Periodontitis represents a complex inflammatory disease that compromises the integrity of the tooth-supporting tissue through the interaction of specific periodontal pathogens and the host’s immune system. Experimental data help to outline the idea that the molecular way towards periodontitis initiation and progression presents four key steps: bacterial infection, inflammation, oxidative stress, and autophagy. The aim of this review is to outline the autophagy involvement in the pathogenesis and evolution of periodontitis from at least three points of view: periodontal pathogen invasion control, innate immune signaling pathways regulation and apoptosis inhibition in periodontal cells. The exact roles played by reactive oxygen species (ROS) inside the molecular mechanisms for autophagy initiation in periodontitis still require further investigation. However, clarifying the role and the mechanism of redox regulation of autophagy in the periodontitis context may be particularly beneficial for the elaboration of new therapeutic strategies.

Autophagy, one of the main steps in periodontitis pathogenesis and evolution / Greabu, M.; Giampieri, F.; Melescanu Imre, M.; Mohora, M.; Totan, A.; Pituru, S. M.; Ionescu, E.. - In: MOLECULES. - ISSN 1420-3049. - 25:18(2020), p. 4338. [10.3390/molecules25184338]

Autophagy, one of the main steps in periodontitis pathogenesis and evolution

Giampieri F.;
2020-01-01

Abstract

Periodontitis represents a complex inflammatory disease that compromises the integrity of the tooth-supporting tissue through the interaction of specific periodontal pathogens and the host’s immune system. Experimental data help to outline the idea that the molecular way towards periodontitis initiation and progression presents four key steps: bacterial infection, inflammation, oxidative stress, and autophagy. The aim of this review is to outline the autophagy involvement in the pathogenesis and evolution of periodontitis from at least three points of view: periodontal pathogen invasion control, innate immune signaling pathways regulation and apoptosis inhibition in periodontal cells. The exact roles played by reactive oxygen species (ROS) inside the molecular mechanisms for autophagy initiation in periodontitis still require further investigation. However, clarifying the role and the mechanism of redox regulation of autophagy in the periodontitis context may be particularly beneficial for the elaboration of new therapeutic strategies.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/299284
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact