Energy management in smart home environment is nowadays a crucial aspect on which technologies have been focusing on in order to save costs and minimize energy waste. This goal can be reached by means of an energy resource scheduling strategy provided by a suitable optimization technique. The proposed solution involves a class of Adaptive Critic Designs (ACDs) called Action Dependent Heuristic Dynamic Programming (ADHDP) that uses two neural networks, namely the Action and the Critic Network. This scheme is able to minimize a given Utility Function over a certain time horizon. In order to increase the performances of the ADHDP algorithm, suitable Particle Swarm Optimization (PSO) based procedures are used to pretrain the weights of the Action and the Critic networks. The results provided by PSO techniques and by a non-optimal baseline approach are also used as elements of comparison. Computer simulations have been carried out in different residential scenarios. An historical data set for solar irradiation has been used to simulate the behavior of a photovoltaic array to obtain renewable energy and the main grid is used to supply the load and charge the battery when necessary. The results confirm that the ADHDP is able to reduce the overall energy cost with respect to the baseline solution and the PSO techniques. Moreover, the validity of this method has also been shown in a more realistic context where only forecasted values of solar irradiation and electricity price can be used.

Action dependent heuristic dynamic programming for home energy resource scheduling / Danilo, Fuselli; Francesco De, Angelis; Matteo, Boaro; Squartini, Stefano; Qinglai, Wei; Derong, Liu; Piazza, Francesco. - In: INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS. - ISSN 0142-0615. - Volume 48, Issue 1:(2013), pp. 148-160. [10.1016/j.ijepes.2012.11.023]

Action dependent heuristic dynamic programming for home energy resource scheduling

SQUARTINI, Stefano;PIAZZA, Francesco
2013-01-01

Abstract

Energy management in smart home environment is nowadays a crucial aspect on which technologies have been focusing on in order to save costs and minimize energy waste. This goal can be reached by means of an energy resource scheduling strategy provided by a suitable optimization technique. The proposed solution involves a class of Adaptive Critic Designs (ACDs) called Action Dependent Heuristic Dynamic Programming (ADHDP) that uses two neural networks, namely the Action and the Critic Network. This scheme is able to minimize a given Utility Function over a certain time horizon. In order to increase the performances of the ADHDP algorithm, suitable Particle Swarm Optimization (PSO) based procedures are used to pretrain the weights of the Action and the Critic networks. The results provided by PSO techniques and by a non-optimal baseline approach are also used as elements of comparison. Computer simulations have been carried out in different residential scenarios. An historical data set for solar irradiation has been used to simulate the behavior of a photovoltaic array to obtain renewable energy and the main grid is used to supply the load and charge the battery when necessary. The results confirm that the ADHDP is able to reduce the overall energy cost with respect to the baseline solution and the PSO techniques. Moreover, the validity of this method has also been shown in a more realistic context where only forecasted values of solar irradiation and electricity price can be used.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/86146
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 137
  • ???jsp.display-item.citation.isi??? 112
social impact