Raspberry seed is a massive byproduct of raspberry juice and wine but usually discarded. The present study employed a microwave-assisted method for extraction of raspberry seed oil (RSO). The results revealed that omega-6 fatty acids (linoleic acid and γ-linolenic acid) were the major constituents in RSO. Cellular antioxidant enzyme activity such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were investigated in HepG2 cells treated with RSO. Induction of the synthesis of several antioxidants in H2O2-exposed HepG2 cells was found. RSO increased the enzyme activity of SOD, CAT, and GPx in H2O2-exposed HepG2. Furthermore, RSO inhibited the phosphorylation of upstream mitogen-activated protein kinases (MAPK) such as c-Jun N-terminal kinase (c-JNK) and extracellular signal-regulated kinase (ERK). Taken together, the possible mechanisms to increase antioxidant enzyme activities in HepG2 may through the suppression of ERK and JNK phosphorylation. Raspberry seed oil exhibited good effects on the activities of the intracellular antioxidant enzymes and seems to protect the liver from oxidative stress through the inhibition of MAPKs. © 2017

Hepatoprotective effects of raspberry (Rubus coreanus Miq.) seed oil and its major constituents / Teng, Hui; Lin, Qiyang; Li, Kang; Yuan, Benyao; Song, Hongbo; Peng, Hongquan; Yi, Lunzhao; Wei, Ming-Chi; Yang, Yu-Chiao; Battino, Maurizio; Cespedes Acuña, Carlos L.; Chen, Lei; Xiao, Jianbo. - In: FOOD AND CHEMICAL TOXICOLOGY. - ISSN 0278-6915. - 110:(2017), pp. 418-424. [10.1016/j.fct.2017.09.010]

Hepatoprotective effects of raspberry (Rubus coreanus Miq.) seed oil and its major constituents

Battino, Maurizio;
2017-01-01

Abstract

Raspberry seed is a massive byproduct of raspberry juice and wine but usually discarded. The present study employed a microwave-assisted method for extraction of raspberry seed oil (RSO). The results revealed that omega-6 fatty acids (linoleic acid and γ-linolenic acid) were the major constituents in RSO. Cellular antioxidant enzyme activity such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were investigated in HepG2 cells treated with RSO. Induction of the synthesis of several antioxidants in H2O2-exposed HepG2 cells was found. RSO increased the enzyme activity of SOD, CAT, and GPx in H2O2-exposed HepG2. Furthermore, RSO inhibited the phosphorylation of upstream mitogen-activated protein kinases (MAPK) such as c-Jun N-terminal kinase (c-JNK) and extracellular signal-regulated kinase (ERK). Taken together, the possible mechanisms to increase antioxidant enzyme activities in HepG2 may through the suppression of ERK and JNK phosphorylation. Raspberry seed oil exhibited good effects on the activities of the intracellular antioxidant enzymes and seems to protect the liver from oxidative stress through the inhibition of MAPKs. © 2017
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/255469
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact