We report the first results of a research study aimed at developing a new strategy for the conservation of wooden structural elements present in historical buildings, based on moisture regulating systems. As has been happening for artefact preservation in museums, the idea is to develop systems based on the ability of some highly hygroscopic materials to moderate variations in relative humidity. These materials could adsorb and release moisture to reduce the extreme values of humidity in the micro-climate, for example between wooden beams and masonry. In order to experimentally verify this possibility using current, low cost and easy handling building materials, 5 bentonite samples were laboratory processed to improve their adsorbing properties by means of treatment with sodium carbonate at 3 concentrations: 2, 3 and 4% by weight. The effectiveness of ion exchange between sodium carbonate and bentonite was controlled by measuring the swelling volume of the bentonites. All the samples (n = 15) were tested for their hygroscopic properties. Adsorption isotherms were measured at 25 ◦C, using desiccators with silica gel, saturated salt solutions and bi-distilled water. A comparison between isotherms of one of the lower hygroscopic treated sample of bentonite and of a sample of wood and of a sample of brick and some numerical analyses with the Delphin code were made in order to evaluate the potential use of this bentonite as a moisture regulating system for the preservation of historical wooden elements. Results show that it seems to be possible to use bentonites as a moisture buffering material in order to reduce moisture content in wooden beams at least during their adsorption phase. It remains to investigate their desorption phase and their behaviour if they be in a saturation condition. Further studies are currently under way.

Study on some sorption properties of treated bentonites for their potential use as a moisture regulating system for the preservation of historical wooden elements / D'Orazio, Marco; Quagliarini, Enrico. - In: JOURNAL OF CULTURAL HERITAGE. - ISSN 1296-2074. - STAMPA. - 11:(2010), pp. 185-195. [10.1016/j.culher.2009.11.005]

Study on some sorption properties of treated bentonites for their potential use as a moisture regulating system for the preservation of historical wooden elements

D'ORAZIO, Marco;QUAGLIARINI, ENRICO
2010-01-01

Abstract

We report the first results of a research study aimed at developing a new strategy for the conservation of wooden structural elements present in historical buildings, based on moisture regulating systems. As has been happening for artefact preservation in museums, the idea is to develop systems based on the ability of some highly hygroscopic materials to moderate variations in relative humidity. These materials could adsorb and release moisture to reduce the extreme values of humidity in the micro-climate, for example between wooden beams and masonry. In order to experimentally verify this possibility using current, low cost and easy handling building materials, 5 bentonite samples were laboratory processed to improve their adsorbing properties by means of treatment with sodium carbonate at 3 concentrations: 2, 3 and 4% by weight. The effectiveness of ion exchange between sodium carbonate and bentonite was controlled by measuring the swelling volume of the bentonites. All the samples (n = 15) were tested for their hygroscopic properties. Adsorption isotherms were measured at 25 ◦C, using desiccators with silica gel, saturated salt solutions and bi-distilled water. A comparison between isotherms of one of the lower hygroscopic treated sample of bentonite and of a sample of wood and of a sample of brick and some numerical analyses with the Delphin code were made in order to evaluate the potential use of this bentonite as a moisture regulating system for the preservation of historical wooden elements. Results show that it seems to be possible to use bentonites as a moisture buffering material in order to reduce moisture content in wooden beams at least during their adsorption phase. It remains to investigate their desorption phase and their behaviour if they be in a saturation condition. Further studies are currently under way.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/53464
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact