In this paper, the constrained thrust allocation problem is studied and solved for the class of over-actuated Remotely Operated Vehicles. In detail, we find the solution of the thrust allocation when the thrusters are affected by possible faults and, simultaneously, taking into account the thrusters’ saturation limits. The proposed thrust allocation algorithm is tested both numerically, with randomly generated input samples, and applied in simulation for the trajectory tracking of a Remotely Operated Vehicle, with real parameters and in combination with different control laws. The algorithm is compared with two commonly used approaches, that are the saturated pseudo-inverse method and the Matlab Quadratic Programming solver; both accuracy and computation time are considered in the analysis of the performances. The simulations show that the proposed algorithm performs better, in terms of computation time, w.r.t. the Matlab Quadratic Programming solver, while still retaining the optimality of the solution despite the saturation constraints; moreover, there is also an improvement in the tracking error regardless of the adopted control law.

A Constrained Thrust Allocation Algorithm for Remotely Operated Vehicles / Baldini, Alessandro; Fasano, Antonio; Felicetti, Riccardo; Freddi, Alessandro; Longhi, Sauro; Monteriù, Andrea. - ELETTRONICO. - 51:(2018), pp. 250-255. (Intervento presentato al convegno 11th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles CAMS 2018 tenutosi a Opatija, Croatia nel 10–12 September 2018) [10.1016/j.ifacol.2018.09.511].

A Constrained Thrust Allocation Algorithm for Remotely Operated Vehicles

Baldini, Alessandro;Felicetti, Riccardo;Freddi, Alessandro;Longhi, Sauro;Monteriù, Andrea
2018-01-01

Abstract

In this paper, the constrained thrust allocation problem is studied and solved for the class of over-actuated Remotely Operated Vehicles. In detail, we find the solution of the thrust allocation when the thrusters are affected by possible faults and, simultaneously, taking into account the thrusters’ saturation limits. The proposed thrust allocation algorithm is tested both numerically, with randomly generated input samples, and applied in simulation for the trajectory tracking of a Remotely Operated Vehicle, with real parameters and in combination with different control laws. The algorithm is compared with two commonly used approaches, that are the saturated pseudo-inverse method and the Matlab Quadratic Programming solver; both accuracy and computation time are considered in the analysis of the performances. The simulations show that the proposed algorithm performs better, in terms of computation time, w.r.t. the Matlab Quadratic Programming solver, while still retaining the optimality of the solution despite the saturation constraints; moreover, there is also an improvement in the tracking error regardless of the adopted control law.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/262317
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact