The application of pattern recognition techniques to data collected from accelerometers available in off-the-shelf devices, such as smartphones, allows for the automatic recognition of activities of daily living (ADLs). This data can be used later to create systems that monitor the behaviors of their users. The main contribution of this paper is to use artificial neural networks (ANN) for the recognition of ADLs with the data acquired from the sensors available in mobile devices. Firstly, before ANN training, the mobile device is used for data collection. After training, mobile devices are used to apply an ANN previously trained for the ADLs’ identification on a less restrictive computational platform. The motivation is to verify whether the overfitting problem can be solved using only the accelerometer data, which also requires less computational resources and reduces the energy expenditure of the mobile device when compared with the use of multiple sensors. This paper presents a method based on ANN for the recognition of a defined set of ADLs. It provides a comparative study of different implementations of ANN to choose the most appropriate method for ADLs identification. The results show the accuracy of 85.89% using deep neural networks (DNN).

Pattern recognition techniques for the identification of activities of daily living using a mobile device accelerometer / Pires, I. M.; Marques, G.; Garcia, N. M.; Florez-Revuelta, F.; Teixeira, M. C.; Zdravevski, E.; Spinsante, S.; Coimbra, M.. - In: ELECTRONICS. - ISSN 2079-9292. - ELETTRONICO. - 9:3(2020), p. 509. [10.3390/electronics9030509]

Pattern recognition techniques for the identification of activities of daily living using a mobile device accelerometer

Spinsante S.
Writing – Review & Editing
;
2020-01-01

Abstract

The application of pattern recognition techniques to data collected from accelerometers available in off-the-shelf devices, such as smartphones, allows for the automatic recognition of activities of daily living (ADLs). This data can be used later to create systems that monitor the behaviors of their users. The main contribution of this paper is to use artificial neural networks (ANN) for the recognition of ADLs with the data acquired from the sensors available in mobile devices. Firstly, before ANN training, the mobile device is used for data collection. After training, mobile devices are used to apply an ANN previously trained for the ADLs’ identification on a less restrictive computational platform. The motivation is to verify whether the overfitting problem can be solved using only the accelerometer data, which also requires less computational resources and reduces the energy expenditure of the mobile device when compared with the use of multiple sensors. This paper presents a method based on ANN for the recognition of a defined set of ADLs. It provides a comparative study of different implementations of ANN to choose the most appropriate method for ADLs identification. The results show the accuracy of 85.89% using deep neural networks (DNN).
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/281594
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 15
social impact