During Precambrian, sulfate variations were so strong that one hypothesis guesses that S availability influenced phytoplankton evolution/radiation in the oceans. Considering this concept, I investigated how sulfate metabolism regulation in cyanobacteria may have changed through geological times focusing on the first step of the S assimilation pathway, which is controlled by the ATP sulfurylase (ATPS) protein. Precambrian environmental changes caused variation in the ocean chemistry, leading to an increase of sulfate availability, a decrease of dissolved Fe and, an increase in sinks for reducing equivalents in cell metabolism. Since all these factors could have influenced the usage of reducing equivalents in primitive unicellular organisms, evident repercussions on their metabolism regulation and resource/energy allocation/distribution are ensuing. Since the early primary production mostly depended on photo-oxygenic cyanobacteria, I focused on them studying their physiological performance, their chemical composition, and their resource and energy partitioning in the reconstructed proterozoic environment and in the modern one. To understand the impact that environmental changes may have had on ocean ecology, I also studied consequences on cyanobacterial biomass quality, to comprehend the consequences on the trophic webs. Present results point out that (1) oxygen availability variations influence growth rate in cyanobacteria, (2) nutrient limitation combined with redox power variation has an effect on the ATPS activity, but the nutrient concentration seems to be the strongest one, (3) nutrient limitation influences elements assimilation and macromolecular pool in cyanobacteria. It is possible to conclude that the oxygenation of the planet may not have been the only evolutive constraint for redox regulation in ATPS enzymes. Moreover, biochemical results support the theory stating cyanobacteria evolved in the freshwater environment and only secondly conquered the ocean.

Durante il Precambriano, le variazioni di SO42- negli oceani sono state così importanti da ipotizzare che la disponibilità di S abbia influenzato l’evoluzione del fitoplancton. Ho investigato come la regolazione del suo metabolismo nei cianobatteri possa essere cambiata nel tempo, concentrandomi sul primo step della catena assimilativa controllato dalla ATP sulforilasi (ATPS). I cambiamenti ambientali preistorici hanno influenzato la chimica oceanica portando ad un aumento del SO42- disponibile, a una diminuzione del Fe disciolto e ad un aumento nel consumo di equivalenti riducenti. Questi fattori avrebbero potuto influenzare l'uso di equivalenti riducenti negli organismi unicellulari primitivi, con evidenti ripercussioni sulla regolazione del metabolismo e sulla distribuzione delle risorse. Poiché la prima produzione primaria dipendeva principalmente dai cianobatteri fotossigenici, mi sono concentrata su di essi, studiandone le prestazioni fisiologiche, la composizione chimica e la ripartizione di risorse in ambiente proterozoico ricostruito e in quello moderno. Per comprendere l'impatto che i cambiamenti ambientali potrebbero aver avuto sull'ecologia degli oceani, ho analizzato le conseguenze sulla qualità della biomassa cianobatterica. I risultati ottenuti indicano 1) che le variazioni della disponibilità di O2 influenzano il tasso di crescita nei cianobatteri, 2) che la limitazione dei nutrienti unita alla variazione del potere riducente disponibile ha un effetto sull'attività delle ATPS (la concentrazione di nutrienti sembra avere un effetto più forte), e 3) che la limitazione dei nutrienti influenza l'assimilazione degli elementi e il pool macromolecolare. È possibile concludere che l'ossigenazione del pianeta potrebbe non essere stata l'unico vincolo evolutivo per lo sviluppo di una regolazione redox nelle ATPS. Inoltre i risultati biochimici supportano la teoria per cui i cianobatteri evolvendosiin acqua dolce hanno conquistato solo secondariamente l'oceano.

Cyanobacteria Sulfur Metabolism under Precambrian environmental Conditions / Gastoldi, Lucia. - (2020 Mar 24).

Cyanobacteria Sulfur Metabolism under Precambrian environmental Conditions

GASTOLDI, LUCIA
2020-03-24

Abstract

During Precambrian, sulfate variations were so strong that one hypothesis guesses that S availability influenced phytoplankton evolution/radiation in the oceans. Considering this concept, I investigated how sulfate metabolism regulation in cyanobacteria may have changed through geological times focusing on the first step of the S assimilation pathway, which is controlled by the ATP sulfurylase (ATPS) protein. Precambrian environmental changes caused variation in the ocean chemistry, leading to an increase of sulfate availability, a decrease of dissolved Fe and, an increase in sinks for reducing equivalents in cell metabolism. Since all these factors could have influenced the usage of reducing equivalents in primitive unicellular organisms, evident repercussions on their metabolism regulation and resource/energy allocation/distribution are ensuing. Since the early primary production mostly depended on photo-oxygenic cyanobacteria, I focused on them studying their physiological performance, their chemical composition, and their resource and energy partitioning in the reconstructed proterozoic environment and in the modern one. To understand the impact that environmental changes may have had on ocean ecology, I also studied consequences on cyanobacterial biomass quality, to comprehend the consequences on the trophic webs. Present results point out that (1) oxygen availability variations influence growth rate in cyanobacteria, (2) nutrient limitation combined with redox power variation has an effect on the ATPS activity, but the nutrient concentration seems to be the strongest one, (3) nutrient limitation influences elements assimilation and macromolecular pool in cyanobacteria. It is possible to conclude that the oxygenation of the planet may not have been the only evolutive constraint for redox regulation in ATPS enzymes. Moreover, biochemical results support the theory stating cyanobacteria evolved in the freshwater environment and only secondly conquered the ocean.
24-mar-2020
Durante il Precambriano, le variazioni di SO42- negli oceani sono state così importanti da ipotizzare che la disponibilità di S abbia influenzato l’evoluzione del fitoplancton. Ho investigato come la regolazione del suo metabolismo nei cianobatteri possa essere cambiata nel tempo, concentrandomi sul primo step della catena assimilativa controllato dalla ATP sulforilasi (ATPS). I cambiamenti ambientali preistorici hanno influenzato la chimica oceanica portando ad un aumento del SO42- disponibile, a una diminuzione del Fe disciolto e ad un aumento nel consumo di equivalenti riducenti. Questi fattori avrebbero potuto influenzare l'uso di equivalenti riducenti negli organismi unicellulari primitivi, con evidenti ripercussioni sulla regolazione del metabolismo e sulla distribuzione delle risorse. Poiché la prima produzione primaria dipendeva principalmente dai cianobatteri fotossigenici, mi sono concentrata su di essi, studiandone le prestazioni fisiologiche, la composizione chimica e la ripartizione di risorse in ambiente proterozoico ricostruito e in quello moderno. Per comprendere l'impatto che i cambiamenti ambientali potrebbero aver avuto sull'ecologia degli oceani, ho analizzato le conseguenze sulla qualità della biomassa cianobatterica. I risultati ottenuti indicano 1) che le variazioni della disponibilità di O2 influenzano il tasso di crescita nei cianobatteri, 2) che la limitazione dei nutrienti unita alla variazione del potere riducente disponibile ha un effetto sull'attività delle ATPS (la concentrazione di nutrienti sembra avere un effetto più forte), e 3) che la limitazione dei nutrienti influenza l'assimilazione degli elementi e il pool macromolecolare. È possibile concludere che l'ossigenazione del pianeta potrebbe non essere stata l'unico vincolo evolutivo per lo sviluppo di una regolazione redox nelle ATPS. Inoltre i risultati biochimici supportano la teoria per cui i cianobatteri evolvendosiin acqua dolce hanno conquistato solo secondariamente l'oceano.
Cyanobacteria; Sulfur; ATP sulfurylase; Proterozoic
cianobatteri; zolfo; ATP; sulfurilasi; Proterozoico
File in questo prodotto:
File Dimensione Formato  
Tesi_Gastoldi.pdf

Open Access dal 01/10/2021

Descrizione: Tesi_Gastoldi
Tipologia: Tesi di dottorato
Licenza d'uso: Creative commons
Dimensione 3.24 MB
Formato Adobe PDF
3.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/274568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact