This study investigates the effects of the addition of two different types of particles on morphological, thermo-hygrometric and mechanical properties of thermal insulating sprayed polyurethane foams. Platelet nanoclay and spherical silicon dioxide microparticles were poured into two different foams with a density of 15 Kg/m3 and 30 Kg/m3, respectively used for cavity walls infill and external insulation layers. Nanoclay particles were dispersed into the polyol through a sonication technique followed by a mechanical mixing into the isocyanate, whereas silica dioxide microparticles (aerogel) were mixed mechanically into the polyol then added to isocyanate. Results showed that the introduction of small amounts (2% and 4% in weight) of nanoparticles and microparticles significantly enhances both thermal and mechanical properties of the foams. Among the low-density foams, the best thermal performance was recorded by 4 wt% nanoclay sample with a reduction of the conductance of about 9% whereas the best mechanical performance was recorded by 4 wt% aerogel sample with an increase of the tensile modulus of about 300%. However even the 4wt% nanoclay addition significantly enhanced the outcomes of the mechanical tests. Also among the highdensity foams, the best thermal and mechanical compromise was achieved by the one containing 4% in weight of nanoclay, that showed a reduction of the conductance of about 7% and an increase of the tensile modulus of about 180%. This latter sample resulted to be the most performing among all the foams.

Thermal and mechanical optimization of nano-foams for sprayed insulation / Stazi, F.; Urlietti, Carolina; Di Perna, C.; Chiappini, G.; Rossi, M.; Tittarelli, F.. - In: CONSTRUCTION AND BUILDING MATERIALS. - ISSN 0950-0618. - STAMPA. - 201:(2019), pp. 828-841. [10.1016/j.conbuildmat.2018.12.177]

Thermal and mechanical optimization of nano-foams for sprayed insulation

F. Stazi
;
URLIETTI, CAROLINA;C. Di Perna;G. Chiappini;M. Rossi;F. Tittarelli
2019-01-01

Abstract

This study investigates the effects of the addition of two different types of particles on morphological, thermo-hygrometric and mechanical properties of thermal insulating sprayed polyurethane foams. Platelet nanoclay and spherical silicon dioxide microparticles were poured into two different foams with a density of 15 Kg/m3 and 30 Kg/m3, respectively used for cavity walls infill and external insulation layers. Nanoclay particles were dispersed into the polyol through a sonication technique followed by a mechanical mixing into the isocyanate, whereas silica dioxide microparticles (aerogel) were mixed mechanically into the polyol then added to isocyanate. Results showed that the introduction of small amounts (2% and 4% in weight) of nanoparticles and microparticles significantly enhances both thermal and mechanical properties of the foams. Among the low-density foams, the best thermal performance was recorded by 4 wt% nanoclay sample with a reduction of the conductance of about 9% whereas the best mechanical performance was recorded by 4 wt% aerogel sample with an increase of the tensile modulus of about 300%. However even the 4wt% nanoclay addition significantly enhanced the outcomes of the mechanical tests. Also among the highdensity foams, the best thermal and mechanical compromise was achieved by the one containing 4% in weight of nanoclay, that showed a reduction of the conductance of about 7% and an increase of the tensile modulus of about 180%. This latter sample resulted to be the most performing among all the foams.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/262728
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact