The effects of SSI on the seismic response of multi-span bridges are investigated by means of a modeling strategy based on the domain decomposition technique. Firstly, the analysis methodology is presented: kinematic interaction analysis is performed in the frequency domain by means of a procedure accounting for radiation damping, soil-pile and pile-to-pile interaction; the seismic response of the superstructure is evaluated in the time domain by means of user-friendly finite element programs introducing suitable Lumped Parameter Models to take into account the frequency-dependent impedances of the soil-foundation system. Secondly, a real multi-span railway bridge longitudinally restrained at one abutment is analyzed. The input motion is represented by two sets of real accelerograms: one consistent with the Italian seismic code and the other constituted by five records characterized by different frequency contents. The seismic response of the compliant-base model is compared with that obtained from a fixed-base model. Pile stress resultants due to kinematic and inertial interactions are also evaluated. The application demonstrates the importance of performing a comprehensive analysis of the soil-foundation-structure system in the design process, in order to capture the effects of SSI in each structural element that may be beneficial or detrimental.

Seismic soil-structure interaction in multi-span bridges: application to a railway bridge / Carbonari, Sandro; Dezi, F.; Leoni, G.. - In: EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS. - ISSN 0098-8847. - STAMPA. - 40:11(2011), pp. 1219-1239. [10.1002/eqe.1085]

Seismic soil-structure interaction in multi-span bridges: application to a railway bridge

CARBONARI, SANDRO;
2011-01-01

Abstract

The effects of SSI on the seismic response of multi-span bridges are investigated by means of a modeling strategy based on the domain decomposition technique. Firstly, the analysis methodology is presented: kinematic interaction analysis is performed in the frequency domain by means of a procedure accounting for radiation damping, soil-pile and pile-to-pile interaction; the seismic response of the superstructure is evaluated in the time domain by means of user-friendly finite element programs introducing suitable Lumped Parameter Models to take into account the frequency-dependent impedances of the soil-foundation system. Secondly, a real multi-span railway bridge longitudinally restrained at one abutment is analyzed. The input motion is represented by two sets of real accelerograms: one consistent with the Italian seismic code and the other constituted by five records characterized by different frequency contents. The seismic response of the compliant-base model is compared with that obtained from a fixed-base model. Pile stress resultants due to kinematic and inertial interactions are also evaluated. The application demonstrates the importance of performing a comprehensive analysis of the soil-foundation-structure system in the design process, in order to capture the effects of SSI in each structural element that may be beneficial or detrimental.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/85161
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 32
social impact