Cold recycling is a sustainable pavement rehabilitation technology. Among the different techniques, cement-bitumen treated materials (CBTM) take advantage of the presence of the two co-binders to achieve satisfying performance. A multiscale study addresses the effect of different cementitious binders on the mechanical behaviour of CBTM mixtures and fine aggregate matrix mortars produced with bitumen emulsion. The evolution of stiffness and strength during curing is measured and compared. Results show that the cement type has a critical effect on the mechanical behaviour and, under fixed curing conditions, changing the strength is equivalent to changing the dosage. Finally, fine aggregate matrix mortars offer an excellent prediction of mixture mechanical properties.

Using fine aggregate matrix mortars to predict the curing behaviour of cement bitumen treated materials produced with different cements / Mignini, C.; Cardone, F.; Graziani, A.. - In: CONSTRUCTION AND BUILDING MATERIALS. - ISSN 0950-0618. - STAMPA. - 268:(2021), p. 121201. [10.1016/j.conbuildmat.2020.121201]

Using fine aggregate matrix mortars to predict the curing behaviour of cement bitumen treated materials produced with different cements

Mignini C.
Primo
Writing – Original Draft Preparation
;
Cardone F.
Secondo
Membro del Collaboration Group
;
Graziani A.
Ultimo
Writing – Review & Editing
2021-01-01

Abstract

Cold recycling is a sustainable pavement rehabilitation technology. Among the different techniques, cement-bitumen treated materials (CBTM) take advantage of the presence of the two co-binders to achieve satisfying performance. A multiscale study addresses the effect of different cementitious binders on the mechanical behaviour of CBTM mixtures and fine aggregate matrix mortars produced with bitumen emulsion. The evolution of stiffness and strength during curing is measured and compared. Results show that the cement type has a critical effect on the mechanical behaviour and, under fixed curing conditions, changing the strength is equivalent to changing the dosage. Finally, fine aggregate matrix mortars offer an excellent prediction of mixture mechanical properties.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/286839
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact