RKS parameters setting.

Parameter Value

𝑇 𝑠𝑡𝑒𝑝 30 s
𝑇 𝑖𝑛𝑖 120 s
𝑇 𝑚𝑎𝑥 1800/3600 s
𝐼𝑚𝑎𝑥
𝐾 4
𝐼𝑚𝑖𝑛
𝐾𝑆 4
𝐼𝑚𝑎𝑥
𝑁 24
𝑘 min{24, |𝑁| − 1}
𝑘′ 8

the ability of RKS to explore both the solution space associated with the
restricted MILP, and a large number of different buckets. Moreover, the
analysis reported in Section 6.3 highlights that RKS is not significantly
affected by the values of these parameters, since the size of the random
buckets is dynamically adjusted so that the restricted MILPs can always
be solved within the allowed time limit. In similar way, also the
parameters 𝐼𝑚𝑎𝑥𝐾 , 𝐼𝑚𝑖𝑛𝐾𝑆 , 𝐼𝑚𝑎𝑥𝑁 have been fixed through preliminary tests
howing that these values ensure a good trade-off between computation
ime and solution quality.

We adopt a statistical method for determining how many times our
KS matheuristic has to be run on each instance to estimate the average
ercentage deviations with a margin of error of 0.1% and a confidence
f 90%. We obtain that the number of samples needed should be at least
5 runs. Therefore, on each instance, we have run the RKS matheuristic
5 times and in the tables presented in the next sections we always
eport its average performance over the 15 runs. In particular, we
ndicate by 𝐷𝑒𝑣% the quantity 100 ⋅ (𝑂𝑏𝑗𝑅𝐾𝑆 − 𝑂𝑏𝑗𝑀𝐼𝐿𝑃 )∕𝑂𝑏𝑗𝑀𝐼𝐿𝑃 ,

where 𝑂𝑏𝑗𝑅𝐾𝑆 is the average objective function value obtained by RKS
over the 15 runs and 𝑂𝑏𝑗𝑀𝐼𝐿𝑃 is the objective function value obtained
by CPLEX solving the cloneless formulation. Moreover, we indicate by
𝜂 the number of vehicles used, by 𝑇 𝑖𝑚𝑒𝐵𝑒𝑠𝑡 the CPU time required
to obtain the best solution returned. In particular, in the case of the
cloneless MILP model, it is the time at which CPLEX determines the
best solution. The quantity 𝜂̄ denotes the average number of the EVs
used over the 15 runs of RKS. Concerning the cloneless MILP model,
we indicate by 𝐺𝑎𝑝 the final MILP gap returned by CPLEX. Finally,
with regard to RKS, we also consider the results after 1800 s, which
correspond to the intermediate best solutions obtained by the solver
until the time of completion of the first iteration that terminates after
1800 s.

Before detailing the results obtained on the instances used, we want
to draw attention to the initialization phase aimed at determining
a good quality initial solution for RKS. In fact, alternatively to the
proposed RkDS, a simpler method consists in properly adapting the
Clark and Wright (CW) procedure (Toth and Vigo, 2002), hence starting
from a solution in which each vehicle is assigned to one and only
one customer. Table 3 shows a comparison, in terms of quality of

both initial and final solutions, obtained by applying the two different
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Table 3
Comparison between the RkDS and CW initialization methods.

Instance CW RkDS RkDS vs CW

Initial obj Final obj Impr Initial obj Final obj Impr Dev% Initial Dev% Final

c101–21 44564.283 12964.064 −70.9% 25810.599 9151.614 −61.5% −42.1% −29.4%
c201–21 44997.113 12409.425 −72.4% 30256.868 8851.790 −70.3% −32.1% −31.7%
r101–21 42581.973 10000.356 −76.5% 26599.623 9471.780 −64.4% −40.3% −26.9%
r201–21 42581.973 9865.911 −76.8% 37699.584 9724.960 −73.4% −15.4% −25.0%
rc101–21 46697.195 12593.333 −73.0% 23569.552 11773.499 −50.0% −47.1% −9.2%
rc201–21 46697.195 12543.189 −73.1% 44109.494 11921.191 −72.9% −1.0% −8.0%

Averages −73.8% −65.4% −29.7% −21.7%
Table 4
Result comparisons on medium-sized instances.

Instance Cloneless model RKS

Time limit = 7200 Time limit = 1800 Time limit = 3600

Obj 𝜂 TimeBest Gap(%) Dev% 𝜂̄ TimeBest Dev% 𝜂̄ TimeBest

r101-25 2972.97 5 47.80 0.00 0.00 5.0 412.0 0.00 5.0 412.0
r102-25 2890.52 5 6883.48 70.03 −7.56 4.3 1331.2 −9.88 4.1 1976.4
r103-25 2877.84 5 7163.35 81.63 −9.51 4.0 1419.2 −11.54 4.0 2485.2
r104-25 2990.92 5 7180.49 82.67 −6.65 4.1 1379.4 −12.01 3.9 3075.9
r105-25 2424.88 4 7161.36 10.61 0.24 4.0 1476.5 −0.40 4.0 2168.7
r106-25 3417.14 6 7177.09 83.90 −28.97 3.7 1550.3 −31.38 3.6 2595.3
r107-25 2913.99 5 7144.38 85.76 −11.42 3.8 1246.8 −13.96 3.7 2367.0
r108-25 2818.50 4 6820.03 86.04 −7.28 3.8 1146.6 −13.23 3.5 2320.7
r109-25 2463.61 4 7186.19 65.57 4.45 4.1 1644.2 −0.22 4.0 2822.5
r110-25 2606.53 4 7095.04 82.29 −2.16 4.0 1402.3 −4.54 3.9 2447.9
r111-25 2989.96 5 7124.32 81.49 −11.91 4.0 1208.2 −13.75 4.0 2123.8
r112-25 3070.25 5 7099.59 87.52 −6.11 4.3 1227.0 −9.80 4.1 2534.6
7
C

initialization strategies. Such a comparison is presented on a selection
of 2 instances for each group C, R and RC of large-size instances. The
second, third and fourth columns in Table 3 indicate respectively the
value of the objective function of the initial solution found by CW, that
of the final solution found by RKS starting from the solution of CW and
then, the percentage improvement passing from the initial to the final
solution, computed as 100⋅(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑜𝑏𝑗−𝐹 𝑖𝑛𝑎𝑙 𝑜𝑏𝑗)∕𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑜𝑏𝑗. The fifth,
ixth and seventh columns have the same meaning but with reference
o RkDS. It is worth noting that RKS is able to significantly improve
he initial solutions generated by the two methods. On the average the
mprovement obtained for the CW initial solutions is greater (73.8%)
han the one for the RkDS initial solutions (65.4%). However, this is due
o the lower quality of the CW solutions, as shown by the 𝐷𝑒𝑣% 𝐼𝑛𝑖𝑡𝑖𝑎𝑙
olumn, that highlights that the objective of the RkDS initial solutions
s on the average 29.7% smaller than the one of the CW initial solutions.
he 𝐷𝑒𝑣% 𝐹 𝑖𝑛𝑎𝑙 column then reports the deviations of the objectives
f the solutions finally generated by RKS when initialized with RkDS
ith respect to the ones when initialized with CW. We can observe

hat the RkDS initialization allows to improve the RKS result of 21.7%
n average, so justifying the use of this initialization method. We also
pplied the Friedman non-parametric test that confirmed the statistical
ignificance of this result with a 𝑝-value equal to 2.7265 ⋅ 10−6.

.1. Results on medium-sized instances

In this section, we discuss the comparison of the results between
he cloneless MILP model and RKS on the instances with 25 customers,
his last initialized through RkDS. On these instances, the cloneless
ILP model found the optimal solution only for instance r101-25 out

f 12, within the time limit of 7200 s. Moreover, the average TimeBest,
espectively with and without considering the first instance solved
o optimality, is 6506.9 s and 7094.12 s with standard deviations,
espectively, equal to 1950.82 and 118.74. These results remark that
he MILP solver is able to exploit the available CPU time on this group
f instances. This may be due to the fact that they contain only 25
ustomers and therefore can be considered easier than the large-sized
11

nes.
Table 4 shows that the average Gap produced in the time limit of
200 s by the MILP solver for the cloneless model is equal to 68.13%.
onsidering RKS, the average percentage deviation 𝐷𝑒𝑣% after 1800 s

is equal to −7.24, whereas after 3600 s the solution quality is improved,
being the average percentage deviation equal to −10.06. The average
time to best of RKS is equal to 2277.5 s that is by far less than the
average computational time required by the model (6506.9 s).

6.2. Results on large-sized instances

This section compares the results on the large-sized instances with
100 customers (Schneider et al., 2014) of the cloneless MILP model and
of RKS, the latter starting from the solution of the RkDS.

On these instances, the cloneless MILP model always reached the
time limit of 2 hours. Table 5 shows that RKS, within the time limit of
1800 s, found solutions on the average always better than the feasible
ones determined by the MILP solver, with the only exception on the two
instances, i.e., c101-21 and r101-21. Indeed, the 𝐷𝑒𝑣% is on average
equal to −52.79. However, after one hour, RKS found solutions that are
better on average than that of the model of about 2.88% on c101-21
and worse than that of the model of about 0.07% on r101-21. The 𝐷𝑒𝑣%
is on average equal to −61.68 after one hour. These results highlight
the effectiveness of RKS, taking also into account that they have been
obtained within time limits that are respectively one fourth and half
the one allowed to the MILP solver.

It is worth noting that, on almost all the instances, the best solution
of the cloneless MILP model was indeed found after spending a lot of
time for solving its continuous relaxation at the root node. Moreover,
the standard deviation of the TimeBest is 2104.70 s for the MILP solver
whereas it is 41.5 s and 50.70 s for the RKS after 1800 s and 3600 s of
CPU time, respectively. On the contrary of the cloneless MILP model,
the RKS found the best solution on average after 1756.00 s and 3520.90
s (depending on the two different CPU time limits) with a by far lower
standard deviation, thus revealing to be more robust.

An example of the average behavior of RKS compared to the MILP
solver applied to the cloneless model for instance c201-21 is given in
Fig. 2. In this figure, the line associated with the RKS corresponds to
the average result over 15 runs obtained for instance c201-21, whereas
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Fig. 2. An example of the searching behaviors of RKS and MILP solver.
Table 5
Result comparisons on large-sized instances.

Instance Cloneless model RanKS

Time limit = 7200 Time limit = 1800 Time limit = 3600

Obj 𝜂 TimeBest Gap(%) Dev% 𝜂̄ TimeBest Dev% 𝜂̄ TimeBest

c101-21 8482.263 12 7181.9 53.47 8.92 13.3 1791.6 −2.88 12.5 3489.1
c102-21 49204.285 100 2296.2 96.68 −71.54 16.3 1765.7 −75.27 15.2 3538.2
c103-21 49254.51 100 2731.3 97.19 −68.14 16.6 1771.3 −74.59 14.9 3530.4
c104-21 19082.92 37 1169.8 93.33 −20.81 16.7 1813.3 −34.93 14.4 3503.6
c105-21 17232.461 30 3325.3 86.25 −15.08 14.5 1782.0 −29.90 13.7 3518.4
c201-21 18674.189 32 6987.7 91.64 −41.49 7.3 1792.2 −54.63 6.7 3556.8
c202-21 49020.704 100 4231.0 97.34 −66.81 10.0 1783.7 −74.13 8.1 3567.7
c203-21 49020.704 100 4533.8 97.39 −66.21 10.4 1747.9 −74.38 7.7 3532.3
c204-21 30364.331 60 5695.3 95.84 −53.65 9.9 1643.0 −63.78 7.1 3497.3
c205-21 49020.704 100 2465.1 97.36 −75.13 8.9 1783.3 −81.36 7.1 3562.4
r101-21 9160.489 15 7219.5 24.39 11.00 17.7 1766.5 0.07 16.7 3531.4
r102-21 45835.469 100 1400.3 97.53 −70.44 23.5 1800.2 −73.55 21.3 3532.8
r103-21 296125.785 100 3457.7 99.64 −94.68 24.4 1760.9 −95.63 21.3 3539.3
r104-21 45939.895 100 3241.7 97.71 −59.87 29.5 1753.9 −68.75 23.0 3532.9
r105-21 18466.117 36 6746.5 90.48 −33.64 19.0 1754.2 −39.10 17.6 3533.5
r201-21 45935.872 100 2603.4 97.52 −73.93 9.1 1802.4 −79.02 7.4 3564.7
r202-21 45935.872 100 5419.5 97.66 −70.67 10.6 1728.9 −77.54 7.7 3554.5
r203-21 14665.021 27 7587.0 92.76 −1.17 10.5 1744.7 −24.55 7.9 3489.5
r204-21 14761.009 28 6693.3 92.9 −8.00 10.0 1622.2 −27.99 7.7 3408.7
r205-21 37187.986 79 5065.2 97.06 −65.70 8.9 1769.5 −74.32 7.3 3563.3
rc101-21 16574.141 30 4064.8 84.81 −19.44 20.3 1774.9 −27.76 18.9 3506.9
rc102-21 683432.596 100 1949.0 99.81 −97.89 21.9 1766.3 −98.07 20.5 3343.7
rc103-21 893141.008 100 3002.7 99.86 −98.22 24.4 1754.5 −98.41 21.8 3478.8
rc104-21 51495.042 100 7083.1 97.63 −56.89 30.5 1770.2 −69.23 23.6 3573.9
rc105-21 52297.614 100 1417.0 97.29 −69.50 22.3 1730.8 −74.14 20.2 3433.9
rc201-21 52383.019 100 2299.6 97.37 −69.80 9.9 1773.1 −77.48 8.7 3575.8
rc202-21 52383.019 100 4637.8 97.58 −65.63 10.9 1758.6 −75.86 9.8 3519.7
rc203-21 52383.019 100 7105.2 97.65 −63.56 13.0 1691.3 −74.13 9.7 3544.4
rc204-21 25089.783 46 908.6 95.13 −37.98 11.7 1718.1 −52.02 9.0 3529.2
rc205-21 52383.019 100 2741.3 97.56 −67.70 10.7 1765.1 −76.95 9.1 3573.2
12
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Table 6
The combinations of parameters values analyzed.
𝑘 𝑘′ 𝑇 𝑖𝑛𝑖 𝑇 𝑠𝑡𝑒𝑝

24 8 120 30
24 8 480 120
60 20 120 30
60 20 480 120
60 40 120 30
60 40 480 120

Table 7
The statistics for the deviations for the initial solutions varying 𝑇 𝑖𝑛𝑖.

Deviation from 𝑍∗
𝑖𝑛𝑖 p-value

Average StDev

𝑇 𝑖𝑛𝑖 120 2.248 1.371 6.02E−09480 0.740 0.798

the dashed lines show the 95% confidence interval with respect to the
average.

6.3. Sensitivity analysis

This section illustrates the analysis performed to evaluate the sen-
sitivity of RKS to a possible variation of the values of a subset of the
input parameters. In particular, the maximum number of iterations for
a fixed value of 𝑘, the minimum number of iterations during which

variable remains in the kernel after entering it, and the maximum
umber of iterations without improvements have been kept fixed to
𝑚𝑎𝑥
𝐾 = 4, 𝐼𝑚𝑖𝑛𝐾𝑆 = 4 and 𝐼𝑚𝑎𝑥𝑁 = 24, respectively. In fact, from a set of

preliminary tests, we observed that these values ensure a good trade-
off between the computation time and the solution quality. Therefore,
we decided to focus the analysis on both the parameters that influence
the RkDS procedure and 𝑇 𝑠𝑡𝑒𝑝. In addition, to reduce the computational
burden, we performed this analysis on the three instances c201-21,
r104-21 and rc205-21, respectively selected from the three classes C,
R and RC and we run five repetitions of RKS. The time limit was set to
1800 and 3600 s on each instance for the combinations of the values
of the parameters 𝑘, 𝑘′, 𝑇 𝑖𝑛𝑖 and 𝑇 𝑠𝑡𝑒𝑝 as shown in Table 6.

From Tables 7 and 8, we can first observe the influence of the
parameters 𝑘, 𝑘′ and 𝑇 𝑖𝑛𝑖 on the quality of the starting solution found by

kDS. Both such tables report the Average and the Standard Deviation
StDev) of the 𝐷𝑒𝑣% values obtained with the different combinations
f the parameters specified in the rows. Such deviations are computed
ith respect to the best initial solution found for each instance over

he whole set of tests. In particular, the deviations are computed as
00 ⋅ (𝑍𝑖𝑛𝑖(𝑖, 𝑝) − 𝑍∗

𝑖𝑛𝑖(𝑖))∕𝑍
∗
𝑖𝑛𝑖(𝑖), where 𝑍∗

𝑖𝑛𝑖(𝑖) is the objective value of
he best initial solution found for the instance 𝑖, whereas 𝑍𝑖𝑛𝑖(𝑖, 𝑝) is
he objective for 𝑖 produced by RkDS with the set 𝑝 of parameters fixed
o the values as specified in the rows of the tables. In addition, in
rder to assess the significance of the differences between the obtained
verage values, we report in the tables also the 𝑝-value returned by
he Friedman non-parametric test: if 𝑝-value is smaller than 1%, then
e can reject the null hypothesis that the compared combinations
enerated not significantly different results.

Observing Table 7, we can hence conclude that, as might be ex-
ected, the initial solutions produced with 𝑇 𝑖𝑛𝑖 = 480 s are significantly
etter than the ones with 𝑇 𝑖𝑛𝑖 = 120 s.

Table 8 summarizes the results when the value of 𝑘 and 𝑘′ are
hanged. In this case, we can observe that the 𝑝-value from the Fried-
an test indicates the differences in the averages as not statistically

ignificant.
Tables 9 and 10 report the results obtained analyzing the effects

f the different combinations of the parameters values on the final
olutions found by RKS. Also in this case, the deviations are given by

∗ ∗ ∗
13

00 ⋅ (𝑍(𝑖, 𝑝) − 𝑍 (𝑖))∕𝑍 (𝑖), where 𝑍 (𝑖) is the objective value of the
Table 8
The statistics for the deviations for the initial solutions varying 𝑘 and 𝑘′.
k 𝑘′ Deviation from 𝑍∗

𝑖𝑛𝑖 p-value

Average StDev

24 8 1.226 1.092
0.06760 20 1.783 1.822

60 40 1.472 0.901

best final solution found for the instance 𝑖 over the whole set of tests,
whereas 𝑍(𝑖, 𝑝) the objective found for 𝑖 fixing the set of parameters 𝑝 as
n the tables rows. In particular, Table 9 considers the two combinations
f 𝑇 𝑖𝑛𝑖 and 𝑇 𝑠𝑡𝑒𝑝 tested to evaluate if increasing them could improve
he quality of the RKS solutions. It is worth noting that, since the
ifferences in the average values computed with both the 𝑇 𝑚𝑎𝑥 limits
re not statistically significant, RKS appears sufficiently robust with
espect to these two parameters.

An analogous conclusion can be drawn observing the 𝑝-value re-
urned by the Friedman tests in Table 10, which reports the statistics
n deviations from the final solutions when changing the values of 𝑘
nd 𝑘′. Therefore, the outcomes of the analysis performed remarks that
KS is not significantly sensitive both to the value of the parameters
ffecting the RkDS procedure and to the initial time limit for the
estricted MILP models.

. Conclusions and future works

In this paper, we studied the Electric Vehicle Routing Problem with
ime Windows and realistic Energy Consumption Rate (EVRPTW-ECR).
ompared to EVRP-TW, it includes some more real-life factors in the
nergy consumption model, e.g., the payload and the vehicle speed.
ifferently from (Xiao et al., 2019), where the EVRPTW-ECR was first

ntroduced, in this paper, we also consider possible stops en-route at
he Recharging Stations (RSs).

First of all, we modeled this problem as a cloneless Mixed Integer
inear Program where the vehicle speed is a continuous variable that
an vary between a minimum and a maximum value. Moreover, the
roposed formulation allows using more than once the same RS without
ntroducing dummy copies of it. To this purpose, for each pair of
ustomers 𝑖 and 𝑗, the set 𝑆𝑖𝑗 is pre-computed, containing all the RSs
hat may be advantageous to visit, going from 𝑖 to 𝑗. Moreover, through
pre-processing phase, we removed a-priori all the links, between two

ustomers, that are infeasible with regard to either the vehicle cargo
apacity, or the time windows or also the maximum time to return to
he depot.

In order to efficiently address large-sized instances of the problem, a
andom Kernel Search (RKS) matheuristic approach was also designed,

nspired by the Kernel Search Algorithm of Angelelli et al. (2010).
oreover, in order to efficiently generate an initial solution for RKS,
Random k-Degree Search matheuristic (RkDS) was also introduced.

Since EVRPTW-ECR shares several aspects with the EVRP-TW,
e used the benchmark instance sets with 100 customers introduced

by Schneider et al. (2014), and we also derived a medium-sized one
with 25 customers. On all the sets, we tested both the cloneless model
and RKS.

The effectiveness of RKS was confirmed by the results obtained
for both the sets. Indeed, RKS was able to improve on average, even
in half an hour, the solutions found by solving the cloneless model
in two hours of computations. We can also observe that RKS always
greatly improved the initial solutions found by the RkDS matheuristic.
However, RkDS was a fundamental component of RKS to overcome the
possible computational difficulty in finding a feasible starting solution
on the large-sized instances.

Finally, an analysis to evaluate the sensitivity of RKS to possible
variation of some input parameters was also performed, showing that

it is robust since it is not significantly sensitive both to the parameters
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Table 9
The statistics for the deviations for the final solutions varying 𝑇 𝑖𝑛𝑖 and 𝑇 𝑠𝑡𝑒𝑝.
𝑇 𝑖𝑛𝑖 𝑇 𝑠𝑡𝑒𝑝 𝑇 𝑚𝑎𝑥 = 1800 𝑇 𝑚𝑎𝑥 = 3600

Deviation from best Deviation from best

Average StDev p-value Average StDev p-value

120 30 0.6624 0.5428 0.8763 0.4348 0.3563 0.2359480 120 0.4217 0.3895 0.3740 0.2878
Table 10
The statistics for the deviations for the final solutions varying 𝑘 and 𝑘′.
k 𝑘′ 𝑇 𝑚𝑎𝑥 = 1800 𝑇 𝑚𝑎𝑥 = 3600

Deviation from best Deviation from best

Average StDev p-value Average StDev p-value

24 8 0.477 0.370
0.049

0.365 0.248
0.12160 20 0.531 0.560 0.372 0.365

60 40 0.619 0.502 0.477 0.339
of the RkDS procedure and to the initial time limit for the restricted
MILP models.

Future works may concern the solution of further extension of
EVRPTW-ECR where for instance the maximum speed on the arcs is
time dependent to model the evolution of the traffic conditions along
the day or where the maximum speed is known real time.

Data availability

Data will be made available on request.
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